Subverting System Authentication With
Context-Aware, Reactive Virtual Machine Introspection

Yangchun Fu, Zhigiang Lin, Kevin Hamlen

Department of Computer Science
The University of Texas at Dallas

December 1217, 2013

Outline

Q Background
9 Detailed Design
e Implementation
© Evaluation

e Related Work

@ Summary

Q Background

Background
®000000

Traditional computer system structure

login sshd Vsftpd

Target OS

Hardware

Background
®000000

Traditional computer system structure

login

sshd

Vsftpd

Target OS

Hardware

Authentication protection

Mechanism
@ Anti-debugging Logic
@ Cryptographic Security
@ Code Obfuscation

@ Self-Checking

Background
0O@00000

Traditional computer system structure

Authentication protection

Mechanism
login sshd Vsftpd @ anti-debugging logic
Target 0S @ cryptographic security

@ code obfuscation

Trust?

Background
[e]e] lele]ele)

Virtualization

login

sshd

Vsftpd

login

sshd

Vsftpd

Target OS

Hardware

Target OS

Hardware

Background
[e]e]e] lelele]

Motivations

login

sshd

Vsftpd

Target OS
VMM

Hardware

Adding a virtualization layer

@ VMM runs at higher privilege
than guest OS

@ Great isolation, more stealthy
@ A full control of guest OS

@ A grand view of the entire
state of guest OS.

Background
[e]e]e]e] lele)

Malicious VMM

@ Subverting authentication(e.g., 1ogin) with
Context-Aware, Reactive Virtual Machine
Introspection(VMI)

@ Attackers can gain fun and profit: Accessing sensitive data
in a computer (e.g., a laptop, or a VM)

Background
[e]e]e]e] lele)

Malicious VMM

@ Subverting authentication(e.g., 1ogin) with
Context-Aware, Reactive Virtual Machine
Introspection(VMI)

@ Attackers can gain fun and profit: Accessing sensitive data
in a computer (e.g., a laptop, or a VM)

| A\

Assumptions

@ Assume physical access (lost of laptop, VMs running in a
cloud)
@ Possible attackers/users

e Malicious cloud providers (cloud being compromised)
e Law enforcement (accessing criminal’s computer, note that
a physical machine can be virtualized)

Background
000000

Running a machine inside a malicious VMM

Background
000000

Running a machine inside a malicious VMM

Inception Attack
@ Changing your idea using a
dream

@ Dream can be inside a
dream

Background
000000

Running a machine inside a malicious VMM

Inception Attack

@ Changing your idea using a
dream

@ Dream can be inside a
dream

Malicious Virtualization Monitor

@ Running a machine inside a
virtual machine

@ We change the guest OS
state from the malicious
virtual machine without the
awareness from any insider
programs

Background
000000

How it works

Background
000000

How it works

Background
000000

How it works

Background
000000

How it works

Background
000000

How it works

Malicious Virtual
Machine Monitor

(X86) Hardware

Background
000000

How it works

Machine Monitor

(X86) Hardware

e Detailed Design

Detailed Design
®000000

Overview

EAX ESP
Victim Victim
> Process Data EBX m Process Code <€
ECX ESI

login Process m

Operating Systems (Linux/Windows)

Syscall Execution Context-aware, Instruction Execution

Tampering Reactive Introspection Tampering

Malicious Virtual Machine Monitor

(X86) Hardware

Detailed Design
0O@00000

Using Hardware Virtualization

EAX

m
w
o

Victim
Process Code

Victim
Process Data

gla|&
X | X | X
&2

login Process

Operating Systems (Linux/Windows)

Syscall Execution Context-aware, Instruction Execution
Tampering Reactive Introspection Tampering

Malicious Virtual Machine Monitor

Hardware

Virtualization (Xen/ (X86) Hardware
KVM)

Detailed Design
[e]e] lele]ele)

Using Software Virtualization

Victim
Process Data

login Process

EAX

m
w
o

gla|&
X | X | X
&2

Victim
Process Code

Operating Systems (Linux/Windows)

Syscall Execution
Tampering

Reactive Introspection

Malicious Virtual Machine Monitor

(X86) Hardware

Context-aware, Instruction Execution

Tampering

Software
Virtualization (QEMU)

Detailed Design
[e]e]e] le]ele)

Working Example: from instructions perspective

if (pw_auth (user_passwd, username, reason, (char *) 0) == 0) {
804a868: al Oc 62 05 08 mov 0x805620c , %eax
804a86d: c7 44 24 Oc 00 00 00 movl $0x0, 0xc(%esp)
804a874: 00

804a875: 89 3c 24 mov Y%edi , (%esp)
804a878: 89 44 24 08 mov Y%eax ,0x8(%esp)
804a87c: al 48 65 05 08 mov 0x8056548 , %eax
804a881: 89 44 24 04 mov Y%eax ,0x4(%esp)
804a885: e8 86 87 00 00 call 8053010<pw_auth>
804a88a: 85 c0 test Y%eax ,%eax

804a88c: Of 84 6d fd ff ff je 804a5ff<main+0x641>

goto auth_ok;
}

Figure : Binary Code Snippet of the 1ogin Program.

Detailed Design
[e]e]e]e] lele)

Insight-I

Instruction Execution Tampering

@ Tampering with Instruction Opcode
@ 804a88c:0f 84 (je) — Of 85 (jne)
@ Tampering with Instruction Operand

@ 804a88a:test %eax, ¥eax — lampering w/
eax/EFLAGS

@ Tampering with both Opcode and Operand
@ 804a885:call 8053010 — mov $0, %$eax

Detailed Design
000000

Working Example: from system call perspective

1

execve("'/bin/login”, ["login™], [/* 16 vars */]) = 0
2 uname({sys="Linux", node="ubuntu”, ...}) =0

[409 open(“*/etc/passwd™, O_RDONLY)

410 fcntl64(4, F_GETFD)

411 fcntl64(4, F_SETFD, FD_CLOEXEC)

412 _llseek(4, 0, [0], SEEK_CUR)

413 fstat64(4, {st_mode=S_IFREG|0644, st_siz
[414 mmap2(NULL, 952, PROT_READ, MAP_SHARED,
415 _llseek(4, 952, [952], SEEK_SET)

416 munmap(0x4021a000, 952)

417 close(4)

[418 open("/etc/shadow™, O_RDONLY)

419 fcntl64(4, F_GETFD)

420 fcntl64(4, F_SETFD, FD_CLOEXEC)

421 _llseek(4, 0, [0], SEEK_CUR)

422 fstat64(4, {st_mode=S_IFREG|0640, st_siz
|423 mmap2(NULL, 657, PROT_READ, MAP_SHARED,
424 _TIlseek(4, 657, [657], SEEK_SET)

425 munmap(0x4021a000, 657)

426 close(4)

[eNeNeFH

=952, ...} =0
, 0) = 0x4021a000 |

OO QMO OO

=657, ...}) =
; 0) = 0x4021a000 |

nn II-b(D o npapn II-b(D o nfn

O
0

Figure : System Call Trace Snippet of the 1ogin Program.

Detailed Design

000000

Insight-II
System Call Execution Tampering

@ Tampering with Disk-10 Syscall
e Replacing /etc/shadow file when it loads to the memory.
Essentially a man-in-the-middle Attack. We can hijack the
file open syscall and provide an attacker controlled
password file

@ Tampering with Memory-Map Syscall

e Tampering with mmap2 syscall by replacing the memory
contents mapped by this syscall (immediately after it
finishes) with the password hash values we control.

Detailed Design

000000

Insight-II
System Call Execution Tampering

@ Tampering with Disk-10 Syscall
e Replacing /etc/shadow file when it loads to the memory.
Essentially a man-in-the-middle Attack. We can hijack the
file open syscall and provide an attacker controlled
password file

@ Tampering with Memory-Map Syscall

e Tampering with mmap2 syscall by replacing the memory
contents mapped by this syscall (immediately after it
finishes) with the password hash values we control.

Advantages

@ Transparent, can work for many other 1ogin types of
programs

@ No binary code reverse engineering

Detailed Design
L]

Challenges

Victim Victim
Process Data Process Code

login Process

Operating Systems (Linux/Windows)

Syscall Execution Context-aware, Instruction Execution
Tampering Reactive Introspection Tampering

Malicious Virtual Machine Monitor

(X86) Hardware

Detailed Design
L]

Challenges

Victim
Process Data

login Process

Victim
Process Code

BEaaa

‘ Operating Systems (Linux/Windows) ‘

Instruction Execution
Tampering

Syscall Execution
Tampering

Context-aware,
Reactive Introspection

Malicious Virtual Machine Monitor

Identifying the “dreaming” context at the VMM layer

C1) a particular process execution;

)
@ (C2) a particular syscall in C1;
)
o

(C1)
(C2)
(C3) a particular instruction in C1;
(C4)

C4) a particular instruction in C1 under a particular call stack.

v

Solutions

Detailed Design
@00

Victim im
| Process Data Process Code

8|8
QR

login Process

Operating Systems (Linux/Windows)

Instruction Execution
Tampering

Syscall Execution
Tampering

Context-aware,
Reactive Introspection

Malicious Virtual Machine Monitor

(X86) Hardware

Detailed Design
@00

Solutions

ictim
> Data

login Process

BEAaA

Operating Systems (Linux/Windows)

Instruction Execution
Tampering

Syscall Execution
Tampering

Context-aware,
Reactive Introspection

Malicious Virtual Machine Monitor

(X86) Hardware

Context-Aware, reactive introspection

@ Introspection: a variant of Virtual Machine Introspection
[Garfinkel et al, NDSS’03]

@ Reactive: not a passive, read-only introspection, it is reactive

@ Context-Aware: context ranges from C1 to C4

Detailed Design
(o] o}

Solutions: Designing with Xen/KVM (SYSVMI)

(X86) Hardware

Detailed Design
(o] o}

Solutions: Designing with Xen/KVM (SYSVMI)

Execution Context Identification

@ (C1) — process context: CR3 and code
hash of 1ogin

@ (C2) —syscall in C1:

sysenter/sysret,int 0x80/iret

Syscall Execution Context-aware, Instruction Exe
Tampering Reactive Introspection Tampering

Malicious Virtual Machine Monitor

Hardware

Detailed Design
(o] o}

Solutions: Designing with Xen/KVM (SYSVMI)

Execution Context Identification

@ (C1) — process context: CR3 and code
hash of 1ogin

@ (C2) —syscall in C1:
sysenter/sysret,int 0x80/iret

‘Syscall Execution Context-aware, Instruction Exe
Tampering Reactive Introspection Tampering

Malicious Virtual Machine Monitor

(X86) Hardware

Attack Strategies

@ A1: Tampering with Instruction Code.

Hardware

@ A2: Tampering with Syscall Arguments and Return Values
@ A3: Tampering with Syscall Produced Data
@ A4: Using 10 Virtualization

Detailed Design
ooe

Solutions: Designing with QEMU (INSTVMI)

login Process

Operating Systems (Linux/Windows)

Syscall Execution Context-aware, Instruction Execution
Tampering Reactive Introspection Tampering

Malicious Virtual Machine Monitor
Software.
{kSe) antace) Virtualzation (QEMU)

Detailed Design
ooe

Solutions: Designing with QEMU (INSTVMI)

Execution Context Identification

@ (C3) —instruction execution: Program
Counter (PC)

@ (C4) — call stack: instrumenting
call/ret

Detailed Design
ooe

Solutions: Designing with QEMU (INSTVMI)

Execution Context Identification

@ (C3) —instruction execution: Program
Counter (PC)

@ (C4) — call stack: instrumenting
call/ret

"
Attack Strategies

@ A5: Tampering with Instruction Code at PC Level

@ A6: Tampering with Instruction Operand

@ A7: Tampering with Function Call Arguments and Return Values

© Implementation

Implementation
o0

Implementation

Syscall Execution
‘Tampering

nitor
(X86) Hardware

SYSVMI: Using Xen-4.12

Malicious-VMM w/ | C1~C2 A1 A2 A3 A4 Total
Xen-4.12 1,748 17 10 75 45 1,895

@ Implementing A1 to A4 with only 1,895 LOC in total (a very
low cost for attacker).

Implementation
oce

Implementation

Syscall Execution
‘Tampering

Software
(X3SlHantilae Virtualization (QEMU)

INSTVMI: Using QEMU-1.01
Malicious-VMMw/ | C1 ~C4 A5 A6 A7 Total
QEMU-1.01 3,513 35 34 25 3,607
@ INSTVMI, ported the SYSVMI implementation (C1 and C2, and A1 —
A4) to a most recent QEMU-1.01

@ INSTVMI, implemented the new attacks unique to the software
virtualization (A5 — A7) with fine-grained execution context identification

(C3 and C4) |

© Evaluation

Evaluation
@00

Overall Result

SYSVMI || INSTVMI, | INSTVMI,

[sp] [sp]

<< <<
Target || 2 1313|323 |2|2|<
login |V |V [V [V [V ||V]|V]V
sshd |V |V |v|v|v|v|v]v|v
vsttpd || v | v |V | v | v |v v |v]|v
telnetd | v | v |V v |v|v|v]v]Yy

Table : Effectiveness of our virtual machine inception attack against
the authentication program. Each v'symbols denotes a successful
way of incepting the victim software.

Performance Overhead

Plain % Xen-SYSVMI % Qemu-INSTVMIa # Qemu-INSTVMIb

Kbuild Apache Memcached Bzip2

Figure : Macro-benchmark Evaluation of the Performance Overhead
of Our VMI

Evaluation
ooe

Performance Overhead

#Plain * Xen-SYSVMI % Qemu-INSTVMI: Qemu-INSTVMIb

% of full speed

e o o) e el N 3 S
o R \3@‘\ o o \a@(\ \a@\ " «e® \a@\ gp\) e“’“ © M
X N © e <
et <& o O @ ™ ¥
@ <

Figure : Micro-benchmark Evaluation of the Performance Overhead
of Our VMI

e Related Work

Related Work
[o)

Hardware Virtualization Rootkits

Blue Pill

@ The codename for a rootkit based on x86
virtualization. [J. Rutkowska, Blackhat'06]

@ Trapping a running instance of the OS by
starting a thin hypervisor and virtualizing
the rest of the machine under it.

@ Vitriol [D. Zov, Blackhat’06] is also a
hardware virtualization rootkit

Key Differences
@ Thin vs. Thick Hypervisor
@ Bluepill aims to compromise other’s virtualization
@ Our attack owns the virtualization and has rich features

Related Work
oce

Subvert, SubXen

Attack SRRl ABR2
Appl App2 system Target OS
Target OS — R
Hardware Hardware
Before Infection After Infection

Key Differences

@ Subvert [King et al., Oakland’06], a virtualization rootkit
@ Thin vs. Thick Hypervisor

@ Subvert also aims to infect other’s virtualization (to be thin
to avoid large footprints)

@ Our attack owns the virtualization and has rich features

e Summary

EmE
e [cor VA
e

login process [N [

Victim
Process Data

Operating Systems (Linux/Windows)

Context-aware, Instruction Execution
Reactive Introspection Tampering

Syscall Execution
Tampering

Malicious Virtual Machine Monitor

(X86) Hardware

Summary
0

Summary
0

Summary

Victim
Process Data

login Process

Vi
Process Code

Operating Systems (Linux/Windows)

g3

x Ix
o
g

Instruction Execution
Tampering

Syscall Execution
Tampering

Context-aware,
Reactive Introspection

Malicious Virtual Machine Monitor

(X86) Hardware

@ We design and implement a context-aware, reactive virtual machine to break
authentication mechanism.

@ Our result indicates that the approach is practical against real-world
authentication programs.

@ It is useful for both malicious attack and forensics analysis of virtualized systems
and software.

Summary
oe

Thank you

Questions?

To contact us: {yangchun.fu,zhigiang.lin,hamlen}@utdallas.edu]

	Background
	Detailed Design
	Implementation
	Evaluation
	Related Work
	Summary

