
Computer Security Laboratory

THE OHIO STATE UNIVERSITY

Automatic Fingerprinting Of Vulnerable BLE IoT Devices

With Static UUIDs From Mobile Apps

Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang

Department of Computer Science and Engineering
The Ohio State University

CCS 2019

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Bluetooth Low Energy and IoT

2 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

BLE IoT Devices and Companion Apps

BLE IoT Devices

Companion Mobile Apps

3 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

BLE IoT Devices and Companion Apps

BLE IoT Devices Companion Mobile Apps

3 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of Device Communication in TCP/IP Setting

AppDevice OS

4 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of Device Communication in TCP/IP Setting

AppDevice OS

1. Listen to port 443

4 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of Device Communication in TCP/IP Setting

AppDevice OS

2. <Request, 192.168.1.1, port 443>

1. Listen to port 443

4 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of Device Communication in TCP/IP Setting

AppDevice OS

2. <Request, 192.168.1.1, port 443>

1. Listen to port 443

3. Connect

4 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of Device Communication in TCP/IP Setting

AppDevice OS

2. <Request, 192.168.1.1, port 443>

1. Listen to port 443

4. Communication

3. Connect

4 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of BLE IoT Devices and Companion Apps

5 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of BLE IoT Devices and Companion Apps

5 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of BLE IoT Devices and Companion Apps

5 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of BLE IoT Devices and Companion Apps

5 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of BLE IoT Devices and Companion Apps

5 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of BLE IoT Devices and Companion Apps

5 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

General Workflow of BLE IoT Devices and Companion Apps

5 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Our Observations

A BLE Broadcast Packet

Decompiled Code in a Companion App

6 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Our Observations

A BLE Broadcast Packet

Decompiled Code in a Companion App

6 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Our Observations

Key Insights

1 UUIDs are broadcasted by BLE IoT devices to nearby smartphones.

2 UUIDs are static.

3 Mobile apps contain UUIDs.

4 Mobile apps identify target BLE IoT devices based on their broadcast UUIDs.

7 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Hierarchy of UUIDs

Service
 name: KINSA_SERVICE
 uuid: 00000000-006a-746c-6165…
 characteristics:
 name: REQUEST_CHARACTERISTIC
 uuid: 00000004-006a-746c-6165…
 descriptors: […]

 name: RESPONSE_CHARACTERISTIC
 uuid: 00000002-006a-746c-6165…
 descriptors: […]

Service
 name: BATTERY_SERVICE
 uuid: 180F
 characteristics: […]
 …

8 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Hierarchy of UUIDs

Service
 name: KINSA_SERVICE
 uuid: 00000000-006a-746c-6165…
 characteristics:
 name: REQUEST_CHARACTERISTIC
 uuid: 00000004-006a-746c-6165…
 descriptors: […]

 name: RESPONSE_CHARACTERISTIC
 uuid: 00000002-006a-746c-6165…
 descriptors: […]

Service
 name: BATTERY_SERVICE
 uuid: 180F
 characteristics: […]
 …

8 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

How to Fingerprint a BLE IoT Device with Static UUIDs

Static Analysis Static UUIDs

9 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

How to Fingerprint a BLE IoT Device with Static UUIDs

Static Analysis

Sniff Advertised
BLE Packets Sniffed UUIDs

Static UUIDs

9 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

How to Fingerprint a BLE IoT Device with Static UUIDs

Static Analysis

Sniff Advertised
BLE Packets Sniffed UUIDs

Static UUIDs

Fingerprinting

BLE IoT
Device

9 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Application of BLE IoT Device Fingerprinting

Static Analysis

Vulnerabilities

Sniff Advertised
BLE Packets Sniffed UUIDs

Static UUIDs

Fingerprinting

10 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Application of BLE IoT Device Fingerprinting

Static Analysis

Vulnerabilities

Sniff Advertised
BLE Packets Sniffed UUIDs

Static UUIDs

Fingerprinting

Vulnerable
Device

10 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Our Contributions

1 Novel Discovery. We are the first to discover BLE IoT devices can be
fingerprinted with static UUIDs.

2 Effective Techniques. We have implemented an automatic tool BLEScope to
harvest UUIDs and detect vulnerabilities from mobile apps.

3 Evaluation. We have tested our tool with 18, 166 BLE mobile apps from Google
Play store, and found 168, 093 UUIDs and 1, 757 vulnerable BLE IoT apps.

4 Countermeasures. We present channel-level protection, app-level protection, and
protocol-level protection (with dynamic UUID generation).

11 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Overview of BLEScope

Value-set Analysis UUID & Hierarchy

Android APKs

1

12 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Overview of BLEScope

Value-set Analysis UUID & Hierarchy

Android APKs

Sniffed
Advertisement

UUIDs

Fingerprint-able
Devices

1

UUID Fingerprinting

2

12 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Overview of BLEScope

Value-set Analysis

Sniffed
Advertisement

UUIDs

Fingerprint-able
Devices

Unauthorized
Accessible Devices

Sniffable-
Devices

UUID & Hierarchy

Android APKs

2

3

1

App-level Vulnerability
Identification UUID Fingerprinting

2

12 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Challenges and Insights

Challenges

1 How to extract UUIDs from mobile apps

2 How to reconstruct UUID hierarchy

3 How to identify flawed authentication vulnerability

Solutions
1 Resolving UUIDs using context and value-set analysis

2 Reconstructing UUID hierarchy with control dependence

3 Identifying flawed authentication with data dependence

13 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Challenges and Insights

Challenges

1 How to extract UUIDs from mobile apps

2 How to reconstruct UUID hierarchy

3 How to identify flawed authentication vulnerability

Solutions
1 Resolving UUIDs using context and value-set analysis

2 Reconstructing UUID hierarchy with control dependence

3 Identifying flawed authentication with data dependence

13 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Value Set Analysis

Value-set Analysis UUID & Hierarchy

Android APKs

Sniffed
Advertisement

UUIDs

Sniffable-
Devices

Fingerprint-able
Devices

1

Unauthorized
Accessible Devices

UUID Fingerprinting2

3

App-level Vulnerability
Identification

2

Category API Name

UUID

BluetoothGatt: BluetoothGattService getService
BluetoothGattService: BluetoothGattCharacteristic getCharacteristic
BluetoothGattCharacteristic: BluetoothGattDescriptor getDescriptor
ScanFilter.Builder: ScanFilter.Builder setServiceUuid
ScanFilter.Builder: ScanFilter.Builder setServiceUuid
ScanFilter.Builder: ScanFilter.Builder setServiceData
ScanFilter.Builder: ScanFilter.Builder setServiceData

Table: APIs for UUID extraction and hierarchy
reconstruction

14 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Value Set Analysis

Value-set Analysis UUID & Hierarchy

Android APKs

Sniffed
Advertisement

UUIDs

Sniffable-
Devices

Fingerprint-able
Devices

1

Unauthorized
Accessible Devices

UUID Fingerprinting2

3

App-level Vulnerability
Identification

2

Category API Name

UUID

BluetoothGatt: BluetoothGattService getService
BluetoothGattService: BluetoothGattCharacteristic getCharacteristic
BluetoothGattCharacteristic: BluetoothGattDescriptor getDescriptor
ScanFilter.Builder: ScanFilter.Builder setServiceUuid
ScanFilter.Builder: ScanFilter.Builder setServiceUuid
ScanFilter.Builder: ScanFilter.Builder setServiceData
ScanFilter.Builder: ScanFilter.Builder setServiceData

Table: APIs for UUID extraction and hierarchy
reconstruction

14 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

UUID Extraction

1 public class KelvinDeviceProfile
2 private KelvinDeviceProfile(BlueToothLeGatt arg3)
3 super();
4 BluetoothGattService v0 = arg3.getService(KelvinGatt.KINSA_SERVICE);
5 if(v0!=null)
6 this.request = v0.getCharacteristic(KelvinGatt.REQUEST_CHARACTERISTICS);
7 this.response = v0.getCharacteristic(KelvinGatt.RESPONSE_CHARACTERISTICS);
8
9
10 BluetoothGattService v3 = arg3.getService(KelvinGatt.BATTERY_SERVICE_UUID);
11 if(v3!=null)
12 this.batterylevel = v3.getCharacteristic(KelvinGatt.BATTERY_VALUE_CHAR_UUID);
13
14
15
16
17 public class KelvinGatt
18 public UUID KINSA_SERVICE = UUID.fromString(00000000-006a-746c-6165-4861736e694b);
19 public UUID REQUEST_CHARACTERISTICS = UUID.fromString(00000004-006a-746c-6165-4861736e694b);
20 public UUID RESPONSE_CHARACTERISTICS = UUID.fromString(00000002-006a-746c-6165-4861736e694b);
21 public UUID BATTERY_SERVICE_UUID = UUID.fromString(0000180F-0000-1000-8000-00805f9b34fb);
22 public UUID BATTERY_VALUE_CHAR_UUID = UUID.fromString(00002A19-0000-1000-8000-00805f9b34fb);
23

15 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

UUID Extraction

1 public class KelvinDeviceProfile
2 private KelvinDeviceProfile(BlueToothLeGatt arg3)
3 super();
4 BluetoothGattService v0 = arg3.getService(KelvinGatt.KINSA_SERVICE);
5 if(v0!=null)
6 this.request = v0.getCharacteristic(KelvinGatt.REQUEST_CHARACTERISTICS);
7 this.response = v0.getCharacteristic(KelvinGatt.RESPONSE_CHARACTERISTICS);
8
9
10 BluetoothGattService v3 = arg3.getService(KelvinGatt.BATTERY_SERVICE_UUID);
11 if(v3!=null)
12 this.batterylevel = v3.getCharacteristic(KelvinGatt.BATTERY_VALUE_CHAR_UUID);
13
14
15
16
17 public class KelvinGatt
18 public UUID KINSA_SERVICE = UUID.fromString(00000000-006a-746c-6165-4861736e694b);
19 public UUID REQUEST_CHARACTERISTICS = UUID.fromString(00000004-006a-746c-6165-4861736e694b);
20 public UUID RESPONSE_CHARACTERISTICS = UUID.fromString(00000002-006a-746c-6165-4861736e694b);
21 public UUID BATTERY_SERVICE_UUID = UUID.fromString(0000180F-0000-1000-8000-00805f9b34fb);
22 public UUID BATTERY_VALUE_CHAR_UUID = UUID.fromString(00002A19-0000-1000-8000-00805f9b34fb);
23

15 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

UUID Hierarchy Reconstruction

1 public class KelvinDeviceProfile
2 private KelvinDeviceProfile(BlueToothLeGatt arg3)
3 super();
4 BluetoothGattService v0 = arg3.getService(KelvinGatt.KINSA_SERVICE);
5 if(v0!=null)
6 this.request = v0.getCharacteristic(KelvinGatt.REQUEST_CHARACTERISTICS);
7 this.response = v0.getCharacteristic(KelvinGatt.RESPONSE_CHARACTERISTICS);
8
9
10 BluetoothGattService v3 = arg3.getService(KelvinGatt.BATTERY_SERVICE_UUID);
11 if(v3!=null)
12 this.batterylevel = v3.getCharacteristic(KelvinGatt.BATTERY_VALUE_CHAR_UUID);
13
14
15
16
17 public class KelvinGatt
18 public UUID KINSA_SERVICE = UUID.fromString(00000000-006a-746c-6165-4861736e694b);
19 public UUID REQUEST_CHARACTERISTICS = UUID.fromString(00000004-006a-746c-6165-4861736e694b);
20 public UUID RESPONSE_CHARACTERISTICS = UUID.fromString(00000002-006a-746c-6165-4861736e694b);
21 public UUID BATTERY_SERVICE_UUID = UUID.fromString(0000180F-0000-1000-8000-00805f9b34fb);
22 public UUID BATTERY_VALUE_CHAR_UUID = UUID.fromString(00002A19-0000-1000-8000-00805f9b34fb);
23

16 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

UUID Hierarchy Reconstruction

1 public class KelvinDeviceProfile
2 private KelvinDeviceProfile(BlueToothLeGatt arg3)
3 super();
4 BluetoothGattService v0 = arg3.getService(KelvinGatt.KINSA_SERVICE);
5 if(v0!=null)
6 this.request = v0.getCharacteristic(KelvinGatt.REQUEST_CHARACTERISTICS);
7 this.response = v0.getCharacteristic(KelvinGatt.RESPONSE_CHARACTERISTICS);
8
9
10 BluetoothGattService v3 = arg3.getService(KelvinGatt.BATTERY_SERVICE_UUID);
11 if(v3!=null)
12 this.batterylevel = v3.getCharacteristic(KelvinGatt.BATTERY_VALUE_CHAR_UUID);
13
14
15
16
17 public class KelvinGatt
18 public UUID KINSA_SERVICE = UUID.fromString(00000000-006a-746c-6165-4861736e694b);
19 public UUID REQUEST_CHARACTERISTICS = UUID.fromString(00000004-006a-746c-6165-4861736e694b);
20 public UUID RESPONSE_CHARACTERISTICS = UUID.fromString(00000002-006a-746c-6165-4861736e694b);
21 public UUID BATTERY_SERVICE_UUID = UUID.fromString(0000180F-0000-1000-8000-00805f9b34fb);
22 public UUID BATTERY_VALUE_CHAR_UUID = UUID.fromString(00002A19-0000-1000-8000-00805f9b34fb);
23

16 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

App-level Vulnerability Identification

Value-set Analysis UUID & Hierarchy

Android APKs

Sniffed
Advertisement

UUIDs

Sniffable-
Devices

Fingerprint-able
Devices

1

Unauthorized
Accessible Devices

UUID Fingerprinting2

3

App-level Vulnerability
Identification

2

Category API Name

“Just Works”
BluetoothDevice: boolean createBond()
BluetoothDevice.ACTION BOND STATE CHANGED

Authentication

BluetoothGattCharacteristic: boolean setValue(String)
BluetoothGattCharacteristic: boolean setValue(int,int,int)
BluetoothGattCharacteristic: boolean setValue(byte[])
BluetoothGattCharacteristic: boolean setValue(int,int,int,int)

Cryptography
Cipher: byte[] doFinal(byte[])
Mac: byte[] doFinal(byte[])
MessageDigest: byte[] digest(byte[])

Table: APIs for app-level vulnerability identification

17 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

App-level Vulnerability Identification

Value-set Analysis UUID & Hierarchy

Android APKs

Sniffed
Advertisement

UUIDs

Sniffable-
Devices

Fingerprint-able
Devices

1

Unauthorized
Accessible Devices

UUID Fingerprinting2

3

App-level Vulnerability
Identification

2

Category API Name

“Just Works”
BluetoothDevice: boolean createBond()
BluetoothDevice.ACTION BOND STATE CHANGED

Authentication

BluetoothGattCharacteristic: boolean setValue(String)
BluetoothGattCharacteristic: boolean setValue(int,int,int)
BluetoothGattCharacteristic: boolean setValue(byte[])
BluetoothGattCharacteristic: boolean setValue(int,int,int,int)

Cryptography
Cipher: byte[] doFinal(byte[])
Mac: byte[] doFinal(byte[])
MessageDigest: byte[] digest(byte[])

Table: APIs for app-level vulnerability identification

17 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

App-level Vulnerability Identification

Value-set Analysis UUID & Hierarchy

Android APKs

Sniffed
Advertisement

UUIDs

Sniffable-
Devices

Fingerprint-able
Devices

1

Unauthorized
Accessible Devices

UUID Fingerprinting2

3

App-level Vulnerability
Identification

2

Category API Name

“Just Works”
BluetoothDevice: boolean createBond()
BluetoothDevice.ACTION BOND STATE CHANGED

Authentication

BluetoothGattCharacteristic: boolean setValue(String)
BluetoothGattCharacteristic: boolean setValue(int,int,int)
BluetoothGattCharacteristic: boolean setValue(byte[])
BluetoothGattCharacteristic: boolean setValue(int,int,int,int)

Cryptography
Cipher: byte[] doFinal(byte[])
Mac: byte[] doFinal(byte[])
MessageDigest: byte[] digest(byte[])

Table: APIs for app-level vulnerability identification

17 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

App-level Vulnerability Identification

Value-set Analysis UUID & Hierarchy

Android APKs

Sniffed
Advertisement

UUIDs

Sniffable-
Devices

Fingerprint-able
Devices

1

Unauthorized
Accessible Devices

UUID Fingerprinting2

3

App-level Vulnerability
Identification

2

Category API Name

“Just Works”
BluetoothDevice: boolean createBond()
BluetoothDevice.ACTION BOND STATE CHANGED

Authentication

BluetoothGattCharacteristic: boolean setValue(String)
BluetoothGattCharacteristic: boolean setValue(int,int,int)
BluetoothGattCharacteristic: boolean setValue(byte[])
BluetoothGattCharacteristic: boolean setValue(int,int,int,int)

Cryptography
Cipher: byte[] doFinal(byte[])
Mac: byte[] doFinal(byte[])
MessageDigest: byte[] digest(byte[])

Table: APIs for app-level vulnerability identification

17 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Companion Mobile App Collection

1 We downloaded 2 million mobile apps from Google Play as of April 2019.

2 We identified BLE IoT apps by searching for after-connection BLE APIs.

3 18,166 BLE IoT apps are found for our analysis

API Name

BluetoothGatt: List getServices
BluetoothGatt: BluetoothGattService getService
BluetoothGattService: UUID getUuid
BluetoothGattService: BluetoothGattCharacteristic getCharacteristic
BluetoothGattCharacteristic: UUID getUuid

Table: APIs used to identify the BLE related IoT apps

18 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Companion Mobile App Collection

1 We downloaded 2 million mobile apps from Google Play as of April 2019.

2 We identified BLE IoT apps by searching for after-connection BLE APIs.

3 18,166 BLE IoT apps are found for our analysis

API Name

BluetoothGatt: List getServices
BluetoothGatt: BluetoothGattService getService
BluetoothGattService: UUID getUuid
BluetoothGattService: BluetoothGattCharacteristic getCharacteristic
BluetoothGattCharacteristic: UUID getUuid

Table: APIs used to identify the BLE related IoT apps

18 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Result of UUID Extraction and Hierarchy Reconstruction

Item Value %

Apps Collected 18,166
UUID Identified 168,093
Unique UUID Identified 13,566

UUID Hierarchy Edges 540,797 100.0
UUID Hierarchy Service Edges 316,379 58.5
UUID Hierarchy Characteristics Edges 224,418 41.5

Table: Experimental result of UUID extraction and hierarchy reconstruction.

19 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Result of UUID Extraction and Hierarchy Reconstruction

opcode # operations opcode # operations

+ 79,743 — 1,398
/ 9,684 & 1,266
* 5,364 >>> 894
<< 1,860 ˆ 462
- 1,775 >> 17

Table: Operations to resolve UUIDs.

Apps Mapped to a Single UUID Value %

1 8,870 65.4
2 1,831 13.5
3 688 5.0
4 469 3.5
5 330 2.4
≥ 6 1,378 10.1

Table: Mapping between UUID and apps.

20 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Result of UUID Extraction and Hierarchy Reconstruction

opcode # operations opcode # operations

+ 79,743 — 1,398
/ 9,684 & 1,266
* 5,364 >>> 894
<< 1,860 ˆ 462
- 1,775 >> 17

Table: Operations to resolve UUIDs.

Apps Mapped to a Single UUID Value %

1 8,870 65.4
2 1,831 13.5
3 688 5.0
4 469 3.5
5 330 2.4
≥ 6 1,378 10.1

Table: Mapping between UUID and apps.

20 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Result of App-level Vulnerability Identification

Item Value %

Apps Support BLE 18,166 100.0
”Just Works” Pairing 11,141 61.3

Vulnerable Apps 1,757 15.8
Absent Cryptographic Usage 1,510 13.6
Flawed Authentication 1,434 12.9

Table: Insecure app identification result.

Category # App
“Just Absent Flawed
Works” Crypto Auth.

Health & Fitness 3,849 2,639 221 207
Tools 2,833 1,895 385 362
Lifestyle 2,173 1,081 147 141
Business 1,660 972 90 85
Travel & Local 967 582 90 87

Table: Top 5 category of the IoT apps.

21 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Result of App-level Vulnerability Identification

Item Value %

Apps Support BLE 18,166 100.0
”Just Works” Pairing 11,141 61.3

Vulnerable Apps 1,757 15.8
Absent Cryptographic Usage 1,510 13.6
Flawed Authentication 1,434 12.9

Table: Insecure app identification result.

Category # App
“Just Absent Flawed
Works” Crypto Auth.

Health & Fitness 3,849 2,639 221 207
Tools 2,833 1,895 385 362
Lifestyle 2,173 1,081 147 141
Business 1,660 972 90 85
Travel & Local 967 582 90 87

Table: Top 5 category of the IoT apps.

21 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Field Test Environment Setup

BLE Sniffer
I Raspberry-Pi

I Parani-UD100 (Bluetooth adapter)

I Antenna RP-SMA-R/A (1km amplifier)

I SIM7000A GPS module (GPS sensor)

22 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Field Test Environment Setup

22 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Field Test Result

Item Value %

Unique BLE Device 30,862
Unique BLE Device w. UUID 5,822 18.9

Fingerprintable 5,509 94.6
Vulnerable 431 7.4
Sniffable 369 6.7
Unauthorized Accessible 342 6.2

Table: Experimental result of our field test.

23 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Field Test Result

Company Name # Devices

Google 2,436
Tile, Inc. 441
- 243
- 208
Logitech International SA 131
Nest Labs Inc. 114
Google 92
Hewlett-Packard Company 74
- 46
- 44
- 44

Table: Top 10 devices in the field test.

24 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Field Test Result

Company Name # Devices

Google 2,436
Tile, Inc. 441
- 243
- 208
Logitech International SA 131
Nest Labs Inc. 114
Google 92
Hewlett-Packard Company 74
- 46
- 44
- 44

Table: Top 10 devices in the field test.

25 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Field Test Result

Device Description # Device

Digital Thermometer 7
Car Dongle 6
Key Finder A 6
Smart Lamp 5
Key Finder B 5
Smart Toy A 4
Smart VFD 4
Air Condition Sensor 4
Smart Toy B 4
Accessibility Device 4

Table: Top 10 vulnerable devices.

26 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Anti-UUID Fingerprinting

Countermeasures
1 App-level protection. Use obfuscation [HGM18], encoding, encryption, or cloud

to hide UUIDs in mobile apps.

2 Channel-level protection. BLE-Guardian [FKS16]

27 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Anti-UUID Fingerprinting

Countermeasures
1 App-level protection. Use obfuscation [HGM18], encoding, encryption, or cloud

to hide UUIDs in mobile apps.

2 Channel-level protection. BLE-Guardian [FKS16]

Drawbacks
1 UUIDs are statically constructed and can still be retrieved from apps.

2 Additional hardware support is required.

3 Not fundamental solutions.

27 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Anti-UUID Fingerprinting

Countermeasures
1 App-level protection. Use obfuscation [HGM18], encoding, encryption, or cloud

to hide UUIDs in mobile apps.

2 Channel-level protection. BLE-Guardian [FKS16]

3 Protocol-level protection. Construct one-time dynamic UUIDs for broadcast
and communication.

27 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Dynamic UUID Generation

2. Scan

1. Broadcast default UUIDs

3. First connection

App ADevice App BCloud

28 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Dynamic UUID Generation

2. Scan

1. Broadcast default UUIDs

3. First connection

App ADevice

5. Send new UUIDs to device

4. Dynamic UUIDs generation

App BCloud

6. Response

28 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Dynamic UUID Generation

2. Scan

1. Broadcast default UUIDs

3. First connection

App ADevice

5. Send new UUIDs to device

4. Dynamic UUIDs generation

8. Broadcast dynamic UUIDs

7. Synchronize
dynamic UUIDs

to cloud

9. Future connection

App B

10. Synchronize
dynamic UUIDs
to other apps

11. Future connection

Cloud

6. Response

28 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Related Work

1 IoT Security.
I Vulnerability discovery of IoT devices. Credential leakage [CAWM17, CHMS14],

unchanged address [BMI08, DPCM16], privilege misconfiguration [FJP16, HLM+16],
unencrypted channel [ZL17a] and memory corruption [CDZ+18].

I Defenses of vulnerabilities [FPR+16, DMK+12, TZL+17, FKS16].

2 BLE Security. Insecure pairing protocol and eavesdropping attack [Rya13].
MITM attacks [SBA18, SMS18], and brute force attack to break long term
pairing key [Zeg15].

3 Vulnerability discovery based on mobile apps analysis.
I Client Side: FlowDroid [ARF+14], Amandroid [WROR14], TaintDroid [EGC+10],

PiOS [EKKV11], CHEX [LLW+12], SMV-Hunter [SSG+14].
I Server Side: AutoForge [ZWWL16], SmartGen [ZL17b], AuthScope [ZZL17],

LeakScope [ZLZ19], WARDroid [MG18].

29 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

BLEScope

Value-set Analysis

Sniffed
Advertisement

UUIDs

Fingerprint-able
Devices

Unauthorized
Accessible Devices

Sniffable-
Devices

UUID & Hierarchy

Android APKs

2

3

1

App-level Vulnerability
Identification UUID Fingerprinting

2

BLEScope
I Automatic UUID extraction and hierarchy

reconstruction from mobile apps

I Identify app-level vulnerabilities by directly
analyzing mobile apps

App Analysis and Field Test Result
I We analyzed 18,166 apps and discovered

168,093 UUIDs and 1,757 vulnerable apps

I 5,822 BLE devices were discovered in the
field test, and 94.6% can be fingerprinted

30 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Limitations and Future Work

1 Fingerprinting precision. We did not use the hierarchy UUIDs to fingerprint the
device. This is due to ethical consideration, since it requires to fetch the data
from the devices to construct the hierarchy of UUIDs (unauthorized access).

2 False negatives. We applied a strict rule to detect flawed authentication in apps.

3 Branch explosion. The backward slicing attempts to exhaustively explore all
possible branches. We will terminate our analysis for such apps.

4 Optional UUIDs. UUIDs do not always exist in BLE broadcast packets [BLS19].
No mobile apps, no need to broadcast UUIDs. (In our field test, we found 25k
such BLE devices.)

31 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Limitations and Future Work

1 Fingerprinting precision. We did not use the hierarchy UUIDs to fingerprint the
device. This is due to ethical consideration, since it requires to fetch the data
from the devices to construct the hierarchy of UUIDs (unauthorized access).

2 False negatives. We applied a strict rule to detect flawed authentication in apps.

3 Branch explosion. The backward slicing attempts to exhaustively explore all
possible branches. We will terminate our analysis for such apps.

4 Optional UUIDs. UUIDs do not always exist in BLE broadcast packets [BLS19].
No mobile apps, no need to broadcast UUIDs. (In our field test, we found 25k
such BLE devices.)

31 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Limitations and Future Work

1 Fingerprinting precision. We did not use the hierarchy UUIDs to fingerprint the
device. This is due to ethical consideration, since it requires to fetch the data
from the devices to construct the hierarchy of UUIDs (unauthorized access).

2 False negatives. We applied a strict rule to detect flawed authentication in apps.

3 Branch explosion. The backward slicing attempts to exhaustively explore all
possible branches. We will terminate our analysis for such apps.

4 Optional UUIDs. UUIDs do not always exist in BLE broadcast packets [BLS19].
No mobile apps, no need to broadcast UUIDs. (In our field test, we found 25k
such BLE devices.)

31 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Limitations and Future Work

1 Fingerprinting precision. We did not use the hierarchy UUIDs to fingerprint the
device. This is due to ethical consideration, since it requires to fetch the data
from the devices to construct the hierarchy of UUIDs (unauthorized access).

2 False negatives. We applied a strict rule to detect flawed authentication in apps.

3 Branch explosion. The backward slicing attempts to exhaustively explore all
possible branches. We will terminate our analysis for such apps.

4 Optional UUIDs. UUIDs do not always exist in BLE broadcast packets [BLS19].
No mobile apps, no need to broadcast UUIDs. (In our field test, we found 25k
such BLE devices.)

31 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Thank You

Automatic Fingerprinting Of Vulnerable BLE IoT Devices

With Static UUIDs From Mobile Apps

Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang

Department of Computer Science and Engineering
The Ohio State University

CCS 2019

32 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

Takeaway

Value-set Analysis

Sniffed
Advertisement

UUIDs

Fingerprint-able
Devices

Unauthorized
Accessible Devices

Sniffable-
Devices

UUID & Hierarchy

Android APKs

2

3

1

App-level Vulnerability
Identification UUID Fingerprinting

2

BLEScope
I Automatic UUID extraction and hierarchy

reconstruction from mobile apps

I Identify app-level vulnerabilities by directly
analyzing mobile apps

App Analysis and Field Test Result
I We analyzed 18,166 apps and discovered

168,093 UUIDs and 1,757 vulnerable apps

I 5,822 BLE devices were discovered in the
field test, and 94.6% can be fingerprinted

33 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

References I

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick

McDaniel, Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps, Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation (New York, NY, USA), PLDI ’14, ACM, 2014,
pp. 259–269.

Johannes K Becker, David Li, and David Starobinski, Tracking anonymized bluetooth devices, Proceedings on Privacy Enhancing Technologies

2019 (2019), no. 3, 50–65.

Redjem Bouhenguel, Imad Mahgoub, and Mohammad Ilyas, Bluetooth security in wearable computing applications, 2008 international

symposium on high capacity optical networks and enabling technologies, IEEE, 2008, pp. 182–186.

Brian Cusack, Bryce Antony, Gerard Ward, and Shaunak Mody, Assessment of security vulnerabilities in wearable devices.

Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang,

and Kehuan Zhang, Iotfuzzer: Discovering memory corruptions in iot through app-based fuzzing., NDSS, 2018.

Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter, Security analysis of wearable fitness devices (fitbit), Massachusetts Institute of

Technology 1 (2014).

Charalampos Doukas, Ilias Maglogiannis, Vassiliki Koufi, Flora Malamateniou, and George Vassilacopoulos, Enabling data protection through

pki encryption in iot m-health devices, 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), IEEE, 2012,
pp. 25–29.

34 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

References II

Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Prasant Mohapatra, Uncovering privacy leakage in ble network traffic of wearable fitness

trackers, Proceedings of the 17th International Workshop on Mobile Computing Systems and Applications, ACM, 2016, pp. 99–104.

W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. McDaniel, and A.N. Sheth, TaintDroid: an information-flow tracking system for

realtime privacy monitoring on smartphones, OSDI, 2010.

M. Egele, C. Kruegel, E. Kirda, and G. Vigna, Pios: Detecting privacy leaks in ios applications, NDSS, 2011.

Earlence Fernandes, Jaeyeon Jung, and Atul Prakash, Security analysis of emerging smart home applications, 2016 IEEE Symposium on

Security and Privacy (SP), IEEE, 2016, pp. 636–654.

Kassem Fawaz, Kyu-Han Kim, and Kang G Shin, Protecting privacy of {BLE} device users, 25th {USENIX} Security Symposium

({USENIX} Security 16), 2016, pp. 1205–1221.

Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti, and Atul Prakash, Flowfence: Practical data protection

for emerging iot application frameworks, 25th {USENIX} Security Symposium ({USENIX} Security 16), 2016, pp. 531–548.

Mahmoud Hammad, Joshua Garcia, and Sam Malek, A large-scale empirical study on the effects of code obfuscations on android apps and

anti-malware products, Proceedings of the 40th International Conference on Software Engineering, ACM, 2018, pp. 421–431.

Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and David Wagner, Smart locks: Lessons for securing commodity

internet of things devices, Proceedings of the 11th ACM on Asia conference on computer and communications security, ACM, 2016,
pp. 461–472.

35 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

References III

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang, Chex: statically vetting android apps for component hijacking vulnerabilities,

Proceedings of the 2012 ACM conference on Computer and communications security, ACM, 2012, pp. 229–240.

Abner Mendoza and Guofei Gu, Mobile application web api reconnaissance: Web-to-mobile inconsistencies & vulnerabilities, 2018 IEEE

Symposium on Security and Privacy (SP), IEEE, 2018, pp. 756–769.

Mike Ryan, Bluetooth: With low energy comes low security, Presented as part of the 7th {USENIX} Workshop on Offensive Technologies,

2013.

Pallavi Sivakumaran and Jorge Blasco Alis, A low energy profile: Analysing characteristic security on ble peripherals, Proceedings of the

Eighth ACM Conference on Data and Application Security and Privacy, ACM, 2018, pp. 152–154.

Da-Zhi Sun, Yi Mu, and Willy Susilo, Man-in-the-middle attacks on secure simple pairing in bluetooth standard v5. 0 and its countermeasure,

Personal and Ubiquitous Computing 22 (2018), no. 1, 55–67.

David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Latifur Khan, Smv-hunter: Large scale, automated detection of ssl/tls

man-in-the-middle vulnerabilities in android apps, Proceedings of the 21st Annual Network and Distributed System Security Symposium
(NDSS’14) (San Diego, CA), February 2014.

Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng Guo, and Patrick Tague, Smartauth: User-centered

authorization for the internet of things, 26th {USENIX} Security Symposium ({USENIX} Security 17), 2017, pp. 361–378.

36 / 37

Introduction Our Discovery BLEScope Evaluation Countermeasure Related Work Summary References

References IV

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby, Amandroid: A precise and general inter-component data flow analysis framework for

security vetting of android apps, Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (New York,
NY, USA), CCS ’14, ACM, 2014, pp. 1329–1341.

Wondimu K Zegeye, Exploiting bluetooth low energy pairing vulnerability in telemedicine, International Foundation for Telemetering, 2015.

Qiaoyang Zhang and Zhiyao Liang, Security analysis of bluetooth low energy based smart wristbands, 2017 2nd International Conference on

Frontiers of Sensors Technologies (ICFST), IEEE, 2017, pp. 421–425.

Chaoshun Zuo and Zhiqiang Lin, Exposing server urls of mobile apps with selective symbolic execution, Proceedings of the 26th World Wide

Web Conference (Perth, Australia), April 2017.

Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang, Why does your data leak? uncovering the data leakage in cloud from mobile apps, Proc.

IEEE Symposium on Security and Privacy, 2019.

Chaoshun Zuo, Wubing Wang, Rui Wang, and Zhiqiang Lin, Automatic forgery of cryptographically consistent messages to identify security

vulnerabilities in mobile services, Proceedings of the 21st Annual Network and Distributed System Security Symposium (NDSS’16) (San
Diego, CA), February 2016.

Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin, Authscope: Towards automatic discovery of vulnerable authorizations in online services,

Proceedings of the 24th ACM Conference on Computer and Communications Security (CCS’17) (Dallas, TX), November 2017.

37 / 37

	Introduction
	

	Our Discovery
	

	BLEScope
	

	Evaluation
	

	Countermeasure
	

	Related Work
	

	Summary
	

	References
	

