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Our Observations

Key Insights

1 UUIDs are broadcasted by BLE IoT devices to nearby smartphones.

2 UUIDs are static.

3 Mobile apps contain UUIDs.

4 Mobile apps identify target BLE IoT devices based on their broadcast UUIDs.
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Hierarchy of UUIDs

Service 
    name: KINSA_SERVICE
    uuid: 00000000-006a-746c-6165…
    characteristics: 
              name: REQUEST_CHARACTERISTIC
              uuid: 00000004-006a-746c-6165…
              descriptors: […]
          
              name: RESPONSE_CHARACTERISTIC
              uuid: 00000002-006a-746c-6165…
              descriptors: […]
           

Service 
     name: BATTERY_SERVICE
     uuid: 180F
     characteristics: […]
      … 
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Our Contributions

1 Novel Discovery. We are the first to discover BLE IoT devices can be
fingerprinted with static UUIDs.

2 Effective Techniques. We have implemented an automatic tool BLEScope to
harvest UUIDs and detect vulnerabilities from mobile apps.

3 Evaluation. We have tested our tool with 18, 166 BLE mobile apps from Google
Play store, and found 168, 093 UUIDs and 1, 757 vulnerable BLE IoT apps.

4 Countermeasures. We present channel-level protection, app-level protection, and
protocol-level protection (with dynamic UUID generation).
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Challenges

1 How to extract UUIDs from mobile apps

2 How to reconstruct UUID hierarchy

3 How to identify flawed authentication vulnerability

Solutions
1 Resolving UUIDs using context and value-set analysis

2 Reconstructing UUID hierarchy with control dependence

3 Identifying flawed authentication with data dependence
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1

Unauthorized
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App-level Vulnerability 
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2

Category API Name

UUID

BluetoothGatt: BluetoothGattService getService
BluetoothGattService: BluetoothGattCharacteristic getCharacteristic
BluetoothGattCharacteristic: BluetoothGattDescriptor getDescriptor
ScanFilter.Builder: ScanFilter.Builder setServiceUuid
ScanFilter.Builder: ScanFilter.Builder setServiceUuid
ScanFilter.Builder: ScanFilter.Builder setServiceData
ScanFilter.Builder: ScanFilter.Builder setServiceData

Table: APIs for UUID extraction and hierarchy
reconstruction
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UUID Extraction

1 public class KelvinDeviceProfile
2 private KelvinDeviceProfile(BlueToothLeGatt arg3) 
3      super();
4 BluetoothGattService v0 = arg3.getService(KelvinGatt.KINSA_SERVICE);
5      if(v0!=null) 
6       this.request = v0.getCharacteristic(KelvinGatt.REQUEST_CHARACTERISTICS);
7       this.response = v0.getCharacteristic(KelvinGatt.RESPONSE_CHARACTERISTICS);
8      
9
10 BluetoothGattService v3 = arg3.getService(KelvinGatt.BATTERY_SERVICE_UUID);
11     if(v3!=null) 
12       this.batterylevel = v3.getCharacteristic(KelvinGatt.BATTERY_VALUE_CHAR_UUID);
13     
14
15 
16
17 public class KelvinGatt
18 public UUID KINSA_SERVICE = UUID.fromString(00000000-006a-746c-6165-4861736e694b);
19 public UUID REQUEST_CHARACTERISTICS = UUID.fromString(00000004-006a-746c-6165-4861736e694b); 
20    public UUID RESPONSE_CHARACTERISTICS = UUID.fromString(00000002-006a-746c-6165-4861736e694b);
21    public UUID BATTERY_SERVICE_UUID = UUID.fromString(0000180F-0000-1000-8000-00805f9b34fb);
22    public UUID BATTERY_VALUE_CHAR_UUID = UUID.fromString(00002A19-0000-1000-8000-00805f9b34fb);
23 
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UUID Hierarchy Reconstruction
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Value-set Analysis UUID & Hierarchy

Android APKs

Sniffed 
Advertisement 

UUIDs

Sniffable-
Devices

Fingerprint-able 
Devices

1

Unauthorized
Accessible Devices

UUID Fingerprinting2

3

App-level Vulnerability 
Identification

2

Category API Name

“Just Works”
BluetoothDevice: boolean createBond()
BluetoothDevice.ACTION BOND STATE CHANGED

Authentication

BluetoothGattCharacteristic: boolean setValue(String)
BluetoothGattCharacteristic: boolean setValue(int,int,int)
BluetoothGattCharacteristic: boolean setValue(byte[])
BluetoothGattCharacteristic: boolean setValue(int,int,int,int)

Cryptography
Cipher: byte[] doFinal(byte[])
Mac: byte[] doFinal(byte[])
MessageDigest: byte[] digest(byte[])

Table: APIs for app-level vulnerability identification
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Companion Mobile App Collection

1 We downloaded 2 million mobile apps from Google Play as of April 2019.

2 We identified BLE IoT apps by searching for after-connection BLE APIs.

3 18,166 BLE IoT apps are found for our analysis

API Name

BluetoothGatt: List getServices
BluetoothGatt: BluetoothGattService getService
BluetoothGattService: UUID getUuid
BluetoothGattService: BluetoothGattCharacteristic getCharacteristic
BluetoothGattCharacteristic: UUID getUuid

Table: APIs used to identify the BLE related IoT apps
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Result of UUID Extraction and Hierarchy Reconstruction

Item Value %

# Apps Collected 18,166
# UUID Identified 168,093
# Unique UUID Identified 13,566

# UUID Hierarchy Edges 540,797 100.0
# UUID Hierarchy Service Edges 316,379 58.5
# UUID Hierarchy Characteristics Edges 224,418 41.5

Table: Experimental result of UUID extraction and hierarchy reconstruction.
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Result of UUID Extraction and Hierarchy Reconstruction

opcode # operations opcode # operations

+ 79,743 — 1,398
/ 9,684 & 1,266
* 5,364 >>> 894
<< 1,860 ˆ 462
- 1,775 >> 17

Table: Operations to resolve UUIDs.

# Apps Mapped to a Single UUID Value %

# 1 8,870 65.4
# 2 1,831 13.5
# 3 688 5.0
# 4 469 3.5
# 5 330 2.4
# ≥ 6 1,378 10.1

Table: Mapping between UUID and apps.
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Result of App-level Vulnerability Identification

Item Value %

# Apps Support BLE 18,166 100.0
# ”Just Works” Pairing 11,141 61.3

# Vulnerable Apps 1,757 15.8
# Absent Cryptographic Usage 1,510 13.6
# Flawed Authentication 1,434 12.9

Table: Insecure app identification result.

Category # App
“Just Absent Flawed
Works” Crypto Auth.

Health & Fitness 3,849 2,639 221 207
Tools 2,833 1,895 385 362
Lifestyle 2,173 1,081 147 141
Business 1,660 972 90 85
Travel & Local 967 582 90 87

Table: Top 5 category of the IoT apps.
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Field Test Environment Setup

BLE Sniffer
I Raspberry-Pi

I Parani-UD100 (Bluetooth adapter)

I Antenna RP-SMA-R/A (1km amplifier)

I SIM7000A GPS module (GPS sensor)
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Field Test Result

Item Value %

# Unique BLE Device 30,862
# Unique BLE Device w. UUID 5,822 18.9

# Fingerprintable 5,509 94.6
# Vulnerable 431 7.4
# Sniffable 369 6.7
# Unauthorized Accessible 342 6.2

Table: Experimental result of our field test.
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Field Test Result

Company Name # Devices

Google 2,436
Tile, Inc. 441
- 243
- 208
Logitech International SA 131
Nest Labs Inc. 114
Google 92
Hewlett-Packard Company 74
- 46
- 44
- 44

Table: Top 10 devices in the field test.
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Field Test Result

Device Description # Device

Digital Thermometer 7
Car Dongle 6
Key Finder A 6
Smart Lamp 5
Key Finder B 5
Smart Toy A 4
Smart VFD 4
Air Condition Sensor 4
Smart Toy B 4
Accessibility Device 4

Table: Top 10 vulnerable devices.
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Anti-UUID Fingerprinting

Countermeasures
1 App-level protection. Use obfuscation [HGM18], encoding, encryption, or cloud

to hide UUIDs in mobile apps.

2 Channel-level protection. BLE-Guardian [FKS16]
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Anti-UUID Fingerprinting

Countermeasures
1 App-level protection. Use obfuscation [HGM18], encoding, encryption, or cloud

to hide UUIDs in mobile apps.

2 Channel-level protection. BLE-Guardian [FKS16]

Drawbacks
1 UUIDs are statically constructed and can still be retrieved from apps.

2 Additional hardware support is required.

3 Not fundamental solutions.
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Anti-UUID Fingerprinting

Countermeasures
1 App-level protection. Use obfuscation [HGM18], encoding, encryption, or cloud

to hide UUIDs in mobile apps.

2 Channel-level protection. BLE-Guardian [FKS16]

3 Protocol-level protection. Construct one-time dynamic UUIDs for broadcast
and communication.
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Dynamic UUID Generation

2. Scan

1. Broadcast default UUIDs

3. First connection

App ADevice App BCloud
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Related Work

1 IoT Security.
I Vulnerability discovery of IoT devices. Credential leakage [CAWM17, CHMS14],

unchanged address [BMI08, DPCM16], privilege misconfiguration [FJP16, HLM+16],
unencrypted channel [ZL17a] and memory corruption [CDZ+18].

I Defenses of vulnerabilities [FPR+16, DMK+12, TZL+17, FKS16].

2 BLE Security. Insecure pairing protocol and eavesdropping attack [Rya13].
MITM attacks [SBA18, SMS18], and brute force attack to break long term
pairing key [Zeg15].

3 Vulnerability discovery based on mobile apps analysis.
I Client Side: FlowDroid [ARF+14], Amandroid [WROR14], TaintDroid [EGC+10],

PiOS [EKKV11], CHEX [LLW+12], SMV-Hunter [SSG+14].
I Server Side: AutoForge [ZWWL16], SmartGen [ZL17b], AuthScope [ZZL17],

LeakScope [ZLZ19], WARDroid [MG18].

29 / 37



Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

BLEScope

Value-set Analysis

Sniffed 
Advertisement 

UUIDs

Fingerprint-able 
Devices

Unauthorized
Accessible Devices

Sniffable-
Devices

UUID & Hierarchy

Android APKs

2

3

1

App-level Vulnerability 
Identification UUID Fingerprinting

2

BLEScope
I Automatic UUID extraction and hierarchy

reconstruction from mobile apps

I Identify app-level vulnerabilities by directly
analyzing mobile apps

App Analysis and Field Test Result
I We analyzed 18,166 apps and discovered

168,093 UUIDs and 1,757 vulnerable apps

I 5,822 BLE devices were discovered in the
field test, and 94.6% can be fingerprinted

30 / 37



Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Limitations and Future Work

1 Fingerprinting precision. We did not use the hierarchy UUIDs to fingerprint the
device. This is due to ethical consideration, since it requires to fetch the data
from the devices to construct the hierarchy of UUIDs (unauthorized access).

2 False negatives. We applied a strict rule to detect flawed authentication in apps.

3 Branch explosion. The backward slicing attempts to exhaustively explore all
possible branches. We will terminate our analysis for such apps.

4 Optional UUIDs. UUIDs do not always exist in BLE broadcast packets [BLS19].
No mobile apps, no need to broadcast UUIDs. (In our field test, we found 25k
such BLE devices.)
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