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ABSTRACT

Being an easy-to-deploy and cost-effective low power wireless solu-
tion, Bluetooth Low Energy (BLE) has been widely used by Internet-
of-Things (IoT) devices. In a typical IoT scenario, an IoT device first
needs to be connected with its companion mobile app which serves
as a gateway for its Internet access. To establish a connection, a
device first broadcasts advertisement packets with UUIDs to nearby
smartphone apps. Leveraging these UUIDs, a companion app is able
to identify the device, pairs and bonds with it, and allows further
data communication. However, we show that there is a fundamental
flaw in the current design and implementation of the communi-
cation protocols between a BLE device and its companion mobile
app, which allows an attacker to precisely fingerprint a BLE device
with static UUIDs from the apps. Meanwhile, we also discover that
many BLE IoT devices adopt “Just Works” pairing, allowing attack-
ers to actively connect with these devices if there is no app-level
authentication. Even worse, this vulnerability can also be directly
uncovered from mobile apps. Furthermore, we also identify that
there is an alarming number of vulnerable app-level authentication
apps, which means the devices connected by these apps can be
directly controlled by attackers. To raise the public awareness of
BLE IoT device fingerprinting and also uncover these vulnerable
BLE IoT devices before attackers, we develop an automated mobile
app analysis tool BLEScOPE and evaluate it with all of the free BLE
IoT apps in Google Play store. Our tool has identified 1,757 vulner-
able mobile apps in total. We also performed a field test in a 1.28
square miles region, and identified 5, 822 real BLE devices, among
them 5,509 (94.6%) are fingerprintable by attackers, and 431 (7.4%)
are vulnerable to unauthorized access. We have made responsible
disclosures to the corresponding app developers, and also reported
the fingerprinting issues to the Bluetooth Special Interest Group.
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1 INTRODUCTION

Over the past few years, we have witnessed a huge increase in
the number of the Internet-of-Things (IoT) devices (e.g., sensors,
and actuators) running in various areas such as transportation,
healthcare, and smart homes. For an IoT device to be really useful
and intelligent, it has to be connected to the Internet. There are
three practical ways to do so today: using a cellular network, WiFi,
or other radio technology such as Bluetooth. Connecting directly
using a cellular network would be too costly. While it is cheaper to
use WiFi technology, it would be too energy-consuming. Therefore,
an easy-to-deploy, cost-effective, and low power solution is a key
requirement for IoT devices, especially for smaller ones.

Among all the radio technologies, Bluetooth Low Energy (BLE)
stands out and has been increasingly used by the IoT devices. It is
well suited for applications with small amounts of data transferring
as well as devices that require extremely low power consumption.
For instance, with BLE, an IoT device is even able to run for years
on a coin-cell battery. This is particularly appealing for industries
such as sports, healthcare, fitness, retail, and home entertainment.
In fact, many apps today have been built atop BLE connected IoT
devices in these application scenarios such as computer gaming,
fitness tracking, and indoor positioning.

Since there is a large amount of private information (e.g., health
information in the wearable devices) collected by BLE IoT devices,
there have been many attacks against them and their apps. For
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example, it has been discovered that BLE communication is subject
to man-in-the-middle (MITM) attack [17]. BLE credentials can be
sniffed [30, 42]. BLE devices can be penetrated [13]. Both mobile
apps and BLE devices can be spoofed [27, 29]. In addition, the
connection between BLE devices and mobile apps can be reused
by unauthorized co-located apps [31]. These vulnerabilities were
caused by a number of reasons such as a lack of secure pairing (e.g.,
via “Just Works” pairing protocol) or (weak) traffic encryption (e.g.,
no public key exchange in BLE v4.0 and v4.1 [30]) between devices
and apps.

While the recent development of BLE IoT devices has started
to involve authentication between devices and apps where users
need to enter credentials to connect with the IoT devices, in this
work we discover that many BLE IoT devices and mobile apps today
actually do not properly implement the app-level authentication. In
particular, we find that a great number of BLE IoT devices use “Just
Works” for pairing (no invocation of app-device bonding at all) ,
which allows any nearby attackers to arbitrarily connect to them
and possibly compromise device data and user privacy. Second,
even though they have app-level authentication, some of the imple-
mentations are flawed and the credentials can be directly extracted.

With such vulnerable BLE IoT devices and apps, malicious attack-
ers can easily break into the defense of these weakly authenticated
IoT devices and access the privacy-sensitive data in them. While
there could be still a number of challenges, such as how to identify
the vulnerable devices from various BLE peripherals around them,
we fortunately discovered that the universally unique identifier
(UUID) from the advertisement packets broadcast by the BLE de-
vices can fingerprint a BLE device and these broadcast packets are
not encrypted at all. In addition, these UUIDs can be obtained from
not only the BLE traffic but also the IoT companion mobile apps.

Astonishingly, UUID-based fingerprinting is universal and hard
to defeat. It comes from the fundamental design flaw requiring BLE
advertisement packets to contain predetermined UUIDs that must
be known to the nearby mobile apps otherwise the apps will not
be able to discover the BLE devices. Therefore, as demonstrated
in this paper, if attackers can first scan all mobile apps in an app
store, such as Google Play, to find all possible UUIDs, they can
fingerprint all BLE devices statically. Then with the fingerprinted
UUIDs, they can sniff all nearby advertisement packets in the field
(e.g., a metropolitan area such as New York City) to locate these
devices based on the fingerprinted UUIDs, thereby leading to a
serious privacy attack. If mobile apps also tell them that the device
uses “Just Works”, or has weak or no authentications, then the
attackers can directly exploit these BLE devices.

To validate our discovery and raise the public awareness, in
this paper, we develop an automatic tool BLESCOPE to scan the
vulnerable BLE devices directly from mobile apps in Google Play.
Not all BLE devices are of our focus. Instead, we particularly focus
on the devices that are vulnerable to device UUID fingerprinting
(privacy attack), eavesdropping (including both passive and active),
and unauthorized access. Our key objective is to identify these
devices directly from mobile apps. With automated binary analysis
techniques such as backward slicing [26] and value-set analysis [12],
we have implemented BLESCOPE to automatically scan mobile apps
to directly recognize the UUIDs, and identify insecure bonding
(such as “Just Works”) and vulnerable app-level authentications.
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We have tested BLEScoPE with all of the free Bluetooth apps in
Google Play, in which our tool discovered 168,093 UUIDs (13, 566
unique ones) as well as 1, 757 vulnerable apps.

While typically BLE signals can only travel up to 100 meters,
with special receiver adapters and amplifiers, an attacker can sniff
the BLE signals up to 1,000 meters [8]. In this work, we have actually
built such a long range passive BLE sniffer with a Raspberry-PI and
a special BLE Antenna, and used it to detect real world instances
of these insecure BLE IoT devices. In a small area of 1.28 square
miles, our sniffer identified 5, 822 BLE devices, among which 5, 509
(94.6%) of them are fingerprintable based on the UUIDs extracted
from mobile apps. We also located 431 vulnerable devices, including
369 eavesdroppable devices and 342 unauthorizable access devices
in this area.

Contributions. In short, we make the following contributions:

e We are the first to discover that vulnerable BLE IoT devices
can be directly identified and fingerprinted due to the use of
pre-determined static UUIDs in both mobile apps and BLE
devices for BLE advertisement.

We have implemented an automatic tool BLESCOPE using
binary code analysis to directly scan mobile apps to harvest
UUIDs and meanwhile detect insecure IoT devices such as
those vulnerable to eavesdropping or completely taken over.
We have tested our tool with 18, 166 BLE mobile apps from
Google Play store, and found 168, 093 UUIDs (13, 566 unique
ones) and 1, 757 vulnerable BLE IoT apps.

We also present a set of countermeasures against the at-
tacks from three dimensions: channel-level protection, app-
level protection, and protocol-level protection (with dynamic
UUID generation).

Roadmap. The rest of this paper is organized as follows. We pro-
vide necessary background related to Bluetooth Low Energy and its
security in §2. Next, we describe the threat models and define the
analysis scope in §3. Then, we present an overview of BLESCOPE
in §4, detail the design and implementations in §5, and present
the evaluation results in §6. In addition, we provide a set of coun-
termeasures against our attack in §7. Next, we discuss limitations
and future work in §8, followed by related works in §9. Finally, we
conclude in §10.

2 BACKGROUND

2.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE), also known as Bluetooth 4.0, is a wire-
less network technology designed for devices consuming extremely
low energy, and is ubiquitous in our daily lives. It has been widely
deployed in various platforms including desktops, mobile smart-
phones, and IoT devices for various applications such as health care,
entertainment, and smart home. Figure 1 provides an overview of
the important procedures within the BLE workflow, which includes
(I) Connection, (II) Pairing and Bonding, and (III) Communication.

(I) Connection. When a BLE peripheral device wishes to establish
a connection, it will first constantly broadcast its advertisement
packets to indicate its willingness. The time interval between the
advertisement packets ranges from 20ms to 10.24 seconds, in step of
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Figure 1: Bluetooth Low Energy workflow.

0.625ms, with an optional random delay ranging from Oms to 10ms
added to avoid collisions [4]. Note that BLE advertising is one of the
most important aspects of BLE, and is mandatory for connection
between two BLE devices before communicating with each other.
During broadcast stage, all recipients within the range can scan
and receive all the advertised packets, and then decide to initiate a
connection with it. The peripheral that broadcasts advertisement
packets is called “slave”, while the other that scans for packets and
actively initiates the connection is called “master”. For example, in a
typical IoT scenario, a peripheral IoT device (e.g., a wearable device)
will broadcast packets to indicate its presence so that a companion
mobile app can scan for it and establish a connection.

(II) Pairing and Bonding. Right after the connection is estab-
lished, the master and the slave will start a pairing process, which
aims at establishing a secure channel by negotiating an encryption
key for communication. In general, they first exchange their pairing
features (e.g., input and output capabilities such as keyboard and
display) to decide which pairing protocol should be adopted. There
are usually four pairing protocols, including “Just Works”, “Passkey
Entry”, “Numeric Comparison” and “Out of Band (OOB)” [2]. For
example, “Passkey Entry” requires a user to enter a password to the
peripheral so input capability is required on the slave device. Next,
the key exchange process starts on the two devices to negotiate a
long term key based on the protocol. As for “Just Works”, it is the
only choice when the previous protocols are not applicable. After
the pairing process, a long term key (LTK) will be generated for
data encryption between the two devices. The bonding process will
store the LTK for later communication to make sure the established
channel is encrypted.

(III) Communication. After pairing and bonding, the master and
the slave are able to exchange data. The structure of data strictly
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Figure 2: Illustration of GATT hierarchy.

follows the Generic Attribute Profile (GATT) [7], which typically
has a hierarchical structure as illustrated in Figure 2.

A BLE device usually provides several services each of which
represents a specific property. Each service involves a number of
characteristics that store the actual values for the property. Ad-
ditionally, several descriptors are defined in a characteristic for
description purpose. Considering a heart rate monitor as an exam-
ple, it provides services including heart rate, battery, and device
information, as illustrated in Figure 2. For the heart rate service,
characteristics are defined for various properties such as heart rate
measurement and body sensor location, which contain the actual
values of heart rate and location [40]. There are two ways for a
master device to know the provided services and characteristics
from the slave. First, the master can browse the service list from the
advertisement packets, which is optionally defined. Second, a mas-
ter can request for a list of supported services and characteristics
after the connection is established.

UUID. A key ingredient in BLE world is the universally unique
identifier, short as UUID, which is a hexadecimal string used to
identify a specific BLE attribute including service, characteristic,
and descriptor. In general, BLE UUIDs can be categorized into two
types: standard ones and customized ones. The standard UUIDs
are defined and documented by the Bluetooth SIG [3], which share
a common base and use a 16-bit invariant to uniquely identify
themselves. The customized UUIDs are arbitrarily generated and
are vendor-specific. Note that the customized UUIDs cannot collide
with the standard ones on the common base [39].

The UUIDs are involved in the BLE packets along with their
indicated attributes such as services and characteristics if there is
any. They can be harvested either from the advertisement packets or
data packets after the connection is established. Also, interestingly,
for a mobile app to connect with a particular BLE device, it needs
to know the UUIDs of the device (which will be checked against
the ones in the advertisement packet). Therefore, UUID can also be
extracted from the BLE IoT mobile apps.



Session 7A: Internet of Things

2.2 The Security of BLE

Since BLE data is transferred over the air, it is important to protect
the communication channel between the BLE slave and master. To
this end, BLE supports link layer encryption which is transparent to
the applications. However, the exchange of the cryptographic keys
for both encryption and authentication significantly varies depend-
ing on the user interfaces (e.g., keyboards, displays) provided by the
BLE devices, and how the BLE devices and mobile apps are paired.
For instance, a great number of IoT devices do not have any user
interface such as keyboard that allows external input so that some
pairing protocols such as “Numeric Comparison” and “Passkey
Entry” are not available. Also, “OOB” is not always practical since
not all devices contain Near Field Communication (NFC). Therefore,
many of the IoT devices today use “Just Works” pairing, which can
be insecure since they may be vulnerable to Man-In-The-Middle
(MITM) attack. Note that, technically “Just Works” is just a special
model of “Passkey Entry”, in which the passkey is a hardcoded PIN
(e.g., 000000 or 123456) [32]. Furthermore, application programmers
can introduce additional app-level authentication if they have to
use “Just Works”. For instance, they can ask users to enter creden-
tials from mobile apps, and deliver (through encryption) to the IoT
devices to authenticate the apps. That is, with additional cryptog-
raphy protection, the app and device can still establish a secure
channel.

3 THREAT MODEL AND SCOPE

BLE devices are ubiquitous today. In this work, we focus on BLE
devices that use mobile apps (as the gateway to connect to the
Internet and interact with the users). In the following, we discuss
the possible attackers (§3.1), and the scope of attacks under our
consideration (§3.2).

3.1 Types of Attackers

According to where the attackers are located, there could be two
types of attackers against a BLE IoT device:

e Nearby attackers. Being a short-range radio technology,
BLE devices can communicate with a peripheral within at
most 100 meters [25]. Any nearby attackers who are in this
range could attack the device. While this may constrain many
attackers, we also learn that there are long range Bluetooth
adapters that support the sniffing of BLE devices up to 1,000
meters [8].

e Remote attackers. Since BLE IoT devices are accessed by
mobile apps, there could be remote attackers through mal-
ware in the phone. There are various ways for attackers to
install malware in the phone (e.g., social engineering, back-
doors, or direct software vulnerability exploitation). How-
ever, unlike nearby attackers who can attack at anytime, the
remote attackers have to rely on the nearby mobile devices
that need to be power-on.

3.2

While malware in the phone can attack a BLE device, we exclude
it in our scope since the attacks performed by malware could be
so broad, especially if the malware has obtained the root privilege
of the phone. Therefore, in this work, we particularly focus on the

Types of Attacks of Our Interest
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nearby attackers and systematically understand their attack capa-
bilities. To this end, we have actually built a long range BLE sniffer
with a Raspberry-PI and a special BLE Antenna (with a cost below
$150) that can scan the BLE devices in the range of 1, 000 meters.

With respect to the nearby attackers, there could be two types
of major attacks: passive attacks that only listen to the BLE traffic,
and active attacks that can aggressively connect, pair, read, and
even write to the devices.

Passive Attack. This attack can be launched by passively sniffing
the BLE traffic and obtaining information from the packets. Note
that only BLE advertisement packet is in plain-text, and all other
packets are encrypted at the BLE link layer. As such, there could
be two types of passive attacks:

e Passive Fingerprinting. Through sniffing the BLE adver-
tisement packets, the attacker is able to obtain the adver-
tisement UUIDs. By knowing the UUIDs, the attacker can
fingerprint which IoT devices and also the corresponding
mobile apps the victims are using, especially if the UUID and
mobile app have a one-to-one mapping. Moreover, if certain
privacy sensitive BLE devices (e.g., blood pressure monitors)
are used, attackers can even learn some privacy knowledge
about the victims.

¢ Passive Eavesdropping. Since BLE packets except the ad-
vertisement ones are encrypted, attackers need to sniffer
the cryptographic keys in order to get the plain text of the
intercepted traffic. This attack can succeed if the BLE device
and mobile app use “Just Works” for the pairing [24], and the
BLE version is before 4.2 (since Elliptic Curve Diffie-Hellman
(ECDH) key exchange is introduced in this version to pre-
vent the sniffing of long-term key [1]). This is because “Just
Works” before 4.2 uses the hardcoded short-term key (e.g.,
000000) to encrypt the long-term key, which can be sniffed
if the attacker constantly listen to the communication chan-
nel. However, if there is any app-level encryption on the
transferred data, this passive sniffing will not succeed.

Active Attack. Unlike passive attacks that only listen to the traffic,
which could learn a significant amount of privacy information of
the victim from either the plain-text UUID or the decrypted traffic
if the long-term key is obtained, active attacks can cause direct
damages to the victim if the vulnerable BLE devices allow them to
do so. More specifically, there could be four types of active attacks:

e Denial of service (DoS) attack. Due to the reason that one
peripheral BLE IoT device is usually designed to connect
with only one master at the same time, it is possible to con-
duct denial-of-service (DoS) attack by the nearby attackers.
They just only need to constantly listen to the traffic, and if
there is an advertisement packet and then the attackers can
connect with the device (disallowing legitimate users to use
the device). Since DoS attack is trivial to launch, we do not
consider it in this work.

o Active Fingerprinting. If in passive fingerprinting, mul-
tiple mobile apps contain the same UUID, which may be
caused by multiple apps use the same scheme-specific BLE
chip or UUID configuration, then the nearby attackers can-
not precisely know which device the victim is using and may
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need to further narrow it down. To this end, an active at-
tacker can further connect to the devices to inspect the next
layer UUIDs (recall BLE devices often organize UUIDs in a
hierarchical structure), and use the hierarchical structure of
the UUIDs to fingerprint a victim BLE device.

o Active Eavesdropping. If a BLE device uses version af-
ter 4.2, then “Just Works” pairing will use ECDH key ex-
change. Consequently, passive eavesdropping will not work
any more, and attackers must perform active MITM attack
to gain an attack controlled long-term key.

e Unauthorized access attack. An unauthorized access is
the most dangerous vulnerability for the IoT devices, since
attackers can read or even write sensitive data to the devices.
This attack can succeed if a device uses “Just Works” pairing
and meanwhile there is no (or flawed) app-level authentica-
tion.

4 OVERVIEW
4.1 Objectives and Attack Overview

Objectives. The key objective of this work is to systematically
investigate, from an adversary perspective, the insecure IoT devices
that are attackable to a nearby attacker, and meanwhile the various
attacks that can be launched by attackers in a specific region (e.g., a
metropolitan city such as New York City). To this end, we have to de-
velop an automated program analysis tool, and we name it BLEScoPE
that takes the following input and produces the following output:

o Input. The input to our attack is all of the IoT Android apps
available from Google Play Store, along with the advertise-
ment UUID sniffed by our passive sniffer in the region.

e Output. The output is the specific IoT-devices that are vul-
nerable to Fingerprinting, Traffic sniffing/eavesdropping,
and Unauthorized access attacks (described in §3.2).

Tool Overview. An overview of our BLESCOPE is presented in Fig-
ure 3. At a high level, it consists of three steps of analysis:

o Step ©®. When given a set of Android IoT apps, it first per-
forms value-set analysis [12] on the low-level APIs. On one
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hand, it produces the resolved UUIDs and the reconstructed
hierarchies for UUID fingerprinting (Step @). On the other
hand, it identifies the data-definition and data use of BLE-
transmitted data, the involved APIs and cryptographic oper-
ations, for app-level vulnerability identification (Step ©).
Step ®. When provided with the extracted UUIDs and hier-
archies, as well as the real world traces of the field UUIDs,
it then identifies the fingerprint-able IoT devices based on
the app that contains the UUID. Note that one UUID in the
filed may map to multiple apps due to the use of the same
scheme-specific BLE chip or UUID configuration, and it may
need to further narrow down the device by gaining more
data by connecting with the device.

Step ©. Next, it identifies devices that are vulnerable to
sniffing or unauthorized access from the app code, based on
whether there is any flawed-authentication, or no authenti-
cation at all, among the devices that use “Just Works” (since
the other three pairing is considered secure and we cannot
directly test them with only mobile apps). BLEScOPE takes
two disjoint approaches. One is to inspect whether the app
has used any cryptographic functions for authentication. If
not, it implies the data transferred between the app and the
device is vulnerable to sniffing attack. The other one is to
detect whether there is any flawed authentication implemen-
tation (even though it has used cryptographic functions).

4.2 Challenges

There are a number of challenges we must solve in order to iden-
tify the nearby vulnerable BLE IoT devices. In particular, we must
extract the UUIDs, reconstruct their hierarchies from the mobile
apps and identify whether there is insecure pairing as well as app-
level vulnerability including absent cryptography usage and flawed
authentication. While it may be easier to identify the insecure pair-
ing and cryptography APIs from the disassembled app code, it is
actually challenging to identify the UUIDs and its hierarchy struc-
ture, as well as the flawed authentication directly from app code.
Therefore, we have the following three major challenges.

C1: UUID extraction. UUIDs play an important role in BLE com-
munication, not only for advertisement (such that the nearby mobile
app knows) but also for accessing each specific service provided in
the BLE. UUIDs are typically 128-bit hexadecimal strings which can
be found in the BLE packets along with the BLE attributes such as
services and characteristics. When providing a mobile app, if UUIDs
are directly hardcoded in the app, then it is easier to extract them
(by simply grepping). For instance, as shown in Figure 4, which
is the decompiled code from a real world BLE IoT thermometer
companion app Kinsa, we can see clearly there are a number of
UUIDs that are hardcoded in the app as constant strings and they
can be easily extracted.

However, we also notice that UUID may be generated through
some complicated calculations (e.g., string concatenation, and bit
shifting). Therefore, we have to design a principled approach to
extract these UUIDs from the mobile app binaries.

C2: UUID hierarchy reconstruction. One single UUID may not
directly fingerprint a BLE device and we need more information
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public class KelvinDeviceProfile {
private KelvinDeviceProfile(BlueToothLeGatt arg3) {
super();

if(v0!=null) {

this.request = v0.getCharacteristic(KelvinGatt.REQUEST CHARACTERISTICS);

1
2
3
4 BluetoothGattService v0 = arg3.getService(KelvinGatt.KINSA_SERVICE);
5
6
7

this.response = v0.getCharacteristic(KelvinGatt.RESPONSE_CHARACTERISTICS);

8 }

if(v3!=null) {
13 }

14}

15 }

public class KelvinGatt {

BluetoothGattService ¥3 = arg3.getService(KelvinGatt.BATTERY SERVICE_UUID);

this.batterylevel = v3.getCharacteristic(KelvinGatt.BATTERY_ VALUE_CHAR UUID);

18 public static final KINSA_ SERVICE = .fromstring(

19 public static final REQUEST_CHARACTERISTICS = .fromString(
20 public static final RESPONSE_CHARACTERISTICS = .fromString(
21 public static final BATTERY_SERVICE_UUID = .fromString(

22 public static final BATTERY_VALUE_CHAR_UUID = .fromstring(

CCS ’19, November 11-15, 2019, London, United Kingdom

KINSA_SERVICE

BATTERY_SERVICE_UUID

REQUEST_
CHARACTERISTICS

RESPONSE_ |

CHARACTERISTICS | | BATTRY_VALUE_CHAR_UUID

Figure 4: Decompiled code snippet from IoT app Kinsa showing UUIDs extraction and their hierarchical structures.

about the UUID. Interestingly, we notice that UUIDs associated with
an IoT device typically have a hierarchical structure. As shown in
Figure 4, a service contains multiple characteristics and thus a ser-
vice UUID can have “children” UUIDs from its characteristics. Such
a UUID hierarchy could perfectly provide additional information
to accurately determine which IoT app maps to a particular BLE
device.

Therefore, it is necessary to reconstruct hierarchical structure of
the UUIDs for our IoT app and device fingerprinting. Unfortunately,
the hierarchy cannot be directly inferred from the app code because
there is no structural rule on defining parent and children UUIDs.

C3:Flawed authentication identification. For a nearby attacker
to sniff the encrypted traffic or gain unauthorized access to “Just
Works” paired IoT devices, the corresponding apps must not use
any app-level authentication or use flawed authentication. To imple-
ment proper authentication, we assume app must use cryptography
to either encrypt the authentication token with nounces (prevent-
ing replay attack) or even use additional layer of encryption of the
traffic atop BLE link layer encryption. Therefore, if we cannot find
any use of cryptography in the app code, then we can conclude the
channel is not secure (both passive/active sniffing and unauthorized
access can be performed on the devices).

Meanwhile, we also notice flawed authentication in the app. For
instance, all the credentials are hardcoded in the app. Therefore,
even though the app has used the cryptography, this is still not
secure. However, how to identify these flawed authentication is a
challenge since there is no specific code pattern on implementing
authentication in the apps, and we are not able to rely on any docu-
mented APIs to identify them and extract the hardcoded credentials.

4.3 Our Solutions

While each of the above challenges sounds hard to address, fortu-
nately we can develop mobile app binary analysis techniques to
solve them. More specifically, we have the following corresponding
solutions:

$1: Resolving UUIDs using context and value-set analysis. Di-
rectly grepping strings in app byte code may reveal some UUIDs,
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especially those hardcoded ones. However, it may have false pos-
itives if a UUID is never used by the app or other type of UUIDs
(in fact, many Java objects in Android also have UUID that has the
same format as the BLE UUID), and it will also have false negatives
if the UUID is dynamically generated through computation. We
have to design a principled program analysis approach to resolve
and extract UUIDs.

Fortunately, we notice that while we may not know the concrete
value of the final UUIDs used by the app statically, we actually
know where the UUIDs are used (i.e., the execution context). In
particular, we find that there are seven documented APIs defined by
the Android BLE framework that carry the UUIDs as parameters,
to generate the instances for accessing the related service, charac-
teristic and descriptor in the paired BLE devices [6]. For instance,
the UUIDs in Figure 4 are used as arguments by the official BLE
API getService() and getCharacteristic(). Therefore, we can
target these APIs to extract UUIDs from the app.

In addition to extracting those constant string UUIDs, we can
also compute those that are not hardcoded ones by using program
slicing [38] and value-set analysis (VSA) [12], which aims at stati-
cally tracking the values of data object and is an effective solution
to our problem. Note that VSA was originally designed to resolve
possible values for registers and memory cells on x86 platforms,
and we have to implement it to extract and compute UUIDs in
Android app code. In fact, one of our prior projects LeakScope [43]
has also leveraged VSA.

$2: Reconstructing UUID hierarchy with control dependence.
While an app could have multiple UUIDs, the usage of them actu-
ally has dependencies. In particular, the instance of a GATT service

must be first initialized by BLE API getService() with the corre-
sponding UUID, and then all of its characteristics can be browsed

by API getCharacteristic(), or updated with specific data to the

peripheral according to the characteristics. Therefore, characteristic

must be derived from the service instance, and getService () must

be executed first, then followed by getCharacteristic(), form-
ing a control dependence. Similarly, a descriptor must be derived

from the corresponding characteristic instance.
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Meanwhile, the same layer of the characteristic is often guarded
by control dependence as well. For instance, as shown in Figure 4,
at line 4, variable v@ (a GATT service) first initialized by API
getService(), then between line 5 and line 8, two characteristics
of v@ are derived, and they both are guarded by control statement
at line 5. Therefore, the UUIDs of REQUEST_CHARACTERISTICS and
RESPONSE_CHARACTERISTICS are at the same layer and they are
siblings. Also, we can learn from Figure 4 that there are two services
KINSA_SERVICE (initialized at line 4) and BATTERY_SERVICE_UUID
(initialized at line 10), and these two services are also siblings. There-
fore, a hierarchical tree structure of UUIDs can be derived based
on the app code.

$3: Identifying flawed authentication with data dependence.
When using “Just Works” pairing, a device would be vulnerable if
there is no application-level authentication or the authentication
is useless. Unfortunately, application-level authentication can be
implemented in completely different ways across apps, and it is
therefore extremely challenging to design a general approach to
identify flawed authentication.

However, we notice there is one special type of flawed authen-
tication which can be identified systematically: the case that uses
hardcoded credentials, and we can model this case using a data flow
analysis. Our key insight is that to securely authenticate a mobile
app to a BLE device, the app must provide a credential that comes
from the external input, such as letting the user enter a password.
Otherwise, if all of the commands sent out are hardcoded, then
there will be no authentication at all. Therefore, we can use a data
flow analysis algorithm to identify these apps. In particular, since
all the data sent out to the peripheral must go through low-level
BLE APIs, so called the “sink”, starting from the sink, we can apply
program slicing to trace back to the “source” of the data. If none of
the sources comes from any external input (e.g., network return,
user input), then the app has used hardcoded commands including
possible passwords if there is any to interact with the BLE devices.

5 DETAILED DESIGN

In this section, we present the detailed design of BLEScoPE, which
aims at (i) extracting the value of each UUID and reconstructing the
hierarchy of each group of UUIDs, and (ii) identifying vulnerable
implementation in terms of absent cryptographic usage and flawed
authentication. As the fundamental technique of our tool, we first
explain how our value-set analysis works in §5.1, and then describe
how to configure the value-set analysis technique to achieve the
above two purposes in §5.2 and §5.3, respectively.

5.1 Value-set Analysis

At a high level, the value-set analysis (VSA) consists of backward
program slicing and forward value computation. In this work, we
leverage VSA to locate the definition of parameter of our interest
and obtain its computation path to the destination. In particular,
for a given list of target APIs and their parameters of our interest,
our VSA runs as follows:

e Backward slicing. Program slicing [38] is a technique to iden-
tify program code of interest based on slicing criteria (e.g., control
dependence or data dependence), which has been widely used
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to tackle important program analysis problems. Given the target
system APIs and parameters, the backward slicing algorithm
starts from constructing a control flow graph (CFG) where each
node of the graph represents a block, which contains a set of
instructions without transfers, and every edge connecting blocks
indicates a transfer of program control flow. Based on the CFG,
the backward slicing starts tracing from the instruction which
contains our targeted APIs (i.e., the sink) backwardly to the defi-
nition (i.e., the source) of the interested parameter. Specifically,
it iterates each instruction within each block and records the in-
structions that either have data dependency with the interested
parameter (i.e., modifying its value) or control dependency with
recorded instructions (i.e., preceding condition). These recorded
instructions and parameters are maintained in the instruction
stack and parameter stack respectively. We implement our back-
ward slicing in a flow-sensitive and context-sensitive manner,
where we fork the instruction stack at each branch, and maintain
each stack separately.

Value computation. With the sliced instructions, the value of
each target parameter can be computed by following the execu-
tion path from its source to its sink. This process is automated
by continuously popping the top instruction on the stack and
simulating its execution of the instructions if it is data-arithmetic
or well-known APIs according to its definition provided by the
official documentation until the stack is empty.

The extraction of the UUIDs, their hierarchy and the vulnerability
identification are all built atop our backward slicing and value
computation. In the following, we describe how we configure it to
achieve these.

5.2 UUID Extraction and Hierarchy
Reconstruction

The first step for UUID extraction and the hierarchy reconstruction
is to acquire a list of target APIs that are related to the UUID
generation and its hierarchy. We have identified seven system APIs
according to the documentation from official Android framework,
and the details of these APIs and their parameters are presented
in Table 1, where the target parameters are highlighted in the last
column. In particular, the extraction of UUID depends on all seven
APIs listed in Table 1 for the corresponding category of UUID, while
the hierarchy reconstruction relies only on the first three of them.

Unlike the extraction of UUID that can be resolved by the stan-
dard procedure of value-set analysis, the reconstruction of hierarchy
requires extra processes. To systematically solve this problem, we
designed and implemented a hierarchy reconstruction algorithm,
which is presented in algorithm 1. More specifically, the algorithm
starts with the initialization process (line 2-3), where the value-
set analysis (VSA) procedure is triggered when encountering the
two functions getDescriptor() and getCharacteristic().Note
that the VSA is invoked with a focus on the base of the function (i.e.,
the variable v0 of v0.getDescriptor(v1)), to obtain the program
slice of the descriptor and characteristic instances. A tree node T
is initialized to record the hierarchy of the UUIDs (line 4). Next,
the algorithm iterates through all the program slices obtained from
API getCharacteristic() (line 5). For each value-set result of the
slice Sp, the algorithm adds all the (characteristic, descriptor) pairs
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Category ‘ API Name Parameters
BluetoothGatt: BluetoothGattService getService UUID uuid
BluetoothGattService: BluetoothGattCharacteristic getCharacteristic | UUID uuid
BluetoothGattCharacteristic: BluetoothGattDescriptor getDescriptor | UUID uuid
UUID ScanFilter.Builder: ScanFilter.Builder setServiceUuid ParcelUuid serviceUuid
ScanFilter.Builder: ScanFilter.Builder setServiceUuid ParcelUuid serviceUuid, ParcelUuid uuidMask
ScanFilter.Builder: ScanFilter.Builder setServiceData ParcelUuid serviceDataUuid byte[] serviceData
ScanFilter.Builder: ScanFilter.Builder setServiceData ParcelUuid serviceDataUuid,byte[] serviceData,byte[] serviceDataMask
BluetoothGattCharacteristic: boolean setValue String value
BLE BluetoothGattCharacteristic: boolean setValue int value,int formatType,int offset

BluetoothGattCharacteristic: boolean setValue byte[] value
BluetoothGattCharacteristic: boolean setValue int mantissa,int exponent,int formatType,int offset
Cipher: byte[] doFinal byte[] data

Cryptography | Mac: byte[] doFinal byte[] data
MessageDigest: byte[] digest byte[] data

Table 1: Targeted APIs for BLEScoPE

Algorithm 1: UUID hierarchy reconstruction.

Input :G: The control flow graph

Output:T: A hierarchy tree

Function HierarchyReconstuction(G)

Sp <« VSA(G, SIG_GETDESCRIPTOR, base)

Sc « VSA(G, SIG_GETCHARACTERISTIC, base)

T < New TreeNode

for slice € Sp do

for (characteristic, descriptor) € slice.valueset do
| Add the characteristic-descriptor UUID binding to T

end

1
2
3
4
5
6
7
8
9

end

for slice € Sc do

for (service, characteristic) € slice.valueset do
‘ Add the service-characteristic UUID binding to T

end

end
return T

to T (line 6-9). Similarly, the service-characteristic hierarchy can
also be reconstructed (line 10-14). Finally, the algorithm outputs a
tree node T that stores all the hierarchical information (line 15).

5.3 Vulnerability Identification

The focus of this step is to identify vulnerable implementations
in term of absent cryptographic usage and flawed authentication.
In addition, the precondition of these two vulnerable implementa-
tion is that a BLE IoT device uses the “Just Works” paring, which
indicates that the BLE channel is insecure due to the fact that the
long term encryption key can be sniffed by nearby attackers. There-
fore, the first step in this procedure is to recognize whether such
precondition exists in an app.

To recognize the existence of such precondition, BLEScOPE has
to look into how an app pairs with its BLE IoT devices. Accord-
ing to the official Android BLE developer guide, there are two
ways for an app to implement a secure pairing process: one is
to invoke the createBond() API and the other one is to define
responses when receiving a system broadcast event that carries
ACTION_BOND_STATE_CHANGED, a constant value indicating a change
in the bond state [5]. If neither of these two implementations exists
in the app code, then the app can be concluded for using “Just
Works” paring with the peripheral. Therefore, BLESCOPE recognizes
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an app implementing the “Just Works” paring if no such pairing
process can be identified.

Absent cryptographic usage detection. The detection of this
vulnerable implementation depends on identifying whether the
data exchanging between an app and its BLE IoT device is en-
crypted. In other words, we have to check whether the generation
of the data for exchanging involves encryption. To this end, we
first create a list of four system APIs whose parameters carry the
data for communication, which is shown in Table 1 under the cat-
egory of “BLE”. With this list of target APIs and parameters, we
backward iterate each instruction that is related to them, which can
be obtained by backward slicing in the value-set analysis, to detect
whether it involves encryption or hashing by comparing with the
list of cryptographic APIs, part of which are shown in Table 1. If
no encryption or hashing is detected, then the app is recognized as
vulnerable.

Flawed authentication. The identification of flawed authentica-
tion is to detect if all the data sent out to the peripheral is generated
with hardcoded sources, which means it is possible to recover the
value based on the program code. For this regard, the target APIs
and parameters are the same as that for absent cryptographic usage
detection. Unlike the algorithm to detect the existence of crypto-
graphic operation, here we only focus on all the sources, which can
be identified by the backward slicing, that contribute to the final
data sent to the BLE IoT device. If all sources are hardcoded (no
external input), then the final data should definitely be considered
hardcoded.

6 EVALUATION

We have implemented a prototype of BLEScopE with a number
of open source tools and hardware components. In particular, we
implemented the Android app analysis component atop Soot [9],
which is a powerful and popular static analysis framework for
reverse engineering of Android apps. We implemented ou BLE
devices sniffer with Raspberry-PI running Linux connected with
a SIM7000A GPS module, and a special Bluetooth adapter, Parani-
UD100, with an amplified Patch Antenna RP-SMA-R/A. In this
section, we present our evaluation results. We first describe how
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we setup the experiment (§6.1), then present our analysis results
with mobile apps (§6.2), followed by the field test result (§6.3).

6.1 Experiment Setup

BLE IoT Apps Collection. In this work, we focus on analyzing
BLE IoT apps that are available from the Google Play. However, the
Google Play does not provide information that directly indicates an
app is of BLE IoT type. Therefore, we apply a heuristic to find these
apps. In particular, we first checked whether an app has Bluethooth
related permissions in its manifest file, and we found 135, 359 of
them out of 2 million free apps crawled from the Google Play as
of April 2019. Since we only focus on BLE related apps, not the
classic Bluetooth apps, so we checked each of them to see if the
app invokes BLE related APIs (shown in Table 2) and we found
68, 908 apps. However, many of them are beacon apps, e.g., Macy’s,
which only invoke scanning related APIs (the first 6 APIs in Table 2),
which means these devices will not be connected (are not within
our attack scope). Consequently, we further identified the apps
supporting BLE connection by searching for after-connection BLE
APIs (the 7th to 11th APIs in Table 2). Eventually, we found 18, 166
BLE IoT apps for our analysis, as reported in the first row of Table 3.

Environment setup. Our evaluation consists of two sets of experi-
ments: the static analysis of mobile apps, and the passive sniffing of
advertisement UUIDs in the field (due to ethics considertion, we did
not perform any active operations with the devices). In particular,
the static analysis including value-set analysis and vulnerability
identification was conducted on a Linux server running Ubuntu
16.04 equipped by two Intel Xeon E5-2695 CPUs. The advertisement
UUIDs sniffing was conducted by the sniffer we built.

6.2 Mobile App Analysis Result

It took approximately 96 hours to finish the analysis with these
18,166 BLE IoT apps. At a high level, the experiment results of the
static analysis are broken down into two parts: (1) UUID extraction
and hierarchy reconstruction, and (2) Vulnerable app identification.
The statistics and descriptions are presented in the following.

Results of UUID extraction and hierarchy reconstruction. In
total, BLEScoOPE has extracted 168, 093 UUIDs from 18, 166 IoT com-
panion apps. Many of these UUIDs are repeated , and only 13, 566 of
them are unique. In addition to the UUIDs extraction, BLEScOPE also
reconstructed their hierarchies which are used for active fingerprint-
ing. As shown in Table 3, our system reconstructed 316, 379 (58.5%)
UUID hierarchy service edges and 224, 418 (41.5%) UUID hierarchy
characteristic edges, which indicate 316, 379 service-characteristic
pairs and 224, 418 characteristic-descriptor pairs. During the UUID
analysis procedure, there are multiple UUIDs that cannot be directly
identified because their generation involves computations, such
as concatenation and shifting. In order to identify these UUIDs,
BLEScOPE has to use VSA to compute them. The statistics of these
computations is presented in Table 4.

In addition, we also report the mapping between the UUIDs and
the apps, since there could be multiple apps using the same UUID
(that is why UUID hierarchy and active fingerprinting is needed).
This result is presented in Table 5, where we group the UUIDs based
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on the number of apps they are mapped to. As shown in the table,
a majority (65.4%) of the UUIDs can be uniquely mapped to only 1
app, which shows the corresponding devices can be easily passively
fingerprinted. As for the remaining 34.6% UUIDs, they are mapped
to multiple apps (which requires further active fingerprinting if
needed to narrow them down).

We investigated the reasons of why multiple apps could use the
same UUID and discovered that (i) multiple apps from the same
vendors (e.g., HP) could manage the same single device (e.g., the
printer); (ii) different apps (e.g., fitness apps) from different vendors
can manage the same device as well (e.g., a wrist band); (iii) apps
can reuse standard service UUIDs; (iv) apps accidentally share the
same UUIDs. Therefore, while some UUIDs are mapped to several
apps, they actually represent a specific kind of devices or those from
the same manufacture, which still can be passively fingerprinted
(and we can actually connect to these devices to fetch next layer
UUIDs to uniquely fingerprint them if needed).

Vulnerable mobile app identification. The statistics of the apps
whose BLE IoT devices are vulnerable to sniffing (both passive
and active) and unauthorized access is summarized in Table 6. The
identification process strictly follows the analysis steps defined
in §4.1. Overall, from the 18, 166 apps we analyzed, BLEScoPE has
reported that 11, 141 (61.3%) apps adopt “Just Works” pairing which
indicates that their BLE channel is insecure. Among the 11, 141 inse-
cure apps, we further discovered that 1,510 (13.6%) of them do not
use any cryptographic function to encrypt BLE-related data, 1, 434
(12.9%) have implemented flawed authentication (i.e., hard-code
their authentication credentials) or no authentication. Even worse,
1,187 (10.7%) apps have both vulnerabilities, directly implying that
their IoT devices are vulnerable to traffic sniffing and unauthorized
access attacks. Note that we applied a very strict rule (e.g., to make
sure each data to be sent is hardcoded) to identify vulnerable apps.
Therefore, we can have false negatives in our result.

We categorized the vulnerable apps according to their categories
on Google Play, and the distribution of vulnerable apps is shown in
Table 7. Interestingly, we find that health and fitness apps contribute
most to all the vulnerable apps, followed by tool apps, lifestyle apps
and business apps. In addition, we further break down the statistics
according to different vulnerabilities, which reveals that a majority
apps adopt insecure pairing (“Just Works”), and it is equally common
for apps to be vulnerable to sniffing attack (absent cryptographic
usage) and unauthorized access (flawed authentication).

6.3 Field Test Result

Our mobile app analysis only tells “what are those vulnerable IoT
apps and their corresponding devices”. Then the next question is
“where are they located”. To answer this question and also for the
demonstration of our attack, we took our long-range BLE adver-
tisement packet sniffer and drove around a small area nearby our
campus for a field test. To precisely locate where these devices are,
we added a GPS location record to the first appeared UUIDs in our
sniffer, along with the received MAC address to uniquely identify a
particular BLE device. The summary of the scanned UUID statistics
is shown in Table 8.

Overall, we have collected 30, 862 unique Bluetooth devices
(based on the MAC address), and 5, 822 of them contain UUIDs,
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API Name

Parameters

BluetoothAdapter: void startLeScan
BluetoothAdapter: void startLeScan
ScanFilter.Builder: ScanFilter.Builder setServiceUuid
ScanFilter.Builder: ScanFilter.Builder setServiceUuid
BluetoothLeScanner: void startScan
BluetoothLeScanner: void startScan

BluetoothGatt: List getServices

BluetoothGatt: BluetoothGattService getService
BluetoothGattService: UUID getUuid

BluetoothGattService: BluetoothGattCharacteristic getCharacteristic

BluetoothGattCharacteristic: UUID getUuid

UUID uuid, BluetoothAdapter.LeScanCallback callback
BluetoothAdapter.LeScanCallback callback

ParcelUuid uuid

ParcelUuid uuid0, ParcelUuid uuid1

ScanCallback callback

List list, ScanSettings settings, ScanCallback callback

UUID uuid

UUID uuid
UUID uuid

Table 2: Targeted APIs used to identify the BLE related IoT apps

Item ‘ Value %
# Apps Collected 18,166
4 UUID Identified 168,093
# Unique UUID Identified 13,566
# UUID Hierarchy Edges 540,797 100.0
# UUID Hierarchy Service Edges 316,379 58.5
# UUID Hierarchy Characteristics Edges | 224,418 41.5

Table 3: Experimental result of UUID extraction and hierar-
chy reconstruction.

opcode | #operations | opcode | # operations

+ 79,743 | 1,398
/ 9,684 | & 1,266
* 5364 | >>> 894
<< 1,860 n 462
- 1,775 >> 17

Table 4: The statistics of operations executed to resolve
UUIDs.

# Apps Mapped to a Single UUID ‘ Value

#1 8,870 65.4
#2 1,831 13.5
#3 688 5.0
#4 469 3.5
#5 330 2.4
#2>6 1,378 10.1

Table 5: The mapping between UUID and mobile apps.

Item Value %
# Apps Support BLE (Fingerprintable) 18,166 | 100.0
# "Just Works" Pairing 11,141 61.3

# Vulnerable Apps 1,757 15.8

# Absent Cryptographic Usage (Sniffable) 1,510 13.6

# Flawed Authentication (Unauthorized-accessible) | 1,434 12.9

Table 6: Experimental result of insecure app identification.

which are identified as BLE devices. The rest of them are likely
Bluetooth classic. Surprisingly, among the 5, 822 BLE devices, 5, 509
(94.6%) can be fingerprinted with UUIDs, which means that our
fingerprinting approach is quite effective to identify real IoT de-
vices. To have a high level understanding of the popular IoT device

1478

“Just Absent | Flawed
Category ‘ # App Works” | Crypto | Auth.
Health & Fitness 3,849 2,639 221 207
Tools 2,833 1,895 385 362
Lifestyle 2,173 1,081 147 141
Business 1,660 972 90 85
Travel & Local 967 582 90 87
Productivity 834 453 76 75
Education 562 377 44 43
Sports 526 296 50 49
Medical 496 223 41 39
Entertainment 443 302 53 49
Auto & Vehicles 418 285 52 44
Maps & Navigation 386 209 33 33
Communication 331 236 49 46
Game 285 227 24 24
House & Home 279 177 22 22
Events 263 51 2 2
Food & Drink 252 166 10 9
Music & Audio 243 144 8 8
Finance 239 96 10 10
Beauty 224 135 5 4
Shopping 195 135 9 9
Photography 162 96 21 20
Libraries & Demo 100 55 9 9
Social 100 62 9 9
News & Magazines 66 46 1 1
Personalization 62 48 13 13
Books & Reference 48 41 6 6
Video Players & Editors 48 33 11 9
Art & Design 45 31 7 7
Weather 40 23 8 8
Parenting 32 21 4 4
Dating 3 2 0 0
Comics 2 2 0 0

Table 7: Distribution of the BLE IoT apps across category.

manufactures, we extract those standard UUIDs and search their
company name from the Bluetooth SIG [3]. Table 9 shows the com-
pany distribution of the UUIDs from our field test. According to
the table, Google’s IoT devices are the most prevalent ones in our
scanned region (which contains a number of apartment complex),
far more popular than those from Tile, Logitech, Nest Labs, etc.

Device fingerprinting result. With these 5, 509 fingerprintable
devices, we further looked into top 10 specific fingerprinted devices.
This result is presented in Table 10, along with the company name of
the standard UUIDs from the Bluetooth SIG, and the fingerprinted
apps as well as the number of their installation.

According to Table 10, 6 UUIDs are perfectly mapped to only one
app, while the remaining 5 UUIDs are mapped to multiple apps. We
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Figure 5: Part of the geolocation of the scanned BLE devices
in our field study.

Item ‘ Value %
# Unique Bluetooth Device 30,862

# Unique BLE Device 5,822 18.9

# Fingerprintable BLE Device 5,509 94.6

# Vulnerable Device 431 7.4

# Sniffable Device 369 6.7

# Unauthorized Accessible Device 342 6.2

Table 8: Experimental result of our field test.

manually investigated apps that are mapped to the same UUID, and
confirmed the reasons of UUID collision discussed in §6.2. For the
two apps developed by HP company (row 8), they actually manage
the same IoT device (a printer). In row 9 and row 10, though the
UUIDs are both mapped to two apps respectively, these apps from
various vendors control the same category of devices (fitness de-
vices at row 9, and electric meters at row 10). For the UUID collision
in row 4, it is possibly due to accidental reuse. Since we can only use
the advertised service UUID for coarse-grained fingerprinting, the
precision can be improved if we are able to connect to the device
to obtain the complete UUID hierarchy.

Vulnerable device identification. Among the 5, 509 fingerprint-
able device, we have identified 431 (7.4%) of them that are vulnerable
to either sniffing or unauthorized access. Among them, there are
369 (6.7%) snifferable devices and 342 (6.2%) unauthorized accessi-
ble devices, and 280 devices are vulnerable to both of the attacks.
Moreover, we also count the top 10 vulnerable devices and their
descriptions (found in the fingerprinted companion app) in Table 11.
The most popular vulnerable devices include digital thermometer,
car dongle, key finder, smart lamp, etc.

Device distribution across location. In the field test, we also
recorded the GPS location where a device is scanned by us at the
first time, such location can be used to infer the proximate location
of a device. The field test was conducted at a roughly 1.28 square
miles area. To illustrate the popularity and the usage intensity
of the IoT devices, we draw a heat map showing the identified
BLE IoT devices in a part of the area we tested in Figure 5. The
areas with green color indicate the presence of IoT devices. The red
color indicates where the BLE IoT devices are more intense, e.g.,
intersections because of the open area and the residential area.
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Company # Devices
Google 2,595
Tile, Inc. 441
Logitech International SA 131
Nest Labs Inc 114
Hewlett-Packard Company 74
LG Electronics 32
Sonos, Inc. 30
Amazon.com Services, Inc. 15
Google Inc. 10
Anhui Huami Information Technology Co., Ltd. 8
Tencent Holdings Limited. 8
August Home Inc 7
Zebra Technologies 5
CSR 5
Apple, Inc. 5
UTC Fire and Security 3
Molekule, Inc. 3
Microsoft Corporation 3
Polar Electro Oy 2
GN ReSound A/S 2
B&O Play A/S 2
GoPro, Inc. 2
Dialog Semiconductor GmbH 1
RF Digital Corp 1
Clover Network, Inc 1
Facebook, Inc. 1
Gimbal, Inc. 1
Dexcom Inc 1
Snapchat Inc 1
Microsoft 1
Aterica Health Inc. 1

Table 9: Company names that can be found from Bluetooth
SIG and corresponding devices in our field test.

7 COUNTERMEASURE

In this work, we have discovered two kinds of BLE vulnerabilities,
which are rooted from the system level (BLE UUID fingerprinting
from mobile apps) and the application level (no or weak authen-
tication) implementations with the BLE devices and mobile apps.
In the following, we discuss how to eliminate or mitigate these
vulnerabilities.

Mitigating app-level vulnerability. The app-level vulnerabili-
ties include absent cryptographic usage and flawed authentication,
which are caused by the careless developers who do not imple-
ment encryption and hardcode the credentials in the app. To get
rid of such vulnerabilities, the app should implement secure cryp-
tographic function to encrypt the data to be sent. A secure cryp-
tographic function also means that all the factors involved in the
encryption should not be hardcoded. Besides, to eliminate flawed
authentication, developers should hide the authentication creden-
tials in the cloud or let users enter them in the app.

Anti-UUID fingerprinting. The root cause of our UUID finger-
printing is that BLE devices need to broadcast advertised packets
to inform nearby apps. The UUID can be sniffed either from the
advertisement packets or by browsing for services after connec-
tion is established. In addition, UUIDs are fixed values and do not
change over time. Therefore, to anti-UUID fingerprinting, we can
prevent them from being sniffed in the air or reverse-engineered
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# Devices ‘ APP Package Names

# Installed

UUID ‘ Company Name
0000fe9f-0000-1000-8000-00805f9b34fb | Google
0000feed-0000-1000-8000-00805f9b34fb | Tile, Inc.

0000b13d-0000-1000-8000-00805f9b34fb | -
adabfb0o-6e7d-4601-bda2-bffaa68956ba | -
0000fe61-0000-1000-8000-00805f9b34fb | Logitech International SA
0000feaf-0000-1000-8000-00805f9b34fb | Nest Labs Inc.
0000fead-0000-1000-8000-00805f9b34fb | Google
0000fe78-0000-1000-8000-00805f9b34fb | Hewlett-Packard Company

fb694b90-f49e-4597-8306-171bba78f846 | -

730a0ce2-9042-4ef1-870d-debe79a601f3 | -
d2d3f8ef-9c99-4d9c-a2b3-91c85d44326¢ | -

2,436 | com.google.android.gms 5,000,000,000
441 | com.thetileapp.tile 1,000,000
243 | co.bird.android 1,000,000
208 | com.fitbit.FitbitMobile, de.afischer.aftrack.plugin.sensbox 10,000,000

131 | com.logitech.vc.parsec, com.logi.brownie 5,000

114 | com.nest.android 1,000,000
92 | com.google.android.apps.chromecast.app 100,000,000
74 | hp.enterprise.print, com.hp.printercontrol 10,000,000
4% comAlfAlfvtandroid,_ com.paofit.RideSocial, 500,000

com.paofit.runsocial
44 | com.powerley.aepohio, com.dteenergy.insight 100,000
44 | com.nest.android 1,000,000

Table 10: Top 10 devices found in the field test.

UUID ‘ # Device ‘ Device Description
00001910-0000-1000-8000-00805f9b34fb 7 | Digital Thermometer
00001814-0000-1000-8000-00805f9b34fb 6 | Car Dongle
00001804-0000-1000-8000-00805f9b34fb 6 | Key Finder
0000fef1-0000-1000-8000-00805f9b34fb 5 | Smart Lamp
0000f000-0000-1000-8000-00805f9b34fb 5 | Key Finder
00001820-0000-1000-8000-00805f9b34fb 4 | Smart Toy
bc2f4cc6-aaef-4351-9034-d66268e3280 4 | Smart VFD
0000ffdo-0000-1000-8000-00805f9b34fb 4 | Air Condition Sensor
000018f0-0000-1000-8000-00805f9b34fb 4 | Smart Toy
0000ec00-0000-1000-8000-00805f9b34fb 4 | Accessibility Device

Table 11: Top 10 vulnerable devices found in the field test.

in the app. In particular, we notice there could be solutions from
three dimensions: (1) App-level (§7.1), (2) Channel-level (§7.2), and
(3) Protocol-level (using dynamic UUIDs) (§7.3). In the rest of this
section, we describe in detail how these defenses could be designed
and implemented.

7.1 App-Level Protection

Since our fingerprinting attack relies on mobile app analysis to
reveal the UUIDs and their hierarchies, accordingly any attempts
to defeat or slow down the reverse engineering of mobile apps will
be helpful. In general, it requires app developers to make effort
to prevent the UUIDs and their hierarchies from being reverse
engineered, in order to disable attackers for binding UUIDs to
specific apps to fingerprint BLE IoT devices.

There are multiple ways to implement this type of protection. To
begin with, as one of the reasons that UUIDs and their hierarchies
can be obtained from the app is that they are hardcoded in plaintext,
intuitively app developers can obfuscate the app to encode the
UUIDs or use encryption to hide the UUIDs. Similar strategy had
been implemented in [35]. Also, app developers can preserve the

UUIDs in a cloud server, which is not accessible to the attackers.

In this way, whenever a mobile app tries to connect to a nearby
desired BLE device, it will dynamically retrieve the UUID from the
cloud, so that attackers cannot obtain the UUIDs from statically
reverse engineering of the mobile apps.

Although the protection methods in the app-level are seemingly
plausible, these methods cannot fundamentally prevent the UUIDs
from being reverse engineered from the mobile apps. This is because
the obfuscation and encryption can only increase the difficulty for
attackers to retrieve the UUIDs due to the fact that the plaintexted

UUID should be interpreted in somewhere of the app. While stor-
ing UUIDs outside the mobile apps can prevent the UUIDs from
being statically reverse engineered, the attackers can still obtain
the plaintexted UUIDs at run-time, because the UUIDs are static
and somewhat public in this scheme.

7.2 Channel-Level Protection

The second reason of why our BLE IoT devices fingerprinting can
succeed is the recognizable UUIDs from the broadcasting packages
of these devices. Therefore, any attempts at network channels to
prevent an adversary from receiving complete signals of UUIDs
would work.

The mitigation in the channel-level to disallow attacks to receive
sufficient signals and packages for information recognition can be
implemented with methods that disrupt signals broadcast from BLE
IoT devices. In this way, attackers can only sniff either disrupted
or interrupted instead of continuous signals, which is supposed
to avoid the complete recognition of UUIDs. This type of mitiga-
tion has been implemented in BLE-Guardian [20] that depends on
an additional hardware to broadcast disrupting signals to prevent
packages sniffing. While this is an promising approach, it requires
additional hardware support.

7.3 Protocol-Level Protection

Since the static UUID that can be extracted from the companion
mobile apps is the root cause of our fingerprinting attack, a funda-
mental countermeasure would be to construct a one-time dynamic
UUIDs for broadcast and communication. It may appear to modify
the device hardware, but it turns out this countermeasure only
require software update. That is, by only updating both the apps
and the device firmware, we can achieve a dynamic UUID scheme.

In the following, we present how a one-time dynamic UUID can
be generated and synchronized between the device and app. Since
one device can be used by multiple users, we also put cloud in the
scheme to help synchronize the UUIDs among users. At a high
level, after an app is successfully connected with an IoT device for
the first time, it negotiates a dynamic UUID for future broadcast
and communication. As illustrated in Figure 6, this scheme can be
broken down into three steps: (1) Dynamic UUID generation, (2)
App-Device synchronization, and (3) Cloud synchronization, which
are detailed as follows.
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(1) Dynamic UUID generation. When the app connects with the
device for the first time, it uses the default UUIDs to recognize the
target device as usual. The default UUIDs are needed since they are
necessary for broadcast and communication before negotiation of
dynamic UUIDs. Though these default UUIDs enable an attacker to
leverage them to fingerprint the device, the time window for the
attack is quite narrow. After the first connection is established (Step
3), a dynamic UUID will be generated (Step 4). Since there are nearly
2128 possible UUIDs in theory, a random function would be able to
generate a sufficient random UUID (impossible to be brute forced).
The generation can be deployed on mobile app, device firmware,
or even cloud server. In our design, we choose to generate the
dynamic UUIDs on the app side, since it is more cost-effective
(generation on firmware or cloud can bring additional energy or
network consumption).

(2) App-Device synchronization. When the dynamic UUIDs are
successfully generated, the next step is to synchronize them on
both the app and the device so that they can agree on using them
for future broadcast and communication. To achieve this, the app
sends the dynamic UUIDs to the device (Step 5). When the device
receives the dynamic UUID, it responses back to the app to inform
the success of synchronization, and starts to use dynamic UUIDs
for broadcast and communication instead of the default UUIDs fin-
gerprintable by attackers (Step 6). Similarly, if the dynamic UUIDs
are generated on the device or cloud, the synchronization can be
implemented correspondingly.

(3) Cloud synchronization. In typical IoT scenarios, a BLE device
usually needs to be connected with multiple companion apps, since
an IoT device (e.g., a smart home device) can have several legiti-
mate users. Therefore, we introduce a cloud synchronization step
to save the dynamic generated UUIDs to the cloud (Step 7). Multiple
apps can share a BLE device by using the same dynamic UUIDs on
the cloud. As a result, in order to establish a connection after the
dynamic UUIDs have been generated, an app will first synchronize
the dynamic UUIDs and leverage them to establish a connection
(Step 8-11). Moreover, cloud synchronization also prevents regen-
erate dynamic UUIDs for each connection, which is vulnerable to
fingerprinting attack as previously discussed.

Implementation and Deployment. To prove the above scheme
is viable, we have implemented a prototype using a real BLE chip
in a software development board with series number “nRF52-DK”.
Specifically, this chip provides programming interfaces to configure
UUIDs for advertisement packets, services, characteristics, and
descriptors. It should be quite common for chip manufactures to
provide such an interface, since each specific IoT device vendor
needs to configure the UUIDs during the firmware development.
With less than 500 LOC in both the mobile app and device firmware,
we implemented the above proposed scheme, and tested it works as
expected. To deploy our scheme, it requires software updates at both
mobile apps and device firmware. This is actually consistent with
today’s IoT software ecosystem in which both app and firmware
can be upgraded.
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Figure 6: A practical dynamic UUID defense without hard-
ware modification.

8 DISCUSSION

8.1 Limitation and Future Work

While BLEScoPE has identified a great number of UUIDs and vul-
nerable IoT apps, there are still limitations that can be improved.
First, when recognizing flawed authentication in mobile apps, BLE-
ScopPE applies a very strict rule which requires all the data to be sent
should be hardcoded. As a matter of fact, this causes false negatives
since we are not able to identify which data is the authentication
credential. As a result, although some apps allow external input
to be sent to the peripherals, it does not necessarily mean that the
data is for authentication. For example, some network return data
is only for firmware update, but unfortunately we cannot figure out
in an automatic way to distinguish them. With a more sophisticated
approach in the future, we may be able to precisely identify these
vulnerable apps as well.

In addition, our backward slicing attempts to exhaustively ex-
plore all possible branches, which may cause branch explosion. If
so, we will terminate our analysis for such apps, leading to another
false negatives. One cause for the branch explosion is that Android
apps are developed using object-oriented programming, with which
the callers of some inherited object instances can only be deter-
mined at run-time. Therefore, our algorithm has to exhaustively
search for all potential callers from its super classes in these cases,
thereby causing branch explosion. One of our future works will
attempt to address this problem.

Finally, in our scanning experiment we only obtained the public
service UUIDs from the advertisement packets for fingerprinting.
As a result, the fingerprint results we have obtained are not that
precise, since in §5 we mention that hierarchy of UUIDs could
precisely determine a device in the field test. Due to ethical reasons,
it is impossible for us to reconstruct the hierarchy of UUIDs because
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it requires connection to devices. However, the attack is still possible
for real attackers since they do not have ethical considerations.

8.2 Ethics Consideration

Since our experiment is conducted on real IoT devices which contain
sensitive and private user information, we never exploit any of the
vulnerabilities due to ethics consideration. Also, we never actively
connect with any of the devices and only passively scanned the
advertised packets to obtain UUIDs, which is public to all. As a result,
as stated in §6.2, we only collected those service UUIDs exposed
in the advertised BLE packets. Therefore, we never evaluated the
hierahical UUIDs for the fingerprinting (only tested with our own
BLE devices), since it requires connection to fetch the next layer
UUIDs from the device.

Responsible Disclosure. We have reported the BLE IoT device
fingerprinting with static UUIDs to the Bluthooth SIG. We have
also reported the vulnerabilities to the developers of the vulnerable
apps based on their contact information from Google Play.

9 RELATED WORK

IoT security. Recently, there were significant amount of efforts
in IoT security. These efforts have uncovered numerous vulnera-
bilities of various IoT devices including BLE ones such as bands,
watches, smart locks, and smart homes [14-18, 21, 23, 25, 36, 42].
Typical vulnerabilities are pairing credential leakage [16, 17], un-
changed address [14, 18], unencrypted channel [42], information
leakage [18], privilege misconfiguration [21, 23], and even memory
corruptions [15]. These insecure devices expose attack surfaces to
nearby attackers with various attacks such as man-in-the-middle
(MITM), denial-of-service (DoS), location tracking, and even gain
unauthorized access. Compared to these efforts, which usually focus
on several devices of the same category with a relatively small scale,
our research systematically studies all kinds of BLE IoT devices in
the market from the perspective of companion mobile apps.

There are also defenses against the emerging security problems
in the IoT area, such as SmartAuth [34], FlowFence [22], a gateway
based system [19] and BLE-Guardian [20], which defend against
MITM attacks, information leakage, and unauthorized accesses.
BLEScOPE is inspired by these works and we enrich them with more
systematic countermeasures.

BLE security. While there are a great amount of effort on IoT secu-
rity, only a handful of them focused on BLE security. In particular,
Ryan et al. studied the insecure pairing protocol for the LE legacy
connection in BLE 4.0 and 4.1, and demonstrated that it is vulnera-
ble to eavesdropping [30], which made the Bluthooth SIG patch this
vulnerability in later versions [1]. More recently, researches have
targeted latest BLE generations to uncover vulnerabilities, such
as the MITM attack on Passkey Entry pairing protocol [32, 33],
brute-force attack to calculate long term key [41]. In our work, we
study a unique and interesting problem: fingerprinting BLE devices
with static UUIDs available in mobile apps.

Vulnerability discovery based on mobile apps analysis. In the
past several years, there are tremendous efforts of uncovering vul-
nerabilities based on mobile app analysis by using techniques such
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as taint analysis. The vulnerabilities discovered could be just in the
phone (e.g., privacy sensitive data such as address book leakage
by Flowdroid [11] and Amandroid [37]), or in the server (e.g., vul-
nerable authentication [44] and authorization [45], or cloud data
leakage [43], or missing security check [28], or lack of software
updates [10]) to which the app communicates. BLEScOPE comple-
ments with these works by identifying vulnerabilities in both BLE
IoT devices and companion mobile apps.

10 CONCLUSION

We have presented BLESCOPE, a tool to fingerprint BLE devices
by using static UUIDs extracted from the companion mobile apps.
As a side product, it also identifies the vulnerable apps that do
not have any user authentication with the devices. We have tested
BLEScOPE with 18, 166 apps from Google Play, and it discovered
168,093 UUIDs (13, 566 unique) and 1, 757 vulnerable apps among
them. With the harvested UUIDs and vulnerable apps, we conducted
a field test in a 1.28 square miles area, and BLEScopE discovered
5,822 BLE devices and fingerprinted 5, 509 (94.6%) of them. Among
the identified devices, 431 (7.4%) of them are vulnerable to attacks
including sniffing and unauthorized access.
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