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Motivations
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Adding a virtualization layer

@ VMM runs at higher privilege
than guest OS

@ Great isolation, more stealthy
@ A full control of guest OS

@ A grand view of the entire
state of guest OS.
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Malicious VMM

@ Subverting authentication(e.g., 1ogin) with
Context-Aware, Reactive Virtual Machine
Introspection(VMI)

@ Attackers can gain fun and profit: Accessing sensitive data
in a computer (e.g., a laptop, or a VM)
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Malicious VMM

@ Subverting authentication(e.g., 1ogin) with
Context-Aware, Reactive Virtual Machine
Introspection(VMI)

@ Attackers can gain fun and profit: Accessing sensitive data
in a computer (e.g., a laptop, or a VM)

| A\

Assumptions

@ Assume physical access (lost of laptop, VMs running in a
cloud)
@ Possible attackers/users

e Malicious cloud providers (cloud being compromised)
e Law enforcement (accessing criminal’s computer, note that
a physical machine can be virtualized)
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Running a machine inside a malicious VMM

Inception Attack

@ Changing your idea using a
dream

@ Dream can be inside a
dream

Malicious Virtualization Monitor

@ Running a machine inside a
virtual machine

@ We change the guest OS
state from the malicious
virtual machine without the
awareness from any insider
programs
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Using Software Virtualization
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Working Example: from instructions perspective

if (pw_auth (user_passwd, username, reason, (char *) 0) == 0) {
804a868: al Oc 62 05 08 mov 0x805620c , %eax
804a86d: c7 44 24 Oc 00 00 00 movl $0x0, 0xc(%esp)
804a874: 00

804a875: 89 3c 24 mov Y%edi , (%esp)
804a878: 89 44 24 08 mov Y%eax ,0x8(%esp)
804a87c: al 48 65 05 08 mov 0x8056548 , %eax
804a881: 89 44 24 04 mov Y%eax ,0x4(%esp)
804a885: e8 86 87 00 00 call 8053010<pw_auth>
804a88a: 85 c0 test Y%eax ,%eax

804a88c: Of 84 6d fd ff ff je 804a5ff<main+0x641>

goto auth_ok;
}

Figure : Binary Code Snippet of the 1ogin Program.
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Insight-I

Instruction Execution Tampering

@ Tampering with Instruction Opcode
@ 804a88c:0f 84 (je) — Of 85 (jne)
@ Tampering with Instruction Operand

@ 804a88a:test %eax, ¥eax — lampering w/
eax/EFLAGS

@ Tampering with both Opcode and Operand
@ 804a885:call 8053010 — mov $0, %$eax
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Working Example: from system call perspective

1

execve("'/bin/login”, ["login™], [/* 16 vars */]) = 0
2 uname({sys="Linux", node="ubuntu”, ...}) =0

[409 open(“*/etc/passwd™, O_RDONLY)

410 fcntl64(4, F_GETFD)

411 fcntl64(4, F_SETFD, FD_CLOEXEC)

412 _llseek(4, 0, [0], SEEK_CUR)

413 fstat64(4, {st_mode=S_IFREG|0644, st_siz
[414 mmap2(NULL, 952, PROT_READ, MAP_SHARED,
415 _llseek(4, 952, [952], SEEK_SET)

416 munmap(0x4021a000, 952)

417 close(4)

[418 open("/etc/shadow™, O_RDONLY)

419 fcntl64(4, F_GETFD)

420 fcntl64(4, F_SETFD, FD_CLOEXEC)

421 _llseek(4, 0, [0], SEEK_CUR)

422 fstat64(4, {st_mode=S_IFREG|0640, st_siz
|423 mmap2(NULL, 657, PROT_READ, MAP_SHARED,
424 _TIlseek(4, 657, [657], SEEK_SET)

425 munmap(0x4021a000, 657)

426 close(4)

[eNeNeFH

=952, ...} =0
, 0) = 0x4021a000 |

OO QMO OO

=657, ...}) =
; 0) = 0x4021a000 |

nn II-b(D o npapn II-b(D o nfn

O
0

Figure : System Call Trace Snippet of the 1ogin Program.
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Insight-II
System Call Execution Tampering

@ Tampering with Disk-10 Syscall
e Replacing /etc/shadow file when it loads to the memory.
Essentially a man-in-the-middle Attack. We can hijack the
file open syscall and provide an attacker controlled
password file

@ Tampering with Memory-Map Syscall

e Tampering with mmap2 syscall by replacing the memory
contents mapped by this syscall (immediately after it
finishes) with the password hash values we control.
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Insight-II
System Call Execution Tampering

@ Tampering with Disk-10 Syscall
e Replacing /etc/shadow file when it loads to the memory.
Essentially a man-in-the-middle Attack. We can hijack the
file open syscall and provide an attacker controlled
password file

@ Tampering with Memory-Map Syscall

e Tampering with mmap2 syscall by replacing the memory
contents mapped by this syscall (immediately after it
finishes) with the password hash values we control.

Advantages

@ Transparent, can work for many other 1ogin types of
programs

@ No binary code reverse engineering
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Identifying the “dreaming” context at the VMM layer

C1) a particular process execution;

)
@ (C2) a particular syscall in C1;
)
o

(C1)
(C2)
(C3) a particular instruction in C1;
(C4)

C4) a particular instruction in C1 under a particular call stack.

v
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Context-Aware, reactive introspection

@ Introspection: a variant of Virtual Machine Introspection
[Garfinkel et al, NDSS’03]

@ Reactive: not a passive, read-only introspection, it is reactive

@ Context-Aware: context ranges from C1 to C4
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Solutions: Designing with Xen/KVM (SYSVMI)

Execution Context Identification

@ (C1) — process context: CR3 and code
hash of 1ogin

@ (C2) —syscall in C1:

sysenter/sysret,int 0x80/iret

Syscall Execution Context-aware, Instruction Exe
Tampering Reactive Introspection Tampering

Malicious Virtual Machine Monitor

Hardware
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Solutions: Designing with Xen/KVM (SYSVMI)

Execution Context Identification

@ (C1) — process context: CR3 and code
hash of 1ogin

@ (C2) —syscall in C1:
sysenter/sysret,int 0x80/iret

‘Syscall Execution Context-aware, Instruction Exe
Tampering Reactive Introspection Tampering

Malicious Virtual Machine Monitor

(X86) Hardware

Attack Strategies

@ A1: Tampering with Instruction Code.

Hardware

@ A2: Tampering with Syscall Arguments and Return Values
@ A3: Tampering with Syscall Produced Data
@ A4: Using 10 Virtualization
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Solutions: Designing with QEMU (INSTVMI)
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Solutions: Designing with QEMU (INSTVMI)

Execution Context Identification

@ (C3) —instruction execution: Program
Counter (PC)

@ (C4) — call stack: instrumenting
call/ret
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Solutions: Designing with QEMU (INSTVMI)

Execution Context Identification

@ (C3) —instruction execution: Program
Counter (PC)

@ (C4) — call stack: instrumenting
call/ret

"
Attack Strategies

@ A5: Tampering with Instruction Code at PC Level

@ A6: Tampering with Instruction Operand

@ A7: Tampering with Function Call Arguments and Return Values




© Implementation



Implementation
o0

Implementation

Syscall Execution
‘Tampering

nitor
(X86) Hardware

SYSVMI: Using Xen-4.12

Malicious-VMM w/ | C1~C2 A1 A2 A3 A4 Total
Xen-4.12 1,748 17 10 75 45 1,895

@ Implementing A1 to A4 with only 1,895 LOC in total (a very
low cost for attacker).
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Implementation

Syscall Execution
‘Tampering

Software
(X3SlHantilae Virtualization (QEMU)

INSTVMI: Using QEMU-1.01
Malicious-VMMw/ | C1 ~C4 A5 A6 A7 Total
QEMU-1.01 3,513 35 34 25 3,607
@ INSTVMI, ported the SYSVMI implementation (C1 and C2, and A1 —
A4) to a most recent QEMU-1.01

@ INSTVMI, implemented the new attacks unique to the software
virtualization (A5 — A7) with fine-grained execution context identification

(C3 and C4) |
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Overall Result

SYSVMI || INSTVMI, | INSTVMI,

[sp] [sp]

<< <<
Target || 2 1313|323 |2|2|<
login |V |V [V [V [V ||V ]|V ]V
sshd |V |V |v|v|v|v|v]v|v
vsttpd || v | v |V | v | v |v v |v]|v
telnetd | v | v |V v |v|v|v]v]Yy

Table : Effectiveness of our virtual machine inception attack against
the authentication program. Each v'symbols denotes a successful
way of incepting the victim software.
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# Plain % Xen-SYSVMI % Qemu-INSTVMIa # Qemu-INSTVMIb

Kbuild Apache Memcached Bzip2

Figure : Macro-benchmark Evaluation of the Performance Overhead
of Our VMI
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Figure : Micro-benchmark Evaluation of the Performance Overhead
of Our VMI
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Hardware Virtualization Rootkits

Blue Pill

@ The codename for a rootkit based on x86
virtualization. [J. Rutkowska, Blackhat'06]

@ Trapping a running instance of the OS by
starting a thin hypervisor and virtualizing
the rest of the machine under it.

@ Vitriol [D. Zov, Blackhat’06] is also a
hardware virtualization rootkit

Key Differences
@ Thin vs. Thick Hypervisor
@ Bluepill aims to compromise other’s virtualization
@ Our attack owns the virtualization and has rich features
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Subvert, SubXen

Attack SRRl ABR2
Appl App2 system Target OS
Target OS — R
Hardware Hardware
Before Infection After Infection

Key Differences

@ Subvert [King et al., Oakland’06], a virtualization rootkit
@ Thin vs. Thick Hypervisor

@ Subvert also aims to infect other’s virtualization (to be thin
to avoid large footprints)

@ Our attack owns the virtualization and has rich features
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@ We design and implement a context-aware, reactive virtual machine to break
authentication mechanism.

@ Our result indicates that the approach is practical against real-world
authentication programs.

@ It is useful for both malicious attack and forensics analysis of virtualized systems
and software.
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Thank you

Questions?

To contact us: {yangchun.fu,zhigiang.lin,hamlen}@utdallas.edu ]




	Background
	Detailed Design
	Implementation
	Evaluation
	Related Work
	Summary



