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Abstract

To direct the operation of a computer, we often use a shell,
auser interface that provides accesses to the OS kernel ser-
vices. Traditionally, shells are designed atop an OS kernel.
In this paper, we show that a shell can also be designed be-
low an OS. More specifically, we present HYPERSHELL,
a practical hypervisor layer guest OS shell that has all
of the functionality of a traditional shell, but offers bet-
ter automation, uniformity and centralized management.
This will be particularly useful for cloud and data center
providers to manage the running VMs in a large scale.
To overcome the semantic gap challenge, we introduce
a reverse system call abstraction, and we show that this
abstraction can significantly relieve the painful process
of developing software below an OS. More importantly,
we also show that this abstraction can be implemented
transparently. As such, many of the legacy guest OS man-
agement utilities can be directly reused in HYPERSHELL
without any modification. Our evaluation with over one
hundred management utilities demonstrates that HYPER-
SHELL has 2.73X slowdown on average compared to their
native in-VM execution, and has less than 5% overhead
to the guest OS kernel.

1 Introduction

With the increasing use of cloud computing and data
centers today, there is a pressing need to manage a guest
operating system (OS) directly from the hypervisor layer.
For instance, when migrating a virtual machine (VM)
from one place to another, we would like to directly
configure its IP address without logging into the system
(if that is possible), similarly for firewall rule update;
when there is a malicious process detected, we would
like to directly Kkill it at hypervisor layer, similarly for
malicious kernel modules; when there is a need to scan
viruses, we would like to uniformly scan viruses for all
of the running VMs regardless of who owns and manages
the VM, whether the VMs might be using an unknown file
system, or whether the file systems might be encrypted.

However, if we use a traditional OS shell, a user inter-
face that is automatically executed when a user success-
fully logs in a computer, this would first require an admin-
istrator’s password. But, hypervisor providers may not
(always) have the administrator’s password for each VM,
and even when they do have the passwords, it is painful
to maintain them considering today large cloud providers
usually run millions of VMs (e.g., there were over one mil-
lion VMs running in Skytap cloud as of January 2012 [7]).
Second, it would also require the installation of the man-
agement utilities inside each guest OS. Whenever there
are updates for these utilities, it is painstaking to update all
of them in each VM. Therefore, the presence of a hypervi-
sor layer shell (HYPERSHELL for brevity) for all guest OS
would allow cloud providers to have an automated, uni-
formed, and centralized service for in-VM management.

Unfortunately, such a layer below shell is challenging
to implement because of the semantic gap [9]. Specifi-
cally, the semantic gap exists since at the hypervisor layer
we have access only to the zeros and ones of the hard-
ware level state of a VM—namely its CPU registers and
physical memory. But what a hypervisor layer program
wants is the semantic information about the guest OS,
such as the running processes, opened files, live network
connections, host names, and IP addresses. Therefore, a
layer below management program must reconstruct the
guest OS abstractions in order to obtain meaningful in-
formation. A typical approach to do so is to traverse the
kernel data structure, but such an approach often requires
a significant amount of manual effort.

To advance the state-of-the-art, we introduce a new ab-
straction called Reverse System Call (R-syscall in short)
to bridge the semantic gap for hypervisor layer programs
that will be executed in our HYPERSHELL. Unlike tradi-
tional system calls that serve as the interface for applica-
tion programs from a layer below, R-syscall serves as the
interface in a reverse direction from a layer up (with a way
similar to an upcall [11]). While hypervisor programmers
can use our R-syscall abstraction to develop new guest
OS management utilities, to largely reuse the existing
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legacy software (e.g., ps/lsmod/netstat/1ls/cp)
we make the system call interface of R-syscall transpar-
ent to the legacy software, resulting in no modification
when using them in HYPERSHELL. In addition, we also
make HYPERSHELL transparent to the guest OS, and we
do not modify any guest OS code. All of our design and
implementation is done at the hypervisor layer.

We have implemented HYPERSHELL. We show that by
using the abstraction of R-syscall, we can quickly have a
large number of hypervisor layer guest OS management
utilities by reusing the existing legacy software (due to its
transparency). In our current evaluation, we have tested
with over 100 common system administrative utilities.
All of them can be correctly executed in HYPERSHELL.
The average performance overhead for these utilities is
2.73X slowdown compared to their native in-VM execu-
tion. Both micro and macro benchmark evaluation shows
that HYPERSHELL has very small overhead (less than
5%) to the guest OS kernel.

In short, this paper makes the following contributions:

e We present HYPERSHELL, a new hypervisor layer

shell for automated guest OS management, without
using any user accounts from a guest OS.

e We introduce an R-syscall abstraction that allows
hypervisor programmers to develop guest OS
management utilities without worrying about the
semantic gap. Its transparency feature also directly
allows many of the legacy utilities to be executed
in HYPERSHELL without any modification.

e We have implemented the whole system. We show
that HYPERSHELL is practical, and can be used
for timely, uniformed, and centralized guest OS
management, especially for private cloud.

2 Background and Overview

Challenges. HYPERSHELL aims at executing guest OS
management utilities at the hypervisor layer with the same
effect as executing them inside an OS. To this end, we are
facing two major challenges:

e How to bridge the semantic gap. In HYPERSHELL,
guest OS management utilities execute below an OS
kernel. However, for OS below software, there are
no OS abstractions. For example, there is no pid,
no FILE, and no socket. Therefore, we have to
reconstruct these abstractions such that the utility
software understands the guest OS states and can
perform the management.

e How to develop the utilities. Suppose we have a
perfect approach to bridging the semantic gap, we
still have to develop the guest OS management soft-
ware. Should we develop the software from scratch,
or can we reuse any legacy (binary or source) code?
Ideally, we would like to reuse the existing binary
code as there are already lots of OS management
utilities, and we show that this approach is feasible.

. execve("/bin/hostname”, ["hostname"], ...) =0
brk(0) = 0x8113000
. access("/etc/ld.so.nohwcap”, F_OK) = -1 ENOENT

B WN R

. mmap2(NULL, 8192, ..., -1, 0) = 0xb7795000
36. uname({sys="Linux", node="debian", ...}) =0
40. write(l, "debian\n", 7) =1

41. exit_group(0)

(a) System call trace of command “hostname”

c103¢c305 <sys_uname>:

1. 0xcl03c420 push %ebx

2. 0xcl03c421 mov $0xcl37ad34, %eax
3. 0xcl03c426 call Oxcl25eel0

// get the current task structure

19. 0xc103c430 mov $fs:0xc13£9454, %eax

// point to current->nsproxy
20. 0xcl03c436 mov 0x2c4 (%eax),%eax

// point to current->nsproxy->uts_ns
21. 0xcl03c43c mov 0x4 (%eax),%edx
22. 0xcl03c43f mov 0x8(%esp), seax

// point to current->nsproxy->uts_ns->name
23. 0xcl03c443 add $0x4,%edx

// copy to user space buffer
24. 0xcl03c446 call copy_to_user

(b) Disassembled instructions for system call sys_uname

Figure 1: System call trace of utility hostname and one
of its sys_uname implementation.

Key Insights. Before describing how we solve these
challenges, we would like to first revisit how an in-
VM management utility executes. Suppose we want
to know the host name of a running OS, we can use
utility software such as hostname to fulfill this task.
In particular, as illustrated in Fig.1(a), it will execute
41 system calls (syscall for short) in Linux kernel
2.6.32.8, our testing guest kernel. Among these syscalls,
sys_uname is the one that really returns the host name.
Also, as shown in Fig.1(b), this syscall will traverse
the current task structure and dereference the field
current->nsproxy—>uts_ns—->name to eventu-
ally retrieve the machine name.

If we implement the same hostname utility and exe-
cute it in HYPERSHELL, and if we use a manual approach
to bridging the semantic gap, we have to traverse the data
structure again, in the same way as how sys_uname
does. Since the only interface for user level programs
to request OS kernel services is through syscall, and the
execution of a syscall is often trusted, then why not let
hypervisor programs directly use the syscall abstractions
provided by the guest OS? As such, we do not have to
develop any code to reconstruct the guest OS abstractions.
This is one of the key insights of designing HYPERSHELL.

Another key insight is that not all the syscalls should be
executed inside the guest OS. One example is the write
syscall that prints the “host name” to the screen. If we
execute it inside the guest OS, we would not be able to
observe the output from HYPERSHELL. Therefore, we
introduce an R-syscall abstraction that is used by hypervi-
sor programmers to annotate the syscalls that need to be
redirected and executed inside the guest OS.

In addition, while hypervisor programmers can use our
R-syscall abstraction to develop new software to manage
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Figure 2: An Overview of the HYPERSHELL Design.

the guest OS, there are already lots of legacy utilities
running inside a VM for the same purposes. For instance,
there are over hundreds of tools in core-utility, util-linux,
and net-tools for Linux OS. If we can make our R-syscall
transparent to the legacy software, then there is no need
to annotate the R-syscall and we can directly execute
the legacy software in HYPERSHELL. For instance, in
hostname example, only the uname syscall needs this
abstraction. We can thus hook the execution of the syscall
and use a transparent policy to determine whether a given
syscall is an R-syscall.

Scope and Assumptions. As HYPERSHELL is executed
at the hypervisor layer and will also invoke the syscalls
from the guest OS, we assume everything below is trusted.
This includes the guest OS kernel, host OS and the hy-
pervisor code. Ensuring the hypervisor and guest kernel
integrity is an independent problem and out of scope of
this paper. In fact, recently there have been many efforts
aiming at ensuring the guest kernel and hypervisor in-
tegrity (e.g., SecVisor [33] and HyperSafe [37]). Also
note that HYPERSHELL is designed mainly for automated
guest OS management and not for security. While it could
defeat certain attacks such as guest user level viruses, it
cannot defend against any guest kernel level attacks.

To make our discussion more focused, we assume a
guest OS running with a 32-bit Linux kernel atop x86
architecture. For the hypervisor, we focus on the design
and implementation of HYPERSHELL using KVM [4].

Overview. An overview of our HYPERSHELL is pre-
sented in Fig. 2. For a KVM based virtualization system,
there are two kinds of OSes: one is the guest OS that
is executed atop a KVM hypervisor, and the other is the
host OS that hides the underlying hardware resources and

provides the virtualized resources to KVM. The goal of
HYPERSHELL is to execute the guest OS management
utilities from the host OS to manage the guest OS. To this
end, there are five key components: two located inside
the library space of the host OS, and three located at the
hypervisor layer of the GVM.

To use HYPERSHELL, assume hypervisor managers
use 1s (or other utilities such as ps or hostname) to
list the guest files in a given directory. To get started,
they will launch 1s in our host OS. The real execution of
1s will be divided into a master process that is executed
inside the host OS, and a helper process that is executed in
the GVM. Only when an R-syscall gets executed will we
forward the execution of this syscall to a helper process in
the GVM and map the execution result (e.g., the directory
entries) back such that 1 s can continue its execution in the
master process. There are five key steps involved during
the execution of an R-syscall:

o Step @: Right after a syscall enters the library space

in the host OS, our Syscall Dispatcher intercepts it.
If it is not an R-syscall, it directly traps to the host
OS kernel for the execution. Otherwise it fetches
the syscall number and arguments, and invokes our
Syscall Data Exchanger at the host OS side which
communicates with its peers at the GVM side with
the detailed syscall execution information. Next,
our master process gets paused and will be resumed
at Step ® when the redirected R-syscall finishes
the execution. At the GVM side, according to
each specific syscall specification, the Syscall Data
Exchanger will set up the corresponding memory
state for the to-be-executed R-syscall.

e Step @: Our Reverse Syscall Execution will wait
until the helper process traps to kernel. The helper
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process is created at Step () right after the execution
of the management utilities in HYPERSHELL, or can
be executed as a daemon depending on the settings.

Step ®: Our Reverse Syscall Execution directly
injects the execution of the R-syscall with the
corresponding arguments and memory mapping, and
makes the R-syscall be executed under the helper
process kernel context. Note that such an R-syscall
injection and execution mechanism works similar
to function call injection from debuggers but with a
more powerful capability because of the layer below
control from hypervisor.

Step @: During the execution of the R-syscall, if
there is any kernel state update to the guest OS,
this syscall will directly update the kernel memory
as usual (e.g., sysctl that changes the kernel
configuration). If there is any user space update
(such as the buffer in read syscall), it directly
updates to the shared memory created by the Syscall
Data Exchanger in Step @.

Step ®: Right after the execution of the syscall exit
of the R-syscall, we notify Syscall Dispatcher and
Syscall Data Exchanger at the host OS side. We also
copy the data from the shared memory to the user
space of the master process, if the R-syscall has any
memory update. We also resume the execution of the
master process and directly return to its user space for
continued execution. Regarding the helper process
state in the GVM: if the master process terminates, it
will also be terminated (in non-daemon mode); oth-
erwise, it will keep executing int 3! such that our
Reverse Syscall Execution can always take control
of the helper process from the hypervisor layer.

3 Host OS Side Design
3.1 Syscall Dispatcher

The key idea of HYPERSHELL in bridging the semantic
gap is to selectively redirect and execute a syscall in the
guest OS. (The selected one is called an R-syscall). As
shown in Fig.1(a), not all the syscalls belong to R-syscalls.
Therefore, the first step in our Syscall Dispatcher design
is to systematically examine all of the Linux syscalls and
define our reverse execution policy for each syscall.

Syscall Execution Policy. In our testing guest kernel
Linux 2.6.32.8, there are 336 syscalls in total. Among
them, we find that technically, nearly all of them can be
redirected to execute in a guest OS. However, for process
creation (e.g., execve, fork, exit_group), dynamic
loading (e.g., open, stat, read when loading a shared
library), memory allocation (e.g., brk, mmapZ2), and

! An interrupt that is often used by debuggers to set up break points.

The Syscall Trace of “cp /etc/shadow /outside/shadow” |Host OS|GVM

execve (" /bin/cp", ["cp" , /ete/shadon’] " /tmp/shadow"] .= 0 v
brk(0) / = 0x8824000 v
access("/etc/1d.so.ng }(p F_OK) = -1 ENOENT v

v
statsd(l'/etc/sha w'l,(st_mode=S_IFREG|0640,st_size=713, ...hH=0 v
stat64("/out‘?{de/shadow", 0xb£9bad78) = -1 ENOENT v
opend"/etc/shadowl', 0_RDONLY|O_LARGEF"% v
fstatdec|oﬂ/D//ze=713, ...} =0 v
open("/outside/shadowwnonur{_cum|...|o_1..z-mcm-u.s, 0640)=3 v

fstatsq(a,(/sgm{ﬁs_%%m, st_size=0, ...}) = 0 v

read@Kroot::1?{}(6999:7:::\ndaemon:"..., 32768) = 713 v

write(3, 'Ws:o:sssssn:::\ndaemon:"..., 713) = 713 v

read@%%{lu) =0 v

closeE‘/ v

close(3) v

Table 1: Syscalls in cp with different execution policy.

screen output (e.g., write), we would like them to be ex-
ecuted in the master process created in our HYPERSHELL.

Unfortunately, for the rest syscalls, it is also not always
clear which syscalls need to be executed in the helper
process. For instance, as shown in Table 1, suppose
we want to copy /etc/shadow from the guest OS
to the host OS; in this case, some of the file system
related syscalls (e.g., open/stat64/read/close)
are executed in the GVM, and some (e.g.,
open/stat64/write/close) are executed in
HYPERSHELL. Even though we could leave the solution
to hypervisor programmers, where they would specify
which syscall needs to be executed in the master process
or helper process, we would prefer to make an automated
policy for these syscalls in order to allow for transparent
reuse of the legacy binary code.

In general, syscalls are relatively independent of each
other (e.g., getpid will just return a process ID, and
uname will just return the host name). After having ex-
amined all of the 336 syscalls, we realize that the syscalls
that have connections are often file system and socket
related (e.g.,open/stat64/read/write/close),
and these syscalls have dependences with the file de-
scriptors. For instance, as illustrated in Table 1, if we
can differentiate the file descriptor from the GVM and the
host OS automatically, we can then transparently execute
the existing legacy utility in HYPERSHELL without any
modification.

Intuitively, we would use dynamic taint analysis [29]
to differentiate the file descriptors that are accessed inside
the GVM or the host OS. However, such a design would
require instruction level instrumentation, which is often
very slow. In fact, our earlier design adopted such a taint
analysis approach by running HYPERSHELL in an emula-
tor. Surprisingly, we have a new observation and we can
actually eliminate the expensive dynamic taint analysis.
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In particular, as a file descriptor is just an index (a 32-
bit unsigned integer) to the opened files (and network
socket) inside the OS kernel for each process, it has a
limited maximum value (due to the resource constraints).
In our testing Linux kernel, it is 1023 (which means a
process can only open 1024 files at the same time). Also, it
is extremely rare to perform data arithmetic operations on
a file descriptor. Therefore, we can in fact add a distinctive
value (e.g., 4096 or 8192) to the file descriptor returned
by the GVM. Whenever such a descriptor is used by the
GVM again, we subtract our added value. As such, we
can differentiate whether a file descriptor is from the host
OS or the GVM by simply looking at its value.

Whether a file descriptor should be returned from the
GVM or the host OS depends on the semantics of open.
Specifically, if it is opening the guest OS files (we can
differentiate this based the parameters, and internally we
add a prefix associated with the guest files), it is executed
in the GVM; otherwise it is executed in the host OS. For
instance, we know ‘“/etc/shadow” is in the GVM, and
“foutside/shadow” is in the host OS while executing “cp
/etc/shadow /outside/shadow”. Similarly, we
can also infer the files involved in “cp -R <src>
<dst>" by their names and their opening mode.

Syscalls in Dynamic Loader. To intercept the syscall,
we use dynamic library interposition [13] (a tech-
nique that has been widely used in many applica-
tions such as LibSafe [36]). Interestingly, we notice
that the syscalls executed in dynamic loader cannot
be trapped by our library interposition. Therefore,
syscalls executed while loading a dynamic library (e.g.,
access/open/stat64/read/close) will not be
checked against our policy, and they will be executed di-
rectly on the host OS side, which is exactly what we want.

Summary. By default, the majority of the syscalls will
be treated as redirectable and they will be executed in
the GVM, except process execution and memory manage-
ment related syscalls that will be executed in the host OS.
All file system and network connection related syscalls
will be checked against the file descriptor. Whether a file
descriptor needs to be checked is determined by the se-
mantics of the corresponding file operations.

3.2 Syscall Data Exchanger

Since we need to make an R-syscall executed in the GVM,
we must inform the GVM with the corresponding context
and also update the corresponding memory state at the
host OS side to reflect the R-syscall’s execution. Our
Syscall Data Exchanger is designed for this goal.
Specifically, right after an R-syscall enters the library
space (Step @), we will retrieve the syscall arguments
(e.g., the buffer address and size information) based on
the corresponding syscall’s specification. Then, we will
inform its peer (to be discussed in §4.3) to prepare for the

necessary arguments at the GVM side. Once an R-syscall
finishes the execution (Step ®), we will pull the data back
from the GVM to the host OS. All of these operations are
quite straightforward.

4 Guest VM Side Design

4.1 Helper Process Creator

An R-syscall must be executed under a certain process
execution context in the GVM. While we could hijack an
existing process to execute an R-syscall, such an approach
is too intrusive to the hijacked process. Therefore, we
choose to create a helper process dedicated to executing
our R-syscall in the guest OS. Regarding the permission
of this helper process, it should have the highest privilege;
otherwise an R-syscall may fail due to certain permis-
sions. Also, it would terminate when the master process
terminates (to minimize the impacts to the guest OS work-
loads). To have better performance while executing the
management utilities in HYPERSHELL, we can also have
an option of creating a daemon process as the creation
of a helper process takes additional time. There are only
three instructions for this helper process as shown below:

00000001 cd 80 int 0x80
_loop:

00000003 cc int 3

00000004 eb fd jmp _loop

Basically, it keeps executing int3 (i.e., while (1)
int3) with a prefix of int 0x80. We will explain why
we use such an instruction sequence in §4.2.

Then the challenge lies in how to select a high privi-
lege process to fork the helper process. Since all Linux
kernels have an init process with PID 1, one option is
to traverse the pid field of the task_struct for each
process. But such a design would make HYPERSHELL
too OS-specific. Fortunately, since we are able to inject
an R-syscall (discussed in §4.2), we are certainly able to
inject getpid to inspect the return values. If it is 1, we
can therefore infer that the current execution context is
the init process, and we can then inject a fork syscall
to create our helper process. Meanwhile, we will retrieve
the child PID from the return value of fork, and then use
getpid again to identity the helper process. Once we
have identified it, we will pull its CR3 such that the hyper-
visor knows it is the int 3 that occurs in our helper pro-
cess, not others (e.g., gdb) by looking at the CR3 value.

Consequently, we must design a mechanism to inter-
cept the entry point and exit point of the syscall execu-
tion for each process in order to select the init process.
Once we have created our helper process, we will not
need this interception. We call the selection of init pro-
cess redirection initialization phase (i.e., the RI-Phase
that only occurs at Step @) in the GVM. With hardware-
assisted virtualization, we can rely on hardware mecha-
nisms to intercept the execution of the syscall instructions.
Ether [14], built atop the Xen hypervisor, leverages a page
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fault exception to capture syscall entry and syscall exit
points. Nitro [31], based on the KVM hypervisor, lever-
ages invalid segment exceptions to intercept the pair of
sysenter/int0x80 and sysexit syscalls for a sin-
gle process. In our design, we extend Nitro to intercept the
system wide syscall entry and exit pairs (for all processes).

4.2 Reverse Syscall Execution

After we have passed the RI-Phase, we are then ready to
execute an R-syscall if there is any. Yet we have to solve
two additional challenges: when and how to execute an
R-syscall under our helper process context.

When to Inject a Syscall. At a given time, a process ei-
ther executes in user space or kernel space. To trap to
kernel, a process must use a syscall or interrupt (including
exceptions). As an interrupt or exception can occur at
arbitrary time, the OS must be designed in such a way
that it is safe to trap to OS kernel and execute syscall
or interrupt handler services at any time in user space.
However, we cannot inject a syscall execution at arbitrary
time in kernel space. This is because: (1) the injected
syscall might make kernel state inconsistent. For instance,
we might inject a syscall when the kernel is handling an
interrupt, and there might be some synchronization primi-
tives involved (e.g., spin_lock). After we inject a new
syscall, if this syscall execution also happens to lock some
data or release certain locks, it may cause inconsistency
among these locks. (2) Similarly, we might make the non-
interruptible code interruptible. For instance, if the kernel
is executing the c11i code block and has not executed
st i yet, and if we inject a new syscall, this may make the
non-interruptible code interruptible. (3) We might also
overflow the kernel stack of a running process if it already
has a large amount of data.

Therefore, to inject the execution of a syscall, we use
the approach that right before entering the kernel space
(e.g., sysenter/int0x80), or right after exiting
to the user space of a running process, we will save
the current execution context (namely all the CPU
registers), and then execute the injected syscall (such as
our getpid casein §4.1).

Regarding our helper process, we have a slightly dif-
ferent strategy to inject the R-syscall. In particular, when
the int 3 traps to hypervisor, we change the current user
level EIP (pointing to cc at this moment) to EIP-2, which
points to “int 0x80”’; meanwhile, we prepare for the
necessary arguments such as setting up the corresponding
registers. Then when control returns to the user space
of the helper process, it will automatically execute the
syscall we prepared for because we have changed its EIP.
The use of int 3 is to make the control flow of the helper
process trap to the hypervisor. There are also alternative
approaches such as using a cpuid instruction.

How to Execute an R-syscall. To execute an R-syscall,
we have to set up the syscall arguments and map the

memory that will be used during the R-syscall execution.
This is done by our Syscall Data Exchanger (§4.3) at Step
@. After that, the syscall will be executed as usual in the
GVM. If there is any memory update to the user space, it
will directly (Step @) update to the shared memory that is
allocated by our Syscall Data Exchanger. For kernel space,
it directly updates the guest kernel. Once an R-syscall
finishes, we inform the Syscall Dispatcher at Step ®, and
push the updated memory back to the master process. At
the GVM side, the helper process continues its execution
of int 3. When the master process exits, we terminate the
helper process if it is not executed in the daemon mode.

4.3 Syscall Data Exchanger

As discussed in §3.2, we need to pass the corresponding
syscall parameters to the GVM. Also, we need to map the
data back to the host OS if there is any memory update.
The Syscall Data Exchanger at the GVM side is exactly
designed to achieve these goals.

One issue we have to solve is the virtual address relo-
cation. This is because the same virtual addresses used
by the host OS may not be available for the helper pro-
cess in the GVM, and we have to relocate the virtual
addresses used in the syscalls of the master process to
the available addresses of the helper process. To this end,
before the execution of the first R-syscall, we will first
allocate a large buffer (as a cache) with a default size of
64K bytes by injecting a mmap syscall and recording the
mapped virtual address of this buffer, denoted as V,, and
its size, denoted as S,. (Certainly, the guest OS will au-
tomatically munmap this allocated space once the helper
process terminates.) Then whenever there is an R-syscall
(e.g., read) that has an argument with virtual address V},
and size Sy, we will use V, as the buffer starting address
instead of V},, and if S, is greater than S,, we will inject
mmap to map more caches.

Also, to avoid too many data transmissions between
the host OS and the GVM, we allocate a shared memory
between them. Right after the execution of the mmap
syscall to allocate new pages for the redirected syscall,
in the hypervisor layer we map the pages of the shared
memory to the virtual address of the mmap returned page
by traversing the page tables (rooted by the captured CR3)
of the helper process, such that we do not have to perform
an additional memory copy from the GVM to the shared
memory. To prevent being swapped by the guest OS, we
inject m1ock syscall to lock the mmap allocated memory.

5 [Evaluation

We have developed a proof-of-concept prototype of Hy-
PERSHELL with 3,700 lines of C code. The implementa-
tion is scattered across both the host OS side, which is
atop Linux kernel 3.0.0-31, and the KVM side. While we
have used KVM to build HYPERSHELL, we believe our
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Process S B(ms) D(ms) T(X) date X 011 0.12  1.09 mkdir [ v 0.10 0.19  1.90
ps X 1.33 5.42 4.08 w X 095 6.62 6.97 mkfifo | v 0.10 0.19 1.90
pidstat X 1.95 7.56 3.88 hostname v 004 0.06 1.50 mknod | v 0.10 0.19 1.90
nice v 007 0.11 1.57 groups v 021 0.62 2.95 mv v 015 0.31 2.07
getpid v 001 0.02 2.00 hostid v 016 0.56 3.50 m v 0.08 0.15 1.88
mpstat X 029 0.66 2.28 locale v 0.09 0.17 1.89 od v 012 0.35 292
pstree X 0.69 6.03 8.74 getconf v 0.09 034  3.78 cat v 0.07 0.18 2.57
chrt v 011 016 145 |[SystemUtils | S B(ms) D(ms) T(X)|| link |v 007 013 186
renice v 011 0.18 1.64 uptime X 007 0.47 6.71 comm v 0.08 0.22 2.75
top X 50492 51085 1.01 sysctl v 8.5 4272 5.03 shred X 072 0.92 1.28
nproc v 007 0.26 3.71 arch v 007 0.11 1.57 truncate | v/ 0.07 0.26 3.71
sleep v 1.27 1.28 1.01 dmesg v 038 0.51 1.34 head v 007 0.15 2.14
pgrep v 089 4.72 5.30 Iscpu v 026 1.21 4.65 vdir v 0.63 3.95 6.27
pkill v 087 4.33 4.98 mcookie X 029 0.49 1.69 nl v 0.08 0.17 2.13
snice v o017 0.65 3.82 || Disk/Devices | S B(ms) D(ms) T(X) tail v 0.08 020 250
echo v 007 0.09 1.29 blkid v 014 0.61 4.36 namei v 0.07 0.13 1.86
pwdx v 005 0.07 1.40 badblocks v 035 0.44 1.26 whereis | v/ 2.05 4.86 2.37
pmap v 016 0.36 225 Ispci v 3140 3652 1.16 stat vo027 0.78 2.89
kill v 001 0.04 4.00 iostat v 045 1.04 2.31 readlink | v 0.07 0.12 1.71
killall v 062 3.03 4.89 du v 011 0.53 4.82 unlink v 007 0.13 1.86
Memory | S B(ms) D(ms) T(X) df v 016 035 219 cat | v 008 017 213
free X 004 0.08  2.00 Filesystem | S B(ms) D(ms) T(X) dir v 0.07 020  2.86
vmstat X 019 0.33 1.74 sync v 807 6.53 081 mktemp | v/ 0.09 0.18 2.00
slabtop X 022 0.36 1.64 getcap v 0.04 0.08 2.00 rmdir v 0.07 0.13 1.86
Modules S B(ms) D(ms) T(X) Isof v 331 6.12 1.85 ptx v 012 0.45 3.75
rmmod v 051 3.14 6.16 pwd v 007 0.11 1.57 chcon v 0.06 0.12 2.00
modinfo v 048 1.54 321 Files S B(ms) D(ms) T(X) || Network | S B(ms) D(ms) T(X)
Ismod v 010 0.17 1.70 chgrp v 019 0.47 2.47 ifconfig | X 032 1.15 3.59
Environment | S B(ms) D(ms) T(X) chmod v 007 0.14  2.00 ip v 010 0.20  2.00
who v 014 0.72 5.14 chown v 019 0.47 2.47 route v 138.65 15032 1.08
env v 007 0.11 1.57 cp v 011 0.27 2.45 ipmaddr | v 0.13 0.34 2.62
printenv v 007 0.1 1.43 uniq v 0.09 0.35 3.89 iptunnel | v/ 0.09 0.29 3.22
whoami v 019 0.45 2.37 file v 087 1.72 1.98 nameif | v-  0.10 0.21 2.10
stty v 011 0.46 4.18 find v 020 0.58 2.90 netstat X 025 0.37 1.48
users v 0.09 0.53 5.89 grep v 035 2.14 6.11 arp v 014 0.24 1.71
uname v 0.09 0.11 1.22 In v 008 0.14 1.75 ping X 15.02 18.2 1.21
id v 026 0.85 3.27 Is v 014 0.27 1.93 Avg. - 727 8.45 2.73

Table 2: Evaluation Result of the Tested Utility Software. S stands for whether there is any Syntax-difference, B(ms)
stands for the average time of the base execution, D(ms) stands for the average execution time of the utility in
HYPERSHELL when using the daemon mode in GVM, and T (X) stands for the result of D/B (i.e., the times).

design can be applied to other types of hypervisors such
as Vmware, Xen and VirtualBox.

In this section, we present our evaluation results. All
of our experiments were carried out on a host machine
configured with an Intel Core i7 CPU with 8G memory
and running with Ubuntu 12.04 using Linux kernel 3.0.0-
31; the guest OS is Debian 6.04 with kernel 2.6.32.8.

5.1 Effectiveness

Benchmark Software. Recall the goal of HYPERSHELL
is to enable the execution of native management utilities
at the hypervisor layer to manage a guest OS, and
also enable the fast development of these software by
using the R-syscall abstraction. Since the software
development with HYPERSHELL is very simple (a
hypervisor programmer just needs to annotate the syscall
and inform HYPERSHELL which one is an R-syscall),
we skip this evaluation. In the following, we describe
how we automatically execute the native utilities in
HYPERSHELL to transparently manage a guest OS.
Today, there are a large number of administrative util-
ities to manage an OS. To test HYPERSHELL, we system-
atically examined all of the utilities (in total 198) from six
packages including core-utility, util-linux, procps, module-
init-tools, sysstat, and net-tools, and eventually we se-

lected 101 utilities, as presented in Table 2, though tech-
nically we can execute all of them. The selection criteria
is the following: if a utility is all user level program (e.g.,
hash computation such as md5sum), or not so system
management related (e.g., tr), or can be executed in al-
ternative way (e.g., poweroff, halt), or not supported
by the kernel any more (e.g., rarp), we ignore them.

Experimental Result. Without any surprise, through our
automated system call reverse execution policy, all of
these utilities can be successfully executed in HYPER-
SHELL. To verify the correctness of these utilities, we
use a cross-view comparison approach in a similar way
when we tested our prior systems such as VMST [16, 17]
and EXTERIOR [18]. Basically, to test a given utility such
as ps, we first execute it inside the GVM and save the
output, which is called the in-VM view; then we execute
it inside HYPERSHELL to manage the GVM and also save
the output, which is called the out-of-VM view. Then we
compare the syntax (through di £ £) and semantics (with
a manual verification) of the in-VM and out-of-VM views,
which leads to the two sets of effectiveness test results:
one is the syntax comparison, and the other is the semantic
(i.e, the meaning) comparison.

We notice that while there are 16 utilities that have
syntax differences (as shown in the S column in Table 2),
all other utilities have the same screen output. A further
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investigation shows that the syntax differences among
them is actually caused due to the different location (host
OS vs. GVM) and timing of performing our in-VM and
out-of-VM experiment. Regarding the semantics, we no-
tice that all of the utilities have the same semantics as the
original in-VM programs through our manual verification.

Testing w/ More Guest Kernels. Working at syscall level
allows HYPERSHELL with less constraint and wider ap-
plicability because of the POSIX compatibility. For in-
stance, we can now use a single host OS to manage a
large number of syscall-compatible OSes. To validate this,
we selected five other recently released Linux kernels of
versions 2.6.32, 2.6.38, 3.0.10, 3.2.0, and 3.4.0, and exe-
cuted them in our GVM. Our benchmark utilities were all
correctly executed with these kernels.

5.2 Performance Overhead

When executing a program in HYPERSHELL, there are
two processes to fulfill the execution: the master process
executed in the host OS, and the helper process executed
in the guest OS. Consequently, we have to measure two
sets of performance. One is how slow an end-user would
feel when executing a utility in HYPERSHELL. The other
is the impact with respect to the guest OS kernel due to
our syscall capturing and helper process execution at the
GVM. Below we report these two types of overhead.

5.2.1 Performance Impact to the Native Utilities

With different settings of the helper process (daemon or
non-daemon), we could also have two sets of performance
overhead for the utility software. However, the perfor-
mance differences for these two settings mainly come
from the creation of the helper process, which is almost a
constant factor (the time interval between the two sched-
uled executions of the init process). Our evaluation
shows that every 5 seconds, the init process will be
scheduled. Therefore, it leads to the creation of a helper
process with maximum 5 seconds, the worst case delay if
we want to use a non-daemon helper process to execute
the R-syscall. All other latency is the same compared to
the daemon mode execution. Therefore, in the following,
we present our result with the daemon mode execution of
the helper process.

Again, we used these 101 utilities in effectiveness
tests to measure this overhead. Specifically, we executed
the utilities each with 100 times and computed their
average. First, we ran all of them in a native-KVM and
got the average execution time for each of them as the
base. This result is presented in the B-column of Table 2.
Then we collected the average run time of these utilities
in HYPERSHELL with a daemon helper process in the
GVM. This result is presented in the D-column. We
computed the overhead of this test with the base one, and
we report them in the 7-column. We compare with the
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stat (Us) 0.39 2.28 82.89 0.41 4.88
fork proc (us) 47.20 147.26 67.95 47.54 0.72
exec proc (Us) 158.20 480.00 67.04 161.30 1.92
sh proc (us) 384.90 1088.10 64.63 386.30 0.36
ctxsw (Us) 0.59 1.23 52.03 0.73 19.18
10K File Create (us) 17.80 40.67 56.23 17.96 0.89
10K File Delete (us) 4.64 7.16 35.20 4.65 0.22
Bcopy (MB/s) 5689.17 5647.71 0.73 5605.40 1.47
Rand mem (ns) 72.20 72.65 0.62 73.24 1.42
Mem read (MB/s) 10150.00 10000.00 1.48 10000.00 1.48
Mem write (MB/s) 8567.70 8543.00 0.29 8540.40 0.32

Table 3: Micro-benchmark Test Result of GVM.

execution running in native-KVM instead of native host
OS because we are comparing our out-of-VM approach
with an in-VM approach. We notice that on average,
with a daemon mode helper process, HYPERSHELL has
2.73X slowdown compared to the executions running
in a native-KVM. This overhead mainly comes from the
data exchange and synchronization between the host OS
and the GVM during the R-syscall execution.

5.2.2 Performance Impact to the GVM

The performance impact to the GVM also falls into two
scenarios: one is the system wide sysenter/sysexit inter-
ception that is used to capture the init process (recall
we name it the RI-Phase), and the other is the R-syscall
execution that occurs in the helper process (we call this
RE-Phase). These two phases inevitably introduce per-
formance penalty to the running workloads/processes at
GVM. Note that if the GVM is neither running in RI nor
RE-Phase, there is no performance overhead. To quantify
the overhead from these two scenarios, we used standard
benchmark programs (e.g., LMBench, and ApacheBench)
that are used in other work (e.g., [37, 39]) to measure the
runtime overhead of the guest OS execution at both micro
and macro level for these two phases.

Also, according to the result from Table 2, the execution
of the RE-phase is very short (on average 8.45 millisec-
onds). In addition, our RI will never be executed if the
helper process has created. Therefore, we have to create an
environment to keep executing RI and RE such that we can
measure the impact to the long running benchmark pro-
grams. That is, we will keep polling the init process to
measure the impact from the RI-Phase, and keep executing
the int 3 loop for the helper process to measure the im-
pact from the RE-Phase. These results are the worst case
performance impact to running processes in the GVM.

Micro-benchmarks. To evaluate the primitive level
performance slowdown, we used LMBench suites. In
particular, we focused on the overhead of the stat
syscall, process creation (fork proc), process execution
(exec proc), C library function (sh proc), context switches
(ctxsw), memory-related operations (e.g., bcopy, Mem
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read, Mem Write), and 10-related operations (e.g., 10k
File Create, and 10K File Delete).

The detailed result is presented in Table 3. The RI-
Phase tends to have large overhead on tests which contain
syscalls, as we intercept the system-wide syscall entry and
exit points. While we do not intercept context switches,
our system still has large overhead on the ctxsw test.
The reason is that LMBench tests the time of context
switches on a number of processes. And these process are
connected using pipe. Therefore, the measurement still
contains syscalls. In contrast, during the RE-Phase, our
syscall interception is only within the helper process, and
it has significantly less overhead except the ct xsw case
with similar reasons in the RI-Phase.

Macro Benchmarks. We used four real world workloads
to quantify the performance slowdown at the macro level.
In particular, we decompressed a source tarball of Linux
2.6.32.8 using bzip, and then compiled the kernel us-
ing kbuild. We recorded the process time. In the test of
Apache, we used ApacheBench [1] to issue 100,000 re-
quests for a 4k-byte file from a client machine and got the
throughput (#request/s). For memcached [5], we recorded
the time of processing 1,000 requests.

The performance overhead is presented in Table 4. For
the RI-Phase, the overhead comes from the VMexit of
trapping syscall entry and exit. Hence, the workloads that
have large portions of 10 operation will incur large over-
head, e.g., as in Kbuild, Apache, and memcached. The
worst case is memcached which is also sensitive to 10-
latency. In contrast, computation intensive workloads have
small overhead (as in the bzip case). Regarding the RE-
Phase, all the workloads have small overhead because
our system only introduces a user mode int 3 loop. The
VMexit only occurs in the helper process execution con-
text. The only side effect is that the helper process takes
some CPU time slices from them.

5.3 Case Studies

Once we have enabled the execution of native utilities in
HYPERSHELL to manage the guest OS, many new use
cases would appear. For instance, we can now kill ma-
licious processes, remove malicious drivers, change the
guest IP address, update the firewall rules, etc., directly
from the hypervisor layer. In the following, we demon-
strate an interesting use case of our system—full disk
encryption (FDE) protected virus scanning from the hy-
pervisor.

Today, because of the privacy and data-breach concerns,
a growing practice for outsourced VMs is to deploy FDE.
Unfortunately, this has brought challenges for disk in-
trospection, forensics, and management. With HYPER-
SHELL, we can actually use off-the-shelf anti-virus soft-
ware from the host OS to transparently scan files in the
guest OS even though the GVM disk might have been
encrypted by FDE.
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bzip (s) 16.83 18.35 8.28 17.04 1.23
kbuild (s) 1799.00 2270.25 20.76 1889.97 4.81
memcached (s) 1.57 3.11 49.52 1.64 4.27
Apache (#request/s) 1104.60  904.12 18.15 1065.28 3.56

Table 4: Macro-benchmark Test Result of GVM.

To validate this, we installed dm—crypt [3], a trans-
parent FDE subsystem in the Linux kernel (since ver-
sion 2.6) in our GVM. Under a test user home di-
rectory, we copied a large volume of files including
the source code of Linux-2.6.32.8, gcc, glibc, QEMU,
Apache, and Lmbench, as well as two viruses from
offensivecomputing.com, resulting in a total
number of 101,415 files adding up to 1336.09 megabytes
in size. In the host OS, we installed ClamAV-0.98 [2]
and used it (in particular its clamscan) to scan the files
in /home/test in the GVM. We tried two different
approaches in this testing:

e The first is to directly allow clamscan running
in HYPERSHELL to scan the files in the GVM by
redirecting the R-syscall, and in this case it took
188.35 seconds to scan the entire 1336.09 megabytes
of files and find the two viruses.

e The second is to copy (i.e., cp) the files in
/home/test to our host OS, and then scan them
natively. In this case, it took 59 seconds to copy these
files, with another 120.91 seconds scanning them, re-
sulting in a total of 179.91 seconds.

It is worth noting that very interestingly if we installed
ClamAY inside the GVM and scanned these files, it would
take 271.58 seconds. Therefore, by moving certain man-
agement software running into HYPERSHELL, it can in
fact speedup certain computation (188.35 vs. 271.58) as
shown in our clamscan case. There are two primary
sources for this speedup: one is that there is no additional
VMexit when processing the disk 10 at the host OS side
(i.e., IO in host OS is usually faster than guest OS), and the
other is because there is no need for the decryption of the
signature data base of ClamAV when running at host OS.

6 Limitations and Future Work

While HYPERSHELL offers better automation (e.g., no
need of login), uniformity (e.g., all of the VM can be
checked for anti-virus), and centralized management (e.g.,
using only one copy of the software running at a hypervi-
sor to manage a large number VMs, and there is a need of
only updating the copy at the hypervisor layer), it comes
with price. In particular, it will circumvent all of the ex-
isting user login and system audit for each managed VM.
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For instance, syslog in each individual VM will not be
able to capture all the executed events inside the guest OS.
To fix this, we need to add a new log record at the hyper-
visor layer for each activity executed in HYPERSHELL,
such that the entire cloud can still be audited. One avenue
of our future research will address this.

Second, as normal utility software does, HYPERSHELL
requires the trust of the guest OS kernel as well as the
init process. Consequently, it cannot be used for se-
curity critical applications, especially when the kernel
has been compromised. Also, unlike introspection, which
aims to achieve stealthiness, HYPERSHELL is not de-
signed with this goal in mind, since its primary goal is to
manage the guest OS (which definitely introduces foot-
prints) from out-of-VM in the same way as we manage
in-VM but in a more centralized and automated manner.

Third, our current prototype requires both OSes running
in the host OS and the GVM to have compatible syscall
interface. If a guest OS uses a randomized system call
interface (e.g., RandSys [25]), it could thwart the execu-
tion of the management utilities at HYPERSHELL. In fact,
we can design certain logic in our Syscall Dispatcher and
Reverse Syscall Execution component to perform syscall
translations even though the syscalls are not fully compat-
ible or randomized (e.g., with different syscall number).
We leave this as another future work. Again, we would like
to emphasize that working at syscall boundary makes HY-
PERSHELL with less constraint when compared to other
alternative approaches. For instance, it is possible to di-
rectly inject the shell command to the guest OS to achieve
the same goal (e.g., configure the guest OS), or directly
inject the file system updates. However, command-line
interfaces or configuration file interfaces are less stable
when compared to the syscall interface. That is why even-
tually it leads to our R-syscall based approach.

Finally, our Syscall Dispatcher uses dynamic library
interposition, and it ignores the syscall policy checking
in the dynamic loader. Therefore, static linked native
utilities cannot be executed in HYPERSHELL. Also, if
there is a different loader whose syscall can be captured
by library interposition, we have to design new techniques
to differentiate the syscall policy for these syscalls.
One possible solution is to add the call stack context
in our policy check. In addition, while most of our
design is OS-agnostic, we currently only demonstrate
HYPERSHELL with the Linux kernel and we would like
to test with other OSes such as Microsoft Windows. We
leave these in our other future efforts.

7 Related Work

Our work is related to the virtual machine introspection
(VMI) [19, 26] and VM management in the cloud. In this
section, we review and compare them with HYPERSHELL.

Being a layer below of the OS, virtual machine gives
new opportunities for VMI, which inspects and analyzes

both the user level program and OS kernel states outside
the machine itself. However, the key challenge in VMI
lies in how to bridge the semantic gap. Over the past
decade, many approaches have been proposed to address
this problem, and these approaches can be classified
into: debugger assisted (e.g., [19]), manual kernel data
structure traversal (e.g., [24]), kernel source code analysis
and customization (e.g., [8, 23]), in-VM kernel module
assisted (e.g., [30, 34]), and binary code or execution
context reuse (e.g., [21, 15, 35, 22, 16, 17, 18]). In this
section, we will not go through and compare with each
of these existing techniques, but rather compare with the
most related ones as presented in Table 5.

To narrow the semantic gap, VIRTUOSO [15] made a
first step showing that we can actually reuse the legacy
binary code to automatically create VMI tools with the
assistance from a human expert. The key idea is to first
train each in-VM program (e.g., ps) and then translate
the trained traces (essentially slices) into an independent
introspection program running at the hypervisor layer. In-
spired by VIRTUOSO, VMST [16] shows a dual-VM based,
online kernel data redirection approach that addresses the
limitations from the training (i.e., code coverage issue). Its
key idea is to reuse the execution context of an inspection
process in an SVM; when a kernel instruction accesses
the kernel data of introspection interest, it redirects the
data from the GVM to the SVM. Built atop VMST, EX-
TERIOR [18] demonstrates that it is feasible to build an
external shell to perform the out-of-VM guest OS writable
operations (e.g., for configuration) [28]. Similar to VIR-
TUOSO, both VMST and EXTERIOR do not need to trust
the guest-OS kernel.

While EXTERIOR [18] has made an early attempt of
building a hypervisor layer shell, it has a lot of constraints
and is far from practical. Specifically, it has to first per-
form the guest OS fingerprinting [20], and then use the
exact same version of the guest OS running in an SVM
to introspect the kernel state of a GVM. Second, it can
suffer from various failures and shortfalls when an in-
trospection related syscall uses kernel synchronization
primitives [16, 18]. Third, it is built atop a binary code
translation based VM (e.g., QEMU [6]), which often has
10X-40X performance slowdown compared to the native
execution (though recently HybridBridge [32] has im-
proved the performance with one order of magnitude).
Finally, it is mainly for introspection and has very limited
functionality (e.g., it ignores the disk data including the
swapped memory).

Process Implanting (P1) [21] shows that we can inject
a process running into a GVM by reusing an existing
process context. At a high level, HYPERSHELL does share
some similarity regarding the process injection. However,
PI1 has only limited functionality. For instance, it cannot
directly copy a file from inside to outside. It also cannot
observe the output from native software, unless rewriting
the utility with hypercall (a para-virtualization approach
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that is not transparent to the guest OS). In addition, it
requires the recompilation of the injected programs with
static linking; in contrast, HYPERSHELL is transparent to
both utility software and the guest OS.

Designed for process monitoring, process out-grafting
(PoG) [35] relocates a suspect process from a GVM to an
SVM, and then uses a trusted security tool (e.g., strace)
in the SVM to monitor the behavior of the suspect process.
Unlike HYPERSHELL, which selectively redirects the
syscall based on a transparent policy, all the syscalls of the
suspect process are redirected from the SVM to the GVM.
Therefore, POG does not face the challenges as in HY-
PERSHELL to differentiate the syscall redirection policy.
Meanwhile, all the applications supported by POG can cer-
tainly be supported by HYPERSHELL, but not vice versa.

Designed for high performance computing,
GEARS [22] shows that we can push certain VMM level
virtual services for a guest into the guest itself. Through
such a way, we can reduce the implementation complexity
(since there is no semantic gap for in-VM programs)
and increase the performance. At a high level, while
GEARS and HYPERSHELL shares some similarity of
using syscall interception and code injection techniques,
the substantial difference is that GEARS is not a binary
code reuse based approach, and it is not transparent to the
in-VM programs and requires programmer’s efforts to
(re)develop the new software.

Most recently, concurrent to HYPERSHELL, ShadowEx-
ecution [38] also explores the concept of system call redi-
rection and process injection. With a number of other
security means such as process image protection (e.g.,
code and data integrity) and runtime execution protec-
tion (e.g., control flow integrity) of both guest OS kernel
and the injected process, ShadowExecution shows that
VMI tools can be built as in VMST. The difference com-
pared to ShadowExecution is that HYPERSHELL is mainly
designed for Cloud in-VM management, whereas Shad-
owExecution is mainly for security, though they both are
based on the system call redirection concept.

Our work is also related to VM management in the
cloud, such as VM cloning (e.g., [27]), VM migration
(e.g., [10]), and VM replication (e.g., [12]). However,
these management techniques treat each VM as a whole.
In contrast, we aim to design programs to manage each
guest OS at a fine grained level from our HYPERSHELL,
much like the way we manage an OS in-VM.

8 Conclusion

We have presented the design, implementation, and evalu-
ation of HYPERSHELL, a practical hypervisor layer shell
for automated, uniformed, and centralized guest OS man-
agement. To overcome the semantic gap challenge, we
introduce a reverse system call abstraction, and we show
that this abstraction can be transparently implemented.
Resulting from this, many of the legacy guest OS manage-
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Table 5: Comparison with the most related work.

ment utilities can be directly executed in HYPERSHELL.
Our empirical evaluation with 101 native Linux utilities
shows that we can use HYPERSHELL to manage a guest
OS directly from the hypervisor layer without requiring
any access to administrator’s account. Regarding the
performance, it has on average 2.73X slowdown for the
tested utilities compared to their native in-VM execution,
and less than 5% overhead to the guest OS kernel.
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