
RootFree Attacks:
Exploiting Mobile Platform’s Super Apps From Desktop

Chao Wang
The Ohio State University

Yue Zhang
Drexel University

Zhiqiang Lin
The Ohio State University

ABSTRACT
In recent years, there has been a surge in the popularity of mo-
bile super apps, which consolidate a variety of services, including
messaging, ride-hailing, and e-commerce, into a single application,
eliminating the need to switch between different apps. Originally
tailored for mobile usage, super apps like WeChat and WeCom
have expanded their reach to desktop platforms, including Win-
dows. However, different operating systems have different threat
models (e.g., Windows can directly grant users with root privilege
but Android and iOS do not). Therefore, the single super app (includ-
ing both its host app and miniapps) can face completely different
threats in different platforms. In this paper, we systematically study
the attacks caused by the discrepancies from different platforms.
Specifically, we show that there are at least two classes of attacks,
dubbed RootFree attacks, against mobile super apps: layer below
that attacks the super apps from privileged software, and layer up
that attacks the super apps from the internal malicious miniapps.
We have disclosed our attacks and the corresponding vulnerabilities
to the host app vendor, and received bug bounties. These vulner-
abilities all are ranked as high severity vulnerabilities, and some
of them have already been patched.

CCS CONCEPTS
• Security and privacy → Web application security; Mobile
and wireless security.

KEYWORDS
Hidden APIs, Superapp Security, Miniapp Security, Web Security,
App-in-App Security

ACM Reference Format:
Chao Wang, Yue Zhang, and Zhiqiang Lin. 2024. RootFree Attacks: Ex-
ploiting Mobile Platform’s Super Apps From Desktop. In Proceedings of
the 2024 ACM ASIA Conference on Computer and Communications Security
(AsiaCCS ’24), July 1–5, 2024, Singapore. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A super app is a comprehensive application designed to offer users
access to a wide array of diverse services, encompassing functions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AsiaCCS ’24, July 1–5, 2024, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

like online shopping, ride-hailing, and instant messaging, all con-
veniently accessible through a single platform. This innovative
concept has gained significant traction, with numerous prominent
super apps emerging on the global stage. One of the pioneering
examples of a super app is China’s WeChat, which has garnered
immense popularity. The concept of super apps is rapidly expand-
ing its reach. For instance, even platforms that initially served a
narrower purpose are evolving into super apps.Whatsapp, initially
known for its messaging capabilities, is gradually transforming into
a super app. Many other super apps have also followed, and these
include Paytm from India, Grab from Singapore, GoTo from Indone-
sia, Zalo from Vietnam, and Kakao from South Korea [6]. Among
these multifaceted applications, WeChat stands out, boasting an
extensive user base of over one billion monthly users [22]. Its signif-
icance is underscored by its provision of an incredibly diverse range
of everyday services. These encompass not only routine tasks like
online shopping and instant messaging but also more specialized
functions like booking medical appointments and even facilitating
legal processes such as divorce filings [1].

However, the task of providing an exhaustive array of daily ser-
vices by a single super app company is an unfeasible endeavor. To
address this challenge, super app giants like WeChat have intro-
duced a solution — they have opened up their platforms by pro-
viding Application Programming Interfaces (APIs) to third-party
developers. This strategic move has given rise to what is commonly
referred to as the miniapp or app-in-the-app paradigm, a revolu-
tionary concept in the super app landscape [25]. Essentially, this
paradigm enables external developers to craft applications that run
seamlessly within the ecosystem of the super app.WeCom, as an
enterprise-oriented extension ofWeChat, has also followed this suit.
The implications of this approach are far-reaching and transforma-
tive. By allowing third-party developers to contribute to the super
app’s ecosystem, the platform becomes a hub for a multitude of
miniapps, each catering to specific needs and services. This concept
is exemplified by WeChat, which boasts an astounding offering of
over 4.3 million miniapps [20]. In comparison, the runner-up in
this realm, Alipay, presents around 120 thousand miniapps [3].

Interestingly, we notice that WeChat, WeCom, and Alipay have
taken steps towards integration with desktop platforms, particu-
larly Windows. An interesting distinction emerges, withWeChat
and WeCom exhibiting a more assertive approach compared to
Alipay, allowing all their miniapps to function seamlessly on both
desktop and mobile environments. This expansion, however, in-
troduces a complex challenge: the discrepancies in threat models
between desktop and mobile platforms. Windows, for instance,
can grant users root privileges, a power not directly available on
Android and iOS. This raises valid concerns about the capacity of
WeChat andWeCom to ensure robust security for not only their
overarching applications but also the miniapps. This is especially

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

AsiaCCS ’24, July 1–5, 2024, Singapore Chao Wang, Yue Zhang, and Zhiqiang Lin

pertinent when considering that the host app lacks kernel priv-
ileges, yet it functions in a manner akin to an operating system
from the perspective of a miniapp. This presents new opportunities
for potential attacks on WeChat from the desktop version without
compromising the mobile counterpart. The focal point of this paper
is to address these uncertainties. We conduct a systematic explo-
ration of the various attack surfaces presented by distinct platforms,
intending to identify potential vulnerabilities within the super app
framework. Through this analysis, we seek to shed light on the
intricate interplay between security and adaptability in the context
of super apps, ultimately contributing to a deeper understanding
of their operational landscape.

Particularly, we demonstrate that there could exist at least two
classes of attacks, dubbed RootFree attacks, depending on where
they are originated from: layer below that start from the from priv-
ileged software, and layer up that start from the internal malicious
miniapps. While layer below attack is conceptually similar to hyper-
visor attacks (e.g., Bluepill [26]) against guest OS or malicious OS
against user applications (e.g., Iago [15]), there are still substantial
differences in the super app context, particularly because there is
a large body of sensitive data accessible through super apps and
super app developers are also aware of such threat. For instance, we
noticeWeChat in Windows encrypts its miniapp packages using
AES [12]. In contrast, the miniapp packages in Android and iOS do
not use encryption at all. However, it is extremely challenging to
protect user level software without the help from privileged soft-
ware, butWeChat aims to do so through encryption. Unfortunately,
we show that its current encryption implementation can be broken
through dynamic hooking of cryptographic APIs as well as data
dependence and differential analysis.

Meanwhile, since the running environments and the APIs pro-
vided by the super apps should be the same given that the miniapps
running atop the super apps use the same suite of code, there are dis-
crepancies in both the sandbox implementation as well as the API
implementation across platforms. Particularly, mobile platforms
(e.g., Android, iOS) use stricter isolation policies when compared
with Windows, where the stronger sandbox is enforced to isolate
apps (including the miniapps running atop a host app) from each
other. Being a super app that can run on Windows, it should pre-
vent the “inside” miniapps from accessing resources that are located
“outside” of super apps. Although on Windows,WeChat introduces
a software level isolation to prevent malicious miniapps from ac-
cessing other apps and OS’s files, we show that its implementation
is flawed, allowing a malicious miniapp to launch various attacks
including remote code execution against OSs and host apps. Since
this attack is from a malicious miniapp at the upper layer, we call
it layer up attack.
Contributions.We make the following contributions:
• We show that super apps running atop different platforms may
have a variety of discrepancies from threat models and imple-
mentations, some of which can lead to security vulnerabilities.

• Wedevelop two classes of RootFree attacks (layer below and layer
up) based on vulnerabilities identified from our binary analysis.
We show these attacks can cause grave security consequences
to the massive super apps users as well as miniapp developers.

We articulate the attack details, as well as to provide a snapshot
of the ecosystem.

• In addition to the responsible disclosure of these vulnerabilities
to the super app provider, we also shed light on the possible
countermeasures, so that other super app providers can properly
design their apps and avoid the same security mistakes.

2 BACKGROUND
In this section, we begin by delving into the concept of miniapps
(§2.1). We then explore the security measures implemented within
super apps (§2.2). Lastly, we will analyze the distinctions among
miniapps when they operate on various platforms (§2.3).

2.1 Super Apps: the Hybrid Mobile and Web
Apps

In the desktop era, web apps dominated by running inside browsers,
accessible via URLs. However, they lack native app capabilities like
directly accessing device features (e.g., Bluetooth, sensors, and NFC).
Moreover, a lack of a centralized vetting mechanism to assess the
security of web applications exacerbates the situation. This gap
enables individuals to deploy their own web apps with minimal
restrictions as long as they possess a web server. Consequently, this
scenario paves the way for the proliferation of numerous malicious
web applications.

In the mobile era, users shifted to app stores for native mobile
apps due to centralized vetting and native OS support. But, storage
limits, download requirements, and platform-specific development
pose challenges. Super apps like WeChat expanded from social
networks to offer varied services. They run miniapps, benefiting
from web and native capabilities, enhancing user experience. Super
apps host miniapps in a sandbox, offer in-app APIs for system
resources, and use script and markup languages for cross-platform
support.

2.2 Security Mechanisms in Super Apps
Miniapps enforce stricter distribution policies compared to na-
tive or desktop apps, primarily as a defense against malware. Pre-
installation vetting measures serve as the initial line of defense,
where miniapps undergo thorough reviews before distribution.
These miniapps are exclusively available through official markets,
distinct from desktop and mobile apps that can be sourced from
alternative app stores. To ensure security compliance, any miniapp
discovered to contain malicious payloads must rectify them or face
removal from the market. Additionally, dynamic code updates, a
vector for malware, are mitigated in miniapps through limitations
on dynamic code execution and WebAssembly usage.

Post-installation protection measures come into play during di-
rect user interaction with miniapps, aiming to safeguard against
potential malware attacks. Local resource access protection restricts
miniapps from accessing system resources without user authoriza-
tion, similar to Android’s permission mechanism. Additionally,
miniapps are constrained in their capabilities, including limitations
on accessing user files, SMS messages, keystrokes, or background
execution. If a miniapp remains in the background for more than
five minutes, the super app terminates it.

RootFree Attacks: Exploiting Mobile Platform’s Super Apps From Desktop AsiaCCS ’24, July 1–5, 2024, Singapore

2.3 The Differences Across Platforms
While super apps are initially designed to be executed only on mo-
bile platforms such as Android and iOS, recently we also notice
that some of them, particularlyWeChat andWeCom, can also be
executed on top of desktop platforms such as Windows. However,
since different OSs can have different threat models and implemen-
tations, the execution of the super apps (including its miniapps as
well) can be impacted due to the discrepancies. As summarized in
Table 1, we conducted a comprehensive systematic study of super-
apps’ documentations (e.g., WeChat [29], Alipay [28]) and identified
the presence of at least five distinct types of discrepancies.:

(I) User Privileges. In mobile platforms, end users typically
do not have any root privileges, so do the apps executed.
Therefore, super apps can assume the trust of the operat-
ing systems (e.g., no malware from the kernels). In fact, it
is extremely costly and also challenging to obtain the root
privilege for both mobile apps and mobile users. For instance,
a zero-click jailbreak vulnerability can cost millions of dol-
lars [16]. There are also tools (e.g., Appdome Prevention [9])
to defend against app rooting. Unfortunately, however, desk-
top users can easily become administrators without exploit-
ing any vulnerabilities since the system owner by default
can have such a privilege (desktop PCs tend to give their
owners more flexible control), and they can install privileged
kernel modules or any other software (e.g., a debugger) to
monitor the execution of super apps.

(II) Process Isolations. Different OSs could have different pro-
cess isolation policies and mechanisms. In general, mobile
OSs tend to have stricter policies and stronger isolations than
desktop OS (due to the rich privacy data stored in mobile
platforms), as shown in Table 1, more specifically:
• Android. The Android platform leverages the Linux user-
based protection to identify and isolate app resources from
each other including malicious apps. To do so, Android
assigns a unique user ID (UID) to each Android app and
makes it run in its own process, and meanwhile a strong
mandatory access control from SE-Linux is enforced over
all processes even for the ones running with root privi-
lege [5]. Therefore, an Android app at runtime is protected
in a sandbox and it cannot be easily escaped to access any
other app’s code and data. Additionally, trusted execution
environment such as TrustZone is also widely available in
ARM processors (e.g., MediaTek [21] and Qualcomm [8]).
We notice super apps (e.g., Alipay) have started to take
advantage of this feature to protect the app secrets.

• iOS. Similar to the app running atop Android, the apps’
data, code and runtime on iOS are also strongly isolated.
To be more specific, although iOS can directly leverage its
UNIX kernel/user isolation (iOS uses Darwin UNIX [24] as
its kernel) to isolate its apps, it chooses to implement a cus-
tomized sandbox on its own, which is a set of fine-grained
rules limiting the app’s access to files, hardware resources,
and so forth. In particular, iOS will create a data directory
for each app under “/private/var/mobile/Containers
/Data/Application” directory, and the directory name
is a random GUID. Moreover, the app cannot access any

Mobile OS Desktop OS
Android iOS Windows

(I) User Privileges Non-root Non-root Root
(II) Process Isolations

App Code ✓ ✓ ✗

App Data ✓ ✓ ✗

App Runtime ✓ ✓ ✗

Trusted Execution Environment ✓ ✓ ✗

(III) In-App APIs All APIs All APIs Subset of APIs
(IV) Rendering Engines XWeb WKWebView XWeb
(V) Logic Engines JSCore JavaScriptCore JSCore

Table 1: The discrenpancies of super app execution across
platforms

data directories other than its own sandboxed one. Also,
Apple provides secure enclaves [4], a hardware enforced
trusted execution environment (TEE), for iOS apps to pro-
tect sensitive data from being compromised.

• Windows. Unlike mobile platforms, there is almost no
strong app data isolation enforced by Windows (unless
users intentionally places their apps into Windows Sand-
Box [7, 32]). As such, the app running atop Windows can
access other apps’ data. Moreover, although CPU vendors
have made considerable efforts in trusted computing (e.g.,
Intel launched the SGX Trusted Execution Extension in
2016 [11]), Windows currently does not provide a unified
APIs to allow 3rd party developers fully leverage SGX
for app secret protection. Meanwhile, recently Intel even
dropped the support of SGX in desktop CPUs [2]. There-
fore, it is very unlikely that super apps will soon use TEEs
in desktops.

(III) In-App APIs. The miniapps can access resources under the
supervision of the host app through the in-app APIs. Typ-
ically, those APIs define the types of requests that can be
made by these miniapps, allowing the miniapps developers
to customize the functionalities independently. While most
of the APIs are the same regardless of the platforms, we
notice that there are indeed some APIs implemented differ-
ently across the platforms (and this observation has also
been explored by most recent work APIDiff [34]). To name a
few, mobile platforms such as Android and iOS have native
support of multiple sensors, while Windows does not have.
As such, there are a set of APIs that can only be invoked at
the Android or iOS version of the miniapps. For example, the
NFC APIs are only supported in Android platform, and simi-
larly APIs including Gyroscope, Compass and Accelerometer
are usually enabled at the mobile platforms.

(IV) Rendering Engines. A rendering engine is needed to ren-
der a variety of view components (e.g., input boxes, buttons)
of the miniapps, and this engine is an important component
of the super app. Currently, both the Android and Windows
version of WeChat and WeCom use XWeb [30], whereas
the iOS version uses WKWebView, part of the WebKit [10]
framework.

AsiaCCS ’24, July 1–5, 2024, Singapore Chao Wang, Yue Zhang, and Zhiqiang Lin

(V) Logic Engines. A logic engine (also known as JavaScript en-
gine) is the super app’s component that executes JavaScript
code. Currently, WeChat and WeCom use JavaScriptCore in
iOS, and JSCore (which is built upon V8 engine) in Android
and Windows. Note that the JSCore engine has also been
used by other super apps including Tiktok [17].

3 OVERVIEW
In this section, we present an overview of the attacks against super
apps. We first describe the key observation we have and the goal
of this work in §3.1; then describe our assumptions and the scope
in §3.2; and finally provide an overview of our proposed attacks in
§3.3.

3.1 Key Observation and Research Questions

Key Observation. Having explained the various discrepancies in
§2.3, we can notice that super apps when running in different OSs
will obviously have different isolation polices and also different
privileges. Particularly, unlike the desktop Windows which inherits
from the traditional multi-user model and grants computer owners
root privileges, mobile OSs are designed to be exclusively used
by a single user without the need of granting any root privileges
since they just need to make sure the owner can download and run
multiple apps (some of which may be untrusted), and a malicious
app cannot access other apps’ data.

Once allowing a super app to be executed on top of both plat-
forms, super app developers must take into considerations of these
platform discrepancies and their corresponding threats, and protect
their assets (e.g., the secrecy and integrity of the miniapps’s code
and data, as well as the entire ecosystem including the secret data
of other super app users). Fortunately, we do notice that super apps
such as WeChat and WeCom have considered these threats (or
at least partially). For instance, we notice WeChat and WeCom
have provided a software level sandbox preventing a miniapp from
accessing data outside the sandbox in both desktop and mobile
platforms. Meanwhile, they also encrypt the miniapp code and
data distributed to the desktop platforms, whereas the miniapps in
mobile platforms do not have such protection.
Research Questions. However, there are still many research ques-
tions to be answered. We now list the research questions:

RQ1 HaveWeChat andWeCom systematically guarded the threats
from desktop platforms, such as the privileged software attack
which has been proven to be extremely challenging to defend
against?

RQ2 While they have used encryption to protect the secrets, has the
corresponding key properly managed and distributed?

RQ3 Although they have sandboxed the execution of miniapps, will
the discrepancies across platforms weak the protection?

RQ4 Since desktop and mobile OSs have different policies when
managing resources, can this be exploited by miniapps?

Therefore, this work aims to answer these questions, by system-
atically examining the attack surfaces, inspecting the implementa-
tions, and designing proof of concept attacks to raise the awareness,
so that future super app vendors can learn these lessons.

3.2 Scope and Assumptions

Scope. Our study concentrates onWeChat among the various su-
per apps available due to several key factors. With a massive one
billion monthly active users,WeChat’s vulnerabilities could have
significant impacts. Additionally, its pioneering of the miniapp con-
cept has led to over 4.3 million miniapps, outstripping competitors
like Alipay and Snapchat. Furthermore, our study necessitates that
the targeted superapps have a desktop version capable of running
miniapps. We have identified that, among the superapps we ex-
amined, only WeChat supports the execution of miniapps on its
desktop platform. In contrast, other superapps like Alipay, while
they may have desktop versions, do not currently support miniapps
on their desktop platforms. Also, our investigation confirms that
WeCom shares the same miniapp framework, making WeChat the
primary focus for our proof of concept.

Additionally, although we have outlined five categories of dis-
crepancies as discussed in Table 1, we only focus on exploiting the
first two, namely user privileges, and process isolation. We do not
focus on API differences since this has been studied by APIDiff [34].
While it is true that logic engines and render engines of the super
apps are implemented differently in different platforms, they all
serve the same purposes without much change (e.g., rendering the
view components or executing the JavaScript code). As such, ex-
ploiting the logic engine and render engine of the super apps are
out of our focus.
Assumptions. We assume the trustworthiness of the code from
the OSs and the super apps, since we do not believe they have
any malicious intentions (otherwise, they can trivially make any
attacks, as in Bluepill [26] to attack guest OS from hypervisor, or
Iago [15] to attack native apps from malicious OS). That is, we
exclude malicious kernel module attacks (e.g., Windows rootkits)
by assuming the trustworthiness of the OS kernel code.

We also assume the trustworthiness of the super apps’ backends
or miniapps’ backends, since they are out of direct reach from
attackers. To make our attacks more focused, we assume that there
could be a malicious native app such as a Windows spyware, or a
malicious miniapp installed onto a victim’s device. This assumption
is reasonable since previous efforts [25] made a similar assumption,
and also practical since there are numerous Windows malwares in
the wild.

Lastly, we do not assume that Windows users have adminis-
trator privileges by default. Instead, our paper assumes that the
attacker will not obtain administrator privileges unless explicitly
stated otherwise.

3.3 Attack Overview
In this paper, we focus on systematically uncovering the discrep-
ancies of super apps across platforms, and understanding their
security consequences by developing the corresponding RootFree
attacks. As summarized in Table 2, there could be two classes of
attacks depending on where they are originated:
• RootFree Attacks from Layer Below (§4). The super apps can
be subject to attacks from layer below such as the malicious OS
attacks (e.g., a compromised kernel with rootkits without user’s
awareness). The attackers in this category can exploit the user

RootFree Attacks: Exploiting Mobile Platform’s Super Apps From Desktop AsiaCCS ’24, July 1–5, 2024, Singapore

Vulnerable Platform Victim Trusted Party Attacker
Android iOS Windows

Attacks From Layer Below
(A1) Code Confidentiality and Integrity Attacks against Benign Miniapps ✗ ✗ ✓ �,g q,,g �,é
(A2) Data Confidentiality and Integrity Attacks for Malicious Miniapps ✗ ✗ ✓ �,,g q,,g �,é

Attacks From Layer Up
(A3) Sandbox Escaping due to Flawed and also Weak File System Isolation ✗ ✗ ✓ g,q,, q,,g �

Table 2: Summary of Attacks.� Innocent Miniapps;� Malicious Miniapps;é Malicious Host Apps;q OSs; Host Apps;
g Innocent Desktop Users;� Malicious Desktop Users;

privilege discrepancies. For instance, the attacker (who can be a
malicious user of the OS) can install kernel malware to monitor
super app’s execution, such as stealing the sensitive information
from or inject malicious data to a victim miniapp. Also, attackers
can install user level spyware (e.g., a debugger) to monitor super
app’s execution without using any kernel level privilege. We still
call all these attacks layer below to ease the understanding and
also differentiate from layer up attacks. Note that mobile plat-
forms such as Android and iOS have enforced centralized vetting
to prevent malicious apps from being installed, but Windows
allows administrators to have complete control such as installing
arbitrary software (both user space and kernel space), thereby
significantly threatening the secrecy and integrity of super apps.

• RootFree Attacks from Layer Up (§5). Since the super apps
provide the running environment for miniapps, they can be
the targets of the layer-up attackers from malicious miniapps.
Specifically, the attackers from layer up can exploit the process
isolation discrepancies. For instance, a malicious miniapp run-
ning atop Windows can jail-break the isolation enforced by their
super apps, and then they can read, write data on the OSs, and
even execute code remotely.

3.4 Our Methodology

Workflow. In this paper, we focus on examining the security risks
associated with super apps and miniapps on desktop platforms.
Our goal is to identify potential attack surfaces, develop concrete
attacks, and understand the security consequences. To accomplish
this, we employ a reverse engineering methodology by developing
code based on the target. We inspect the resources (code and data)
that can be accessed on different platforms and compare the enabled
protections such as encryption and file isolation. Having identified
the attack surfaces, we then developed an attack confirmation code
and concrete case studies to demonstrate the attacks. Although
theoretically, attacks could be launched against all files that have
weak protections, we only select some of them for proof of concepts.
The attack confirmation code is mainly used to verify if the iden-
tified weaknesses are exploitable, such as breaking the encryption
of miniapp code. Finally, with the verified weaknesses, we develop
concrete code to launch the attacks on a case-by-case basis.

We acknowledge that there are certain manual efforts involved.
Reverse engineering is a significant manual effort where we ana-
lyze and deconstruct the target applications and their components.
It involves manually dissecting the code, understanding its struc-
ture, and identifying potential vulnerabilities. Second, identifying

potential attack surfaces requires a manual assessment of the ap-
plication’s architecture and dependencies. We must pinpoint areas
where vulnerabilities may exist, which can be a meticulous process.
Finally, creating concrete case studies to demonstrate the attacks
involves planning and executing specific scenarios that showcase
the security risks.
Testing Environment. To study the security issues and impact of
our targeted super app WeChat, we have registered several user
accounts, downloaded the corresponding miniapp development
tools and SDKs, followed their official documents to build test-
ing miniapps. Some experiments require us to reverse engineer
WeChat, and therefore, we used JEB and IDA Pro [18] to inspect
the de-complied code statically and programmed Frida [19] scripts
to dynamically verify our findings or exploits when needed. In
total, we have developed around 2,000 lines of code (LoC) using
five different languages (i.e., JavaScript, Bash, Golang, C/C++, and
TypeScript).

4 ROOTFREE FROM LAYER BELOW
4.1 Attack Surface Analysis
Insight. To launch an attack against WeChat, we have to first
understand its attack surface, particularly the critical conditional
branches such as the permission checks and resources accesses.
However,WeChat is a giant software, whose Windows, Android,
and iOS version has 172, 223, and 230 MB, respectively. Statically
analyzing all of these binary code, to uncover these conditional
brancheswill be extremely challenging. Therefore, we have to resort
to dynamic analysis — executing WeChat in the three platforms
and observing the execution differences, from which to uncover
the critical code and data for the attacks with a differential analysis.

However, there are still multiple challenges when using the dif-
ferential analysis. First, we still have to identify the alignment in
theWeChat’s execution; butWeChat has extremely complicated
control flows. Second, the implementation at the binary code level
is also quite different, since WeChat in different platforms is devel-
oped using different languages (e.g., Windows in C/C++, Android
in Java, and iOS in Objective-C). Therefore, we have to identify the
appropriate code that is commonly executed in all three platforms.
Fortunately, one such code is the miniapp code, since WeChat’s
goal is to allow 3rd-party developers to develop one program and
execute it in all platforms. Meanwhile, at theWeChat host code, we
can hook at the system call level (e.g., file opening) and align them,
because the host binary code is quite different across platforms but
system call level behavior is understandable.

AsiaCCS ’24, July 1–5, 2024, Singapore Chao Wang, Yue Zhang, and Zhiqiang Lin

Differential Analysis. As such, we have developed a testing
miniapp, and hooked the system APIs of the three different plat-
forms to observe the operating system level behaviors, such as the
files that are involved in the execution of a miniapp. During the
analysis, we mainly focused on two categories of files: (i) the files
that are platform independent; (ii) the OS unique files, particularly
the “Windows-unique” files, given that those files may be impor-
tant to some Windows unique features. Below, we summarize our
findings in these two categories:

• Files contained in a miniapp package. A miniapp is
packed in a compressed file in the format of wxapkg. As
shown in Table 3, each packed miniapp package contains the
following file types: (i) the code of the miniapps (usually in
the format of JavaScript files), which is not platform specific
and must be accessed every time miniapps are launched; (ii)
the resource files, which can be images, audios, or videos; (iii)
the package configuration files, which specify the general
features of the miniapps such as permission the miniapp re-
quires; (iv) the UI pages, which describe how each UI window
looks like (e.g., the how many buttons and input boxes). All
these files are packed as a whole, and different OSs use dif-
ferent measures to protect the confidentiality and integrity
of the package. Since Android and iOS have strict isolation,
the packages of the downloaded miniapps are out of reach of
attackers. Windows, however, does not have such protection,
and the super app encrypts the package to protect them.

• Files produced during miniapp execution. There are
also files that are produced by the miniapps. As shown in
Table 3, we also summarize those files as follows. (i) Log files.
Regardless of the platforms, miniapps usually maintain log
files for debugging purposes; (ii) Database files. Interestingly,
we notice that for WeChat in Windows, some databases
files are created. One such file is WeChatApps.data, which
is a database that manages the mini-apps that the user can
invoke. In particular, on Windows, miniapps can be cached,
and users can also create a shortcut for future references.
To do so,WeChat will add the appID of the corresponding
miniapp into the database, and the user can then invoke it
directly by clicking the shortcut. On Android (as well as iOS),
there is a feature named “add to home screen”, which has
a similar workflow to allow a user to cache a miniapp with
a shortcut to the user’s home screen. However, on Android
and iOS, the feature is implemented at the system level, and
the host app is not involved in this process. (iii) The miniapp
specific configuration files. We noticed that the miniapps
might create and access some configuration files used to
record the miniapp specific data (e.g., their user’s credentials
and game archives).

AttackTarget.Having analyzed the execution differences ofminiapps,
we inspect further the two particular files: the miniapp code, and the
WeChatApps.data. Interestingly, we find these two files are actually
both encrypted in Windows, but not in mobile platforms. More im-
portantly, we find they are two very critical files that need to be pro-
tected in Windows platform. Specifically, the miniapp is developed
using JavaScript, and its intellectual property (e.g., the specific algo-
rithm and business model) can be easily leaked from the code (since

File Type Mobile OS Desktop OS

Android iOS Windows

Miniapps package
Code � � µ
Resources � � µ
Package Configurations � � µ
UI pages � � µ

Files produced by miniapps
Database � � µ
Configuration � � µ
Log � � ✗

Table 3: Summary of File Protections on Different OSs.� rep-
resents “isolation”. µ represents “encryption”.

analyzing scripting code is generally easier than analyzing native
binaries). Second, with the leaked miniapp code, the attacker may
preform white box testing, and even reuse some of the components
to attack the miniapps. Finally, the attacker can also easily modify
the script code for malicious purposes, e.g., inserting malicious
code in payment miniapp to steal user’s money. Therefore,WeChat
encrypts the miniapp code in theWindows platform, since arbitrary
users can open the corresponding folder and inspect the miniapp
code, but users in mobile platform do not have this capability.

With respect to WeChatApps.data, it is also a crucial file en-
crypted in Windows. In particular, it concerns whether a miniapp
can be executed or not. In Windows, we find thatWeChat will only
execute the miniapp indexed in WeChatApps.data. OnlyWeChat
vetted miniapps will be added into this file. Encrypting WeChatApps
.data will prevent malicious miniapps from being distributed. For
example, if there is no database that records which miniapp is
added by the user, the attacker can freely distribute their malicious
miniapps by releasing the miniapp packages in the corresponding
folders and creating shortcuts to invoking them, thereby completely
bypassing the centralized vetting process enforced byWeChat.

4.2 Concrete Attacks
Our attack surface analysis has revealed that WeChat has used
encryption to protect the secrecy and integrity of important files,
and such protection is performed at software layer without us-
ing any hardware enforced TEE techniques. Since the only secret
of modern cryptography is the cryptographic keys [27], we just
have to break the keys (such as the key generation or distribution)
in order to break the encryption and decryption. While WeChat
has used heavy obfuscation to thwart binary analysis, we can dy-
namically hook the cryptography APIs (e.g., AES and 3DES) using
Frida [19], and use backward slicing [37] from their arguments
to understand how the keys are generated. In the following, we
describe in greater detail of how to perform these analysis, and
launch our code confidentiality and integrity attacks against benign
miniapps (i.e., break the secrecy and integrity of miniapp code), and
data confidentiality and integrity attacks for malicious miniapps
(i.e., integrity protection of WeChatApps.data).
(A1) Code Confidentiality and Integrity Attacks against Be-
nign Miniapps. During the miniapp execution on Windows plat-
form, we noticed the miniapp code will be decrypted first, since
what downloaded from theWeChat server is an encrypted package

RootFree Attacks: Exploiting Mobile Platform’s Super Apps From Desktop AsiaCCS ’24, July 1–5, 2024, Singapore

appID App Categories Attack Methods Affected Feature Attack Consequences

wx70c04******99f70 Hotel Inspecting hard-code passcode Code confidentiality Unlocking Hotel rooms
wx09dac******fa7bc Promotion App Inspecting the code Code confidentiality Coupon code leakage
wxb647c******f14ad Promotion App Inspecting the hard-coded coupon code Code confidentiality Coupon code leakage
wx432c7******877f9 Promotion App Inspecting the hard-coded coupon code Code confidentiality Coupon code leakage
wx79a83******a7978 Short Video Launching phishing attacks and tricking users into inputting passwords Code Integrity User’s credentials leakage
wx7ddec******7276a Express Delivery Recording user’s address and shopping orders Code Integrity User’s information leakage
wxca1fe******52094 Online Shopping Launching phishing attacks and tricking users into inputting bank information Code Integrity User’s bank account leakage
wx71d58******e3321 Public Transportation Recording the user’s locations Code Integrity Tracking the user’s locations
wxdbee9******d6263 Instant Messages Recording user’s messages Code Integrity User’s information leakage
wx94679******b069d Online Shopping Launching phishing attacks and tricking users into inputting bank information Code Integrity User’s bank account leakage

Table 4: Attack case-studies

whereas in Android and iOS the miniapp code is in plaintext. By
dynamically hooking all cryptographic APIs, and running different
miniapps multiple times, we noticed one special function located in
WeChatWin.dll, which always takes three parameters: a 32-bytes
buffer, the cphiertext (which is a part of the encrypted miniapp
packages), and a buffer that is used to store the decrypted data. We
then confirmed that the 32 bytes buffer is the key, and traced the
buffer to understand how the key is generated. Interestingly, we
confirmed that the key is the output of PBKDF2 (Password-Based
Key Derivation Function 2 [23], which is a standard key deriva-
tion function with a sliding computational cost), whose input is
the appID. Therefore, we conclude that very likely WeChat uses
the miniappID as the key. We then performed a forward slicing by
tracing the appID, and identified that WeChat actually also uses
the second last byte in the appID to generate an XOR key, which
works together with the AES key (the key derived from PBKDF2)
to encrypt and also decrypt aminiapp package.

Therefore,WeChat essentially uses appID, a 18-bytes string as-
signed by theWeChat as the key. Using miniappID as an encryption
or decryption key makes a lot of sense. First, the key cannot be
user specific; otherwise WeChat has to generate different keys for
the same miniapp. Second, the key cannot be device specific too
(though sometimes MAC address has been used to derive crypto-
graphic keys) for the similar reason. Therefore, the key is likely
miniapp specific.

Having identified the decryption function and the involved keys,
we then trace further to understand exactly how WeChat decrypts
a miniapp and this finding is presented in Figure 1 (Note that it
turns out to be a non-standard crypto algorithm customized by
WeChat). In particular, we notice that WeChat will first feed the
appID, and a constant string “saltiest” into PBKDF2 to derive
a 32-bytes decryption key Key1 (Step ❶). Next,WeChat will take
the first 1024 bytes of the miniapp (C1) and decrypt it using the
produced decryption key, through whichWeChatwill obtain a data
block that is 1,024 bytes (Step❷). Next,WeChatwill take the second
last byte of the appID as the XOR key, and use it to exclusive or (XOR)
the rest of the encrypted package of the miniapp (Step ❸). Finally,
WeChat will put the derypted data block P2 produced in the Step
❷, and the data blocks P3 in the Step ❸, then add a string “V1MMWX”
(i.e., P1) as an identification in the file header, which forms the final
output of the decrypted package (Step ❹). In this process, despite
WeChat’s integrity check, which prevents modified mini-apps from
executing, we can still make it run because the attacker is using a
rooted model.

P1 (V1MMWX)

PBKDF2

saltiest

P2 (1024 bytes) P3

AES

C1 (1024 bytes)

Key2 (1 byte)

Key1 (32 bytes)

X
O
R

C2

Cipher

Plaintext

❶

❷

❸

❹

Input

Output

Cipher

. . .

C1 (4 bytes) . . .

AES

X
O
R

X
O
R

AES AES

X
O
R

Plaintext

P1 (4 bytes)

Raw_key (16 bytes)

Input

P2 (4 bytes) PN (4 bytes)

Output

. . .

❶

❷

❸

Key1 (4 bytes) Key2 (4 bytes) KeyN (4 bytes)

C2 (4 bytes) CN (4 bytes)

Plaintext

appID (18 bytes)

(17 bytes)

Figure 1: Workflow of the miniapp code decryption algo-
rithm

Attack Case Studies. By using the decryption algorithm revealed
above, an attacker (or a malicious app co-located with the super app)
can decrypt (and encrypt) any miniapps of interest. Specifically, an
attacker can
• Break Code Confidentiality. We developed a malware to scan
theminiapps downloaded at “C:/User/username/WeChat Files
/Applet/ ”, automatically decrypt them, and then unpack them
to search strings of interest (e.g., “password”, “coupon”, “keys”).
If so, it then uploads these to a remote server. As shown in Ta-
ble 4, we have launched attacks to break the code confidentiality
against four miniapps. To be more specific, the collected strings
including hard-coded keys (which is used to encrypt or decrypt
sensitive information), password, and coupon code. For example,
we have found a hotel check-in miniapp (whose appID is “wx70c
04***99f70”) has leaked the passcodes (which can be used to
unlock the hotel rooms). As shown in Figure 2, roomNo is the
room number of a hotel room, and deviceCode is the password
that can be used to unlock the door of that room. There are five
hotel rooms that are subject to this type of attack (line 7 – line
13). At line 16 – line 30, the check-in miniapp sends the passcode
to a Bluetooth locker miniapp, which opens the door, and returns

AsiaCCS ’24, July 1–5, 2024, Singapore Chao Wang, Yue Zhang, and Zhiqiang Lin

1 checkInOrder: function checkInOrder() {
2 var self = this;
3 console.log("Check-in", self.dataOrderDetails.roomNo);
4 var deviceCode = "";
5 deviceCode = self.dataOrderDetails.roomBlueDeviceCode;
6 // var deviceCode = "";
7 // if("0818" == self.dataOrderDetails.roomNo|| "8101" ==

self.dataOrderDetails.roomNo || "8102" ==
self.dataOrderDetails.roomNo|| "8103" ==
self.dataOrderDetails.roomNo|| "8104" ==
self.dataOrderDetails.roomNo|| "8105" ==
self.dataOrderDetails.roomNo){

↩→
↩→
↩→
↩→
↩→

8 // deviceCode = "8E20FE921A07C4F3125AF13E"
9 // }else if("0816" == self.dataOrderDetails.roomNo){
10 // deviceCode = "9BF084673F860CB2B715B1F7";
11 // }else if("0817" == self.dataOrderDetails.roomNo){
12 // deviceCode = "48481B9ED0A894E36D993D3A";
13 // }else if("0901" == self.dataOrderDetails.roomNo){
14 // deviceCode = "6799BE3922FC0CB2B71BDAB4";
15 // }
16 //Open a Bluetooth locker miniapp to open the door
17 _wepy2.default.navigateToMiniProgram({
18 appId: "wxe23c5b15a4150858",
19 path: "",
20 extraData: {
21 DeviceCode: deviceCode
22 },
23 envVersion: "trial",
24 success: function success(res) {
25 // Door Opened
26 console.log("Check-In", "Door opened");
27 },
28 fail: function fail(res) {
29 console.log("Check-In", "Cannot open the door");
30 }
31 });
32 }

Figure 2: A hotel check-in miniapp that leaked the passcode

the status (e.g., whether the door is opened or not). As such, the-
oretically, as long as the attacker can obtain the passcode from
the code, he or she can create a malicious Bluetooth miniapp,
send the passcode to the hotel lock to unlock the door.

• Break Code Integrity. We also add a few payloads in our mal-
ware and enable it to modify the victim miniapp for malicious
purposes, such as tracking the victim’s location). For example, a
public transportationminiappwhose appID is “wx71d58***e3321”,
allows a user to track the next bus in real-time (e.g., whether
the bus is close to the user or not). However, by adding the mali-
cious code into this victim miniapp, attackers can now collect
the user’s real-time locations, and send the locations to a re-
mote server. In some other examples (e.g., miniapp whose appID
is “wx94679***b069d”), the attacker can modify the miniapps’
control flow to steal the user’s password or bank account. In
those examples, in addition to adding a few pieces of code in
the existing code, we also added a few UI pages and packed the
pages into the miniapp packages to make the victim miniapps be-
come phishing miniapps (e.g., the newly added pages may trick
the user into believing they are parts of the victim miniapps, so
that the user may input the information as they think they are
interacting with the victim miniapps).

(A2) Data Confidentiality and Integrity Attacks for Malicious
Miniapps. We followed the same approach as in A1 to trace the
crypto function execution, and identify the corresponding keys.
In particular, we hook all of the crypto functions, and inspect
the ones that consume the data from WeChatApps.data. During
this process, we identified one function located at 0x1131E260

P1 (V1MMWX)

PBKDF2

saltiest

P2 (1024 bytes) P3

AES

C1 (1024 bytes)

Key2 (1 byte)

Key1 (32 bytes)

X
O
R

C2

Cipher

Plaintext

❶

❷

❸

❹

Input

Output

Cipher

. . .

C1 (4 bytes) . . .

AES

X
O
R

X
O
R

AES AES

X
O
R

Plaintext

P1 (4 bytes)

Raw_key (16 bytes)

Input

P2 (4 bytes) PN (4 bytes)

Output

. . .

❶

❷

❸

Key1 (4 bytes) Key2 (4 bytes) KeyN (4 bytes)

C2 (4 bytes) CN (4 bytes)

Plaintext

appID (18 bytes)

17 bytes

Cipher

C1 (4 bytes)

. . .

AES

X
O
R

X
O
R

AES AES

X
O
R

P1 (4 bytes)

Raw_key (16 bytes)

P2 (4 bytes) PN (4 bytes)

Output

. . .

❶

❷

❸

Key1 (4 bytes)

Plaintext

CN (4 bytes)

AES AES AES

X
O
R

P1 (4 bytes)

Key1 (4 bytes)

X
O
R

X
O
R

P2 (4 bytes)

❶

❷

❸

Output

Plaintext

. . .

. . .

PN (4 bytes)

Input

1 byte

C2 (4 bytes)

Figure 3: Workflow of the data decryption algorithm

that takes 6 parameters: source_buffer, destination_buffer,
length, aes_key_st, raw_key and isEncrypt. Among them, the
buffer source_buffer points to the content read from WeChat
Apps.data., and the other buffer destination_buffer points to
the decrypted plaintext. Therefore, we conclude raw_key is the key.

However, unlike miniapp code encryption which directly uses
the appID as the key, this time, the key generation is more com-
plicated, and we have to trace back multiple functions to eventu-
ally resolve the key generation. Specifically, we performed a back-
ward slicing with the trace, and identified that WeChat actually
uses devices related information to generate the key, which is a
string generated from the CPU information obtained by invoking
GetCurrentHwProfileW (using bytes shifting). The produced key
raw_key is 16 bytes.

Once we have resolved the key, we next trace it further to under-
stand how the decryption is performed on WeChatApps.data, and
this finding is presented in Figure 3. Interestingly, we also noticed
that the decryption algorithm is a non-standard cryptographic algo-
rithm customized byWeChat, which involves both AES decryption
and XOR operations. At a high level, the algorithm first takes the
produced key raw_key and the cipher as its inputs, then splits the
produced key raw_key into multiple blocks, each of which is 4 bytes
(Step ❶). Next, the algorithm splits the ciphers into multiple blocks,
and each block is also 4 bytes. The algorithm decrypts each block
using the original raw_key, and then uses the keys produced in Step
❶ to XOR each byte sequentially (e.g., the first key block is used to
XOR the first cipher block). If the number of cipher blocks is larger
than the number of the key blocks, the algorithm will reuse key
blocks sequentially until there is no other cipher block left (Step ❷).
Each produced output is a part of the plaintext, andWeChat finally
puts all the outputs together to form the original plaintext (Step ❸).

RootFree Attacks: Exploiting Mobile Platform’s Super Apps From Desktop AsiaCCS ’24, July 1–5, 2024, Singapore

Attack Case Studies. Similar to code confidentiality and integrity
attacks, an attacker can launch the following data confidentiality
and integrity attacks:
• Breaking Data Confidentiality.We developed a malware to
scan the records of WeChatApp.data, through which to infer the
users’ privacy, since this file stores the frequently used miniapps.
For example, if the attacker identifies that the user creates a short-
cut for a hospital’s miniapp, the attacker then knows that the user
is likely a patient of that hospital. Then, if the hospital is a special-
ized hospital (e.g., andrology hospital), the attacker may further
infer what kind of disease the usermay have. As another example,
the attacker can also know what kind of products fall into users’
interests by inspecting the records of WeChatApp.data (e.g., the
user may add a shortcut of clothing store), and then launch more
targeted attacks (e.g., pushing cheaper clothing advertisement).

• Breaking Data Integrity. The attacker may distribute the ma-
licious miniapps without WeChat’s vetting by breaking data
integrity. To be more specific,WeChat has enforced security vet-
ting to guard its market, and every miniapp must go through the
vetting process before delivering to the users. The vetting process
can protect the users from malware attacks and violent content
(e.g.,WeChat will not allow miniapps to contain terrorism con-
tent). However, now that the attacker can freely add arbitrary
appID into the database, he or she can directly place a malicious
miniapp shortcut on victim user’s WeChatApp.data, completely
bypassing the vetting, which threatens not only victim’s user
privacy (e.g., collecting user’s phone number, and bank account)
but also breaks the entire ecosystem (e.g., spreading terrorism
content) guarded by the super apps. In our case study, we have
created two malware (in total 531 LoC): a miniapp-based phising
malware, and a native malware that modifies WeChatApp.data
to allow the execution of the phishing miniapp.

5 ROOTFREE FROM LAYER UP
5.1 Attack Surface Analysis

Insights. Similar to how we attack the super apps from layer below,
we have to also first understand the attack surfaces from aminiapp’s
perspective before we could launch any attacks from the layer up.
Since the only interface for layer up attack is the APIs, we have
to inspect them to understand how an attacker would use them to
develop malicious miniapps, to escape the sandbox and attack the
super apps or the entire OS for example.

However, there are still non-trivial challenges when analyzing
these APIs, particularly because of the large number of APIs we
have to analyze. More specifically, there are 985 APIs [29] in to-
tal, meaning we have to at least test 985 times independently for
each API. Given that there are three different platforms offered
by WeChat, theoretically we have to test 2,955 times in order to
observe the discrependices among them. Therefore, we have to nar-
row down the scope of the APIs for our analysis. From security and
privacy perspective, we feel APIs related to system resources (e.g.,
microphones, cameras) and the user’s sensitive data (e.g., locations,
phone number, contact information) should be of our focus.

Differential Analysis. As such, we have developed a testing
miniapp using the resource access APIs to observe the discrep-
ancies among the three different platforms. During our analysis, we
mainly focused on two categories of resources that can be accessed
by the miniapps: (i) the resources (e.g., audio, video, user’s contact)
that the miniapps have to request for authorizations from the user;
Intuitively, those resources are not freely accessible by theminiapps,
and therefore, they may be highly sensitive and cause security and
privacy impacts if a miniapp can exploit them; (ii) the resources (e.g.,
the file system) that miniapps can access without the users’ aware-
ness but have potential risks if being freely accessed. While such
resources do not need the user’s authorization, the super apps have
enforced permission protections to prevent them from being freely
accessed. Also, note that there are indeed some other resources such
as battery information and screen brightness that can be accessed
without the user’s authorization and the super app’s protection, but
they often lead to side channel attacks, and we therefore leave their
exploration to future works. In particular, a miniapp can access
the file system through API wx.getFileSystemManager, by which
the miniapps can read, write and delete the files provided by the
super apps. If no strong file system isolation is provided, a mali-
cious miniapp may steal the user’ sensitive information, and even
overwrite them for malicious purposes (e.g., the miniapps can be
a ransomware, which can encrypt the entire disk for profit). Given
that Windows has weaker protection (where there is no strong file
system isolation), the super apps have to implement the file system
isolation on their own. We noticed that on Windows machine, they
create a sandboxed directory for each of the miniapps to isolate the
miniapps from accessing files outside.
Attack Targets. Through our differential analysis, it becomes ap-
parent that some of the resource access APIs can be exploited,
particularly in Windows platform. Meanwhile, the file system sand-
box implementation in Windows may be exploitable, due to the
lack of strong isolation from the operating systems (as well as the
privilege discrepancies) compared to Android and iOS. For instance,
we do notice that the file system isolation in Windows is achieved
through a software abstraction wxfile, where the root directory
of a miniapp is the sandbox directory, and all the operations (e.g.,
write and read) are supposed to occur only inside this folder. How-
ever, it is not clearly whether there is any flawed implementation
of this abstraction.

5.2 Concrete Attacks

(A3) Sandbox Escaping due to Flawed and also Weak File
System Isolation.To protect files from being accessed bymalicious
miniapps,WeChat uses a sandbox mechanism with security checks
in FileSystemManager to ensure the file access can only occur
inside the the sandbox. We therefore traced the functions of class
FileSystemManager, and inspected the implementations of file
operations. During this analysis, we identified function getNative
PathByJsPath (whose address is 0xABE042) located in applet
::AppletUtils, to be of our particular interests.

Specifically, as shown in Figure 4, there exist some interesting
input validation checks. At a high level, the super app needs to en-
sure there is no escaping of the sandbox to access other directories,
and one way for attacker to do so is to use ../ or ..\, andWeChat

AsiaCCS ’24, July 1–5, 2024, Singapore Chao Wang, Yue Zhang, and Zhiqiang Lin

1 /* code omitted */
2 sub_427C36(a2);
3 if (sub_BD3510(v36, v42, "wxfile://", v50, 1))
4 {
5 std::string::string(a2);
6 v64 = std::char_traits<char>::length(byte_DB44A0);
7 v7 = std::char_traits<char>::length("wxfile://");
8 _cfltcvt(v73, 0, "wxfile://", v7, byte_DB44A0, v64);
9 std::string::string((void *)byte_DB44A0);
10 std::string::string("../");
11 // replace "../" to ""
12 sub_4765D5((int)v73, v22, v24, v26, v28, v30, v32,

13 v34, v37, v43, v48, v53);
14 std::string::string((void *)byte_DB44A0);
15 std::string::string("..\\");
16 // replace "..\\" to ""
17 sub_4765D5((int)v73, v23, v25, v27, v29, v31, v33,

18 v35, v38, v44, v49, v54);
19 sub_45FB4C();
20 /* code omitted */
21 }
22 /* code omitted */

Figure 4: The decompiled code for converting ‘wxfile’ scheme
to native path in getNativePathByJsPath implementation

indeed performs this check and will replace it to empty string (as
shown in line 10 – 13, and 15 – 18). Unfortunately, we found this
check is flawed, given that the security check only checks the file
path before the replacement of “../”, but does not check the file
path after the replacement. As such, there are multiple ways to go
around such checks, as long as the attacker can make sure there are
“../” even after the replacement. For example, an attacker can craft
a file path “..././..././..././..././password.txt”. After re-
placing “../” with an empty string, attacker can still have a valid
path to “../../../../password.txt”, thereby completely escap-
ing the sandbox to access other files. Meanwhile, Windows does not
impose any additional access control if the users are executing the
super app with administrator privilege, which is different compared
to Android whose SE-Linux can stop further any sandbox escaping
with this flawed implementation.
Attack Case Studies. Given the flawed security check, a malicious
miniapp can access the files outside of its sandbox. Again, if such
an attack is launched on Android or iOS, the impact is relatively
small due to its stronger isolation. However, when this miniapp
is executed on Windows, the attacker can modify arbitrary files
or even achieve remote code execution to completely take over
the machine. In the following, we demonstrate concretely how to
launch such attacks.

For proof of concept, we have developed an attack as shown in
Figure 5. First, the attacker sends the victim user a URL or an instant
message pointing to a malicious miniapp. Once the victim clicks it,
the malicious miniapp will be loaded byWeChat (Step ❶). Next, the
malicious miniapp obtains wx.getFileSystemManager (Step ❷),
and then directly initiates file write request to write malicious code
onto the disk (Step ❸). Since the security check is flawed (Step ❹),
the malicious miniapp can write the malicious code at anywhere on
the victim machine (Step ❺). For example, the malicious miniapp
can place the malicious payload to C:\ProgramData\Micro
soft\Windows\Start Menu\Programs\StartUpwithout anywarn-
ing if the super app is executed with administrator privilege, and
the malicious code will be executed when the user reboots the com-
puter. However, there is also alternative to execute the malicious
code instantly. For instance, we noticed that there is an API named

Malicious

MiniApp
WeChat

Windows

OS
User

❶ Click

❸ Write code (fs.writeFile)

❷ Obtain FileSystemManager

❹ Perform path check

❺ Write File

❻ Call wx.openDocument

❽ Run code

❼ Execute code

FileSystemManager fs

Write Success

Figure 5: Remote code execution attacks in Windows

wx.openDocument, which will open non-executable files (e.g., PDF,
DOCX). When a miniapp calls wx.openDocument (Step ❻), an exe-
cutable file WeChatXFile located at theWeChat’s installation folder,
will be loaded to execute the document opening logic (Step ❼). As
such, the malicious miniapp can overwrite WeChatXFile, and then
calls wx.openDocument if WeChat XFile is not loaded to the mem-
ory yet. As a result, the malicious code can be executed instantly
(Step ❽), and there is no warning message even when the super
app is executed without administrator privileges.

With the capabilities of breaking the file system isolation, the
malicious miniapp running atopWindows can also launch arbitrary
data manipulation attack. For instances, the attacker can traverse
the folders to steal user’s sensitive files or overwrite important sys-
tem configuration files (if the super app is executed under adminis-
trator privilege) such as the system configuration file hosts, which
is used to map domain names to IP addresses (e.g., www.google.com
to 142.250.190.142). The attacker can change hosts by overwrit-
ing a correct IP address with phising websites under attacker’s
control. Attackers can also use these attacks to distribute malware
in a large scale, given that the user base of WeChat has reached
1.2 billion [22]. Please note that in all of our attacks, only the RCE
attack requires such permissions. Even if these permissions are not
granted, the miniapp can still inspect sensitive user information
and delete important files. However, it will not be allowed to install
malicious software in such a case.

6 DISCUSSION
6.1 Generality of Our Methodology
While the paper primarily focuses onWeChat, it’s important to note
that the workflow it introduces is not limited to this specific appli-
cation. The methodology and steps outlined can be applied to other
super apps and miniapps, making it a versatile and adaptable frame-
work for evaluating security risks in similar platforms. Despite the

RootFree Attacks: Exploiting Mobile Platform’s Super Apps From Desktop AsiaCCS ’24, July 1–5, 2024, Singapore

current prevalence of desktop miniapps being primarily associated
with WeChat, we believe our methodology can be extended to ana-
lyze other platforms should they incorporate support for miniapps
in the near future. For example, the comprehensive examination of
resources, including code and data, is a step that transcends specific
applications and can be seamlessly applied to assess the security
posture of any super app or miniapp. Additionally, the evaluation
of security measures like encryption and file isolation, which are
common in software development, remains relevant to any com-
parable platform. Furthermore, the process of identifying attack
surfaces, while subject to some variation in specifics, upholds the
universal practice of seeking potential vulnerabilities within an
application, regardless of its nature or origin.

6.2 Root Causes
The issue of our attacks stems from the underlying discrepancies
that exist across different platforms for super apps. It becomes
imperative to delve into the reasons behind these discrepancies in
order to gain a comprehensive understanding of the matter at hand.

It becomes evident that the variance in threat models plays a piv-
otal role in this context. Mobile operating systems are designed to
accommodate the execution of multiple applications, with a crucial
emphasis on isolating these applications from one another. This
isolation serves as a safeguard against potential breaches, ensuring
that untrusted apps are barred from accessing the data of other apps.
In stark contrast, desktop OSs adhere to a different threat model,
embracing the multi-user paradigm while affording the owner of
the computer the root privileges. Consequently, the migration of
mobile apps to desktop environments precipitates a shift in the
threat model, creating a scenario where these apps are exposed to
disparate security challenges. It is worth noting that web browsers,
which evolved during the desktop era, assume the role of super
apps, yet remain unaffected by the issues faced by contemporary
mobile super apps. Consider attack (A2) where decryption breach
manipulates databases and deploys malicious miniapps. In the web
realm, web apps operate with fewer restrictions, increasing the risk.
Attack (A1), compromising miniapp code confidentiality and in-
tegrity, holds less incentive in the web environment due to limited
secrets stored in cached files.

Moving forward, it is crucial to underscore the disparities in
built-in security mechanisms across these platforms. While some
attacks can be attributed to implementation flaws, such as in the
case of A3, where developers of super apps failed in executing
proper security checks, the repercussions of these flaws manifest in
varying degrees across different platforms. Notably, on Android and
iOS, the impact of attack (A3) is curtailed due to the robust system-
level isolation. This isolation obstructs the ability of miniapps to
access files belonging to other applications, thereby mitigating the
consequences of breaches.

6.3 Lessons Learned
We can learn valuable lessons from the research, and use this
knowledge to further educate the community and contribute to
the field of super apps and mobile/desktop security. First, the re-
search highlights the importance of security in the context of super
apps and their expansion (e.g., miniapps) across different platforms.

We should emphasize the significance of security awareness and
the need for robust security measures, especially when integrat-
ing third-party applications. Second, the discrepancies in security
models and implementations across mobile and desktop platforms
underscore the need for standardized security practices. We should
explore these differences further, conduct comparative studies, and
propose solutions for bridging the gaps in security between plat-
forms. We can explore additional attack vectors, develop tools or
methodologies for detecting and mitigating these attacks, and pro-
vide guidelines for super app developers to enhance their security
against such threats. Third, one proactive approach that WeChat
could consider involves the addition of an extra layer within its
operating environment. An alternative course of action could entail
a thorough reevaluation of specific features within their desktop
super app, such as WeChat itself. This may necessitate the tem-
porary suspension of support for particular functionalities, such
as miniapp execution, until robust security mechanisms can be
established. Although such decisions may present challenges, they
underscore a resolute commitment to prioritizing user security in
the face of evolving threats.

6.4 Ethics and Responsible Disclosure
We have followed the community’s best practice in our study. In
particular, we only launched the attacks in the controlled envi-
ronment using our own accounts and machines (e.g., Windows,
Android, and iOS). While we have programmed a set of malware to
demonstrate the attacks (e.g., A1, A3), and those malware can in
theory be widely distributed using the methods introduced in A2,
we keep all of them private (without distributing them to the public
at all). In addition, although our A1 can break the code confiden-
tiality and integrity of miniapps, we did not release our tool, and
will never to do so, in order not to cause any harms to any users,
miniapp developers, and platform providers (i.e., Tencent in this
case).

More importantly, we have reported all our findings to Tencent
using 3 independent vulnerability disclosure reports, each of which
described one specific type of attacks (i.e., A1, A2, A3). Without any
surprise, all of them have been ranked as the high severity vulner-
abilities, and Tencent awarded us with bug bounties. Meanwhile,
Tencent’sWeChat security engineers have been very actively work-
ing with us in the past year (e.g., we have met online multiple times
to discuss the possible fixes).

6.5 Countermeasures
In our comprehensive analysis of vulnerabilities affecting super
apps operating within the Windows platform, we have unveiled
three major concrete attack vectors that could potentially compro-
mise their security. These attacks not only raise concerns but also
emphasize the importance of implementing robust countermea-
sures to safeguard these super apps and the sensitive data they
handle. In the subsequent sections, we delve into the potential
strategies and countermeasures that can be employed to mitigate
the risks posed by these attacks.
Patching the Implementation Vulnerabilities.A critical step to-
wards enhancing the security of super apps involves addressing the

AsiaCCS ’24, July 1–5, 2024, Singapore Chao Wang, Yue Zhang, and Zhiqiang Lin

implementation vulnerabilities that have been exploited in our at-
tacks, specifically the sandbox escaping checks targeted in attack A3.
We recommend that the development teams responsible for these
super apps, like WeChat, promptly patch these flaws to prevent
potential exploits. Notably, it is encouraging to note that Tencent
has already taken action in this regard by releasing patches to ad-
dress the vulnerabilities exploited in attack A3. We have confirmed
that A3 no longer works. This responsive approach showcases their
commitment to securing their platform and user data.
Thwarting the Binary Code Analysis. The vulnerabilities lever-
aged in attacks A1 and A2 underscore the significance of reevaluat-
ing the techniques employed for code analysis and reverse engineer-
ing. These attacks capitalized on methods such as API hooking and
dynamic data dependence analysis to uncover critical cryptographic
operations and associated keys. To deter such analysis-driven at-
tacks in the short term, incorporating obfuscation techniques can
prove to be effective. Currently,WeChat has taken proactive mea-
sures by patching attack A1 through the utilization of VMProtect,
a tool known for safeguarding code through execution within a
specialized virtual machine. Furthermore, their ongoing efforts to
address attack A2 using similar obfuscation methods exemplify
a commitment to fortifying their defense mechanisms. While it’s
important to acknowledge that obfuscation may not offer absolute
protection against determined adversaries, it remains an industry-
standard practice for deterring binary analysis attempts.
Using Stronger Security Mechanisms. A distinctive challenge
faced by super apps on the Windows platform, as opposed to their
counterparts on Android and iOS, is the absence of robust secu-
rity mechanisms provided by the operating system and hardware.
Notably, super apps running on Windows lack the comprehensive
security features like secure enclaves available on other platforms.
This leaves them susceptible to potent attacks, including those
orchestrated by malicious operating systems. One prospective av-
enue for enhancing the security of super apps is the incorporation
of Trusted Execution Environments within the desktop environ-
ment. Technologies like Intel Software Guard Extensions (SGX)
have demonstrated their ability to bolster security by creating iso-
lated enclaves for executing sensitive operations. However, the
recent discontinuation of SGX support for desktop systems by Intel,
as reported in [31], poses a challenge to this approach’s feasibility
at present.

In light of the absence of TEE support, Tencent and similar
developers must strategize on alternative measures. A potential
course of action could involve reconsidering the inclusion of certain
features in their desktop super app, like WeChat. This might entail
temporarily discontinuing support for specific functionalities, such
as miniapp execution, until viable security mechanisms can be
established.

7 RELATEDWORK
The first study of miniapp security can be dated back to the work
by Lu et al. [25] for the investigation of the security management of
resources within app-in-app systems. Then in 2021, we [40] intro-
duced MiniCrawler, a tool designed to download WeChat miniapps.
We conducted an extensive assessment encompassing various as-
pects (e.g., resource usage, API utilization). In 2022, Wang et al. [35]

put forward WeDetector, a solution aimed at pinpointing three
prevalent bug patterns in WeChat mini-programs: inappropriate re-
liance on platform-specific APIs, inadequate adaptation of layouts,
and vague handling of arguments in callbacks. Zhang et al. [39]
examined the susceptibility of app-in-app ecosystems to identity
confusion vulnerabilities. Their scrutiny extended to 47 super apps,
revealing that each one was susceptible to identity confusion at-
tacks. We introduced a novel type of attack, CMRF [38], and devel-
oped CMRFScanner to identify vulnerabilities of this nature. Our
findings indicated that an extensive number of WeChat and Baidu
miniapps were at risk of CMRF attacks.

In 2023, Zhang et al. [42] revealed the Trusted Domain Compro-
mise Attack for phishing. Cai et al. [13] discussed user activity and
advocated user-centric account security in super apps. Wang et
al. [36] compared traditional browser and super-app threat models.
Zhao et al. [43] delve into signature verification in enhancing trans-
action and data security in theminiapp ecosystem. Lately, we turned
our focus towards the protocols governing sensitive resource access
in miniapps. Our analysis led to the discovery of vulnerabilities re-
lated to master key leakage [41]. We also introduced TaintMini [33]
a solution designed to track the flow of sensitive data in mini-
programs using a comprehensive data flow graph-based approach.
Meanwhile, we also discovered hidden APIs provided by super
apps [14], showcasing their untapped potential for exploitation.

Most recently, our APIDiff [34] revealed variations in API ex-
ecution across diverse platforms within the WeChat framework.
We accomplished this by automatically generating API test cases,
which in turn facilitated the recognition of three distinct categories
of discrepancies: API presence, API permissions, and API outcomes.
This work also explores the discrepancies between platforms, but
with a key focus on user privileges and process isolation by challeng-
ing different threat models and implementations. More specifically,
we introduce two categories of RootFree attacks, namely, those
operating in the layer below and the layer above, which are based
on vulnerabilities we have identified through binary analysis. We
also demonstrate the potential for these attacks to have severe se-
curity implications for both the vast user base of super apps and
the developers of miniapps.

8 CONCLUSION
In this paper, we have shown that there are cross platform discrep-
ancies for super apps and these include different threat model, user
privilege, and isolation mechanism. We have demonstrated that
these discrepancies can be exploited to launch RootFree attacks
from layer below and layer up against the super apps including
their miniapps. While our study mainly focuses on WeChat, we
hope our findings can help many other super app vendors to avoid
the same mistakes as in WeChat, when integrating the miniapp
model and executing it on different platforms such as desktops.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their invaluable feedback.
This research was supported in part by NSF award 2330264. Any
opinions, findings, and conclusions in this paper are those of the
authors only and do not necessarily reflect the views of NSF.

RootFree Attacks: Exploiting Mobile Platform’s Super Apps From Desktop AsiaCCS ’24, July 1–5, 2024, Singapore

REFERENCES
[1] “How facebook, apple, google copied china’s wechat messaging app,” https:

//exbulletin.com/tech/274959/.
[2] “Intel’s dropping of sgx prevents ultra hd blu-ray playback on pcs -

ghacks tech news,” https://www.ghacks.net/2022/01/14/intels-dropping-of-sgx-
prevents-ultra-hd-blu-ray-playback-on-pcs/.

[3] “The race to create the world’s next super-app - bbc news,” https://www.bbc.
com/news/business-55929418.

[4] “Secure enclave - apple support,” https://support.apple.com/guide/security/
secure-enclave-sec59b0b31ff/web.

[5] “Security-enhanced linux in android,” https://source.android.com/security/
selinux.

[6] “What is a super app and why haven’t they gone global?” https:
//www.cnbc.com/video/2021/07/16/what-is-a-super-app-and-why-havent-
they-gone-global.html.

[7] “Windows sandbox - windows security | microsoft docs,” https:
//docs.microsoft.com/en-us/windows/security/threat-protection/windows-
sandbox/windows-sandbox-overview.

[8] A. G. Adami, L. Burget, S. Dupont, H. Garudadri, F. Grezl, H. Hermansky, P. Jain,
S. S. Kajarekar, N. Morgan, and S. Sivadas, “Qualcomm-icsi-ogi features for asr.”
in INTERSPEECH, 2002.

[9] Alan Bavosa, “No-code Jailbreak & Root Prevention in iOS & Android apps ,” 2020,
Available athttps://www.appdome.com/blog/jailbreak-detection-root-detection/.

[10] J. Andrus, N. AlDuaij, and J. Nieh, “Binary compatible graphics support in android
for running ios apps,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference, 2017, pp. 55–67.

[11] G. Ayoade, V. Karande, L. Khan, and K. Hamlen, “Decentralized iot data man-
agement using blockchain and trusted execution environment,” in 2018 IEEE
International Conference on Information Reuse and Integration (IRI). IEEE, 2018,
pp. 15–22.

[12] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy, “Im-
plementation of the aes-128 on virtex-5 fpgas,” in International Conference on
Cryptology in Africa. Springer, 2008, pp. 16–26.

[13] Y. Cai, Z. Zhang, D. Li, Y. Guo, and X. Chen, “Shared account problem in su-
per apps,” in Proceedings of the 2023 ACM Workshop on Secure and Trustworthy
Superapps, 2023, pp. 47–50.

[14] W. Chao, Y. Zhang, and Z. Lin, “Uncovering and exploiting hidden apis in mobile
super apps,” in Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023.

[15] S. Checkoway and H. Shacham, “Iago attacks: Why the system call api is a bad
untrusted rpc interface,” ACM SIGARCH Computer Architecture News, vol. 41,
no. 1, pp. 253–264, 2013.

[16] DAN GOODIN, “Zeroday exploit prices are higher than ever, especially for
iOS and messaging apps ,” 2019, Available athttps://www.reddit.com/r/apple/
comments/adoka8/zeroday_exploit_prices_are_higher_than_ever/.

[17] B. Dean, “Tiktok user statistics (2022),” https://backlinko.com/tiktok-users.
[18] C. Eagle, The IDA pro book. no starch press, 2011.
[19] Frida, “Firda–dynamic instrumentation toolkit for developers, reverse-engineers,

and security researchers.” https://frida.re/docs/android/, 2012.
[20] T. GRAZIANI, “What are wechat mini-programs? a simple introduction - walk-

thechat,” https://walkthechat.com/wechat-mini-programs-simple-introduction/.
[21] M. Inc., “Mediatek inc.” https://www.mediatek.com/.
[22] T. Inc, “55+ wechat statistics - 2022 update,” https://99firms.com/blog/wechat-

statistics/#gref.
[23] S. Josefsson, “Pkcs# 5: Password-based key derivation function 2 (pbkdf2) test

vectors,” Internet Engineering Task Force (IETF), RFC Editor, RFC, vol. 6070, 2011.
[24] G. Lee and C. Gray, “L4/darwin: Evolving unix,” in Conference for Unix, Linux

and Open Source Professionals, Melbourne, Vic, Australia, 2006.
[25] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang, “Demystifying

resource management risks in emerging mobile app-in-app ecosystems,” in Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 569–585.

[26] J. Rutkowska, “Subverting vistatm kernel for fun and profit,” Black Hat Briefings,
2006.

[27] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C.
john wiley & sons, 2007.

[28] statista, “Number of mobile monthly active users across alibaba’s online shopping
properties from 3rd quarter 2017 to 3rd quarter 2020,” https://www.statista.com/
statistics/663464/alibaba-cumulative-active-mobile-users-taobao-tmall/, 2020.

[29] Tencent, “WeChat Chinese Documentation,” https://developers.weixin.qq.com/
miniprogram/en/dev/api/, 06 2020.

[30] ——, “WeChat English Documentation,” https://developers.weixin.qq.com/
miniprogram/en/dev/api/, 06 2020.

[31] B. Toulas, “New intel chips won’t play blu-ray disks due to sgx depreca-
tion,” https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-
play-blu-ray-disks-due-to-sgx-deprecation/, 2022.

[32] A. Ðuranec, S. Gruičić, and M. Žagar, “Forensic analysis of windows 10 sand-
box,” in 2020 43rd International Convention on Information, Communication and
Electronic Technology (MIPRO). IEEE, 2020, pp. 1224–1229.

[33] C. Wang, R. Ko, Y. Zhang, Y. Yang, and Z. Lin, “Taintmini: Detecting flow of
sensitive data in mini-programs with static taint analysis,” in ICSE.

[34] C.Wang, Y. Zhang, and Z. Lin, “One size does not fit all: Uncovering and exploiting
cross platform discrepant apis in wechat,” in 31st USENIX Security Symposium
(USENIX Security 23), 2023.

[35] T. Wang, Q. Xu, X. Chang, W. Dou, J. Zhu, J. Xie, Y. Deng, J. Yang, J. Yang,
J. Wei et al., “Characterizing and detecting bugs in wechat mini-programs,” in
Proceedings of the 44th International Conference on Software Engineering, 2022, pp.
363–375.

[36] Y. Wang, Y. Yao, S. Shi, W. Chen, and L. Huang, “Towards a better super-app
architecture from a browser security perspective,” in Proceedings of the 2023 ACM
Workshop on Secure and Trustworthy Superapps, 2023, pp. 23–28.

[37] M. Weiser, “Program slicing,” IEEE Transactions on software engineering, no. 4, pp.
352–357, 1984.

[38] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp request forgery: Root causes,
attacks, and vulnerability detection,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022, pp. 3079–3092.

[39] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang, G. Yang, and
M. Yang, “Identity confusion in {WebView-based}mobile app-in-app ecosystems,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp. 1597–1613.

[40] Y. Zhang, B. Turkistani, A. Y. Yang, C. Zuo, and Z. Lin, “A measurement
study of wechat mini-apps,” in SIGMETRICS ’21: ACM SIGMETRICS /
International Conference on Measurement and Modeling of Computer Systems,
Virtual Event, China, June 14-18, 2021, L. Huang, A. Gandhi, N. Kiyavash,
and J. Wang, Eds. ACM, 2021, pp. 19–20. [Online]. Available: https:
//doi.org/10.1145/3410220.3460106

[41] Y. Zhang, Y. Yang, and Z. Lin, “Don’t leak your keys: Understanding, measuring,
and exploiting the appsecret leaks in mini-programs.” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security, 2023.

[42] Z. Zhang, Z. Zhang, K. Lian, G. Yang, L. Zhang, Y. Zhang, and M. Yang, “Trusted-
domain compromise attack in app-in-app ecosystems,” in Proceedings of the 2023
ACM Workshop on Secure and Trustworthy Superapps, 2023, pp. 51–57.

[43] Y. Zhao, Y. Zhang, and H. Wang, “Potential risks arising from the absence of sig-
nature verification in miniapp plugins,” in Proceedings of the 2023 ACM Workshop
on Secure and Trustworthy Superapps, 2023, pp. 59–64.

https://exbulletin.com/tech/274959/
https://exbulletin.com/tech/274959/
https://www.ghacks.net/2022/01/14/intels-dropping-of-sgx-prevents-ultra-hd-blu-ray-playback-on-pcs/
https://www.ghacks.net/2022/01/14/intels-dropping-of-sgx-prevents-ultra-hd-blu-ray-playback-on-pcs/
https://www.bbc.com/news/business-55929418
https://www.bbc.com/news/business-55929418
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://www.cnbc.com/video/2021/07/16/what-is-a-super-app-and-why-havent-they-gone-global.html
https://www.cnbc.com/video/2021/07/16/what-is-a-super-app-and-why-havent-they-gone-global.html
https://www.cnbc.com/video/2021/07/16/what-is-a-super-app-and-why-havent-they-gone-global.html
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-overview
https://www.appdome.com/blog/jailbreak-detection-root-detection/
https://www.reddit.com/r/apple/comments/adoka8/zeroday_exploit_prices_are_higher_than_ever/
https://www.reddit.com/r/apple/comments/adoka8/zeroday_exploit_prices_are_higher_than_ever/
https://backlinko.com/tiktok-users
https://frida.re/docs/android/
https://walkthechat.com/wechat-mini-programs-simple-introduction/
https://www.mediatek.com/
https://99firms.com/blog/wechat-statistics/#gref
https://99firms.com/blog/wechat-statistics/#gref
https://www.statista.com/statistics/663464/alibaba-cumulative-active-mobile-users-taobao-tmall/
https://www.statista.com/statistics/663464/alibaba-cumulative-active-mobile-users-taobao-tmall/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/
https://doi.org/10.1145/3410220.3460106
https://doi.org/10.1145/3410220.3460106

	Abstract
	1 Introduction
	2 Background
	2.1 Super Apps: the Hybrid Mobile and Web Apps
	2.2 Security Mechanisms in Super Apps
	2.3 The Differences Across Platforms

	3 Overview
	3.1 Key Observation and Research Questions
	3.2 Scope and Assumptions
	3.3 Attack Overview
	3.4 Our Methodology

	4 RootFree From Layer Below
	4.1 Attack Surface Analysis
	4.2 Concrete Attacks

	5 RootFree From Layer Up
	5.1 Attack Surface Analysis
	5.2 Concrete Attacks

	6 Discussion
	6.1 Generality of Our Methodology
	6.2 Root Causes
	6.3 Lessons Learned
	6.4 Ethics and Responsible Disclosure
	6.5 Countermeasures

	7 Related Work
	8 Conclusion
	References

