
Subverting System Authentication With Context-Aware,
Reactive Virtual Machine Introspection

Yangchun Fu, Zhiqiang Lin, Kevin W. Hamlen
Department of Computer Science, The University of Texas at Dallas

800 W. Campbell Rd, Richardson, TX, 75080
{yangchun.fu, zhiqiang.lin, hamlen}@utdallas.edu

ABSTRACT

Recent advances in bridging the semantic gap between virtual ma-
chines (VMs) and their guest processes have a dark side: They can
be abused to subvert and compromise VM file system images and
process images. To demonstrate this alarming capability, a context-
aware, reactive VM Introspection (VMI) instrument is presented
and leveraged to automatically break the authentication mechanisms
of both Linux and Windows operating systems. By bridging the
semantic gap, the attack is able to automatically identify critical
decision points where authentication succeeds or fails at the binary
level. It can then leverage the VMI to transparently corrupt the
control-flow or data-flow of the victim OS at that point, result-
ing in successful authentication without any password-guessing or
encryption-cracking. The approach is highly flexible (threatening a
broad class of authentication implementations), practical (realizable
against real-world OSes and VM images), and useful for both
malicious attacks and forensics analysis of virtualized systems and
software.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Invasive
software

General Terms

Security

Keywords

Authentication; Reverse Engineering; Virtual Machine Introspection

1. INTRODUCTION
Virtualization of traditionally physical machines and hardware

is being widely adopted as a means of cutting costs, improving
portability, and easing maintainability of computer systems. For
security, virtualized systems are typically represented as encrypted
file system and memory images that are only accessible by loading
the image into a compatible VM for execution, and passing an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ACSAC ’13 Dec. 9-13, 2013, New Orleans, Louisiana USA
Copyright 2013 ACM 978-1-4503-2015-3/13/12.̇.$15.00.
http://dx.doi.org/10.1145/2523649.2523664.

authentication check (e.g., login password) posed by the interpreted
guest operating system (OS). To prevent subversion by an attacker,
the authentication mechanism is often protected by an array of anti-
debugging logic, cryptographic security, code obfuscation, and self-
checking, to thwart efforts from reverse-engineering and credential-
theft.

While these protections are viewed by many experts as reason-
ably secure against typical, low-resource attackers equipped with
standard hardware, we observe that the rise of virtualization has
quietly undermined several assumptions foundational to this view.
Specifically, nearly all standard OS authentication defenses implic-
itly assume that the hardware on which the OS is running is non-
malicious and immutable. For example, the OS’s anti-debugging
logic assumes that the machine instructions it uses to detect rival
processes have the semantics defined by the CPU architecture, and
that those semantics do not change from one instruction to the
next. Unfortunately, this assumption can be potentially violated by a
malicious VM, which effectively allows even a low-resource attacker
to rapidly implement virtual, custom “hardware” with arbitrary
semantics at low cost.

Even though the threat of malicious VMs is generally known (e.g.,
Bluepill [37] and SubVert [26]), the high danger of this situation
has been significantly underestimated in our opinion, due in part to
the well-known semantic gap between VMs and the guest software
they host. VMs do not have direct knowledge of high-level program
abstractions, such as data structures, functions, or algorithms; they
operate at the level of registers, bytes, and instructions. This raises
a veil of obscurity that seems to make authentication-tampering
through a VM even more difficult than tampering at the traditional
process level. We believe this apparent obstacle is why no previous
work to our knowledge has actually carried out precision tampering
of general authenticators (e.g., login) through malicious VMs.

In this paper we show that recent advances toward bridging
the semantic gap [5, 9, 11, 33, 34] have made such VM-based
attacks much more feasible. To demonstrate, we present the design,
implementation, and evaluation of a malicious VM Monitor (VMM)
that employs a novel VMI [13] to identify and subvert security-
critical instructions in virtualized authentication implementations.
Our attacks succeed without any knowledge of program-level ab-
stractions or source codes; thus, concealing or obfuscating sources
is not an effective defense.

Our experiments showcase the success of our approach against
authentication protections, which are the first line of defense for
many computer systems. In general, authentication can be abstracted
as a boolean conditional test f(x) = c, where x could be a password,
challenge response (e.g., CAPTCHA), biometric (e.g., fingerprint),
or other input (e.g., RFID key) provided by the user; and f is a (one-
way) validation function that transforms x into an output comparable

229

to correct digest c. Guessing x by brute force is intractable when the
domain of f is large, and learning x from c or finding a weakness
in f is difficult if f is well-protected. Instead, we observe that an
attacker with a reactive VMI can relatively easily find and subvert the
comparison operation (=) or c directly. By flipping the comparison
outcome or replacing c with f(y) for some known y, the attacker
gains access without knowing x.

As a proof-of-concept, we present a new technique to break
system authentication by designing a malicious VMM built atop
a VMI [13] that pulls guest-OS state from the outside VMM and
enriches the VMI with context-aware, reactive capability. That is,
unlike traditional VMI, our VMI requires access to only a small
subset of the guest-OS states, but offers write-access to states in
addition to read-access. Through step-by-step design, implemen-
tation, and evaluation, we show that such a VMI capability can
automatically intercept and tamper with any of the execution states
of the authentication process (e.g., login, sshd, vsftpd, or
telnetd in Linux/UNIX, and winlogon in Microsoft Windows)
running inside the guest-OS, and thereby enter the target system
without knowing any password.

While the virtualzation layer can theoretically intercept and tam-
per with any guest program states, our main technical challenge
is to identify the exact execution context to modify, and modify it
appropriately. That is, we must identify and corrupt the precise exe-
cution state at the instant of authentication failure, and infer a state
change that makes it succeed. However, there are no abstractions
(e.g., process descriptors, file objects, or variables) at the VM layer.
This grand obstacle explains why, to the best of our knowledge,
there have been no such VMI attacks in the wild previously. We
show how semantic gap-bridging technologies applied using our
VMI can overcome this obstacle.

Our VMI attack is extremely dangerous and practical. We demon-
strate that it can automatically break the authentication and enter
the target system without any password. This implies that malicious
public or private cloud providers can harvest sensitive information
from user-supplied VM images even if the images might have been
protected by full disk encryption (FDE), since malicious cloud
providers can use our attack to authenticate while the VM is running.
Moreover, the current trend of virtualizing physical machines [42]
dramatically increases exposure to our attack, since virtual system
images can be loaded into our malicious VMM to bypass their
authentication.

The attack is also extremely flexible. With state-of-the-art binary
code analysis techniques (e.g., [20]), attackers can dynamically
patch any instructions or execution states of victim applications (not
just the authentication process) to bypass other security measures,
such as license checks and commercial OS activation checks. It
is also potentially useful for benign purposes, such as to facilitate
law-enforcement access to authentication-protected criminal laptops
(by first converting it to a VM and then executing atop our VMI).

In summary, this paper makes the following contributions.

• We present a new technique to break authentication using
VMI, and show that it is extremely powerful, allowing attack-
ers to trivially enter victim computers without a password.

• We devise a novel enabling technique—context-aware, reac-
tive introspection—that enriches traditional read-only VMI
with guest CPU register- and memory-write capability, and
we present a detailed design, implementation, and evaluation.

• We observe that our VMI attack is very difficult to prevent
for any system amenable to virtualization. For protection of
laptops, we advocate FDE with pre-boot authentication.

2. BACKGROUND
We begin by examining various possible approaches to subverting

system authentications in §2.1, and then define our threat model and
assumptions in §2.2.

2.1 Possible Approaches
There are four obvious approaches to subverting authentication

test f(x) = c : (1) computing x = f−1(c), (2) tampering with f ,
(3) tampering with equals (=), or (4) replacing c with f(y) for
some known y. Computing x = f−1(c) through brute force (e.g.,
dictionary attack) is historically the most common, but requires
enormous computing resources if the domain of f is large and
x is non-trivial. Tampering with f is frustrated by its usually
(intentionally) complex implementation, which include numerous
cryptographic layers, anti-debugging, and self-checks.

In contrast, the implementation of equals is relatively simple; it
usually manifests as a single conditional jump instruction (je/jne
on x86) hidden somewhere in the binary. If equals is later followed
by a double-check, such as a control-transfer of the form jmp g(x, c)
where g(x, c) yields some correct destination d if and only if f(x) =
c, then this extra check is similarly subvertable once d is known
(e.g., by observing the behavior of a program copy where legitimate
authentication is possible).

Likewise, replacing c with f(y) is often an attractive and easy
alternative approach. In this scenario, the attacker uses the malicious
VMI to effect a man-in-the-middle (MitM) attack that replaces
the resource containing c (e.g., the password file or its in-memory
image) with a false one that encodes attacker-owned credential y.
The attacker can then successfully authenticate using y instead of x.

There are three layers at which one might subvert equals or c in
modern computing infrastructures:

Hardware-layer. One approach is to craft malicious hardware that
corrupts the critical comparison instruction or credential digest but
leaves all other instruction semantics unaffected. This is conceptu-
ally appealing since faithfully preserving all other instructions makes
it impossible for any software at the upper layers to inspect and
detect the malicious environment. However, design and implementa-
tion of trojaned hardware that nonetheless meets the complex opera-
tional demands of standard hardware requires resources beyond the
capabilities of most typical attackers. Hardware companies with this
capability are not motivated to carry out such attacks since doing so
potentially harms their reputation with customers. Thus, aside from
malicious hardware crafted by determined, capable adversaries in
the defense and research communities (e.g., [4, 7, 27, 38]), such
attacks are relatively rare to our knowledge.

Software-layer, inside OS. In contrast to hardware, the software
layer has long been an affordable target for all levels of attacks (from
kernel rootkits to backdoors, trojans, and viruses). More specifi-
cally, software attackers commonly attempt to break authentication
f(x) = c by introducing a backdoor that circumvents f , patching
the equality check after f , or forging data c. However, for these
attacks to succeed, there are two conditions: (1) we must be able
to mount the disk of the target system and traverse its data files
to locate f and c, and (2) the target system must not contain any
integrity checks (e.g., Tripwire [25]) to verify the integrity of f and
c as well as other critical components.

With the increasing privacy and data breach concern from end-
users, most modern OSes satisfy neither of these conditions. Disk
images are usually encrypted (especially those in IaaS clouds and
on laptops protected by products like BitLocker [31]), and OSes im-
plement self-checking and anti-debugging technologies that detect
corruption at the software layer. It is thus difficult to precisely locate

230

f , c, or the conditional branch in the target disk, and corrupting
them raises OS integrity alarms that can render the system unusable
after rebooting. In other words, directly tampering at the OS and
user-level can lead to easy detection by the target computer.

Therefore, since hardware-layer attacks are hard to implement
and software-layer inside OS attacks are easy to detect, this leads
our investigation to the virtualization layer that is outside OS.

Software-layer, outside OS. The rise of virtualization technologies
as the underpinnings for today’s cloud computing and data centers
has made it truly practical for low-resource attackers to create virtual
“hardware” using software, with arbitrary semantics on demand at
low costs. We show that with only minor additions in the form of
context-sensitive, reactive VMI, these technologies facilitate new,
cheap attacks that are undetectable to typical defenses employed
by state-of-the-art guest OSes. These attacks come at almost zero
cost for attackers—with only a few thousands lines of code (LOC)
added to an existing virtualization platform, one can implement Blue
Pill-like attacks [37] that are very challenging, if not impossible,
to detect above the virtualization layer, because they run entirely
beneath the OS and have complete control of the guest system.

2.2 Threat Models, Scope and Assumptions

Threat Models. Our goal is to break the target’s authentication
defense using a stealthy dynamic method from the virtualization-
layer (without being detected by the in-guest security software). We
assume unfettered access by the attacker to a VM image of the target
system. For example, if the target is a physical machine to which
the attacker has physical access, the attacker can virtualize the target
to a VM image using standard tools (e.g., [42]) or custom tools to
satisfy this assumption.

If the target is encrypted with FDE, our goal is to view the
encrypted data by breaking the authentication. Physical machines
with pre-boot FDE authentication are immune to our attack since
to really decrypt the data, we have to provide the correct key.
This is different compared to authentication subversion. But if
the FDE machines are protected by post-boot authentication, they
are vulnerable.

Scope and Assumptions. In this paper, we focus on subverting
systems atop x86 architectures. Since the attacker owns the virtu-
alization, none of the virtualization-based defenses in the recent
literature (e.g., [14, 22, 46]) are applicable to detecting our attack.
However, we pessimistically assume the presence of powerful in-
guest security software, such as rootkit detectors and integrity
checkers. Our goal is to undermine these by tampering with their
state (similar to our authentication tampering).

We also assume that attackers have access to standard binary
reverse engineering tools (e.g., [6, 20, 28]). In this paper we do not
cover or improve any of these existing techniques; we apply them to
gain instruction-level knowledge of the victim binary code.

Attackers could be malicious cloud providers, benign providers
that have been compromised (perhaps by insider threats), individual
users such as script kiddies and criminals, or even law-enforcement
officials attempting to penetrate criminal-owned computers.

3. ATTACK OVERVIEW

3.1 Working Example
We illustrate our approach using a working example that targets

the UNIX/Linux login program (from shadow-4.1.4.2) as
the victim software. Our goal is to dynamically tamper with the
program’s execution state to gain access to the system without
knowing any password.

if (pw_auth (user_passwd, username, reason, (char *) 0) == 0) {
 804a868: a1 0c 62 05 08 mov 0x805620c,%eax
 804a86d: c7 44 24 0c 00 00 00 movl $0x0,0xc(%esp)
 804a874: 00
 804a875: 89 3c 24 mov %edi,(%esp)
 804a878: 89 44 24 08 mov %eax,0x8(%esp)
 804a87c: a1 48 65 05 08 mov 0x8056548,%eax
 804a881: 89 44 24 04 mov %eax,0x4(%esp)
 804a885: e8 86 87 00 00 call 8053010<pw_auth>
 804a88a: 85 c0 test %eax,%eax
 804a88c: 0f 84 6d fd ff ff je 804a5ff<main+0x64f>
 goto auth_ok;
}

Figure 1: Binary Code Snippet of the login Program.

 1 execve("/bin/login", ["login"], [/* 16 vars */]) = 0
 2 uname({sys="Linux", node="ubuntu", ...}) = 0
 ...
 409 open("/etc/passwd", O_RDONLY) = 4
 410 fcntl64(4, F_GETFD) = 0
 411 fcntl64(4, F_SETFD, FD_CLOEXEC) = 0
 412 _llseek(4, 0, [0], SEEK_CUR) = 0
 413 fstat64(4, {st_mode=S_IFREG|0644, st_size=952, ...}) = 0
 414 mmap2(NULL, 952, PROT_READ, MAP_SHARED, 4, 0) = 0x4021a000
 415 _llseek(4, 952, [952], SEEK_SET) = 0
 416 munmap(0x4021a000, 952) = 0
 417 close(4) = 0
 418 open("/etc/shadow", O_RDONLY) = 4
 419 fcntl64(4, F_GETFD) = 0
 420 fcntl64(4, F_SETFD, FD_CLOEXEC) = 0
 421 _llseek(4, 0, [0], SEEK_CUR) = 0
 422 fstat64(4, {st_mode=S_IFREG|0640, st_size=657, ...}) = 0
 423 mmap2(NULL, 657, PROT_READ, MAP_SHARED, 4, 0) = 0x4021a000
 424 _llseek(4, 657, [657], SEEK_SET) = 0
 425 munmap(0x4021a000, 657) = 0
 426 close(4) = 0
 ...

Figure 2: System Call Trace Snippet of the login Program.

Figure 1 shows a static binary code snippet of login, which calls
the pw_auth function for authentication. A system call (syscall)
trace is presented in Fig. 2. It opens the “/etc/passwd” and
“/etc/shadow” files and maps their file contents into memory
(using the mmap2 syscall).

3.2 Attack Method
In general, we can partition our attacks into two classes based on

instrumentation granularity. The first class of attacks dynamically
tampers with the instruction execution state (e.g., the instruction
operand). We term this an INSTVMI attack, because the instrumenta-
tion is at the instruction level and it relies on instruction translation or
emulation-based software virtualization. INSTVMI usually runs in
emulation-based software virtualization, such as QEMU. (INSTVMI
can also be implemented using a single step execution mode in
hardware virtualization, but we eschew this option as more difficult.)
The second class of attacks tampers with the syscall execution state
(e.g., the syscall arguments and return values). We term these
SYSVMI attacks, because the instrumentation is at the syscall level
and can be implemented using hardware virtualization, such as
Xen/KVM. Thus, we can use the following strategies:

Instruction Execution Tampering. Since the login authentica-
tion occurs in function pw_auth, we can choose from a number
of candidate instructions (boxed in Fig. 1) as well as their data
dependencies for the tampering, resulting in various approaches:

• Tampering with Instruction Opcodes. Machine instruction
opcodes can be corrupted to change the program’s semantics.
For instance, the VMM can locate virtual address 804a885 of
the login process right after it is loaded into memory, and di-
rectly change the machine code bytes e8 86 87 00 00 (which
encode the call 8053010 instruction), to b8 00 00 00 00

231

(mov $0,%eax); or it can locate virtual address 804a88c and
change opcode 0f 84 (je) to 0f 85 (jne). Note that at the
VMM layer there is no read-only protection of the instruction
code, leaving the VMM free to corrupt arbitrary bytes.

• Tampering with Instruction Operands. The VMM can also
corrupt instruction operands, such as zeroing the return value
(in eax) of the function call to pw_auth at 804a885. It can
also modify the processor status flags (EFLAGS) resulting
from test instruction “test %eax,%eax” at 804a88a. For
this type of tampering, we must dynamically intercept the
instruction. Also, while instruction opcode tampering can be
theoretically detected by periodic (and often computationally
expensive) memory integrity checking, none of the existing
techniques can detect register value tampering.

These tampering techniques from the virtualization-layer facili-
tate successful authentication irrespective of the password entered,
affording unrestricted access to the target system. While opcode
tampering can be implemented without instruction level monitoring
(e.g., by changing the opcode right after the code is loaded at the
syscall event level), operand tampering must precisely capture the
execution context (e.g., when the program counter reaches a specific
virtual address) at the instruction level.

Syscall Execution Tampering. Aside from instruction-level tam-
pering, we can also launch syscall-level attacks to tamper with data
that is directly or indirectly related to f(x) = c. For example, we
can forge c with a hash value generated from our own password.
Notice that for this particular login example, as shown in Fig. 2,
the system opens a disk file /etc/shadow that stores the pass-
word hash values, and maps (mmap2) the file contents to memory.
As such, we present two strategies:

• Tampering with Disk-IO Syscalls. Even though we do not
know the password in /etc/shadow, we can replace this
file with a file we provide from the virtualization-layer. This
is actually a MitM attack that redirects the file-open syscall
to an attacker-controlled password file.

• Tampering with Memory-Map Syscalls. If it is difficult to
provide an attacker-controlled password file at the virtualiza-
tion layer (e.g., due to the semantic gap), there is an even
simpler attack: We can attack the mmap2 syscall by replacing
the memory contents mapped by this syscall (immediately
after it finishes) with the forged password hash values.

Through syscall execution tampering, the login process con-
sumes security-critical data, such as the password hash values,
that are controlled by attackers. Full access is thereby granted
by entering a known password. The syscall execution tampering
approach is more appealing than instruction tampering, since it is
more transparent to the victim code, and does not require a de-
tailed instruction level understanding of the victim application. Our
experiments demonstrate that we can transparently break the authen-
tication process of sshd, vsftpd, telnetd, and winlogon
without any reverse engineering of their binary code by using syscall
execution tampering.

3.3 Overview
To realize the above attacks, we must bridge the semantic gap

to precisely identify the target concrete execution contexts at the
VMM layer. To do so, we present a context-aware, reactive VMI as
a foundation for our attack. It has the following features:

login

Figure 3: Architecture Overview of Our Attack.

• Introspection. Our approach is introspective [13], since it
runs outside the guest-OS and interprets certain guest events,
such as particular syscall executions (e.g., the arguments to
syscall open and the return value of mmap2).

• Reactive. Unlike the traditional passive, read-only introspec-
tion techniques (e.g., [9, 11, 13, 34]), our approach is reactive.
That is, attacker-defined tampering actions are triggered by
certain attacker-defined execution contexts.

• Context-aware. The contextual criteria that trigger attacker
actions can range over process level, syscall level, call stack
level, and instruction level properties, depending on the attack
strategies.

4. DESIGN AND IMPLEMENTATION
To show the generality of our techniques, we have designed

two sets of attacks based on our context-aware, reactive VMI and
different types of virtualization: (1) SYSVMI, which uses hardware
virtualization to perform syscall tampering; and (2) INSTVMI, which
uses software virtualization to perform instruction level tampering.
In the following, we present the step-by-step design and implemen-
tation of these techniques. We first present SYSVMI in §4.1 since it
is the easier and more appealing of the two, followed by INSTVMI
in §4.2.

4.1 SYSVMI
The essence of our attack is to tamper with the program state at

precise moments guided by execution context details identified at
the virtualization layer. In general, an execution context can belong
to the following categories (from coarse- to fine-grained):

• C1: a particular process execution;

• C2: a particular syscall in C1;

• C3: a particular instruction in C1;

• C4: a particular instruction (C3) under a particular call stack.

However, at the virtualization-layer, there is almost no abstraction.
Thus, the following sections examine how to bridge the semantic gap
to identify coarse-grained execution contexts C1–2 (see §4.1.1) and
fine-grained contexts C3–4 (see §4.2). We then present the design
and implementation of SYSVMI in §4.1.2 and §4.1.3, respectively.

232

4.1.1 Coarse-Grained Context Awareness
Process execution context identification (C1). Nearly all modern
OSes for x86 architectures use paging to support isolated, private
virtual address spaces for processes. Specifically, each process has a
private page directory (pgd) to which control register CR3 typically
points; the value of CR3 can hence be used to differentiate processes.
To the best of our knowledge, nearly all x86 introspection techniques
use CR3 to isolate the process execution context (cf., [21, 22]).

However, the value of CR3 does not directly reveal process iden-
tities; for example, it does not reveal the process’s name. Process
identities are needed for our attack to precisely and surgically corrupt
only the security-relevant code and data without altering the behavior
of the rest of the system. One way to derive process identities from
CR3 is to traverse the guest OS data structures where that data
is stored (e.g., task_struct in Linux and EPROCESS in Win-
dows). However, the resulting implementation is specific to fine de-
tails of the guest OS version, and therefore does not generalize well.

We therefore developed a kernel-independent approach that com-
bines binary code fingerprinting and the CR3 identification from
Antfarm [21] to uniquely identify victim processes from the virtu-
alization layer. Rather than using process names (which could be
modified by cloud users trying to evade our attack), we hash (MD5)
the code page in which each process’s main entry point resides,
and then compare the hash values at run-time to identify the target
process. Process entry points can be acquired by disassembling
the binary code, and are also divulged when pushed onto the stack
by __libc_start_main, whose symbol is always present in
dynamic linked binaries. They are difficult to obfuscate and were
not obfuscated in any of the binaries we studied, since they must be
divulged to the guest OS’s process loader via standard interfaces in
order to load the process.

There are more sophisticated binary code fingerprinting tech-
niques, such as byte-signatures [24], string-signatures [16], and
semantic-aware signature [45], that would also work. However,
our simple hash-based signature sufficed for all our experiments.
In addition, our experiments only required process-level context
tracking, not thread-level tracking. Thread tracking at the hypervisor
layer can also be realized (e.g., [12]) if needed.

Syscall execution context identification (C2). Syscalls are ex-
ported OS services with standard interfaces. In x86, syscalls are
implemented via unique instruction pairs. The Linux kernel uses
int0x80/iret and sysenter/sysexit pairs, and Microsoft Win-
dows uses int 0x2e/iret and sysenter/sysexit pairs. The
callee of the syscall is indexed by register eax when invoked.

With the instruction translation-based virtualization presented in
§4.2, it is trivial to identify the specific syscall execution context.
With hardware-assisted virtualization (e.g., Xen and KVM), we
must rely on other hardware mechanisms to intercept the execution
of the syscall instructions. Ether [8], built atop the Xen hypervisor,
leverages page fault exceptions to capture syscall enter and syscall
return points. Nitro [35], based on the KVM hypervisor, leverages
invalid opcode exceptions to intercept syscalls. In addition, hard-
ware breakpoints can also be used [43]. Here, we adopt the page
fault exception approach of Ether and synthesize a page fault at each
syscall entry and syscall return point:

• Syscall-Entry. We copy the value of the original 0x80 (0x2e
for Windows) IDT entry, and substitute it with a unique invalid
memory address. A similar method applies to sysenter-
based syscalls using the SYSENTER_EIP_MSR register. All
syscall invocations therefore result in a page fault exception,
where we can detect the syscall entry point by inspecting the
invalid address.

• Syscall-Return. To intercept syscall returns, we set the page
containing the return address as inaccessible in the shadow
page table. This return address page is identified at the syscall
entry point.

4.1.2 Detailed Design
The design of SYSVMI is based on hardware virtualization. In

particular, it achieves coarse-grained execution context identification
and performs syscall-level reactive tampering. In the following, we
describe the design of each specific reactive tampering attack.

A1. Tampering with Instruction Code. Right after a victim pro-
cess is loaded—for instance, at the syscall exit point after executing
the execve call in line 1 of Fig. 2—we fetch the target page
in which the victim PC resides (e.g., 804a885, 804a88c), and
directly tamper with its machine code. This attack is general, but
requires a detailed understanding (and binary analysis) of the victim
application.

A2. Tampering with Syscall Arguments and Return Values.

Rootkits often tamper with syscall arguments and return values
(e.g., to hide the presence of a malicious process). Since we have the
capability to intercept the syscall entry and syscall return, it is trivial
to tamper with any of the arguments and return values of interest
to attackers. Although our login process attack does not solely
involve such tampering, it is needed in many other attack scenarios.
For example, it is needed by certain attacks that corrupt the system
log by disabling syscalls that write to certain files.

A3. Tampering with Syscall-produced Data. Whenever there is a
data dependency between program-consumed and syscall-produced
data, there is an opportunity for a spoofing MitM attack. The syscall
return value tampering in A2 is a special case of this more general
class of attacks. In the case of our login attack, right after the
execution of mmap2 when mapping /etc/shadow to memory,
we can replace the memory chunk with the file content from an
attacker-controlled file. Such spoofing is very difficult to prevent or
detect, and does not require any sophisticated reverse engineering
of the binary code.

A4. Using IO Virtualization. If attack A3 requires syscall level
knowledge, such as the semantics of mmap2, then A4 lifts this
requirement by using IO virtualization [1, 40]. More specifically,
since login processes eventually open the /etc/shadow file
and read it through disk IO, we can intercept the data transmission
from disk IO to memory to successfully spoof the file.

To avoid the need for file name abstractions, which are not
readily available at the IO virtualization layer, we can leverage
information available from the trace in Fig. 2 to identify the victim
IO transmission by its content. For example, the /etc/shadow
file content can be identified by using parsing to match its general
syntax, or by fingerprinting its exact contents, and waiting for a
matching IO transfer. Depending on the attack scenario, the syntax
or fingerprint can be revised, so we believe this methodology also
generalizes to many attacks.

4.1.3 Implementation
We have implemented SYSVMI atop a recent Xen hypervisor

(Xen-4.12), and supported attack methodologies A1–4 with 1,895
LOC in total. Table 1 reports a size breakdown of our SYSVMI
implementation. The size of our context-aware reactive VMI is
presented in column 2, and each specific attack is presented from
column A1–4. The table shows that once the introspection foun-
dation of C1–2 is established, the implementation of attacks A1–4

is relatively trivial. This indicates that our VMI approach is easily
extensible to many attacks, with new tampering attacks being easily
implementable based on attacker needs.

233

VMM C1–2 A1 A2 A3 A4 Total

Xen-4.12 1,748 17 10 75 45 1,895

Table 1: Code Size (LOC) of Our SYSVMI Implementation

4.2 INSTVMI
Next, we present the detailed design and implementation of

INSTVMI. Since a VMM based on software virtualization emulates
hardware entirely through binary code translation, it has complete
control of the system, including all the capabilities of SYSVMI
(e.g., introspection levels C1–2 and attack methods A1–4). To avoid
redundancy, we therefore limit our discussion in this section to the
new introspection opportunities and tampering attacks afforded by
fine-grained execution context identification.

4.2.1 Fine-Grained Context Awareness
Instruction execution context identification (C3). We use the
program counter (PC) to identify the specific instruction execution
context under C1. This is very trivial, since we control the binary
code translation, and we can therefore instrument it to tamper with
the execution precisely when the PC visits certain addresses of our
interest.

Call-stack context identification (C4). In addition to the PC, the
call stack and the return addresses it contains can also be used to
more precisely describe the execution context, as demonstrated in
VtPath [10]. To collect the call-stack, we instrument call and
ret instructions. Whenever a call gets executed in our monitored
process (C1), we push the return address and the current esp value
onto a private shadow stack, and whenever a ret gets executed
for the monitored process, we pop from our shadow stack until it
matches the right esp. Tracking esp is necessary to identify and
avoid mismatched call/ret pairs.

4.2.2 Detailed Design
The facility to identify these fine-grained execution contexts offers

attackers extremely powerful tampering attacks. Since we are able
to track the execution of each instruction, we can achieve coarse-
grained syscall context identification (C1–2) by simply intercepting
int 0x80, sysenter, and sysexit instructions. It is very simple
to identify these syscall contexts, as illustrated by past work [9, 11].
In addition to attacks A1–4, which can be realized by SYSVMI, the
following new attacks become possible with INSTVMI:

A5. Tampering with Instruction Code at PC Level. While A1

is already able to tamper with the instruction code, its granularity
is at syscall level and lacks flexibility. For more precise tamper-
ing, SYSVMI can tamper with the machine code only when the
instruction at a particular virtual address is about to execute.

A6. Tampering with Instruction Operand. The most intuitive and
fine-grained tampering is to forge an instruction’s register or memory
operand. Our framework facilitates surgical alteration of CPU
registers without corrupting the rest of the execution. Effectively
using this capability requires a detailed reverse engineering of the
binary code, in order to single out the exact victim operand and PC
address.

A7. Tampering with Function Call Arguments and Return Val-

ues. In A2, we are only able to tamper with the syscall related
arguments and return values. In A7, we can now tamper with any
function call arguments, including function calls in user space or
library space, as long as attackers specify which function to corrupt
(via a configuration interface in our design).

VMM C1–2 A1 A2 A3 A4 Total

QEMU-1.01 1,250 22 30 38 48 1,388

Table 2: Code Size (LOC) of the INSTVMIa Implementation

VMM C1–4 A5 A6 A7 Total

QEMU-1.01 3,513 35 34 25 3,607

Table 3: Code Size (LOC) of the INSTVMIb Implementation

4.2.3 Implementation
We have implemented two kinds of INSTVMI: INSTVMIa ports

the SYSVMI implementation (C1–2 and A1–4) to QEMU-1.01, and
INSTVMIb implements the new attacks unique to software virtual-
ization (A5–7) with fine-grained execution context identification
(C3–4). A size breakdown of both are presented in Table 2 and
Table 3, respectively.

A comparison of Tables 1 and 2 shows that identifying process
and syscall level context is easier using approach INSTVMIa, whose
total implementation is about 500 LOC smaller. Adding support
for C3–4 and A5–7 requires INSTVMIb to dynamically instrument
each instruction to check the execution context, resulting in a larger
3,513 LOC implementation for the context identification in Table 3.

5. EVALUATION
This section presents our experimental results. We first describe

the effectiveness of each of our attacks (A1–7) in §5.1, and then
study the performance overhead in §5.2. Next, §5.3 evaluates the
generality of our attacks with respect to different software applica-
tions running on different platforms. Our testing system is a Dell
workstation with Intel Core2 Quad Processor and 24GB of RAM.
The guest-OSes are Linux-2.6.32 and Windows XP (SP2), and the
host OS is Linux-3.0.1 for INSTVMI. The SYSVMI hypervisor is
Xen-4.12.

5.1 Effectiveness
In addition to UNIX login (our running example), our authen-

tication software victims include sshd, vsftpd, and telnetd,
which all have an authentication component. We tested whether
each of our attacks is effective against each program.

login. Using SYSVMI, we applied attacks A1–4, except with A2

and A3 combined to implement the concrete attack (i.e., enabling a
root user entering the system without knowing any password). The
general interface for each attack is adequate to launch the attack
without developing any new code; we simply configure the concrete
address and instruction code to modify (A1), the syscalls and the
spoofed content (A2 and A3), or the file pattern of the spoofing
hijacking (A4).

Likewise, INSTVMIa and INSTVMIb are similarly configurable
(without any code modification) to successfully launch attacks A1–4

to subvert the login process. For the new unique attacks A5–7

available with INSTVMIb, we configure A5 to tamper with the
machine code at 0x804a885 without actually calling the pw_auth,
we configure A6 to tamper with the EFLAGS register at instruction
0x804a88c, and we configure A7 to tamper with the return value of
function call pw_auth at 0x804a88a. All of these attacks succeed.

sshd. The sshd authentication program (from openssh-5.8),
whose binary code is excerpted in Fig. 4, offers at least two tam-
pering opportunities for A1: change the two arguments to function
strcmp (at 0x80517e2 and 0x80517e6) to be identical, or change

234

 80517da: 89 34 24 mov %esi,(%esp)
 80517dd: e8 4e 3b 04 00 call 8095330 <xcrypt>
 80517e2: 89 5c 24 04 mov %ebx,0x4(%esp)
 80517e6: 89 04 24 mov %eax,(%esp)
 80517e9: e8 ae b3 ff ff call 804cb9c <strcmp@plt>
 80517ee: 85 c0 test %eax,%eax
 80517f0: 0f 94 c0 sete %al
 80517f3: 0f b6 c0 movzbl %al,%eax
 80517f6: 8b 55 f4 mov -0xc(%ebp),%edx
 80517f9: 65 33 15 14 00 00 00 xor %gs:0x14,%edx
 8051800: 75 39 jne 805183b <sys_auth_passwd+0x9b>

 encrypted_password = xcrypt(password,
 (pw_password[0] && pw_password[1]) ? pw_password : "xx");
 return (strcmp(encrypted_password, pw_password) == 0);

Figure 4: Code snippet of the targeted sshd program.

p_crypted = crypt(str_getbuf(p_pass_str), p_pwd->pw_passwd);
if (!vsf_sysutil_strcmp(p_crypted, p_pwd->pw_passwd))
{
 return 1;
}

1b465: e8 56 8f fe ff call 43c0 <crypt@plt>
1b46a: 89 45 e0 mov %eax,-0x20(%ebp)
1b46d: 8b 45 ec mov -0x14(%ebp),%eax
1b470: 8b 40 04 mov 0x4(%eax),%eax
1b473: 89 44 24 04 mov %eax,0x4(%esp)
1b477: 8b 45 e0 mov -0x20(%ebp),%eax
1b47a: 89 04 24 mov %eax,(%esp)
1b47d: e8 4e d2 ff ff call 186d0 <vsf_sysutil_strcmp>
1b482: 85 c0 test %eax,%eax
1b484: 75 07 jne 1b48d <vsf_sysdep_check_auth+0x161>

Figure 5: Code snippet of the targeted vsftpd program.

the jne to je (at 0x8051800). For the combined A2–3 attack and
attack A4, the generality of these two spoofing attacks facilitate
replacing the old /etc/shadow with an attacker-controlled file
to bypass the password check. By directly applying these SYSVMI
attacks to INSTVMIa, we successfully logged into the system.

For the fine-grained tampering available via INSTVMIb, we tam-
per with the instruction code at 0x8051800 (for A5), tamper with
the instruction operand at 0x80517ee (test eax, eax for A6), and
function argument of strcmp at 0x80517e2 (changing the eax to
ebx for A7). This is just one of many available attack vectors. For
example, we could have tampered with the EFLAGS at 0x8051800
(A6), and tampered with the argument at 0x80517e6 (e.g., changing
the ebx to eax for A7).

vsftpd. We attacked an ftp daemon from vsftpd-3.0.0 to test
whether we are able to break its authentication. The disassembly
fragment in Fig. 5 shows that it has an authentication pattern similar
to that of sshd. Using SYSVMI A1 and INSTVMIb A5, we change
the opcode of jne to je at 0x1b484. The syscall A2–3 and IO
tampering A4 attacks succeed with the same configuration as used
in the login and sshd attacks.

For other INSTVMI attacks, we again observed many available at-
tack options. For example, corrupting the operand of test eax, eax
at 0x1b482 (A6), or the EFLAGS register at 0x1b484, or the ar-
gument of vsf_sysutil_strcmp (A7), all result in successful
compromises.

telnetd. Application telnetd (in netkit-telnet-0.17)
internally uses the login process to perform the authentication.
As such, all the attack methods in login are successful against
telnetd without modification.

Summary. From these experiments, we confirm that attack methods
A2–4 in SYSVMI are all transparent to these victim programs. Each
attack works against all the victims without requiring the attacker to
extend or customize the implementation in any way. Other attacks,
including A1 and A5–7 (in INSTVMI), require analysis of the victim
binary code to configure which PC, instruction operand or opcode,
or function calls to corrupt.

Figure 6: Macro-benchmark Evaluation of the Performance

Overhead of Our VMI.

5.2 Performance Overhead
Tables 1–3 show that each attack (A1–7) has a very small im-

plementation, which is only triggered at certain specific execution
contexts. The majority of the performance overhead stems from
the instrumentation of our context-aware, reactive VMI. To evaluate
this overhead, we used standard system benchmarking programs to
measure the runtime overhead at both the macro and micro level.

Macro Benchmarks. We used kbuild (which is CPU and disk in-
tensive), ApacheBench-2.2.15 [2] (which is network I/O intensive),
memcached-1.4.5 [30] (which is memory and I/O intensive), and
bzip2 (which is CPU and disk intensive) to quantify the performance
slowdown at a macro level.

For kbuild, we build a compact kernel by running the command
“make allnoconfig”, and record the time spent on the compi-
lation of Linux kernel 2.6.32. For ApacheBench, we test the Apache
server throughput with over 10,000 requests of a 4K-byte file in a
Apache server. For memchached, we use a remote client to issue
1,000 write and read requests to a memchaed server. For bzip2,
we decompress the official Linux 2.6.32 kernel source tarball and
record the processing time.

We normalized the performance overhead of these benchmarks
to each of our VMI implementations. The performance overhead is
presented in Fig. 6. When there is more user level code computation,
our system has a small overhead (as shown in kbuild and bzip2 case).
For ApacheBench, because of the syscall overhead we introduced
in SYSVMI, the network response time decreases. For memcached,
both the Xen and QEMU implementations have less overhead
because this benchmark is memory intensive. For our instruction-
level VMI, as expected, it has huge performance overhead for all
the benchmarks, since we instrumented each instruction execution.

Micro-benchmarks. To evaluate the primitive level performance
slowdown, we use the standard micro-benchmark LMBench suites
to estimate the VMI’s impact on various OS operations. In particular,
we focus on the overhead that instrumentation introduces to context
switches, page faults, memory-related operations (such as memory
map), and IO-related operations (such as TCP and disk files).

The results are presented in Fig. 7. Recall that for Xen, we
use page faults to intercept syscalls, which leads to VMExits and
VMEntries to resume the execution of the VM. This introduces
some overhead, which is why the overheads for TCP/UDP and
Mmap are high. Bcopy does not use syscalls, so it runs as fast
as the original. Regular (non-introduced) page faults do not incur
any measurable slowdown. Since QEMU already emulates each
instruction, QEMU-INSTVMIa requires significantly less overhead

235

Figure 7: Micro-benchmark Evaluation of the Performance Overhead of Our VMI.

to capture each syscall; the only overhead comes from our syscall
attack code. That is why QEMU-INSTVMIa compares favorably
to Xen-SYSVMI. For QEMU-INSTVMIb, since each instruction is
monitored to determine the execution context, it has significantly
worse performance.

Summary. From the performance overhead evaluation, we con-
clude that the slowdown at the process level is light if we use
the SYSVMI attack. Therefore, a malicious cloud provider could
possibly deploy this attack online (as a backdoor to access victim
jobs, for instance). Even though instruction level INSTVMI has
larger overhead, we believe attackers still have incentives to use it
for such tasks as offline analysis, considering the huge benefits they
might glean from successful attacks.

5.3 More Case Studies
We have demonstrated in the previous sections that we can suc-

cessfully compromise Linux authentication programs. In this sec-
tion, we demonstrate how only small changes to our attack code suf-
fices to compromise Windows authentication. Specifically, we report
two case studies: (1) tampering with a Windows winlogon.exe
authentication, and (2) tampering with serial number validation in
a Windows program. To avoid any copyright issues, we did not
perform any reverse engineering of Windows winlogon.exe,
and we targeted a generic serial checker binary program for demon-
stration purposes.

Tampering with winlogon.exe. Since legal concerns dissuade
us from inspecting the binary code of winlogon.exe, we just use
our high level knowledge of this program and employ our transparent
SYSVMI attack. More specifically, we have a general understanding
that winlogon.exe accesses the Windows password file sam
(just as login accesses /etc/shadow). By intercepting the
Windows file open system call, we can detect this file access. Win-
dows loads sam automatically during system booting (this load is
not requested by winlogon.exe), but this does not impair the
attack. We use syscall tampering (A3) to inspect all file-loads. Once
we detect that sam is loaded, we spoof the OS with a file we own.
As such, when winlogon.exe checks the password in sam, we
successfully log into the system.

To test whether our attack is feasible when the target disk is
encrypted, we then installed a FDE system configured without pre-
boot authentication in a Windows XP (SP2) VM. Next, we run the
VM images in our malicious VMM. Unsurprisingly, encryption did
not impede the attack; we successfully logged into the virtualized
Windows XP VM using A3.

 ...
 40115d: f3 66 a7 repz cmpsw %es:(%edi),%ds:(%esi)
 401160: 49 dec %ecx
 401161: 79 13 jns 0x401176
 401163: 6a 00 push $0x0
 401165: 68 31 21 40 00 push $0x402131 ;"Congratulations !!!"
 40116a: 68 9a 21 40 00 push $0x40219a ;
 40116f: 6a 00 push $0x0 ;hWnd
 401171: e8 4a 04 00 00 call 0x4015c0 ;MessageBoxA
 401176: 61 popa
 401177: c3 ret
 ...

Figure 8: Binary Code Snippet of Unpacked crackme.exe.

Tampering with crackme.exe. For this experiment, we ac-
quired a binary program crackme.exe1 from crackmes.de. Fig-
ure 8 shows a partial disassembly (after UPX unpacking).

The program asks users to enter a serial number, and displays
a “congratulations!!!” message window if the number entered is
correct. Our goal is to make the binary code show this message.
The traditional attack strategy is to break the serial computation
algorithm and write a key generator algorithm. However, our VMI
facilitates the much easier alternative of patching the instruction
code. In particular, the boxed jns0x401176 instruction in Fig. 8
at memory address 0x401161 decides whether the entered serial
number is correct. To bypass this check, we can either change the
machine code 79 13 (jns 0x401176) to 78 13 (js 0x401176), or
90 90 (NOP them). Both approaches are successful.

Summary. The first case study demonstrates that with no reverse
engineering and just some general knowledge of the victim program,
our VMI can be employed to successfully compromise Windows
authentication protections. With a very small amount of reverse
engineering, we are able to also bypass a software piracy check.

6. DISCUSSIONS AND IMPLICATIONS
Our experiments indicate that semantic gap-bridging technologies,

as exhibited by our VMI attack, have significantly eased the burden
of implementing low-resource attacks against software authentica-
tion protections. With only superficial reverse engineering effort
and some simple configuration steps, a context-aware, reactive
VMI quickly and easily compromises both Linux and Windows
authenticators. These results challenge several outdated assumptions
and conventional wisdoms about low-resource attacker capabilities.

1MD5 checksum: 8f59900d9a5e4fa4ab21115d38e82954

236

First, our VMI attack challenges the trust that application pro-
grammers usually have in the underlying hardware. In general,
application programmers tend to assume that once a program is
compiled, its binary code will consistently behave in accordance
with the hardware specifications. However, with the introduction of
a virtualizaiton-layer [15], such trust is misplaced. Because VMMs
virtualize all of a system’s hardware resources to the OS (includ-
ing the instructions for emulation-based virtualization), attackers
can now easily monitor, intercept, and tamper with any of these
“hardware” resources.

Second, our results show that safely outsourcing VM images to
clouds requires complete trust in cloud providers. Encrypting the
VM images (e.g., via FDE [18, 32]) does not prevent a malicious
cloud provider from using VMI to bypass the authentication and
gain decrypted access to the image’s contents. While pre-boot
authentication is a possible defense, it is technically challenging to
deploy pre-boot authentication in a remote cloud environment, since
pre-boot passwords cannot typically be entered remotely. Moreover,
even pre-boot authentication can potentially be compromised if it
stores cryptographic keys in memory at runtime. Memory forensics
techniques such as Fireware [4] or ColdBoot [17] can be used to
extract such keys, since the decryption key must exist in main
memory in order for both the OS and application data to be decrypted
during the VM execution. Therefore, the research community must
look for new techniques to protect cloud VMs.

Finally, our results also have implications for the practical use
of FDE on mobile devices. Today, many organizations require
FDE on laptops to guard against data breaches from lost or stolen
computers [36]. FDE products like TrueCrypt [41] work as follows:
The user first logs into a mini-OS through a pre-boot authentication,
and if the password matches then FDE decrypts and loads the main
OS. The user must next enter the password for the main OS to log
into the system.

However, in practice, the pre-boot authentication often gets dis-
abled for a number of technical and non-technical reasons. First,
end-users must type two passwords to enter the system, which is
cumbersome. Second, it often impedes software updates requiring a
reboot (though there is a log-in-once option in many FDE products
to assist with this [32]). Third, remote users (such as the VM users of
IaaS clouds, or remote assistance users) cannot use the system after a
reboot until the local user logs in, since they cannot type the pre-boot
password remotely. Consequently, many organizations skip pre-boot
authentication, and directly use the authentication credentials of the
main OS to protect the system. As demonstrated in our attack, such
practices are completely insecure. We therefore strongly advocate
pre-boot authentication for effective FDE protection.

7. RELATED WORK
Virtualization-based attacks. Our system authentication subver-
sion is related to the Bluepill attack [37] (and the closely related
Vitriol [47]), and SubVirt [26] (and the closely related SubXen [44]).
These all share the similar philosophy of launching malicious at-
tacks from the virtualization layer. However, they have substantial
differences.

First, both Bluepill/Vitriol and SubVirt/SubXen are virtualization-
based rootkits that subvert third-party virtualizations. Thus, they
must carefully avoid detection by the virtualization. In contrast,
our VMI attack explores the relative freedom that a malicious
virtualization owner has to easily launch stealthy attacks against the
virtualized software.

Second, Bluepill/Vitriol is an ultra thin hypervisor, which means
its code base (payload) is typically small. In contrast, our VMI is

an ultra fat hypervisor that bridges the semantic gap and provides
malicious APIs or configurable interfaces for launching attacks.

Third, SubVirt and SubXen demonstrate the implementation of
additional malicious backdoor services (e.g., a keystroker sniffer,
a phishing web server, and a user sensitive data harvester [26]),
but not attacks that enable users to bypass authentication from the
hypervisor layer. Unlike our VMI, the attacks are limited to self-
contained services that do not attempt to bridge the semantic gap,
which has been recognized as the grand challenge for implementing
services at the hypervisor layer [5].

Virtual machine introspection. Our attack is also closely related to
VMI. Earlier introspection techniques were purely developed for the
read-only inspection without affecting the guest-OS states. Some
notable examples include Livewire [13], Antfarm [21], XenAc-
cess [33], VMwatcher [19], Ether [8], Virtuoso [9], and VMST [11].
Recently, there were also reactive VMIs proposed. Notable ex-
amples include IntroVirt [23] that validates vulnerability-specific
predicates at the VMM level to detect and respond to an intrusion,
Manitou [29] that makes a corrupted instruction page non-executable
when it detects instruction page mismatches, and Exterior [12] that
repairs kernel rootkit damages when their footprints are detected.

In addition, there are also some active introspection techniques,
such as Lares [34] and SIM [39], but they require modifying the
guest OS. Guest OS modification has also been used to realize
techniques that mislead the VMI (e.g., [3]).

8. CONCLUSION
We have presented the design, implementation, and evaluation of

a context-aware, reactive virtual machine introspection technique
that can be leveraged to break the authentication mechanisms of
Linux and Windows operating systems with relatively little effort.
The attacks use binary analysis to identify critical decision points
where authentication succeeds or fails at the binary level, and then
leverage a context-aware, reactive VMI to transparently corrupt the
control-flow or data-flow of the victim software at that point, result-
ing in successful authentication without any password-guessing or
encryption-cracking. Depending on the instrumentation granularity,
our attack can be implemented using hardware virtualization to
tamper with syscall related data, or using software virtualization to
tamper with register and memory contents, or instruction operands
and opcodes, without detection by the guest-OS. Our results indicate
that the approach is applicable to a broad class of authentication
implementations, practical against real-world OSes and VM images,
and useful for both malicious attacks and forensics analysis of
virtualized systems and software.

Acknowledgments

We thank the anonymous reviewers for their insightful comments.
We are also grateful to Shuo Chen, Kevin Hulin, and Kenneth
A. Miller for their feedback on an earlier draft of the paper. This
research was supported in part by a research gift from VMware,
Inc. and National Science Foundation grant #1054629. Any opin-
ions, findings, conclusions, or recommendations expressed are those
of the authors and not necessarily of VMware or the NSF.

References
[1] N. Amit, M. Ben-Yehuda, D. Tsafrir, and A. Schuster. vIOMMU:

Efficient IOMMU emulation. In Proceedings of the USENIX Annual
Technical Conference, 2011.

[2] Apache. Apache HTTP server benchmarking tool. http://httpd.apache.
org/docs/2.2/programs/ab.html.

237

[3] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan,
J. Rhee, and D. Xu. DKSM: Subverting virtual machine introspection
for fun and profit. In Proceedings of the 29th IEEE Symposium on
Reliable Distributed Systems (SRDS), pages 82–91, 2010.

[4] A. Boileau. Hit by a bus: Physical access attacks with firewire.
Ruxcon, 2006.

[5] P. M. Chen and B. D. Noble. When virtual is better than real.
In Proceedings of the 8th Workshop on Hot Topics in Operating
Systems (HotOS), pages 133–138, 2001.

[6] E. J. Chikofsky and J. H. C. II. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13–17, 1990.

[7] Defense Science Board. Report of the Defense Science Board Task
Force on High Performance Microchip Supply. http://www.acq.osd.
mil/dsb/reports/ADA435563.pdf, February 2005.

[8] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware
analysis via hardware virtualization extensions. In Proceedings of the
15th ACM Conference on Computer and Communications Security
(CCS), pages 51–62, 2008.

[9] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso:
Narrowing the semantic gap in virtual machine introspection. In
Proceedings of the 32nd IEEE Symposium on Security & Privacy
(S&P), pages 297–312, 2011.

[10] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong.
Anomaly detection using call stack information. In Proceedings
of the 24th IEEE Symposium on Security & Privacy (S&P), 2003.

[11] Y. Fu and Z. Lin. Space traveling across VM: Automatically bridging
the semantic gap in virtual machine introspection via online kernel
data redirection. In Proceedings of the 33rd IEEE Symposium on
Security & Privacy (S&P), 2012.

[12] Y. Fu and Z. Lin. EXTERIOR: Using a dual-VM based external
shell for guest-OS introspection, configuration, and recovery. In
Proceedings of the 9th Annual International Conference on Virtual
Execution Environments (VEE), pages 97–110, 2013.

[13] T. Garfinkel and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In Proceedings of the 10th
Annual Network & Distributed System Security Symposium (NDSS),
2003.

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A virtual machine-based platform for trusted computing. In
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), pages 193–206, 2003.

[15] R. P. Goldberg. Architectural Principles of Virtual Machines. PhD
thesis, Harvard University, 1972.

[16] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh. Automatic gener-
ation of string signatures for malware detection. In Proceedings of
the 12th International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 101–120, 2009.

[17] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest
we remember: Cold-boot attacks on encryption keys. In Proceedings
of the 17th USENIX Security Symposium, 2008.

[18] Help Net Security. Encrypt and protect virtual machine images. http:
//www.net-security.org/secworld.php?id=11825, 2011.

[19] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction. In Proceed-
ings of the 14th ACM Conference on Computer and Communications
Security (CCS), pages 128–138, 2007.

[20] N. M. Johnson, J. Caballero, K. Z. Chen, S. McCamant,
P. Poosankam, D. Reynaud, and D. Song. Differential slicing:
Identifying causal execution differences for security applications.
In Proceedings of the 32nd IEEE Symposium on Security & Privacy
(S&P), pages 347–362, 2011.

[21] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Antfarm: Tracking processes in a virtual machine environment. In
Proceedings of the USENIX Annual Technical Conference, 2006.

[22] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. VMM-
based hidden process detection and identification using lycosid.
In Proceedings of the 4th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), pages 91–100,
2008.

[23] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting past
and present intrusions through vulnerability-specific predicates. In
Proceedings of the 20th ACM Symposium on Operating Systems

Principles (SOSP), pages 91–104, 2005.
[24] J. Kephart and W. Arnold. Automatic extraction of computer virus

signatures. In Proceedings of the 4th Virus Bulletin International
Conference, pages 178–184, 1994.

[25] G. H. Kim and E. H. Spafford. The design and implementation of
Tripwire: A file system integrity checker. In Proceedings of the 1st
ACM Conference on Computer and Communications Security (CCS),
pages 18–29, 1994.

[26] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and
J. R. Lorch. SubVirt: Implementing malware with virtual machines.
In Proceedings of the 27th IEEE Symposium on Security & Privacy
(S&P), pages 314–327, 2006.

[27] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou.
Designing and implementing malicious hardware. In Proceedings
of the 1st USENIX Workshop on Large-scale Exploits and Emergent
Threats (LEET), 2008.

[28] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data
structures from binary execution. In Proceedings of the 17th Annual
Network & Distributed System Security Symposium (NDSS), 2010.

[29] L. Litty and D. Lie. Manitou: A layer-below approach to fighting
malware. In Proceedings of the 1st Workshop on Architectural and
System Support for Improving Software Dependability (ASID), pages
6–11, 2006.

[30] Memcached. Memcached: a distributed memory object caching
system. http://memcached.org.

[31] Microsoft TechNet. BitLocker drive encryption technical overview,
2008. http://technet.microsoft.com/en-us/library/cc732774.aspx.

[32] R. Mogull. FireStarter: Is full disk encryption without pre-boot
secure? https://securosis.com/blog/firestarter-is-full-disk-encryption-
without-pre-boot-secure, 2010.

[33] B. D. Payne, M. Carbone, and W. Lee. Secure and flexible monitoring
of virtual machines. In Proceedings of the 23rd Annual Computer
Security Applications Conference (ACSAC), 2007.

[34] B. D. Payne, M. Carbone, M. I. Sharif, and W. Lee. Lares: An
architecture for secure active monitoring using virtualization. In
Proceedings of the 29th IEEE Symposium on Security & Privacy
(S&P), pages 233–247, 2008.

[35] J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based
system call tracing for virtual machines. In Proceedings of the 6th
International Conference on Advances in Information and Computer
Security (IWSEC), pages 96–112, 2011.

[36] L. Ponemon. Airport insecurity: The case of missing and lost laptops.
Technical report, Ponemon Institute, 2008.

[37] J. Rutkowska. Introducing Blue Pill, June 2006. http://
theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html.

[38] Seagate. Maxtor basics personal storage 3200 (PS 3200) virus. http:
//knowledge.seagate.com/articles/en_US/FAQ/205131en.

[39] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-VM monitoring
using hardware virtualization. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS),
pages 477–487, 2009.

[40] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O
devices on VMware workstation’s hosted virtual machine monitor. In
Proc. of USENIX Annual Technical Conference, 2001.

[41] TrueCrypt. TrueCrypt: Free open-source on-the-fly encryption. http:
//www.truecrypt.org, 2012.

[42] VMware. VMware vCenter converter. http://www.vmware.com/
products/converter, 2013.

[43] S. Vogl and C. Eckert. Using hardware performance events for
instruction-level monitoring on the x86 architecture. In Proceedings
of the 5th European Workshop on System Security (EuroSec), 2012.

[44] R. Wojtczuk. Subverting the Xen hypervisor. In Black Hat Technical
Security Conference, 2008.

[45] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An architecture
for generating semantics-aware signatures. In Proceedings of the 14th
USENIX Security Symposium, 2005.

[46] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor: Retrofitting
protection of virtual machines in multi-tenant cloud with nested
virtualization. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), pages 203–216, 2011.

[47] D. A. D. Zov. Hardware virtualization rootkits, July 2006. http:
//www.theta44.org/software/HVM_Rootkits_ddz_bh-usa-06.pdf.

238

