
Securing Untrusted Code via Compiler-Agnostic
Binary Rewriting∗

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, Zhiqiang Lin
Department of Computer Science, The University of Texas at Dallas

800 W. Campbell Rd, Richardson, TX, 75080
{richard.wartell, vishwath.mohan, hamlen, zhiqiang.lin}@utdallas.edu

ABSTRACT
Binary code from untrusted sources remains one of the primary
vehicles for malicious software attacks. This paper presents REINS,
a new, more general, and lighter-weight binary rewriting and in-
lining system to tame and secure untrusted binary programs. Unlike
traditional monitors, REINS requires no cooperation from code-
producers in the form of source code or debugging symbols, requires
no client-side support infrastructure (e.g., a virtual machine or hy-
pervisor), and preserves the behavior of even complex, event-driven,
x86 native COTS binaries generated by aggressively optimizing
compilers. This makes it exceptionally easy to deploy. The safety of
programs rewritten by REINS is independently machine-verifiable,
allowing rewriting to be deployed as an untrusted third-party service.
An implementation of REINS for Microsoft Windows demonstrates
that it is effective and practical for a real-world OS and architecture,
introducing only about 2.4% runtime overhead to rewritten binaries.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; D.3.4 [Programming Languages]: Processors—Code gener-
ation; D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Validation

1. INTRODUCTION
Software is often released in binary form. There are numerous dis-

tribution channels, such as downloading from the vendor’s web site,
sharing through a P2P network, or sending via email attachments.
All of these channels can introduce and distribute malicious code.
Thus, it is very common for end-users to possess known but not fully
trusted binary code, or even unknown binaries that they are lured to
run. To date, there are two major classes of practical mechanisms to
protect users while running such binaries. One is a heavy-weight
approach that runs the binary in a contained virtual machine (VM)
(e.g., [13, 32, 25]). The other is a lighter-weight approach that
runs them in a sandboxing environment with an in-lined reference
monitor (IRM) [36, 30, 39].
∗This work was supported in part by NSF award #1054629 and
AFOSR awards FA9550-08-1-0044 and FA9550-10-1-0088.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’12 Dec. 3-7, 2012, Orlando, Florida USA
Copyright 2012 ACM 978-1-4503-1312-4/12/12 ...$15.00.

The VM approach is appealing for several reasons. First, it avoids
the problem of statically disassembling CISC binaries. Instead, VMs
dynamically translate binary code with the aid of just-in-time binary
translation [13, 32, 25, 18]. This allows dynamically computed
jump targets to be identified and disassembled on the fly. Second,
VMs can intercept API calls and filter them based on a security
policy. Third, even if damage occurs, it can potentially be contained
within the VM. Therefore, VM approach has been widely used in
securing software and analyzing malicious code.

However, production-level VMs can be extremely large rela-
tive to the untrusted processes they guard, introducing significant
computational overhead when they are applied to enforce fine-
grained policies. Their high complexity also makes them difficult to
formally verify; a single bug in the VM implementation leaves users
vulnerable to attack. Meanwhile, there is an air-gap if the binary
needs to access host files, and VM services must also bridge the
semantic-gap [7]. While lighter-weight VM alternatives, such as
program shepherding [18], lessen some of these drawbacks, they
still remain larger and slower than IRMs.

On the other hand, a large body of past research (e.g., SFI [36],
PittSFIeld [20], CFI [1], XFI [10], NaCl [39]) has recognized the
many advantages of client-side, static, binary-rewriting for securing
untrusted, mobile, native code applications. Binary-rewriting boasts
great deployment flexibility since it can be implemented separately
(e.g., by the code-consumer or a third party) from the code-producer,
and the rewritten code can be safely and transparently executed
on machines with no specialized security hardware, software, or
VMs. Moreover, it offers superior performance to many VM tech-
nologies since it statically in-lines a light-weight VM logic directly
into untrusted code, avoiding overheads associated with context-
switching and dynamic code generation. Finally, safety of rewritten
binaries can be machine-verified automatically (in the fashion of
proof-carrying-code [22]), allowing rewriting to be performed by an
untrusted third party.

Unfortunately, all past approaches to rewriting native binary
code require some form of cooperation from code-producers. For
example, Google’s Native Client (NaCl) [39] requires a special
compiler to modify the client programs at the source level and
use NaCl’s trusted libraries. Likewise, Microsoft’s CFI [1] and
XFI [10] requires code-producers to supply a program database
(PDB) file (essentially a debug symbol table) with their released
binaries. Earlier works such as PittSFIeld [20] and SASI [11]
require code-producers to provide gcc-produced assembly code.
Code that does not satisfy these requirements cannot be rewritten
and is therefore conservatively rejected by these systems. These
restrictions have prevented binary-rewriting from being applied to
the vast majority of native binaries because most code-producers do
not provide such support and are unlikely to do so in the near future.

Therefore, in this paper we present the first, purely static, CISC

native code rewriting and in-lining system (REINS) that requires no
cooperation from code-producers (i.e., is compiler-agnostic). Unlike
past work, REINS can automatically rewrite large-scale, COTS,
Windows applications yielded by arbitrary compilers, even with no
access to source-level information (e.g., PDB files or debug symbol
stores). It transparently supports a large category of production-
level applications unsupportable by past efforts, including those that
include event-driven OS-callbacks, dynamic linking, exceptions,
multithreading, computed jumps, and mixtures of trusted and un-
trusted modules. In past efforts we have successfully used REINS’
core rewriting engine to implement basic block randomization for
over 100 Windows and Linux applications without source code [37].

Realizing REINS for COTS x86 binary in Windows platform
raises many challenges, including semantic preservation of dy-
namically computed jumps, code interleaved with data, function
callbacks, and imperfect disassembly. We address these challenges
through the design and implementation of a suite of novel tech-
niques, including conservative disassembly and indirect jump target
identification. Central to our approach is a binary transformation
strategy that expects and tolerates many forms of disassembly errors
by conservatively treating every byte in target code sections as both
code and static data. This obviates the need for perfect disassemblies,
which are seldom realizable in practice without source code.

To tame and secure unsafe logic inside the binary code, REINS au-
tomatically transforms binaries to redirect system API calls through
a trusted policy-enforcement library. The library thereby mediates
all security-relevant API calls and their arguments before (and after)
they are serviced, and uses this information to enforce safety policies
over histories of these security-relevant events. Indirect control
flow transfers (e.g., call/jmp/ret) are protected by in-lined
guard code that ensures that they target safe code addresses when
executed. In addition, a small, trusted verifier shifts the significant
complexity of the rewriting system out of the trusted computing base
(TCB) by independently certifying that rewritten binaries cannot
circumvent the in-lined monitor. Thus, binaries that pass verification
are guaranteed to be safe to execute. While reflective code can
change its behavior in response to rewriting, verification ensures
that such changes cannot effect policy-violations.

In summary, REINS makes the following contributions:

• We present the first compiler-agnostic, machine-certifying,
x86 rewriting algorithm that supports real-world COTS bi-
naries without any appeal to source code or debug symbols.
To the best of our knowledge, all past static binary rewriting
techniques require source-level or debugging information to
support many COTS binary features.

• We design a set of novel techniques to support binary families
for which fully correct automated disassembly is provably
undecidable, including those that contain computed jumps, dy-
namic linking, static data interleaved with code, and untrusted
callback functions invoked by the OS.

• We have implemented REINS as a proof-of-concept prototype,
and tested it on a number of binaries including malware code.
Our empirical evaluation shows that our system successfully
preserves the behavior of non-malicious, real-world Windows
applications, introducing runtime overheads of about 2.4%.

2. BACKGROUND AND OVERVIEW

2.1 Background
Assumptions. The goal of our system is to tame and secure ma-
licious code in untrusted binaries through static binary rewriting.

Since a majority of malware threats currently target Windows x86
platforms, we assume the binary code is running in Microsoft
Windows OS with x86 architecture. Protecting Linux binary code is
outside the scope of this paper. (In fact, rewriting Windows binary
code is much more challenging than for Linux due to the much
greater diversity of Windows-targeting compilers.)

Our goal is to design a compiler-agnostic static binary rewrit-
ing technique, so we do not impose any constraints on the code-
producer; it could be any Windows platform compiler, or even hand-
written machine code. Debug information (e.g., PDB) is assumed
to be unavailable. Like all past native code IRM systems, our
fully static approach rejects attempts at self-modification; untrusted
code may only implement runtime-generated code through standard
system API calls, such as dynamic link library (DLL) loading. Code-
injection attacks are therefore thwarted because the monitor ensures
that any injected code is unreachable.

In addition, our goal is not to protect untrusted code from harming
itself. Rather, we prevent modules that may have been compromised
(e.g., by a buffer overflow) from abusing the system API to damage
the file system or network, and from corrupting trusted modules
(e.g., system libraries) that may share the untrusted module’s address
space. This confines any damage to the untrusted module.

Threat model. Attackers in our model submit arbitrary x86 binary
code for execution on victim systems. Neither attackers nor defend-
ers are assumed to have kernel-level (ring 0) privileges. Attacker-
supplied code runs with user-level privileges, and must therefore
leverage kernel-supplied services to perform malicious actions, such
as corrupting the file system or accessing the network to divulge
confidential data. The defender’s ability to thwart these attacks
stems from his ability to modify attacker-supplied code before it
is executed. His goal is therefore to reliably monitor and restrict
access to security-relevant kernel services without the aid of kernel
modifications or application source code, and without impairing the
functionality of non-malicious code.

Attacks. The central challenge for any protection mechanism that
constrains untrusted native code is the problem of taming computed
jumps, which dynamically compute control-flow destinations at
runtime and execute them. Attackers who manage to corrupt these
computations or the data underlying them can hijack the control-
flow, potentially executing arbitrary code.

While computed jumps may seem rare to those accustomed to
source-level programming, they actually pervade almost all binary
programs compiled from all source languages. Computed jumps
typically include returns (whose destinations are drawn from stack
data), method calls (which use method dispatch tables), library calls
(which use import address tables), multi-way branches (e.g., switch-
case), and optimizations that cache code addresses to registers.

Deciding whether any of these jumps might target an unsafe
location at runtime requires statically inferring the program register
and memory state at arbitrary code points, which is a well known
undecidable problem. Moreover, since x86 instructions are un-
aligned (i.e., any byte can be the start of an instruction), computed
jumps make it impossible to reliably identify all instructions in
untrusted binary code; disassemblers must heuristically guess the
addresses of many instruction sequences to generate a complete
disassembly. Untrusted binaries (e.g., malicious code) are often
specifically crafted to defeat these heuristics, thereby concealing
malicious instruction sequences from analysis tools.

2.2 System Overview
Given an untrusted binary, REINS automatically transforms it so

that (1) all access to system (and library) APIs are mediated by our
policy enforcement library, and (2) all inter-module control-flow

pass

static rewriting

untrusted trusted
untrusted

binary
conservative
disassembler

control-flow
policy

binary
rewriter

rewritten
binary verifier

safe
binary

linker

policy-
enforcement

library

Figure 1: REINS architecture

transfers are restricted to published entry points of known libraries,
preventing execution of attacker-injected or misaligned code.

REINS’ rewriter first generates a conservative disassembly of
the untrusted binary that identifies all safe, non-branching flows
(some of which might not actually be reachable) but not unsafe ones.
The resulting disassembly encodes a control-flow policy: instruc-
tions not appearing in the disassembly are prohibited as computed
jump targets. Generating even this conservative disassembly of
arbitrary x86 COTS binaries is challenging because COTS code is
typically aggressively interleaved with data, and contains significant
portions that are only reachable via computed jumps. To help
overcome some of these challenges, our rewriter is implemented as
an IDAPython [9] program that leverages the considerable analysis
power of the Hex-rays IDA Pro commercial disassembler to identify
function entrypoints and distinguish code from data in complex x86
binaries. While IDA Pro is powerful, it is not perfect; it suffers
numerous significant disassembly errors for almost all production-
level Windows binaries. Thus, our rewriting algorithm’s tolerance
of disassembly errors is critical for success.

Our system architecture is illustrated in Fig. 1. Untrusted binaries
are first analyzed and transformed into safe binaries by a binary
rewriter, which enforces control-flow safety and mediates all API
calls. A separate verifier certifies that the rewritten binaries are
policy-adherent. Malicious binaries that defeat the rewriter’s analy-
sis might result in rewritten binaries that fail verification or that fail
to execute properly, but never in policy violations.

3. DETAILED DESIGN

3.1 Rewriting Control-flow Transfers
Control Flow Safety. Our binary rewriting algorithm uses SFI [36]
to constrain control-flows of untrusted code. It is based on an SFI
approach pioneered by PittSFIeld [20], which partitions instruction
sequences into c-byte chunks. Chunk-spanning instructions and
targets of jumps are moved to chunk boundaries by padding the
instruction stream with nop (no-operation) instructions. This serves
three purposes:
• When c is a power of 2, computed jumps can be efficiently con-

fined to chunk boundaries by guarding them with an instruction
that dynamically clears the low-order bits of the jump target.

• Co-locating guards and the instructions they guard within the
same chunk prevents circumvention of the guard by a computed
jump. A chunk size of c = 16 suffices to contain each guarded
sequence in our system.

• Aligning all code to c-byte boundaries allows a simple, fall-
through disassembler to reliably discover all reachable instruc-
tions in rewritten programs, and verify that all computed jumps
are suitably guarded.

To allow trusted, unrewritten system libraries to safely coexist
in the same address space as chunk-aligned, rewritten binaries, we

logically divide the virtual address space of each untrusted process
into low memory and high memory. Low memory addresses range
from 0 to d−1 and may contain rewritten code and non-executable
data. Higher memory addresses may contain code sections of trusted
libraries and arbitrary data sections (but not untrusted code).

Partition point d is chosen to be a power of 2 so that a single guard
instruction suffices to confine untrusted computed jumps and other
indirect control flow transfers to chunk boundaries in low memory.
For example, a jump that targets the address currently stored in the
eax register can be guarded by:

and eax, (d− c)
jmp eax

This clears both the low-order and high-order bits of the target ad-
dress before jumping, preventing an untrusted module from jumping
directly to a system accessor function or to a non-chunk boundary in
its own code. The partitioning of virtual addresses into low and high
memory is feasible because rewritten code sections are generated by
the rewriter and can therefore be positioned in low memory, while
trusted libraries are relocatable through rebasing and can therefore
be moved to high memory when necessary.

Preserving Good Flows. The above suffices to enforce control-
flow safety, but it does not preserve the behavior of most code
containing computed jumps. This is a major deficiency of many
early SFI works, most of which can only be successfully applied to
relatively small, gcc-compiled programs that do not contain such
jumps. More recent SFI works have only been able to overcome this
problem with the aid of source-level debug information.

Our source-free solution capitalizes on the fact that although
disassemblers cannot generally identify all jumps in arbitrary binary
code, modern commercial disassemblers can heuristically identify
a superset of all the indirect jump targets (though not the jumps
that target them) in most binary code. This is enough information
to implement a light-weight, binary lookup table that the IRM can
consult at runtime to dynamically detect and correct computed jump
targets before they are used. Our lookup table overwrites each old
target with a tagged pointer to its new location in the rewritten code.
This solves the computed jump preservation problem without the
aid of source code.

Since the disassembler identifies a superset of targets and not
an exact set, the lookup table implementation must be carefully
designed to tolerate false positives. Misidentification of a code point
as a jump target is therefore relatively harmless to REINS; each such
misidentification merely increases the size of rewritten code by a
few bytes due to alignment. A false negative (i.e., failure to identify
one or more targets) is more serious and may lead to rewritten code
that does not execute properly, but the verifier ensures that it cannot
lead to a policy violation. Thus, both forms of error are tolerated.

Another major design issue is the need to arrange the lookup
table so that IRM code that uses it remains exceptionally small and
efficient. This is critical for achieving low overhead, since computed
jumps are extremely common in real-world binaries. Our solution
implements most lookups with just two non-branching instructions
(a compare instruction and a conditional move), shown atop the first
row of Table 1. This efficient implementation is achieved by tagging
each lookup table entry with a leading byte that never appears as the
first byte of valid code. We use a tag byte of 0xF4, which encodes an
x86 hlt instruction that is illegal in protected mode. The compare
instruction uses this byte to quickly distinguish stale pointers that
point into the lookup table from those that already point to code.
The conditional move then corrects the stale ones. This succinct
realization of semantics-preserving computed jump guards is the
key to REINS’ exceptionally low overhead.

Retaining the old code section as a data section has the additional
advantage of retaining any static data that may be interleaved in the

Table 1: Summary of x86 code transformations
Description Original code Rewritten code
Computed
jumps with
register
operands

call/jmp r cmp byte ptr [r], 0xF4
cmovz r, [r+1]
and r, (d − c)
call/jmp r

Computed
jumps with
memory
operands

call/jmp [m] mov eax, [m]
cmp byte ptr [eax], 0xF4
cmovz eax, [eax+1]
and eax, (d − c)
call/jmp eax

Returns ret (n) and [esp], (d − c)
ret (n)

IAT loads mov rm, [IAT:n] mov rm, offset tramp_n

Tail-calls to
high memory

jmp [IAT:n] tramp_n:
and [esp], (d − c)
jmp [IAT:n]

code. This data can therefore be read by the rewritten executable
at its original addresses, avoiding many difficult data preservation
problems that hamper other SFI systems. The tradeoff is an in-
creased size of rewritten programs, which tend to be around twice
the size of the original. However, this does not necessarily lead to
an equivalent increase in runtime process sizes. Our experiences
with real x86 executables indicates that dynamic data sizes tend to
eclipse static code sizes in memory-intensive processes. Thus, in
most cases rewritten process sizes incur only a fraction of the size
increase experienced by the disk images whence they were loaded.

When the original computed jump employs a memory operand
instead of a register, as shown in row 2 of Table 1, the rewritten code
requires a scratch register. Table 1 uses eax, which is caller-save
by convention and is not used to pass arguments by any calling
convention supported by any mainstream x86 compiler [12].1

A particularly common form of computed jump deserves special
note. Return instructions (ret) jump to the address stored atop
the stack (and optionally pop n additional bytes from the stack
afterward). These are guarded by the instruction given in row 3
of Table 1, which masks the return address atop the stack to a low
memory chunk boundary. Call instructions are moved to the ends
of chunks so that the return addresses they push onto the stack are
aligned to the start of the following chunk. Thus, the return guards
have no effect upon return addresses pushed by properly rewritten
call instructions, but they block jumps to corrupted return addresses
that point to illegal destinations, such as the stack. This makes all
attacker-injected code unreachable.

Preserving API Calls. To allow untrusted code to safely access
trusted library functions in high memory, the rewriter permits one
form of computed jump to remain unguarded: Computed jumps
whose operands directly reference the import address table (IAT)
are retained. Such jumps usually have the following form:

call [IAT:n]

where IAT is the section of the executable reserved for the IAT and
n is an offset that identifies the IAT entry. These jumps are safe
since the entrypoint to the APIs is hooked by REINS to ensure that
they always target policy-compliant addresses at runtime.

Not all uses of the IAT have this simple form, however. Most
x86-targeting compilers also generate optimized code that caches
IAT entries to registers, and uses the registers as jump targets. To
1To support binaries that depend on preserving eax across comput-
ed jumps, the table’s sequence can be extended with two instructions
that save and restore eax. We did not encounter any programs that
require this, so our experiments use the table’s shorter sequence.

Original:
.text:00499345 8B 35 FC B5 4D 00 mov esi, [4DB5FCh] ;IAT:MBTWC
. . .
.text:00499366 FF D6 call esi

Rewritten:
.tnew:0059DBF0 BE 90 12 5D 00 mov esi, offset loc_5D1290
. . .
.tnew:0059DC15 80 3E F4 cmp byte ptr [esi], F4h
.tnew:0059DC18 0F 44 76 01 cmovz esi, [esi+1]
.tnew:0059DC1C 90 90 90 90 nop (×4)
.tnew:0059DC20 81 E6 F0 FF FF 0F and esi, 0FFFFFF0h
.tnew:0059DC26 90 (×8) nop (×8)
.tnew:0059DC2E FF D6 call esi
. . .
.tnew:005D1290 81 24 24 F0 FF FF 0F and dword ptr [esp], 0FFFFFF0h
.tnew:005D1297 FF 25 FC B5 4D 00 jmp [0x4DB5FCh] ;IAT:MBTWC

Figure 2: Rewriting a register-indirect system call

Original:
.text:00408495 FF 24 85 CC 8A 40 00 jmp ds:off_408ACC[eax*4]
. . .
.text:00408881 3D 8C 8A 4D 00 00 cmp byte_4D8A8C, 0
.text:00408888 74 13 jz short loc_40889D
.text:0040888A 84 C9 test cl, cl
.text:0040888C 74 0F jz short loc_40889D
. . .
.text:00408ACC 81 88 40 00 dd offset loc_408881
.text:00408AD0 . . . (other code pointers)

Rewritten:
.text:00408881 F4 60 3A 4F 00 db F4, loc_4F3A60

.tnew:004F33B4 8B 04 85 CC 8A 40 00 mov eax, ds:dword_408ACC[eax*4]

.tnew:004F33BB 80 38 F4 cmp byte ptr [eax], F4h

.tnew:004F33BE 90 90 nop (×2)

.tnew:004F33C0 0F 44 40 01 cmovz eax, [eax+1]

.tnew:004F33C4 25 F0 FF FF 0F and eax, 0FFFFFF0h

.tnew:004F33C9 FF E0 jmp eax

. . .

.tnew:004F3A60 3D 8C 8A 4D 00 cmp byte_4D8A8C, 0

.tnew:004F3A67 74 27 jz loc_4F3A90

.tnew:004F3A69 84 C9 test cl, cl

.tnew:004F3A6B 74 22 jz short loc_4F3A90

Figure 3: Rewriting code that uses a jump table

safely accommodate such calls, the rewriter identifies and modifies
all instructions that use IAT entries as data. An example of such an
instruction is given in row 4 of Table 1. For each such instruction,
the rewriter replaces the IAT memory operand with the address
of a callee-specific trampoline chunk (in row 5) introduced to the
rewritten code section (if it doesn’t already exist). The trampoline
chunk safely jumps to the trusted callee using a direct IAT reference.
Thus, any use of the replacement pointer as a jump target results in
a jump to the trampoline, which invokes the desired function.

Dynamic linking and callbacks are both supported via a similar
form of trampolining detailed in the technical report [16].

3.2 Examples
To illustrate the rewriting algorithm, Figs. 2 and 3 demonstrate

the transformation process for two representative assembly codes.
Figure 2 implements a register-indirect call to a system API

function (MBTWC). The first instruction of the original code loads
an IAT entry into the esi register, which is later used as the
target of the call. REINS replaces this address with the address
of the in-lined trampoline code at the bottom of the figure, which
performs a safe jump to the same destination. The call instruction
is replaced with the guarded call sequence shown in lines 2–7 of
the rewritten binary. The compare (cmp) and conditional move
(cmovz) implement the table-lookup, and the masking instruction
(and) aligns the destination to a chunk boundary. This makes the
ensuing call provably safe to execute.

Figure 3 shows a computed jump with a memory operand that
indexes a jump table. The rewritten code first loads the destination
address into a scratch register (eax) in accordance with row 2 of
Table 1. It then implements the same lookup and masking guards as
in Fig. 2. This time the lookup has a significant effect—it discovers
at runtime that the address drawn from the lookup table must be
repointed to a new address. This preserves the behavior of the binary
after rewriting despite the failure of the disassembler to discover
and identify the jump table at rewrite-time.

3.3 Memory Safety
To prevent untrusted binaries from dynamically modifying code

sections or executing data sections as code, untrusted processes are
executed with DEP enabled. DEP-supporting operating systems
allow memory pages to be marked non-executable (NX). Attempts
to execute code in NX pages result in runtime access violations.
The binary rewriter sets the NX bit on the pages of all low memory
sections other than rewritten code sections to prevent them from
being executed as code. Thus, attacker-injected shell code in the
stack or other data memory regions cannot be executed.

User processes on Windows systems can set or unset the NX bit on
memory pages within their own address spaces, but this can only be
accomplished via a small collection of system API functions—e.g.,
VirtualProtect and VirtualAlloc. The rewriter replaces
the IAT entries of these functions with trusted wrapper functions
that silently set the NX bit on all pages in low memory other than
rewritten code pages. The wrappers do not require any elevated
privileges; they simply access the real system API directly with
modified arguments.

The real system functions are accessible to trusted libraries (but
not untrusted libraries) because they have separate IATs that are not
subjected to our IAT hooking. Trusted libraries can therefore use
them to protect their local heap and stack pages from untrusted code
that executes in the same address space. Our API hooks prevent
rewritten code from directly accessing the page protection bits to
reverse these effects. This prevents the rewritten code from gaining
unauthorized access to trusted memory.

Our memory safety enforcement strategy conservatively rejects
untrusted, self-modifying code. Such code is a mainstay of certain
application domains, such as JIT-compilers. For these domains
we consider alternative technologies, such as certifying compilers
and certified, bytecode-level IRMs, to be a more appropriate means
of protection. Self-modifying code is increasingly rare in other
domains, such as application installers, because it is incompatible
with DEP, incurs a high performance penalty, and tends to trigger
conservative rejection by antivirus products. No SFI system to our
knowledge supports arbitrary self-modifying code.

3.4 Verification
The disassembler, rewriter, and lookup table logic all remain

completely untrusted by our architecture. Instead, a small, indepen-
dent verifier certifies that rewritten programs cannot circumvent the
IAT and are therefore policy-adherent. The verifier does not prove
that the rewriting process is behavior-preserving. This reduced
obligation greatly simplifies the verifier relative to the rewriter,
resulting in a small TCB.

The verification algorithm performs a simple fall-through disas-
sembly of each executable section in the untrusted binary and checks
the following purely syntactic properties:
• All executable sections reside in low memory.
• All exported symbols (including the program entrypoint) target

low memory chunk boundaries.
• No disassembled instruction spans a chunk boundary.
• Static branches target low memory chunk boundaries.
• All computed jump instructions that do not reference the IAT

are immediately preceded by the appropriate and-masking
instruction from Table 1 in the same chunk.

• Computed jumps that read the IAT access a properly aligned IAT
entry, and are preceded by an and-mask of the return address.
(Call instructions must end on a chunk boundary rather than
requiring a mask, since they push their own return addresses.)

• There are no trap instructions (e.g., int or syscall).

These properties ensure that any unaligned instruction sequences
concealed within untrusted, executable sections are not reachable
at runtime. This allows the verifier to limit its attention to a fall-
through disassembly of executable sections, avoiding any reliance
upon the incomplete code-discovery heuristics needed to produce
full disassemblies of arbitrary (non-chunk-aligned) binaries.

4. IMPLEMENTATION
We have developed an implementation of REINS for the 32-bit

version of Microsoft Windows XP/Vista/7/8. The implementation
consists of four components: (1) a rewriter, (2) a verifier, (3) an
API hooking utility, and (4) an intermediary library that handles
dynamic linking and callbacks. Rather than using a single, static API
hooking utility, we implemented an automated monitor synthesizer
that generates API hooks and wrappers from a declarative policy
specification. This is discussed in §5.3. None of the components
require elevated privileges. While the implementation is Windows-
specific, we believe the general approach is applicable to any modern
OS that supports DEP technology.

The rewriter transforms Windows Portable Executable (PE) files
in accordance with the algorithm in §3. Its implementation consists
of about 1,300 lines of IDA Python scripting code that executes
atop the Hex-rays IDA Pro 6.1 disassembler. One of IDA Pro’s
primary uses is as a malware reverse engineering and de-obfuscating
tool, and it boasts many powerful code analyses that heuristically
recover program structural information without assistance from a
code-producer. These analyses are leveraged by our system to
automatically distinguish code from data and identify function
entrypoints to facilitate rewriting.

In contrast to the significant complexity of the rewriting infras-
tructure, the verifier’s implementation consists of 1,500 lines of
80-column OCaml code that uses no external libraries or utilities
(other than the built-in OCaml standard libraries). Of these 1,500
lines, approximately 1,000 are devoted to x86 instruction decoding,
300 to PE binary parsing, and 200 to the actual verification algorithm
in §3.4. The decoder handles the entire x86 instruction set, including
floating point, MMX, and all SSE extensions documented in the
Intel and AMD manuals. This is necessary for practical testing since
production-level binaries frequently contain at least some exotic
instructions. No code is shared between the verifier and rewriter.

The intermediary library consists of approximately 500 lines of
C and hand-written, in-lined assembly code that facilitates call-
backs and dynamic linking. An additional 150-line configuration
file itemizes all trusted callback registration functions exported by
Windows libraries used by the test programs. We supported all
callback registration functions exported by comdlg32, gdi32,
kernel32, msvcrt, and user32. Information about exports
from these libraries was obtained by examining the C header files
for each library and identifying function pointer types in exported
function prototypes.

Our API hooking utility replaces the IAT entries of all monitored
system functions imported by rewritten PE files with the addresses
of trusted monitor functions. It also adds the intermediary library
to the PE’s list of imported modules. To avoid expanding the size
of the PE header (which could shift the positions of the binary
sections that follow it), our utility simply changes the library name
kernel32.dll in the import section to the name of our interme-
diary library. This causes the system loader to draw all IAT entries
previously imported from kernel32.dll from the intermediary
library instead. The intermediary library exports all kernel32
symbols as forwards to the real kernel32, except for security-
relevant functions, which it exports as local replacements. Our
intermediary library thus doubles as the policy enforcement library.

Table 2: Experimental results: SPEC benchmarks
Size Increase

Binary
Program File (%) Code (%) Process (%)

Rewriting
Time (s)

Verification
Time (ms)

gzip 103 31 0 12.5 142
vpr 94 26 22 14.4 168
mcf 108 32 2 10.5 84
parser 108 34 1 17.4 94
gap 118 42 0 31.2 245
bzip2 102 29 0 10.8 91
twolf 99 24 27 25.3 245
mesa 104 20 6 42.4 554
art 108 33 14 12.4 145
equake 103 27 1 12.3 165

median +103.5% +30.0% +1.5% 13.45s 155ms

5. EVALUATION

5.1 Rewriting Effectiveness
We tested REINS with a set of binary programs listed in Tables 2

and 3. Table 2 lists results for some of the benchmarks from
the SPEC 2000 benchmark suite. Table 3 lists results for some
other applications, including GUI programs that include event- and
callback-driven code, and malware samples that require enforcement
of higher-level security policies to prevent malicious behavior. In
both tables, columns 2–3 report the percentage increase of the file
size, code segment, and process size, respectively; and columns 5–6
report the time taken for rewriting and verification, respectively. All
experiments were performed on a 3.4GHz quad-processor AMD
Phenom II X4 965 with 4GB of memory running Windows XP
Professional and MinGW 5.1.6.

File sizes double on average after rewriting for benign appli-
cations, while malware shows a smaller increase of about 40%.
Code segment sizes increase by a bit less than half for benign
applications, and a bit more than half for malware. Process sizes
typically increase by about 15% for benign applications, but almost
90% for malware. The rewriting speed is about 32s per megabyte of
code, while verification is much faster—taking only about 0.4s per
megabyte of code on average.

5.2 Performance Overhead
We also measured the performance of the non-interactive pro-

grams in Tables 2 and 3. The runtime overheads of the rewritten
programs as a percentage of the runtimes of the originals is presented
in Fig. 4. The median overhead is 2.4%, and the maximum is
approximately 15%. As with other similar works [1, 13], the
runtimes of a few programs decrease after rewriting. This effect is
primarily due to improved instruction alignment introduced by the
rewriting algorithm, which improves the effectiveness of instruction
look-ahead and decoding pipelining optimizations implemented by
modern processors. While the net effect is marginal, it is enough to
offset the overhead introduced by the rest of the protection system
in these cases, resulting in safe binaries whose runtimes are as fast
as or faster than the originals.

The experiments reported in Tables 2 and 3 enforced only the core
access control policies required to prevent control-flow and memory
safety violations. Case studies that showcase the framework’s
capacity to enforce more useful policies are described in §5.4.

5.3 Policy Enforcement Library Synthesis
To quickly and easily demonstrate the framework’s effectiveness

for enforcing a wide class of safety policies, we developed a monitor
synthesizer that automatically synthesizes the policy enforcement
portion of the intermediary library from a declarative policy specifi-
cation. Policy specifications consist of: (1) the module names and

Table 3: Experimental results: Applications and malware
Size Increase

Binary
Program File (%) Code (%) Process (%)

Rewriting
Time (s)

Verification
Time (ms)

notepad 60 31 20 1.5 18
Eureka 32 53 15 17.9 225
DOSBox 112 38 0 137.1 2394
PhotoView 87 57 4 3.5 49
BezRender 128 55 3 4.1 55
gcc 100 37 15 3.0 36
g++ 100 41 16 3.0 37
jar 101 34 12 2.4 27
objcopy 122 49 23 26.9 354
size 103 50 116 16.3 20
strings 122 50 42 21.5 283
as 99 49 2 30.4 397
ar 121 50 4 21.8 285
whetstone 88 21 54 0.6 6
linpack 57 19) 31 0.6 6
pi_ccs5 125 28 1 5.8 66
md5 25 48 149 0.6 5

median 100% 41% 15% 4.1s 49ms

Virut.a (rejected) − −
Hidrag.a (rejected) − −
Vesic.a 75 34 108 0.3 194
Sinn.1396 37 115 93 0.2 75
Spreder.a 14 66 17 3.0 72

median 37% 66% 93% 0.3s 75ms

-10%

-5%

0%

5%

10%

15%

20%

gz
ip vp

r
m
cf ga

p

bz
ip
2
tw
ol
f
m
es
a

ar
t

eq
ua
ke gc

c
g+
+ ja

r

ob
jco
py siz

e

st
rin
gs as ar

wh
et
st
on
e

lin
pa
ck

pi
cc
s5
m
d5

Figure 4: Runtime overhead due to rewriting

signatures of all security-relevant API functions to be monitored, (2)
a description of the runtime argument values that, when passed to
these API functions, constitute a security-relevant event, and (3) a
regular expression over this alphabet of events whose prefix-closure
is the language of permissible traces (i.e., event sequences).

To illustrate, Fig. 5 shows a sample policy. Lines 1–5 are signa-
tures of two API functions exported by Windows system libraries:
one for connecting to the network and one for creating files. Lines 7–
8 identify network-connects as security-relevant when the outgoing
port number is 25 (i.e., an SMTP email connection) and the return
value is 0 (i.e., the operation was successful), and file-creations
as security-relevant when the filename’s extension is .exe. Un-
derscores denote arguments whose values are not security-relevant.
Finally, line 10 defines traces that include at most one kind of event
(but not both) as permissible. Here, * denotes finite or infinite
repetition and + denotes regular alternation.

Currently our synthesizer implementation supports dynamic value
tests that include string wildcard matching, integer equality and
inequality tests, and conjunctions of these tests on fields within a
structure. From this specification, the monitor synthesizer generates
the C source code of a policy enforcement library that uses IAT
hooking to reroute calls to connect and CreateFileW through
trusted guard functions. The guard functions implement the desired

1 function conn = ws2_32::connect(
2 SOCKET, struct sockaddr_in ∗, int) −> int;
3 function cfile = kernel32::CreateFileW(
4 LPCWSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES,
5 DWORD, DWORD, HANDLE) −> HANDLE WINAPI;

7 event e1 = conn(_, {sin_port=25}, _) −> 0;
8 event e2 = cfile("∗.exe", _, _, _, _, _, _) −> _;

10 policy = e1∗ + e2∗;

Figure 5: A policy that prohibits applications from both
sending emails and creating .exe files

1 function cfile = kernel32::CreateFileW(
2 LPCWSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES,
3 DWORD, DWORD, HANDLE) −> HANDLE WINAPI;
4 function exec = kernel32::WinExec(LPCSTR, UINT)
5 −> UINT WINAPI;

7 event e1 = cfile("∗.exe", _, _, _, _, _, _) −> _;
8 event e2 = cfile("∗.msi", _, _, _, _, _, _) −> _;
9 event e3 = cfile("∗.bat", _, _, _, _, _, _) −> _;

10 event e4 = exec("explorer", _) −> _;

12 policy = ;

Figure 6: Eureka email policy

policy as a determinized security automaton [30]—a finite state
automaton that accepts the prefix-closure of the policy language in
line 10. If the untrusted code attempts to exhibit a prohibited trace,
the monitor rejects by halting the process.

5.4 Case Studies

5.4.1 An Email Client
As a more in-depth case-study, we used the rewriting system and

monitor synthesizer to enforce two policies on the Eureka 2.2q email
client. Eureka is a fully featured, commercial POP client for 32-bit
Windows that features a graphical user interface, email filtering, and
support for launching executable attachments as separate processes.
It is 1.61MB in size and includes all of the binary features discussed
in earlier sections, including Windows event callbacks and dynamic
linking. It statically links to eight trusted system libraries.

Without manual assistance, IDA automatically recovers enough
structural information from the Eureka binary to facilitate the full
binary rewriting algorithm presented in §3. Rewriting requires 18s
and automated verification of the rewritten binary requires 0.2s.

After rewriting, we synthesized an intermediary library that en-
forces the access control policy given in Fig. 6, which prohibits
creation of files whose filename extensions are .exe, .msi, or
.bat, and which prevents the application from launching Windows
Explorer as an external process. (The empty policy expression in
line 12 prohibits all events defined in the specification.) We also
enforced the policy in Fig. 5, but with a policy expression that limits
clients to at most 100 outgoing SMTP connections per run. Such
a policy might be used to protect against malware infections that
hijack email applications for propagation and spamming.

After rewriting, we systematically tested all program features
and could not detect any performance degradation or changes to
any policy-permitted behaviors. All program features unrelated
to the policy remain functional. However, saving or launching
an email attachment with any of the policy-prohibited filename
extensions causes immediate termination of the program by the
monitor. Likewise, using any program operation that attempts to

open an attachment using Windows Explorer, or sending more than
100 email messages, terminates the process. The rewritten binary
therefore correctly enforces the desired policy without impairing
any of the application’s other features.

5.4.2 An Emulator
DOSBox is a large DOS emulator with over 16 million downloads

on sourceforge. Though its source code is available, it was not used
during the experiment. The precompiled binary is 3.6MB, and like
Eureka, includes all the difficult binary features discussed earlier.

We enforced several policies that prohibit access to portions of
the file system based on filename string and access mode. We
then used the rewritten emulator to install and use several DOS
applications, including the games Street Fighter 2 and Capture
the Flag. Installation of these applications requires considerable
processing time, and is the basis for the timing statistics reported in
Table 3. As in the previous experiment, no performance degradation
or behavioral changes are observable in the rewritten application,
except that policy-violating behaviors are correctly prohibited.

5.4.3 Malware
To analyze the framework’s treatment of real-world malware,

we tested REINS on five malware samples obtained from a public
malware research repository: Virut.a, Hidrag.a, Vesic.a, Sinn.1396,
and Spreder.a. While these malware variants are well-known and
therefore preventable by conventional signature-matching antivirus
defenses, the results indicate how our system reacts to binaries
intentionally crafted to defeat disassembly tools and other static
analyses. Each is statically or dynamically rejected by the protection
system at various different stages, detailed below.

Virut and Hidrag are both rejected at rewriting time when the
rewriter encounters misaligned static branches that target the interior
of another instruction. While supporting instruction aliasing due
to misaligned computed jumps is useful for tolerating disassembly
errors, misaligned static jumps only appear in obfuscated malware
to our knowledge, and are therefore conservatively rejected.

Vesic and Sinn are Win32 viruses that propagate by appending
themselves to executable files on the C: volume. They do not use
packing or obfuscation, making them good candidates for testing
our framework’s ability to detect malicious behavior rather than
just suspicious binary syntax. With a fully permissive policy, our
framework successfully rewrites and verifies both malware binaries;
running the rewritten binaries preserves their original (malicious) be-
haviors. However, enforcing the policy in Fig. 6 results in premature
termination of infected processes when they attempt to propagate by
writing to executable files. We also successfully enforced a second
policy that prohibits the creation of system registry keys, which
Vesic uses to insert itself into the boot process of the system. These
effectively protect the infected system before any damage results.

Spreder has a slightly different propagation strategy that searches
for executable files in the shared directory of the Kazaa file-sharing
peer-to-peer client. We successfully enforced a policy that prohibits
use of the FindFirstFileA system API function to search for
executable files in this location. This results in immediate termina-
tion of infected processes.

6. DISCUSSION
In this section we first discuss the security benefits REINS pro-

vides, and then discuss the binary code conventions that are prereq-
uisites for behavior-preservation under our binary rewriting scheme,
as well as the reliability of our disassembly. The limitations of our
approach are highlighted during the course of the discussion.

6.1 Control-flow Policies
As we have demonstrated, REINS can rewrite many complex

legacy binaries, enforcing coarse-grained control-flow safety and
preserving safe computed jumps without source code. However,
REINS does not enforce the finer-grained control-flow integrity
properties of CFI [1]. CFI uses source code or PDB files to build
a control-flow graph that serves as the integrity policy to enforce.
This connection to source code is foundational to CFI because any
fine-grained definition of “good” control-flows invariably depends
on the semantics of the source code that the untrusted binary code
is intended to reflect. Without source code, there is no sensible
definition of control-flow integrity for REINS to enforce.

As such, REINS and CFI have fundamentally different goals.
CFI’s goal is to micro-manage behavior within an untrusted binary
to prevent attackers from corrupting its internal flows. In contrast,
REINS’ goal is to protect the environment outside the untrusted
binary, not its internals. This includes external resources like the
file system and network, and the trusted libraries that access them
(e.g., OS/kernel libraries). The only flows that affect such resources
are those that exit the untrusted code. For these, there are sensible,
well-defined (but coarser-grained) control-flow policies apart from
source code. For example, flows to the stack or data are disallowed
(to block code-injection attacks), and flows to trusted libraries must
obey the library’s interface (e.g., its export address table).

REINS prevents these forms of malicious behavior based on the
security policy. It is possible for an attacker to craft ROP [33]
or Q [31] shell code to overwrite the stack pointer and break the
internal control flows, but the attacker must ultimately manipulate
the arguments of system calls to effect damage outside the confines
of the untrusted module. These malicious system calls are detected
and prevented by REINS.

6.2 Code Conventions
Our rewriting algorithm in §3 preserves the behavior of code that

adheres to standard, compiler-agnostic x86 code generation conven-
tions. Code that violates these conventions can yield rewritten code
that fails verification or fails to execute properly, but never verified
code that circumvents the monitor. Nevertheless, the practicality
of the approach depends on its ability to preserve the behavior of a
large class of non-malicious code. Compatibility limitations of this
sort have been a major obstacle to widespread adoption of much
past SFI research.

Code pointers. REINS expects each code pointer used as a jump
target by untrusted code to originate from one of five sources:
• a low-memory address drawn from the program counter (e.g., a

return address pushed by a call),
• data that points to a basic block boundary,
• a code address stored in the IAT,
• a return address pushed by a trusted caller during a callback, or
• a return value yielded by the system’s dynamic linking API.

As demonstrated by our experiments, these cover a large spectrum
of real-world binary code. Nevertheless, there are some unusual
cases that REINS still rejects. For example, a program that computes
external library entrypoints instead of requesting them from the
system’s linker is incompatible with REINS, and will typically crash
when executed. Addressing such limitations is future work.

Reliable Disassembly. Binaries generated by most mainstream
compilers mix code and static data within the .text section of
the executable. REINS relies upon a classification algorithm that
heuristically distinguishes code from data [38]. If code is misclas-
sified as data, that code is incorrectly omitted from the rewritten

binary’s code section. If data is misclassified as code that looks like
a possible computed jump target, the rewriter might overwrite some
of the data with tagged pointers as it constructs the lookup table (see
§3.1). This can result in corruption of the static data. However, data
misclassified as code without such targets just contributes harmless,
dead code to the rewritten binary’s code section. Heuristics that
conservatively classify most bytes as code with few computed jump
targets therefore tend to work well for our system.

Function entrypoints are readily identifiable in most binaries by
the characteristic function prologues and epilogues that begin and
conclude most function bodies. The few remaining computed jump
targets are gleaned through the disassembler’s code reachability
analysis and a few pattern-matching heuristics that identify instruc-
tion sequences compiled from common source language structures
(e.g., switch-case statements) that often compile to computed jumps.

In practice we found that for most non-malicious programs, IDA
Pro’s automatic binary analysis works well, accurately identifying
all code (with some data harmlessly misidentified as code) and
identifying all computed jump targets (with some code harmlessly
misidentified as a computed jump target). Any missed targets are
easy to identify and correct manually, since their omission causes
the rewritten binary to crash at precisely the site of the misclassified
address in the (now non-executable) old code segment.

Dense Computed Jump Targets. A more subtle assumption of the
algorithm is that all computed jump targets in the original binary are
at least w + 1 bytes away from the next computed jump target or
following data, where w is the system word size. This is necessary
to ensure sufficient space for the rewriter to write a tagged pointer
at that address without overwriting any adjacent pointers or data.
Entrypoints packed closer than this are rare, since most computed
jump targets are 16-byte aligned for performance reasons, and since
all binaries compatible with hotpatching have at least w + 1 bytes
of padding between consecutive function entrypoints [21].

In the rare case that two targets are within w bytes in the original
code, the rewriter strategically chooses the address of the rewritten
code section so that the encodings of tagged pointers into it can
occasionally overlap. For example, with tag byte t = 0xF4, the
sequence F4 00 F4 00 04 00 04 encodes two overlapping, little-
endian tagged pointers to addresses 0x0400F400 and 0x04000400.
By positioning the rewritten versions of these two functions at those
addresses, the rewriter can encode overlapping pointers to them in
the lookup table. With chunk size c = 16 and memory division d =
228, a rewritten code base address of 224(t&0xF) + 216t supports
at least 15 two-pointer collisions and 1 three-pointer collision per
rewritten code page—far more than we saw in any binary we studied.

6.3 Other Future Work
The experiments reported in §5 focus on testing the soundness,

transparency, and feasibility of our static binary rewriting algorithm
on a real-world OS, and on demonstrating the enforcement of some
simple but useful security policies. Past work [17, 19, 28] has
shown that IRM systems are capable of enforcing more sophisti-
cated temporal properties when equipped with more powerful event
languages and responses to impending policy violations that go
beyond mere program termination. Developing policy-enforcement
libraries that implement such policies is therefore a logical next
step toward applying our framework to interesting, practical security
problems for these real-world systems.

7. RELATED WORK
REINS is related to SFI, whose works can be divided into (1)

source-level approaches, which instrument untrusted code with dy-
namic security guards at compile-time, (2) binary-level approaches,

which secure untrusted code at a purely binary level, and (3) system-
level approaches, which secure the software at system call level.
Table 4 summarizes and compares the major feature differences of
the related works mentioned below.

Source-level Approaches. Most SFI implementations target source
code and therefore insert security guard instructions at compile-
time. Examples include StackGuard [8], DFI [5], WIT [2], BGI [6],
G-Free [23], and CFL [4]. Source-level approaches differ signifi-
cantly from the problem of securing COTS native code because a
compiler typically has full control over the structure of the binary
it generates, its pointer representations, and its implementation of
computed jumps. In contrast, SFI systems for legacy native code
cannot statically distinguish code pointers from data, recover control-
flow or data-flow graphs reliably, or detect all instruction aliasing.
Enforcing SFI without this information introduces many challenges.

The primary disadvantage of source-level approaches is their
reliance on the support of a cooperating code-producer, who must
(re)compile the untrusted or insecure code using a special compiler.
Such cooperation is not a reasonable expectation for many classes
of untrusted code, which are distributed as raw native code produced
by arbitrary compilers, and that target mainstream system APIs such
as Microsoft Windows or Linux.

Binary-level Approaches. In contrast, binary-level approaches
require less compiler cooperation. They can be further divided into
those that operate dynamically and those that operate statically:

Dynamic binary approaches use dynamic binary translation (e.g.,
Vx32 [13], Strata [32], Libdetox [25]), program shepherding [18, 3],
or safe loading (e.g., TRuE [26]) to dynamically copy and instrument
untrusted code into a sandbox at runtime. Any flows that attempt
to escape the sandbox recursively re-trigger the copying process,
keeping all untrusted, reachable code within the sandbox.

In contrast, static binary approaches in-line guard instructions
into untrusted binary code statically before the code executes, and
do not perform any code generation or translation at runtime. The
only SFI systems other than REINS that target legacy, untyped,
native code binaries to our knowledge are CFI [1]/XFI [10], PittS-
FIeld [20], NaCl [39], and SecondWrite [34]. CFI/XFI achieves
reliable disassembly by consulting PDB files, which contain debug-
ging information. The debugging information reveals important
structural and typing information from the application source code
without disclosing the source code text; however, PDB files are
only produced by Microsoft compilers, and most code-producers
do not disclose them to the public. This significantly limits the
domain of binaries to which CFI/XFI is applicable. PittSFIeld and
NaCl are similarly limited—PittSFIeld only supports gcc-produced
assembly code and NaCl requires untrusted code to be (re)compiled
by their tool chain.

SecondWrite tackles the problem of rewriting COTS binaries
without debug or relocation metadata, but it does not support formal
machine-verification, has not yet been applied to realize complete
fault isolation, and is not yet mature enough to rewrite full-scale
COTS applications [24].

Dynamic vs. static approaches have historically suffered a com-
patibility vs. performance trade-off. That is, the dynamic approaches
can currently handle a much larger class of binaries than the static
ones, including large-scale COTS applications, but at the expense of
significant runtime overheads (e.g., 70% slowdown in Strata [32]).
In addition, dynamic SFI systems are difficult to formally verify,
and cannot be deployed on architectures that prohibit runtime code
generation or that lack the hardware-level VM support that is often
necessary to achieve reasonable performance.

In contrast, static approaches offer much lower overheads and
formal, machine-checkable proofs of safety, but currently support

Table 4: Summary of related works. Symbol ∗ represents a
limited feature for that work.

System no sou
rce

need
ed

no meta
data

need
ed

su
ppor

ts
COTS binar

ies

han
dles

co
mputed

jumps

han
dles

ca
llb

ac
ks

non
-sy

ste
m

ap
pro

ac
h

no kern
el

priv
ile

ge
s

au
tom

ate
d ve

rifi
ca

tio
n

sta
ck

ex
ploi

t pro
tec

tio
n

sys
tem

ca
ll i

nter
posi

tio
n

en
for

ces
API poli

cie
s

co
ntro

l-fl
ow

integ
rit

y

sou
rce

av
ail

ab
le

StackGuard [8] X X X X
DFI [5] X ∗ X X X
WIT [2] X X X X X
BGI [6] X X X X
G-Free [23] X X X ∗
CFL [4] X X X ∗ ∗

Vx32 [13] X X X X X X X X X X
Strata [32] X X X X X X X X X
Libdetox [25] X X X X X X X ∗ X X X
Shepherd [18] X X X X X X X ∗ X X
TRuE [26] X X X X X X X X X X X

CFI [1] X ∗ ∗ ∗ X X X X ∗ X
XFI [10] X ∗ ∗ ∗ X X X X X X X
PittSFIeld [20] ∗ ∗ X X X X X X
NaCl [39] ∗ ∗ X X X X X X X
2ndWrite [24] X X ∗ X X X X
REINS X X X X X X X X X X X [29]

Janus [35] X X X X X ∗ X
SysTrace [27] X X X X ∗ X
Ostia [15] X X X X ∗

only a very restricted set of binary programs that do not include
most COTS applications. Therefore, REINS is the first purely static
binary SFI system capable of supporting nearly arbitrary, large-scale,
COTS Windows applications produced by mainstream compilers,
including those that contain computed jumps, dynamic linking, and
event-driven OS callbacks.

System-level Approaches. There are also many system-level ap-
proaches, such as Janus [35], SysTrace [27], and Ostia [15]. These
use system call interposition to enforce policies that prevent abuse
of the system API.

Unlike binary rewriting approaches, system-level approaches are
transparent to the binary code. However, they cannot block attacks of
one module upon another within the same address space, they cannot
be deployed as a service (because the full implementation must
reside on the client machine), and they can introduce compatibility
problems, such as incorrect replication of OS semantics [14].

8. CONCLUSION
We have presented the design, implementation, and evaluation of

a new SFI/IRM system, REINS, that monitors and restricts Windows
API calls of untrusted native x86 binaries for which source code
and debugging information are unavailable. The binary rewriting
algorithm supports many difficult binary features, including com-
puted jumps, dynamic linking, interleaved code and data, and OS
callbacks, all without any explicit cooperation from code-producers,
and it is behavior-preserving for a large class of COTS binaries.
To the best of our knowledge, no past binary rewriting-based SFI
work has achieved this. The enforcement mechanism requires no
kernel extensions or privileges, making it applicable to shared and
closed computing environments, and separate, light-weight machine-
verification keeps the TCB small. Experiments on a number of
COTS and malware programs show the effectiveness of REINS, and
demonstrate that although rewriting doubles file sizes on average,
runtimes increase by only about 2.4% and the median process size
increases by only about 15%.

9. REFERENCES
[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-

flow integrity principles, implementations, and applications.
ACM Trans. Information and System Security, 13(1), 2009.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing memory error exploits with WIT. In Proc. IEEE
Sym. Security and Privacy, pages 263–277, 2008.

[3] P. Bania. Securing the kernel via static binary rewriting and
program shepherding. http://piotrbania.com/all/articles/
pbania-securing-the-kernel2011.pdf, 2011.

[4] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse
attacks with control-flow locking. In Proc. Annual Computer
Security Applications Conf., pages 353–362, 2011.

[5] M. Castro, M. Costa, and T. Harris. Securing software
by enforcing data-flow integrity. In Proc. USENIX Sym.
Operating Systems Design and Implementation, pages 147–
160, 2006.

[6] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis,
A. Donnelly, P. Barham, and R. Black. Fast byte-granularity
software fault isolation. In Proc. ACM Sym. Operating
Systems Principles, pages 45–58, 2009.

[7] P. M. Chen and B. D. Noble. When virtual is better than real.
In Proc. Workshop Hot Topics in Operating Systems, pages
133–138, 2001.

[8] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. StackGuard:
Automatic adaptive detection and prevention of buffer-
overflow attacks. In Proc. USENIX Security Sym., 1998.

[9] G. Erdélyi. IDAPython: User scripting for a complex ap-
plication. Bachelor’s thesis, EVTEK University of Applied
Sciences, 2008.

[10] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces. In
Proc. Sym. Operating Systems Design and Implementation,
pages 75–88, 2006.

[11] Ú. Erlingsson and F. B. Schneider. SASI enforcement of
security policies: A retrospective. In Proc. New Security
Paradigms Workshop, 1999.

[12] A. Fog. Calling Conventions for different C++ compilers
and operating systems. Copenhagen University College of
Engineering, 2009.

[13] B. Ford and R. Cox. Vx32: Lightweight user-level sandbox-
ing on the x86. In Proc. USENIX Annual Technical Conf.,
pages 293–306, 2008.

[14] T. Garfinkel. Traps and pitfalls: Practical problems in system
call interposition based security tools. In Proc. Network and
Distributed System Security Sym., 2003.

[15] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A delegat-
ing architecture for secure system call interposition. In Proc.
Network and Distributed Systems Security Sym., 2004.

[16] K. W. Hamlen, V. Mohan, and R. Wartell. Reining in
Windows API abuses with in-lined reference monitors.
Technical Report UTDCS-18-10, U. Texas at Dallas, 2010.

[17] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Com-
putability classes for enforcement mechanisms. ACM Trans.
Programming Languages and Systems, 28(1):175–205, 2006.

[18] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
execution via program shepherding. In Proc. USENIX
Security Sym., pages 191–206, 2002.

[19] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement
of nonsafety policies. ACM Trans. Information and System
Security, 12(3), 2009.

[20] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In Proc. USENIX Security Sym., 2006.

[21] Microsoft Corporation. Using hotpatching technology
to reduce servicing reboots. TechNet Library, 2005. http:
//technet.microsoft.com/en-us/library/cc787843.aspx.

[22] G. C. Necula. Proof-carrying code. In Proc. ACM Principles
of Programming Languages, pages 106–119, 1997.

[23] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-Free: Defeating return-oriented programming
through gadget-less binaries. In Proc. Annual Computer
Security Applications Conf., pages 49–58, 2010.

[24] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua,
and A. D. Keromytis. Retrofitting security in COTS software
with binary rewriting. In Proc. Int. Information Security
Conf., pages 154–172, 2011.

[25] M. Payer and T. R. Gross. Fine-grained user-space security
through virtualization. In Proc. ACM SIGPLAN/SIGOPS Int.
Conf. Virtual Execution Environments, pages 157–168, 2011.

[26] M. Payer, T. Hartmann, and T. R. Gross. Safe loading – a
foundation for secure execution of untrusted programs. In
Proc. IEEE Sym. Security and Privacy, pages 18–32, 2012.

[27] N. Provos. Improving host security with system call policies.
In Proc. USENIX Security Sym., 2003.

[28] M. Rajagopalan, M. A. Hiltunen, T. Jim, and R. D. Schlicht-
ing. System call monitoring using authenticated system calls.
IEEE Trans. Dependable and Secure Computing, 3(3):216–
229, 2006.

[29] Reins source code. http://sourceforge.net/projects/x86reins.
[30] F. B. Schneider. Enforceable security policies. ACM Trans.

Information and Systems Security, 3(1):30–50, 2000.
[31] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit

hardening made easy. In Proc. USENIX Security Sym., 2011.
[32] K. Scott and J. Davidson. Safe virtual execution using

software dynamic translation. In Proc. Annual Computer
Security Applications Conf., pages 209–218, 2002.

[33] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proc.
ACM Conf. Computer and Communications Security, pages
552–561, 2007.

[34] M. Smithson, K. Anand, A. Kotha, K. Elwazeer, N. Giles,
and R. Barua. Binary rewriting without relocation informa-
tion. Technical report, U. Maryland, 2010.

[35] D. A. Wagner. Janus: An approach for confinement of
untrusted applications. Master’s thesis, U. California at
Berkeley, 1999.

[36] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In Proc. ACM Sym.
Operating Systems Principles, pages 203–216, 1993.

[37] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In Proc. ACM Conf. Computer and
Communications Security, 2012. in press.

[38] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu,
and B. Thuraisingham. Differentiating code from data in
x86 binaries. In Proc. European Conf. Machine Learning
and Principles and Practice of Knowledge Discovery in
Databases, volume 3, pages 522–536, 2011.

[39] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
Client: A sandbox for portable, untrusted x86 native code. In
Proc. IEEE Sym. Security and Privacy, pages 79–93, 2009.

http://piotrbania.com/all/articles/pbania-securing-the-kernel2011.pdf
http://piotrbania.com/all/articles/pbania-securing-the-kernel2011.pdf
http://technet.microsoft.com/en-us/library/cc787843.aspx
http://technet.microsoft.com/en-us/library/cc787843.aspx
http://sourceforge.net/projects/x86reins

	Introduction
	Background and Overview
	Background
	System Overview

	Detailed Design
	Rewriting Control-flow Transfers
	Examples
	Memory Safety
	Verification

	Implementation
	Evaluation
	Rewriting Effectiveness
	Performance Overhead
	Policy Enforcement Library Synthesis
	Case Studies
	An Email Client
	An Emulator
	Malware

	Discussion
	Control-flow Policies
	Code Conventions
	Other Future Work

	Related Work
	Conclusion
	References

