When Good Becomes Evil: Tracking Bluetooth Low Energy
Devices via Allowlist-based Side Channel and Its Countermeasure

Yue Zhang
The Ohio State University
zhang.12047@osu.edu

ABSTRACT

Bluetooth Low Energy (BLE) is ubiquitous today. To prevent a
BLE device (e.g., a smartphone) from being connected by unknown
devices, it uses allowlisting to allow the connectivity from only rec-
ognized devices. Unfortunately, we show that this allowlist feature
actually introduces a side channel for device tracking, since a device
with the allowed list behaves differently even though it has used ran-
domized MAC addresses. Worse even we also find that the current
MAC address randomization scheme specified in Bluetooth protocol
is flawed, suffering from a replay attack with which an attacker can
replay a sniffed MAC address to probe whether a targeted device
will respond or not based on its allowlist. We have validated our
allowlist-based side channel attacks with 43 BLE peripheral devices,
11 centrals, and 4 development boards, and found none of them once
configured with allowlisting is immune to the proposed attacks. We
advocate the use of an interval unpredictable, central and periph-
eral synchronized random MAC address randomization scheme to
defeat passive device tracking (introducing 1% power consumption
overhead for centrals and 6.75% for peripherals, and 88.49 us perfor-
mance overhead for centrals and 94.46 us for peripherals), and the
use of timestamps to derive randomized MAC addresses such that
attackers can no longer be able to replay them to defeat active device
tracking (introducing 3.04% overhead for peripherals, and 63.58 us
and 20.54 ps performance overhead for centrals and peripherals). We
have disclosed our findings to Bluetooth SIG and many other stake-
holders in October 2020. Bluetooth SIG assigned CVE-2020-35473 to
track this logical-level protocol flaw. Google assigned our findings
as a high severity design flaw and awarded us with a bug bounty.

CCS CONCEPTS

« Security and privacy — Security protocols; Mobile and wire-
less security .

KEYWORDS

Bluetooth Security, Wireless Security; Bluetooth Privacy; Identity
Resolution Key (IRK); Side Channel Attacks; Replay Attacks

ACM Reference Format:
Yue Zhang and Zhigiang Lin. 2022. When Good Becomes Evil: Tracking
Bluetooth Low Energy Devices via Allowlist-based Side Channel and Its

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3559372

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Countermeasure. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS °22), November 7-11, 2022, Los
Angeles, CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3548606.3559372

1 INTRODUCTION

Being a short-range wireless communication technology, Bluetooth
Low Energy (BLE) is ubiquitous and has been used in numerous
applications today such as home entertainment, health care, sports,
retail, and even recently digital contact tracing. However, BLE de-
vices are subject to MAC address tracking since any nearby at-
tackers can sniff the Bluetooth packets and associate them with
particular devices or even users [1-5]. This is because, when using
BLE for communication, a peripheral without being connected will
periodically (e.g., every 20 milliseconds [6, 7]) advertise its presence
to nearby centrals with an Advertising Indication (i.e., ADV_IND)
packet [8] along with its MAC address; a nearby central (e.g., a
smartphone) will typically respond to the ADV_IND packet with a
scan request (i.e., SCAN_REQ) containing the MAC addresses of both
the central and the peripheral [2], to see whether the peripheral
is a known device or not. Consequently, an attacker with a sniffer
can observe MAC addresses being exchanged between Bluetooth
devices for MAC address tracking attacks [1-5].

Bluetooth Special Interest Group (SIG) is certainly aware of MAC
address tracking threats, and have specified the use of MAC ad-
dress randomization using such as Resolvable Private Address (RPA)
to protect the Bluetooth privacy. In particular, RPA allows paired
devices (i.e., two devices have exchanged cryptographic keys) to
resolve and recognize the peer device’s MAC address using its Iden-
tity Resolution Key (IRK) [6]. With RPA, a Bluetooth MAC address
will be randomized periodically (e.g., every 15 minutes [6]), thereby
hindering MAC address tracking attacks from nearby attackers.

Unfortunately, in this paper we show that MAC address tracking
is still possible even though it is randomized, particularly when the
BLE device enables the “filter accept list” [6] defined by Bluetooth
SIG (and we call it allowlist for brevity in this paper), an access
control feature used by a vast majority of BLE devices (e.g., Android
phones, or iPhones). More specifically, when a Bluetooth device is
configured with the allowlist, it behaves differently. For instance,
a peripheral would ignore SCAN_REQ from unknown devices, and
only respond to SCAN_RSP for its allowed device; a central may
directly connect its allowed peripherals (much like a magnet) once
receiving an advertisement packet without any SCAN_REQ. There-
fore, an attacker can track the sniffed MAC addresses and associate
them with specific ones by using a sniffer to passively collect and
analyze whether the device responded or not. Although both the
two communicating devices can enforce address randomization,
there could exist an interval, where one device changes its address
but the other one remains the same, which consequently leaves

https://doi.org/10.1145/3548606.3559372
https://doi.org/10.1145/3548606.3559372
https://doi.org/10.1145/3548606.3559372

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

significant footprints for attackers to track the devices based on
the old and not simultaneously changed address. This allows the
attacker to identify both devices across the randomization time
interval (e.g., more than 15 minutes).

While the above passive attacks require an attacker to keep mon-
itoring the advertising packets, which would be quite costly for
attackers, we also find attackers do not have to do so if they can
replay a sniffed MAC address to actively probe whether a peripheral
or a central will respond or not, by exploiting the flaw we discov-
ered in the current RPA randomization algorithm in the Bluetooth
specification. In particular, although a randomized address in RPA
is generated from a random number and a pre-shared IRK between
two paired devices, the current Bluetooth protocol does not specify
how the random number should be chosen (other than mentioning
that the random number should neither be all 0s nor all 1s at page
2,861 in [9]), and no mechanisms are placed to prevent the reuse
of an existing random number. Therefore, while an attacker can-
not obtain the IRK, he or she can still track the devices across the
randomization time interval by simply collecting the sniffed MAC
addresses and replaying them to observe whether the devices are
in the allowlist or not.

To demonstrate concretely this new MAC address tracking threat,
we present a novel allowlist based side channel attack dubbed Blue-
tooth Address Tracking (BAT). Similar to other MAC address track-
ing attacks (e.g., [1-5]), our attacks work against devices during the
advertising stage. Particularly, we show that an attacker can either
passively sniff (§4) the Bluetooth packets to identify the peripherals
and the centrals, or actively replay (§5) the sniffed MAC addresses
of centrals to identify their association, or actively replay the sniffed
MAC addresses of peripherals to attract known centrals. If the at-
tacker knows the user who is using the identified centrals or the
peripherals, an attacker can even use BAT attacks to monitor the
user’s behaviors, and track the user’s past trajectory (e.g., where the
user has been to the past) or even the real-time location. We have
implemented BAT using a BLE sniffer, a customized smartphone
and a Bluetooth development board, and tested our passive and
active BAT attacks with 54 of our own devices and also 4 develop-
ment boards, and identified 39 devices (11 centrals, 24 peripherals,
4 development boards) that use the allowlist, none of which defeats
our BAT attacks currently.

We advocate the use of an interval unpredictable, central and
peripheral synchronized RPA generation scheme to counter our
passive BAT attacks (§6.1). To defend against our active BAT attacks,
we propose adding a sequence number (which could be a times-
tamp) when generating the RPA to ensure that each MAC address
can only be used once to prevent the replay attack (§6.2). We have
developed a prototype of our defense named Securing Address for
BLE (SABLE) atop Android Open Source Project (AOSP) [10] and
the SDK of Nordic [11] by modifying the Bluetooth protocol stack.
We have tested SABLE, and our experiment result shows that (1)
our passive-attack defense will have about 1% power consumption
overhead for centrals and 6.75% for peripherals, and 88.49 s per-
formance overhead for centrals and 94.46 ps for peripherals; and (2)
our active-attack defense will not impose any power consumption
for centrals but will have 3.04% power overhead for peripherals,
and 63.58 us and 20.54 ps performance overhead for centrals and
peripherals, respectively.

Yue Zhang & Zhigiang Lin

DoDooooC|
000000000
00C—0000|

Central Peripheral
(1) Advertising
RS T N R 3
scanning filer | @Broadcast (e.g., ADV_IND) | advertising
policy | @ scan requébt (i, SCAN_REQ) filter policy
—————— - = -——
initiator | > © Scan response (i.e., SCAN_RSP)
filter policy | @ Connection request (i.e., CONNECT_REQ)
i

i
|
|

-
I
|

@ Pairing feature exchange }
|
I
|
|
I
I
I
I
|

@ Encryption key generation

-
!

i

i

i @ Key distribution (e.g.,|IRK)

|

L

-
-—— === " . N \—Q—IMAC - ——
© Allowlist configuration
[_IRKy | 1RKe
CAllowlist T Allow st !

Figure 1: BLE workflow with corresponding allowlist policies.

2 BACKGROUND

When using BLE for communications between a central (e.g., a
smartphone) and a peripheral (e.g., a keyboard), it usually involves
anumber of steps. As illustrated in Figure 1, it could have up to nine
steps, and these steps can be categorized into four stages [6]: (I)
Advertising stage, (II) Pairing stage, (III) Allowlisting initialization
stage, and (IV) Data exchange stage. The details of these stages are
described as follows:

(I) Advertising Stage. In this stage, the central and the peripheral
establish the connection by first broadcasting the presence from
the peripheral, followed by a scan request from the central, then a
scan response from the peripheral, and finally a connection request
from the central.

o Step @ Broadcast. In Bluetooth communication, the presence
of a peripheral must be known to the nearby centrals. This is
achieved by broadcasting the packet that includes the MAC ad-
dress of the peripheral, the PDU type of the advertisement (e.g.,
ADV_IND which indicates that this device can be connected and
scanned, or ADV_DIRECT_IND which indicates this device can
only be connected by devices with the expected MAC address
specified in the ADD_R field in the broadcast packet), and other
optional information such as service UUIDs and manufacture
data. Note that there is a special type of Bluetooth device, namely
beacons, which only broadcast ADV_NONCONN_IND packets.

Step @ Scan Request. When a central receives an ADV_IND packet,
typically it will respond with a Scan Request (i.e., PDU type
SCAN_REQ) [12]. However, since Bluetooth 4.0 (a.k.a., Bluetooth
Low Energy), a new allowlist feature called scanning filter policy
is introduced, with which a device such as a central can con-
figure to only respond its SCAN_REQ to the allowlisted devices.
This allowlist feature not only saves energy for the central, but
also makes the communication more secure by only allowing
connections with the listed devices. However, in practice, smart-
phones typically do not configure this policy as it will prevent
the smartphones from discovering new peripherals.

Tracking Bluetooth Low Energy Devices via Allowlist-based Side Channel and Its Countermeasure

o Step ® Scan Response. When receiving a SCAN_REQ from a
central, the peripheral typically will respond with a Scan Re-
sponse [8] (i.e., PDU type SCAN_RSP). However, similar to the
central, which can have a scanning filter policy, a peripheral can
have an advertising filter policy, allowing the peripheral to only
respond its SCAN_REQ to its allowlisted device. In addition to all
the advantages of using allowlist in centrals, using allowlist in
peripherals also enables security and privacy protection. In par-
ticular, Bluetooth protocol specification recommends advertising
sensitive data (e.g., static data such as manufacturer information,
device type such as keyboard) in SCAN_RSP (not in ADV_IND) [9]
to only trusted devices (i.e., the ones in its allowlist).

it then determines if the peripheral is of its interest (e.g., a key-
board that is of interest to its OS, or a blood pressure that is
of interest to its corresponding app). By default, the OS of the
central will not automatically initiate a Connection Request (i.e.,
PDU type CONNECT_REQ) to the peripherals, a user or an app
has to be involved to initiate the connection. However, after
the central has paired with the peripheral, it can maintain the
paired peripheral into its allowlist with an initiator filter policy
to decide whether to automatically (much like a magnet) initiate
the connection whenever it sees the corresponding peripheral.
The use of this allowlist policy can significantly improve the
user experience, since it does not require the user to manually
open the settings app of the OS or other 3rd-party apps to
injtiate the connection. For the peripheral, when receiving a
CONNECT_REQ, it can also use the advertising filter policy as in
Step @ to decide whether to accept this CONNECT_REQ in case
that a central directly connects to it without using SCAN_REQ [9].

(II) Pairing Stage. Pairing, which is optional, is used to negotiate
cryptographic keys for communication security and privacy and
can be broken into three steps (from Step @ to @). In particular, Step
@ Pairing Feature Exchange: the two devices exchange their pairing
features (e.g., having a display, or a keypad), which are needed to
decide the appropriate pairing method such as Just Works, Passkey
Entry, Out of Band, and Numeric Comparison (since Bluetooth
4.2). Step ® Encryption Key Generation: the two devices determine
the type of pairing method based on the features exchanged and
negotiate an encryption key. Step @ Key Distribution: two devices
exchange keys, and these include the encryption key and also the
Identity Resolving Key (IRK), which is used for a BLE device to
resolve its peer’s randomized MAC address.

MAC address randomization is crucial for BLE security and pri-
vacy [13][14]. A Bluetooth MAC address is a 48-bit value uniquely
associated with the device. There are four types of MAC addresses:
Public Address (PA), Static Random Address (SRA), Resolvable Pri-
vate Address (RPA), and Non-Resolvable Private Address (NRPA).
These address types can be identified by parsing both TxAdd and
the two most significant (MSB) bits of the randomized MAC address.

e Public Address (PA) (TxAdd=0): a PA is a globally static address
assigned by the manufacturer. It never gets changed (serving as
an identity for the device), obviously vulnerable to MAC address
tracking attacks.

Step @ Connection Request. When the central receives a SCAN_RSP,

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

e Static Random Address (SRA) (TxAdd=1, MSB=11): an SRA is
randomly generated by the device when it is rebooted or reset [6].
SRA is also vulnerable to MAC address tracking if the device
never reboots or resets.

¢ Resolvable Private Address (RPA) (TxAdd=1,MSB=01): an RPA
is generated using an IRK and it changes periodically. Only the
paired device with a valid IRK can resolve the corresponding
RPA to identify the known devices.

e Non-Resolvable Private Address (NRPA) (TxAdd=1, MSB= 00):
an NRPA is randomly generated and changes periodically de-
pending on the implementation. NRPA is intended to never be
resolvable by any device.

It can be noticed that only RPA can still be resolved by the peer
devices if they know the corresponding IRK. This is particularly
useful for a peripheral to remember the recognized centrals or vice
versa. Next, we explain the format of RPA and its generation and
resolution process. In particular, according to the Bluetooth proto-
col specification [9], an RPA consists of prand and hash. The MSB
of prand for RPA is fixed (i.e., MSB=01), and the rest of the prand
are the random bits.

o RPA Generation. To generate an RPA (48-bits), the central,
denoted with symbol c, first selects a 24-bits prand (i.e., prandas
whose first two bits are predefined), and then it feeds its IRK,
assume irk., along with the selected prand into a pre-defined
hash function H to get a 24-bits hash value Ho4(prandy, || irk).
Finally, the RPA of ¢, assume rpac, is generated by concatenating
prand and the hash value:

rpac = prand,y || Haa(prand,y || irke)

¢ RPA Resolution. When receiving an rpa. from a central, the
peripheral can determine whether this RPA is from its “known”
device. This is achieved through the RPA resolution. At a high
level, the peripheral will first split rpac into two parts: prandag
and hashy4. Next, it iterates its known IRK list (each element of
this list is added during the pairing), assume irk;, to compute

hashj, = Hos(prandy, || irk;)

If hashé4 matches the received hashgy split from the rpac, then
the device is resolved with the corresponding irk;.

(IIT) Allowlisting Initialization (Step ©). This is also an optional
stage depending on the configurations, and it is used to configure
the allowlist used by early Steps (e.g., ®, ®) for device filtering. To
uniquely identify a device, the allowlist feature relies on the IRKs
transmitted at Step @, and Step © just adds the IRKs to the list with
other information, such as the address type. However, if the added
device does not enable the address randomization, then the MAC
address of the device instead of its IRK will be added to the allowlist.

Recall that there are three allowlist-based filtering polices: (i)
scanning filter policy, (ii) advertising filter policy, and (iii) initiator
filter policy. Among them, the advertising filter policy is deployed
at the peripheral side, and the other two are deployed at the central
side. Although the Bluetooth protocol does not specify how many
devices can be added to an allowlist, we find that different policies
may affect the number of devices that can be added to the allow list.
In the following, we summarize their practical impacts when used:

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

D i D

Allowlisted Central Unknown Central

Addr, = SA Addr, = MAC'y

i i
| i

i
i SCAN_REQ (Addr.> Addr,) i
> i
{ SCAN_RSP (with Addr,) !

Time

|

‘ i
! SCAN_REQ (Addr.=> Addr,) '1
| SCAN_RsP (with Addr,) ;
|

¥ s | s [

Figure 2: An example to demonstrate the key observation.

e Scanning filter policy. While the scanning filter policyis defined
in the specification, it is not appropriate to be deployed on smart-
phones, since it will prevent smartphones from discovering new
BLE devices. Instead, it is usually deployed in some customized
controllers (e.g., wireless controller for video games [15]), where
one controller only discovers and communicates with only one
BLE device.

Initiator filter policy. This policy is widely deployed in smart-
phones for auto-connection without user involvement if a known
peripheral is detected within its reach. Since it will not prevent
smartphones from discovering and connecting new BLE devices,
a smartphone with this policy enabled will be able to automati-
cally connect multiple peripherals for user convenience.

Advertising filter policy. We find that in practice only one
allowlisted central can be added when enabled the advertising fil-
ter policy in a peripheral. This is because once the peripheral has
paired with a particular central, it usually restricts other centrals
to connect and pair with it. Without going through the pairing
process, other centrals will not be able to deliver their IRKs to
it and the allowlist will not be able to add any new centrals. As
such, this policy usually allows a consistent one-to-one mapping
between the allowlisting peripheral and the listed central.

(IV) Data Exchange Stage (Step ©). After the first three stages, the
two devices can now exchange data using a client-server (C/S) mode,
either using encryption if they have exchanged cryptographic keys
or plaintext if not. Specifically, the central plays the client role, and
the peripheral acts as a server providing services to the client. A
read request can be sent to the peripheral if the central needs to
read data from the server, or with a write request if the central
needs to submit data to the server.

3 OVERVIEW OF BAT ATTACKS
3.1 Key Observation

A key observation of our BAT attacks is that once a device has
been configured with allowlisting, it will behave differently when
responding to its allowlisted devices and non-allowlisted devices, as
described in §2. For example, if a peripheral enables advertising filter
policy to filter the SCAN_REQ from the nearby centrals, it will always
respond to its allowlisted devices while ignoring the SCAN_REQ sent
from the non-allowlisted devices. Specifically, as illustrated in Fig-
ure 2, at time #1, assume there is a peripheral p with static address

Yue Zhang & Zhigiang Lin

SA (for simplicity, assume p uses a static address at this moment),
which is broadcasting, and there are multiple centrals nearby (as-
sume an allowlisted central ¢ and an unknown central u). We can
observe that p only accepts the SCAN_REQ from ¢ with MACf1 with
a SCAN_RSP, but ignores the SCAN_REQ from the central u with ad-
dress MAC;‘]. As such, it is quite straightforward to identify and
track the allowlisted central ¢, by simply associating the randomized
MAC addresses together from the sniffed packets. This is because
the advertising filter policy creates a consistent one-to-one mapping
between the allowlisting peripheral p and the allowlisted central c,
enabling the attacker to uniquely associate the central of interest.

3.2 Objectives, Assumptions, and Attack Model

Attack Objectives. We consider the users whose Bluetooth de-
vices use RPA as our victims, since a Bluetooth device can be easily
tracked if its MAC address is not randomized. Today, many Blue-
tooth devices have adopted randomized MAC addresses such as
RPAs. For instance, Google has enforced the use of RPA on all
Android smartphones since 2016 [16]. The goal of BAT attack is
to show that the Bluetooth devices with RPA can still be tracked,
allowing their users to be potentially deanoymized (e.g., when the
MAC address can be associated to a particular user).

Without loss of generality, we define the objective of BAT attacks
as follows: for a set of sniffed MAC addresses (regardless of how
many BLE devices they belong to), assume that

G(MAC) = {MAC{**, MAC{*, .., MAC]*")

where MACZCEU" is the MAC address of device devy at the time t,.
For any two MAC addresses, assume that

dev, d
MAC; ™ € G(MAC),MACt;”b € G(MAQ), |ty —tp| > T

where T is the randomization time interval (e.g., 15 minutes), the
goal of BAT attack is to determine whether dev, = devy. If so,
the attacker successfully associates the two MAC addresses. For
example, assume at time t, the attacker observed a victim is at her

office and sniffed an address MAC?:U“, and at time tp, the attacker

;i:ub in a Starbucks. If the

attacker identifies that MAC?LEU“ and MACfbevb are the ephemeral
addresses of the same device (e.g., a user’s smartphone), the attacker
then successfully associates these two addresses, and knows the
user is in or near the Starbucks.

sniffed an anonymous device with MAC

Victim Settings. Not all users whose BLE device configured with
RPA can be attacked, and instead our BAT attacks have the following
two requirements:

o We require the victim to have a paired central and peripheral, and
either the central or the peripheral has configured the allowlist.
This is true for most centrals and peripherals today, since centrals
often configure the initiator filter for automatic connection with
known peripherals, and many peripherals often configure the
advertising filter to respond only to known centrals.

e We require that the central and the peripheral are not always
connected, which is also often true. For example, a smart speaker
is disconnected from the mobile when the user is away, and
earbuds are disconnected from the mobile when they are in their

Tracking Bluetooth Low Energy Devices via Allowlist-based Side Channel and Its Countermeasure

charging cases. If they are connected, attackers have to wait until
either the two devices begin to communicate, or one of them is
available for attackers to communicate. Although the attacker
can use jamming to intentionally disconnect devices, users may
notice that two connected devices are disconnected, which will
break the stealthiness of the attacks.

Attack Scenarios. Since the attacker is able to either (i) passively
sniffing the BLE traffic or (ii) actively modifying the traffic, it leads
to two types of BAT attacks:

o Passive BAT Attacks (§4), which just passively sniff the adver-
tising packets between centrals and peripherals, to see whether
a peripheral will selectively respond to SCAN_REQ (i.e., reply with
a SCAN_RSP or not); if so, attackers use this single bit to associate
(i.e., track) the corresponding centrals into unique ones based
on the observed MAC addresses.

Active BAT Attacks (§5), which actively manipulate the pack-
ets, e.g., forging new packets, or replaying the old packets, to
observe how a peripheral or a central behaves. If there are dis-
tinctive behaviors observed, their corresponding MAC addresses
are associated too.

Attacker’s Assumptions. When launching BAT attacks, we as-
sume the attackers to have the following capabilities:

e When launching passive BAT attacks, we assume that attack-
ers can keep collecting the advertising packets (e.g., ADV_IND,
SCAN_REQ, SCAN_RSP) sent from the victim’s devices, across the
randomization time interval. To this end, the attacker has to
be close to the victims to sniff the Bluetooth packets, and the
victim devices have to be turned on (e.g., many battery-powered
peripherals may enter the sleep mode when they are not in use
for a while and the attacker will have to wait until they have
been awakened up).

When launching active BAT attacks, in addition to assuming that
attackers can collect Bluetooth packets, we also assume that
they can actively replay and forge the advertising packets (which
are not encrypted). This can be easily achieved using Bluetooth
development boards or smartphones.

While we have made these assumptions, we believe that our BAT at-
tacks are still practical compared to other Bluetooth device tracking
attacks. Particularly, the first assumption is an assumption for all
the Bluetooth tracking attacks (e.g., [3, 17-19]). This is because Blue-
tooth is designed for short range communication, and the Bluetooth
packets can always be collected by either using Bluetooth sniffers
at multiple locations or moving the sniffer around to track poten-
tial victims. Moreover, we can also get rid of this assumption by
considering smartphones to be sniffers once controlled by malware.
In particular, a malware can be installed onto smartphone to force a
mobile device to work as a sniffer (e.g., as in BadBluetooth [20] and
Bluetooth Misbonding [21], which assumed that the malware can
be installed onto mobiles), our attacks then will not have any range
limitations. However, for simplicity and practicality, we do not as-
sume that we have a malware-controlled smartphone sniffer, though
nation state can have such a capability with 0-click exploits [22]).

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Allowlisted Central Peripheral Unknown Central
t j j
Addre= MACy Addr, = MACPy Addr, = MAC"

SCAN_RSP (with Addr,) | CAN_REQ (Addr, > Addr,)

i i
i i
i SCAN_REQ (Addr> Addr,) i
i i
i i

t2 77

i Addr, = MAC?, Addr,= MACY, |

| SCAN_REQ (Addr,> Addr,) }

a i | scan_rsp (with Addr,) LSCAN_REQ (Addr, > Addr,) i

: [== ,,J
s

N
SCAN_REQ (Addrc> Addr,

SCAN_RSP (with Addr,) |(SCAN_REQ (Addr, > Addr,)

[}
[}
}
I
Add, = MAC%, ;
]
}
I

Figure 3: Workflow of our passive BAT attacks.

3.3 Scope

Victim Scope. While our BAT attacks can be launched to work
against all the devices that satisfy the victim’s settings (discussed
in §3.2), we particularly focus on the following types of victims.
(i) Both the central and peripheral have enforced the randomized
MAC addresses. Although in §3.1 we use the case where the central
uses random MAC addresses but the peripheral uses a static MAC
address to explain the key observation of our attacks, we do not
consider such a vulnerable case since the Bluetooth specification
has already offered the defenses for these attacks — both devices en-
force the MAC address randomization. (ii) Multiple BLE devices are
nearby. This is because if there is only one device (i.e., the victim) at
a specific location, and if the attacker knows such a fact, he or she
can easily identify the victim device without launching our attacks
at all. (iii) While our attacks can track both the peripherals and the
centrals, we focus on tracking victim centrals for proof-of-concept
since many peripherals (e.g., keyboards and mouses) are stationary.

Attack Scope. We also would like to narrow down the scope of
our attacks. (i) We only study the BAT attacks in the advertising
stage (where devices may exchange ADV_IND, SCAN_REQ, SCAN_RSP
and CONNECT_REQ), and we do not consider the tracking attacks
in the other three stages, as the allowlist only takes effects at this
stage. For instance, we do not consider attacks such as BIAS [23],
KNOB [24], and Downgrade [25] (those attacks are usually launched
in the communication stage or the pairing stage), although they can
potentially be used for device tracking. (if) While our attacks can
be targeted (e.g., the attacker knows a MAC address of a specific
device) and untargeted (e.g., the attacker does not know such a
MAC address), we use targeted attacks to demonstrate the impacts.
Specifically, for proof-of-concept, we assume that for a particular
targeted user (e.g., Alice), we know an instance of the MAC address
of her BLE device (e.g., her smartphone). There are multiple ways
to learn such MAC addresses (e.g., physically following Alice with
a sniffer), and similar to other works that against Bluetooth privacy
(e.g., [26],[27]), we consider those to be out of the scope of this
work. Please also note that without knowing such a MAC address,

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

the attacker can still launch untargeted attacks to track arbitrary
users if they are in the attacker’s range.

4 PASSIVE BAT ATTACKS

Our passive BAT attacks only sniff the broadcasting traffic of BLE
devices and rely on the different response signals from devices with
allowlist to associate (i.e., track) the sniffed MAC addresses. Note
that we focus on the scenario in which both centrals and periph-
erals have used RPA-type of MAC addresses; otherwise, it is trivial
to recognize the allowed centrals if the peripheral does not change
its MAC address as illustrated in §3.1. Theoretically, when both
peripheral and central have used RPA perfectly, the BAT attack,
which relies on the different response signals, will fail. However,
we notice that, although both the central and the peripheral will
change their addresses, the address randomization usually occurs
independently (without any synchronization), and there is often
an interval, where one of the devices changes its address and the
other does not, leaving footprints for an attacker to track Bluetooth
devices across randomization time interval. To be more specific,
the root causes of the vulnerability for such passive attacks are:

e Predictable Randomization Time Interval. The Bluetooth de-
vices usually use predictable intervals (e.g., 15 minutes). As such,
attackers can use timing side channel to easily link a specific de-
vice by observing that the device changes its MAC address with
fixed time intervals. For example, if there is one smartphone and
it always changes addresses every T, minutes, a passive attacker
can observe there is one device re-randomizes its addresses at
time #1, t1 + T, t1 + 2 * T, respectively. Then, it would be trivial
for the attacker to link the device though it has changed its MAC.

Asynchronized Randomization. Even if both the central and
the peripheral use unpredictable randomization time intervals
(e.g., both devices change MAC address randomization time in-
terval independently), there is no guarantee that the two devices
will simultaneously change their addresses. For example, assume
that there are two devices, and both of them change their MAC
addresses every 15 minutes. For the first time, the central changes
its MAC address at to, but the peripheral changes its MAC ad-
dress at t1 (tp # t1). As such, there is the interval t; — ¢y, where
one device changes its address and the other remains the same.
We now explain the attacks in greater detail. Since broadcasting
traffic starts from peripherals, we have to first identify the allowlist-
ing peripheral from the sniffed BLE packets, and then associate the
randomized sniffed MAC addresses to the corresponding centrals.
To be more specific:

o Allowlisting Peripheral Identification. To identify whether
a peripheral enables allowlist or not, we can just observe how
a SCAN_REQ gets responded (i.e., whether the peripheral only
responds to the SCAN_REQ sent from a specific central). Although
SCAN_RSP only contains the source of the response (i.e., it con-
tains the MAC address of the peripheral but not the MAC address
of the central) and we cannot know the destination of the re-
sponse, we can observe which SCAN_REQ (which contains both
central’s MAC address and the peripheral’s MAC address) trig-
gers the SCAN_RSP. As shown in Figure 3, if we observe (i) a pe-
ripheral always ignores the SCAN_REQ containing MAC addresses
of other centrals (e.g., MACY)), the peripheral is an allowlisting

Yue Zhang & Zhigiang Lin

peripheral; (ii) the allowlisting peripheral receives a SCAN_REQ
containing the MAC address of a specific central (e.g., MACY),
the peripheral sends a SCAN_RSP, we know that the MAC address
belongs to the allowlisted central.

Address Association. Since the central and the peripheral will
not change their addresses at the same time, the attacker can
always observe an interval, during which one device does not
change its address, and such a pattern can be used to track its peer.
For example, in Figure 3, assume that the peripheral first changes
its address to MACf2 , while the central MAC address remains
MACY, during the small interval T = t3 — t5. Then, by observing

that the peripheral with MACf2 only responds to the central with
MAC?1 and ignores the SCAN_REQ from others, we know that the
peripheral is likely to be the same peripheral (or another periph-
eral whose allowlisted central is also the same central). Later, at
t3, when the central changes its address, the peripheral remains
MACZ . Again, by observing the central to which the peripheral

with MACZ always responds, we conclude that the central is the
same central (given the peripherals can only add one allowed
central, as discussed in §2). Note that since the attack workflow
for the case where the central first changes its MAC address is
similar to the case described above, we omit its details for brevity.

Attack Example I: Monitoring a Victim’s Behavior. The
passive BAT attack is particularly useful to monitor the user’s
behaviors in a specific location (e.g., user’s house), which may
breach user’s security and privacy. Assuming victim Alice is
using a stationary allowlist-enabled Bluetooth-keyboard in her
home to connect her smartphone, a passive attacker is able to
sniff the exchanged packets (up to 2,000-ft away when using an
amplified antenna such as RP-SMA-R/A [28]) between the key-
board and the smartphone, so that the attacker is able to know
the latest address of the Alice’s smartphone via passive attacks.
Then, whenever the smartphone communicates with any periph-
erals, the attacker is able to associate the peripherals to Alice
and infer Alice’s privacy-sensitive behavior. For example, the
attacker could infer that Alice may be plagued by hyperglycemia
or other blood glucose disorders if the attacker observes that
her smartphone communicates with a Bluetooth blood glucose
monitor (the blood glucose monitor can be recognized from the
services UUID [19] provided by the Bluetooth device).

5 ACTIVE BAT ATTACKS

As discussed, the passive attack requires the attacker to keep mon-
itoring the traffic between the two devices, and it will fail when
the central and the peripheral are far away. Therefore, we have
to look for other techniques, and this leads to the design of our
active BAT attack, with which attackers can actively inject (e.g., via
forging) traffic to BLE devices to observe how they will respond,
and this practice does not require the attacker to keep monitoring
the traffic. This is possible, since it is extremely easy for an attacker
to program a malicious central (e.g., a smartphone) or a malicious
peripheral (e.g., a development board) to broadcast arbitrary pack-
ets of interests. Therefore, the key question becomes what kind of
packets the attacker has to forge.

Tracking Bluetooth Low Energy Devices via Allowlist-based Side Channel and Its Countermeasure

D S D

Allowlisted Central Peripheral Unknown Central

Addr, = MAC Addr, = MAC Y !
SCAN_REQ (Addr, > Addr,)

SCAN_RSP (with Addr,)

SCAN_REQ (Addr, Addr,)

1 Passive
tack

Time

Addry, =MAC i
SCAN_REQ (Addr,, - Addr,) |
SCAN_RSP (with Addr,) |

tive
Attack

|
|
|
SCAN_REQ (Addr, = Addr,) |
|
SCAN_RSP (with Addry) !

Figure 4: Workflow of BAT attacks from malicious centrals.

When inspecting the BLE traffic of the advertising stage, as
shown in Figure 1, we can notice that there is no encryption, and
thus the attacker can inject arbitrary packets. The only secret is
the randomized MAC addresses sent by centrals and peripherals.
However, when devices using allowlist, they must use RPA that
relies on the exchanged IRKs for their randomized MAC addresses
generation. Therefore, if we can replay the sniffed RPA-type MAC
addresses to probe how a central or a peripheral would respond,
then the attacker can still launch the BAT attack.

Surprisingly, we find that current RPA generation algorithm
unfortunately never considers replay attacks, and our active BAT
attack can indeed work. In particular, based on the RPA generation
and resolution process described in §2, we find that the current Blue-
tooth specification only requires that a random number to be used
in the RPA generation, but it does not specify how to choose this
random number (e.g., whether the device can choose a previously
used random number). As a result, a randomized MAC address gen-
erated from a previously used random number is also considered
valid, even though the attacker does not know the correspond-
ing IRK. Therefore, a malicious central or peripheral can create a
spoofed packet with a previously used MAC address to probe the
peripheral or central. Since the replay attack can be launched from
either a malicious central (§5.1) or a malicious peripheral (§5.2), we
describe these two types of active BAT attacks, respectively.

5.1 Active BAT from Malicious Centrals

The goal of a malicious central based active BAT attack is to use a
malicious central to first identify the allowlisting peripheral, from
which to further track the allowlisted central. As illustrated in
Figure 4, in addition to using the same approach to identify the
allowlisting peripheral as in the passive BAT attacks (described in
§4), it only adds one additional step of actively injecting a SCAN_REQ
at ty + A with the harvested MAC?1 at t1, where |t — t1| > T, to
probe whether the MAC address randomized peripheral responds
to this injected address. If so, the peripheral is identified first, from
which attackers can then track the potential centrals by actively
injecting the collected the MAC addresses of these centrals.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

More specifically, as illustrated in Figure 4, at f2 + A, an attacker
can use a malicious central to create a SCAN_REQ with the previ-
ously used MACf1 (which was sniffed somewhere), and then sends
this request to all allowlisting peripherals. If one of them (e.g., the
peripheral with a MAC‘?2) responds with a SCAN_RSP, the attacker
identifies that this peripheral p is the one paired with the victim
central (having the central’s IRK and recognizing it). At time f3,
the attacker can further associate the address of MAC?Z to MACfl,
since the attacker knows that the identified p is supposed to only
respond to this allowlisted central c. The active attacks from mali-
cious centrals are more powerful than passive attacks, and they can
be used to track both the (past) trajectory and real-time locations of
a victim. In the following, we provide two examples to demonstrate
how these can be achieved.

~N

Attack Example II: Tracking a Victim’s Past Trajectory.
Assume that Alice is using her smartphone to communicate
with her stationary allowlist-configured Bluetooth keyboard
p in her workspace, and the attacker is able to collect one of
its MAC addresses (assume MACf1). When at t; Alice is away
from her workspace, the attacker aims to know where Alice has
been to. To this end, the attacker deploys beacon-alike sniffers
(everywhere or just a few targeted places) that broadcast the
ADV_IND packets with MACf1 to collect the MAC addresses of
all nearby centrals in their SCAN_REQs (assume MACf;, MACZ ,
MACka). Then, at t3, the attacker moves closer to Alice’s
workspace, and uses a malicious central to replay the collected
SCAN_REQs with MAC;Z" to Alice’s p to test whether it responds.
If so, the attacker knows c; is Alice’s phone, and if MAC?; was
collected from Starbucks (based on the sniffer’s location), the
attacker knows Alice was in (or near) the Starbucks.

\ J

Attack Example III: Tracking a Victim’s Real-time Loca-
tion w/ Tunneling. In our attack example II, the attacker has
to wait at #3 to detect Alice’s past trajectory, because there is no
direct communication channel between the wild centrals and p.
Therefore, if the attacker is able to build a tunnel to relay the
sniffed SCAN_REQs directly to p in Alices’ workspace, then he or
she would be able to know Alice’s location instantly. This leads
to our 3rd attack example, which is to additionally build a tunnel
between the wild sniffers and p using attacks such as the worm-
hole attack [29]. Details are omitted since such a tunneling attack
is well-known, and also the rest is similar to attack example II. |

5.2 Active BAT from Malicious Peripherals

Using malicious centrals to probe true peripherals relies on the
allowlist of the advertising filter policy in the peripherals. However,
not all peripherals enable this policy, and rather many centrals (e.g.,
Android mobiles, iPhone and Windows tablets) have enabled the
initiator filter policy, which will instantly respond to the “known”
peripherals (by storing the peripheral’s IRK) once they are in their
range. Therefore, we design another active attack by using spoofed
packets generated from a malicious peripheral, which broadcasts
the advertising packets to all nearby centrals, and only the central
enabled the initiator filter policy will respond, allowing an attacker
to instantly know a central’s location. Similar to active BAT attacks

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

EEEEEEE=]
888888853
Soc—oooo

Allowlisted Peripheral Cejﬂ'ﬂ'
b | Addr, = MAC "y Addr = MAC"y
s I
| SCAN_REQ (Addr. > Addr,) !
|
! SCAN_RSP (with Addr,) 1
i CONNECT_REQ (Addr. 3 Addr,) i
t, --F) Pagsive
| Addr, = MAC ", Addre=MAC'q 1 Attack
|
. ! SCAN_REQ (Addr, > Addr,) |
|
£ [SCAN_RSP (with Addry) 1
= | CONNECT_REQ (Addr. > Addr,) 3
i
t +A
: g
| |
! SCAN_REQ (Addr,, 3 Addry) ! Ative
i SCAN_RSP (with Addr,) | Attack
|
i CONNECT_REQ (Addr. > Addrr) 3 /1
RO SO S -

Figure 5: Workflow of BAT attacks from malicious peripherals

from malicious central, this attack also does not need uninterrupted
observation of Bluetooth traffic.

More specifically, as illustrated in Figure 5, assume an attacker
has observed that a central with MACf1 initiated a connection with
a peripheral with MACZ at t1. At tp, the central changed its ad-

dress to MAC}, and the peripheral changed its address to MACZ .
To associate whether the address MACY, and MAC}, belong to the
same central, at £ + A, the attacker can simply create a malicious
peripheral to broadcast its presence with the harvested MACf1 or
MAC‘;’2 . If the victim central has enabled the initiator filter policy, it
will automatically initiate CONNECT_REQ to the malicious peripheral.
Consequently, the attacker is able to associate MACf1 with MAC;"2
and identify the targeted central.

r

Attack Example IV: Tracking a Victim’s Real-time Loca-
tion w/o Tunneling. Building a tunnel might be expensive.
There is no need to do so if attackers use malicious peripherals
to associate centrals with the initiator filter policy. Still assume
that Alice uses her phone configured the initiator filter policy
to automatically communicate with her Bluetooth keyboard p
in her workspace, and at #; the attacker is able to observe one of
its MAC addresses MAC‘Z . Then later at ¢, when Alice is away
from her workspace, the attacker directly uses beacon-alike
sniffers to advertise MAC';’1 to nearby centrals, and if a central
instantly connects the sniffer with a CONNECT_REQ, then the
§ attacker knows Alice’s real-time location.

6 COUNTERMEASURE

In this section, we present a countermeasure named Securing Address
for BLE (SABLE) to defend against our BAT attacks. Since the at-
tacks can be launched passively or actively, we need the following
two corresponding defenses described in §6.1 and §6.2, respectively.

6.1 Defending Against Passive BAT Attacks

Overview. The passive attacks are made possible due to the central
and peripheral independently randomizing their addresses. As such,
to defend against the passive attacks, we propose to (1) make MAC
randomization at both sides synchronized, and (2) make the length

Yue Zhang & Zhigiang Lin

of the interval random; otherwise, a repeatable time interval (e.g.,
every 15 minutes) allows attackers to associate the randomized
MAC addresses across intervals.

(I) Making Randomization Synchronized. We first discuss how
the two devices change their addresses and when it is the time for
them to perform the address randomization. Since the central and
the peripheral may not always be close to each other (e.g., the user
could take her central away, and vice versa, or one of them is turned
off), and if they are not close to each other, the two devices cannot
communicate to decide how they could change their addresses.
Therefore, we have the following two scenarios to address:

e (a) Two devices are close to each other. In this case, we cannot
let the peripheral and the central independently start their own
randomization. Instead, we notice that the allowlisting always
starts from the peripheral when advertising its presence, and
then the central responds. Therefore, we can take advantage of
this causality for the synchronization and let the randomization
start right before the peripheral starts to send the ADV_IND at the
peripheral side, and the central starts right after receiving the cor-
responding ADV_IND, as illustrated in Figure 6. As such, attackers
will only observe an always synchronized randomization across
an unpredictable interval, and they cannot associate the MAC
addresses across the randomization time intervals anymore.

(b) Two devices are far away. In this case, we can let the cen-
tral and peripheral independently start their own randomization,
since the attacker can no longer associate the addresses through
observing devices’ SCAN_REQ and SCAN_RSP. Assume a cen-
tral and a peripheral have passed N times synchronized address
randomization, and now they are in their (N +1)-th synchronized
address randomization. During this interval (e.g., 15 minutes),
the central is taken away by the user, and they are no longer close
to each other (we use the case where the central is away from
the peripheral as an example, since the other case is essentially
the same). As a result, the peripheral will not be able to receive
any SCAN_REQ from its allowed central. When it is the time to
change its address, the peripheral will fetch its own time T, and
generate a random address rpay. Since the central is not nearby,
the lifetime of such a generated rpa, can be a random time period
without notifying the central for synchronization. The peripheral
will continue to generate new RPAs using its freshest timestamps,
and each of those RPAs will have a random lifespan. When the
central is back, the peripheral will resume its state by re-entering
its (N + 2)-th address randomization. Specifically, since the pe-
ripheral keeps broadcasting, and whenever the central is close
to it, the central can recognize it by correctly resolving its RPA.
Then, the central sends a SCAN_REQ, which contains its latest
RPA generated from the freshest timestamp, to inform the pe-
ripheral that it is back. When the peripheral receives the RPA, it
enters the (N + 2)-th synchronized address randomization, and
then the central also enters the (N + 2)-th synchronized address
randomization when it receives the ADV_IND from the peripheral.
The following procedures are the same as that in scenario (a),
which we will not present in further detail for brevity.

(IT) Making Randomization Time Interval Consistent and Un-
predictable. Our randomization time interval needs to be a secret

Tracking Bluetooth Low Energy Devices via Allowlist-based Side Channel and Its Countermeasure

D E

Allowlisted Central Peripheral
Time Time

idr, =
ADV_IND (with Addr,) o Addr, = MAC 1 |ty

oy [0 = MAC " SCAN_REQ (Addr> Addr,)

|)

| scaN_gse (with Addr,)

i ADV_IND (with Addry) A Rddr, = MAC °gs | tp2
L2 |ngar. = mac e

Figure 6: Status changing in the passive defense.

and unpredicatable to attackers. To achieve that, the two devices
can introduce a new secret value or reuse existing ones (e.g., IRK) to
derive the randomized intervals. The secret also needs to be updated
dynamically on both sides to ensure that the randomization time in-
tervals can also be changed simultaneously. As such, we propose to
use the hash of an auto-incremented secret to derive the randomiza-
tion time interval, since every time the value of such derived secret
changes, the derived randomization time interval changes as well.

The devices can use an existing secret S (e.g., the LTK, or the IRK)
with an automatic increment to derive the random time intervals.
Assume there is an Sy, which can be the IRK, and every time we
update the interval S;, we automatically increase it by k (which can
be one or any other predefined number) from previous S;.

Sj=Si+k

where Sy is assumed to be the IRK for simplicity. Then, we can derive
the length of the randomization time interval at the i-th interval

T, (i) = H(S;) mod Tnax

where Tp,qx is set to be 15 minutes, and H(S;) is the hash of S;. As
such, at any given time interval i, both central and peripheral will
have a pre-determined random interval 7, (i) unknown to attackers
once Sy, the initial secret, is exchanged.

Also, note that there has to be a unique secret S for each paired
central and peripheral. But one central (e.g., a smartphone) can
be paired with multiple peripherals. Therefore, the randomization
time interval and IRK must be S-specific. That is, a central needs to
use a peripheral-specific RPA-type MAC address correspondingly
to connect its paired peripherals. Finally, two paired devices may
be out of synchronization, e.g., it is supposed to be i-th interval, but
for some reasons (e.g., one of them lost its battery) the peripheral
or the central may still be in the previous (i-1)-th interval or even
more. If this occurs, the devices have to correct the errors based on
the observed intervals. In particular, when a central notices that the
two devices get out of synchronization by observing whether the
peripheral’s interval equals to its own currently used interval, the
central starts the error handling process: the central first calculates
a few intervals (e.g., (i-1)-th interval) that are close to the currently
used interval (assume it is the i-th interval) based on the algorithm
of how T,(i) is derived, e.g., T, (i — 1) = H(S;—1) mod Trnax, Tr (i —
2) = H(Si—2) mod Tinax, and compares those calculated intervals
to check if any of them equals to the peripheral’s interval. If so, the
central updates its i (the current interval) accordingly, and the error
is corrected (the central and the peripheral now have the same i).

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

6.2 Defending Against Active BAT Attacks

Overview. Fundamentally, our active BAT attack works because
the current RPA-type MAC address generation suffers from the
replay attack. There are multiple countermeasures to defeat a replay
attack, e.g., using a sequence number, or a timestamp, or storage-
based (i.e., saving all the used random numbers onto the devices).
However, not all of them are practical. For example, the storage-
based solution may cost huge amount of storage resource, e.g., up
to 36524 %4 %48 = 1,681, 920 MB yearly assume address is changed
every 15 minutes (note that each address is 48 bits).

Another well-known defense against replay attack is to add ran-
dom sequence numbers. Theoretically, we can add a synchronized,
auto-incremented sequence number, together with the random
number prand, to generate a one-time only RPA-type MAC ad-
dress. However, this defense will introduce additional storage and
communication overhead, as well as additional sequence number
maintenance efforts. For example, the central and the peripheral
must update their negotiated sequence number simultaneously to
ensure they keep the same sequence number. We therefore propose
to use the timestamps together with the random number prand to
generate a one-time only RPA-type MAC address, which can only
be used within a given time window depending on the configu-
ration. Note that a timestamp essentially can be considered as a
sequence number, and it increases automatically as time passes by.

However, we did not use the timestamp directly since this will
result in the collision of the Bluetooth MAC address. Recall that
the Bluetooth MAC address is 48 bits, and if we include a 24-bit
timestamp in the MAC address, we only have 24 bits to ensure
the randomness of the MAC addresses. This can only result in 224
(16,777,216) unique MAC addresses, which is much less than the
current number of Bluetooth devices (e.g., annual Bluetooth device
shipments is 4.7 billion in 2021 [30]). Nevertheless, given that a
specific area may not have too many devices, using the timestamps
directly could still be a viable mitigation approach.

Detailed Design. Our active defense is designed by piggybacking
the existing protocol without adding any extra field in the protocol
but only modifying the central and peripheral to process the times-
tamp. In total, there are 4 steps involved in our new design. Note
that in the following description, we assume the peripheral has
enabled allowlist (since the defense workflow for the central with
allowlist is similar, we will not present it for brevity). Our defense
also works when both peripheral and central enable the allowlist.

e Step ® Key Distribution. Assume that a peripheral p and a
central ¢ have passed through the advertising stage, and now
they are entering the pairing stage. When the central distributes
its IRK irke, it also distributes the current timestamp T of the
central (i.e., Té):getCurrentTime(c) where getCurrentTime
returns the number of seconds since UNIX Epoc for c).

Step @ Allowlisting Configuration. The peripheral p receives
irke, TCO, and gets its current time Tl? via getCurrentTime(p) at
p- Then, it saves both T[(,) and the received irkc, and T? for future
reference when resolving the RPA. Now p finishes configuring
its allowlist, with which p will only respond to SCAN_REQ or
CONNECT_REQ from this paired and allowlisted c.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

o Step @ RPA Generation. Later, when the central ¢ receives
an advertising packet from p, it uses its irk., a random number
prandz4 (with its two MSB bits to be 01 to denote RPA-type MAC
address), and the current time T, to generate its current

rpac = (prandy || Hog(prandyy || Te || irke))

After that, ¢ can send this newly generated rpa, as usual in its
SCAN_REQ or CONNECT_REQ to p. Please note that this timestamp
T should be used in all subsequent sessions within a random
interval (e.g., 15 minutes) to avoid the central changing its ad-
dresses too often.

Step @ RPA Resolution. When p receives a SCAN_REQ with an
rpac, it resolves this rpa. using its stored irk. as follows. First,
we follow the initial RPA resolution by splitting rpa, into two
parts: the random number prandz4 and hashgs. Next, we get T/
from calculation:

T/ = getCurrentTime(p) — (ng -19)

After feeding the hash function H with three inputs irk., prandas
and T, to compute the hashed value:

hashas ' = Haa(prandy, || T/ || irke))

4

If hashy4 equals to hash),, this rpa. is resolved. If not, there
could be two possibilities. (i) The time on the central and the
peripheral gets out of synchronization due to unknown reasons
(e.g., clock skews). In that case, the peripheral may need to enu-
merate a few possible timestamps within a threshold (e.g., the
threshold could be one if the peripheral attempts to try the for-
mer timestamp and the next timestamp) to correct the errors
and update T if resolved. (ii) The address is a replayed one and
the peripheral should reject it. In that case, the timestamp has
significant differences when compared with the saved T/ or the
current time (e.g., the difference is beyond a threshold).

7 EVALUATION

We have implemented both our attacks and defenses for the eval-
uation. To implement our passive BAT attack, we used Adafruit
LE sniffer [31] to collect BLE advertising packets (i.e., ADV_IND,
SCAN_REQ, SCAN_RSP and CONNECT_REQ). To implement our active
BAT attack, we customized Android 9.0 through the Android Open
Source Project (AOSP) [10] to implement both the malicious central
and the malicious peripheral. To implement our defense, we used
Google Pixel 2 as a central, and a Nordic NRF52 development board
as a peripheral for testing our SABLE. In the rest of this section, we
present our evaluation results.

7.1 Experiment Setup

Due to ethics concerns, we can only launch our BAT attacks against
our own devices configured with allowlist. Intuitively, keyboards,
mouses, earbuds, and smart watches usually support a single user,
and they tend to have an allowlist. We therefore first purchased
43 Bluetooth peripherals such as keyboards, earbuds, and mouses,
and among them, 24 of them have the allowlist enabled. Other 19
peripherals, which do not have allowlist, are out of our focus. For
the central devices such as smartphones, fortunately they all have
the allowlist enabled, and therefore we used all of our own Blue-
tooth centrals (6 smartphones, 3 laptops, and 2 tablets). We also

Yue Zhang & Zhigiang Lin

Peripherals & Development Boards

Passive Active Attacks

Allowlist Attacks From From
Malicious Malicious
Brand & Model Device Type ~ MAC Power Central Peripheral
Enabled Used Adde ST te e T TP
byP byC
DRACONIC v v Keyboard SRA v v v v v v v
JellyComb v v Keyboard SRA v v v v v v Y
iClever v v Keyboard SRA v v v v v v
Microsoft (V1) v v Keyboard SRA v v v v Vv v
Microsoft (V2) A R SRA v S S S
byteblue v v Keyboard SRA v v v v v v Y
Logitech K780 v v Keyboard SRA v v v v v v
Logitech K830 v v Keyboard SRA v v v v v v Y
Logitech K380 VY R SRA v S SV S
SXWL v v Keyboard SRA v v v v v v Y
SXWL v v Mouse SRA v v v v v v Y
Inphic v v Mouse SRA v v v v v v
Vogek v v Mouse SRA v v v v v v
JellyComb (V1) v v Mouse SRA v v v v v v Y
JellyComb (V2) v v Mouse SRA v v v v Vv Vv
SEENDA v v Mouse SRA v v v v v v Y
MiBand 4C v X ‘Wristband PA X v v v v X v
i-Home Alexa X v Speaker PA v x v v v v
TEZO X v Earbuds PA v X v v v v
Boltune X v Earbuds PA v X v v v v Y
SoundBot X v Earbuds PA v X v v v v
Riitek X v Keyboard PA v X v X v v v
Cimetech X v Mouse SRA v X v ox v v
Ergonomic X v Mouse SRA v X v ox v v
TI CC2640R2F v v Dev Board RPA - v v v v Y
Nordic NRF52 v v Dev Board RPA v v v v v Y
Silicon Labs 6101D X v Dev Board RPA - - X X v v
Crypess CYSKCIT X v Dev Board RPA X x v
Centrals
Passive Active Attacks
Allowlist Attacks From From
Malicious Malicious
Brand & Model Type & OS X‘:ﬁ II‘:(:‘:::T Central Peripheral
Enabled Used TP TC TP TC TP TC
byC byP
Google Pixel 4 v v/ Phone (Android 11) ~ RPA 5-15 v v v v v
Google Pixel 2 v v/ Phone (Android 10) RPA 5-15 v v v v v v
Samsung S10 v v Phone (Android 10) RPA 515 V V Vv V V V/
Google Piex] 4 v / Phone(Android10) RPA 515 v V V V V V
iPhone 8 v v Phone (i0S 13.2) RPA 15 v v v v Y v
iPhone 11 v N Phone (i0S 13.2) RPA 15 v v v v v
iPad v v Tablet (i0S 13.2) RPA 15 v v v v v
Dell GD1H4KU v V Laptop Windows10) PA 400 v V V
Dell v v/ Laptop (Ubuntu 20.02) PA +o0 v v v v v v
Thinkpad T450s v v/ Laptop (Windows 8) ~ PA R I A AN N A v
Surface Pro v v/ Tablet (Windows 10) PA +00 v v v v v

Table 1: Evaluation results of the tested devices. “TC” means
tracking the central and “TP” means tracking the peripheral.
“/” means vulnerable and “X” means not.

purchased a Bluetooth development board each from TI, Nordic,
Silicon Labs, and Cypress, respectively. As reported in Table 1, we
therefore eventually have 39 tested devices in total (11 centrals, 24
peripherals, 4 development boards).

7.2 Evaluation of Passive BAT Attacks

To test our attacks against our own centrals and peripherals, we first
need to pair them up. To this end, for each peripheral, we iterate our
centrals: if any of them can expose the vulnerability for the periph-
eral, we stop pairing more centrals and move to the next peripheral.
Also, during our pairing, if a device never involves allowlist (includ-
ing by its peer device), we discard it in our evaluation. As reported
in Table 1, there are 17 peripherals configured with the allowlist, as
shown in the 2nd column. Unfortunately, all of them are vulnerable
to passive BAT attacks to track their corresponding centrals since
they used static addresses, which are subject to tracking without
deploying our attacks at all as described in §3.1. We can also no-
tice that these peripherals include keyboards, mouses, and smart
wristbands. As expected, these devices are intended for exclusive
use (a single user) and tend to have the allowlist. However, other
IoT devices such as smart speakers tend not to have the allowlist
since they are household devices (serving more than one user).

Tracking Bluetooth Low Energy Devices via Allowlist-based Side Channel and Its Countermeasure

—e— W/ SABLE
—A— W/ SABLE

—&— wjo SABLE
—a— W/ SABLE

200000

150000

s)

fe time (h

100000

u

50000

N @ D o O e ¢
G & @ ¢ o 0 (D

&L & @ g @ @ o
AR R R LR S

Time (minutes)

@

I
Battery Capacity (mAh)

(b)

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

6000001 =

--- TA0=9 min
TA)=12 min
--- TAY=15 min

500000

£ 400000

Battery %

2 300000

£

200000

100000

S B e o S o o o
» © & ® o @ & P @ o e
R S R T

&
R A

Time (minutes)

(©)

Battery Capacity (mAh)

(@

Figure 7: Power Consumption of SABLE defense.

94.46

8.49

Time (us)
Time (us)

088

W/o SABLE w/ SABLE
Peripheral

W0 SABLE W/ SABLE
Central

Figure 8: Performance of SABLE for active defense

Since all the peripherals are vulnerable to the simple passive
attacks described in §3.1, we have not validated the passive at-
tacks introduced in §4. To really evaluate these attacks, we use
4 development boards with RPAs, and pair the smartphone with
them. Among them, only TI CC2640 and Nordic NRF52 support al-
lowlist [32, 33], and the development boards (as well as the devices
that used those development boards) are confirmed vulnerable to
our passive attacks. Also, while the tested centrals are all vulnerable
to BAT attacks, we notice that the randomization interval is varied
from the operating systems. For example, Android-11 changes its
interval to every 5 to 15 minutes, but iOS stays a constant 15 min-
utes. Meanwhile, Windows and Linux laptops use public addresses
without randomization. In addition, as reported in the 6th column
of Table 1, among the tested peripherals, we notice that only the
wristband will always stay awake.

7.3 Evaluation of Active BAT Attacks

Active BAT Attacks from Malicious Centrals. Since the active
BAT attacks from malicious centrals require the victim peripherals
to have allowlist (regardless of whether or not they have used static
addresses) and configure advertising filter policy, and in our passive
attacks we have already identified that there are 17 peripherals con-
figured with allowlist (as reported in the second column of Table 1),
all of them can be used to launch BAT from malicious centrals to
track victim’s centrals. When configuring the 4 development boards
with RPAs, only TI CC2640 and Nordic NRF52 can be used to track
both the central and the peripheral from a malicious central, since
only they support the allowlist [32, 33].

Active BAT Attacks from Malicious Peripherals. Similarly, since
the active BAT attacks from malicious peripherals leverage the ini-
tiator filter policy, which requires the central to add the peripherals
to its allowlist for auto-connection, for each central we iterate our

peripherals to pair it and then test whether the central will initiate
the connection requests without manually triggering the connec-
tion in the Settings app. If so, the peripherals can be used to launch
BAT attacks from malicious peripherals to track their centrals. As
reported in Table 1, all of the tested devices are subject to tracking
of peripherals (the last column), and tracking of centrals except the
tested Wristband since its central does not use allowlist.

7.4 Evaluation of SABLE

Effectiveness of SABLE. We launched both our passive and active
attacks again against our patched Google Pixel 2 and NRF52, and
confirmed that the attacks no longer work. In particular, (i) in pas-
sive attacks, where MAC addresses randomize on both sides in a
synchronized random interval, attackers cannot observe predictable
patterns between centrals and peripherals; (ii) in active attacks,
SABLE rejected all reused packets, and attackers could not link any
used RPAs to the new ones by replaying (including via tunnelling).

Power and Performance Overhead. Since our defense introduces
extra operations, which will certainly result in both power consump-
tion and performance overhead. To quantify the battery impact on
central devices, we directly monitor it through the battery level.
To quantify the battery impact on peripherals, we measured our
tested NRF52 development board, with an Agilent 34410A Multi-
meter to sample the electric current of NRF52 that runs with our
SABLE (and without SABLE), and calculate the average current
Iqg, from which to approximate the battery life, using the standard
Tpat = Chat/lavg [34], where Cpgq; is the battery capacity.

o Active Defense. Since our active defense piggybacks the ex-
isting pairing messages, we measured the approximation of the
battery life of our defense and compared it with the vanilla pair-
ing protocol. According to our experiment, the remaining battery
percentage decreases linearly, and there is no extra overhead
observed, as shown in Figure 7a. Also, the average current of
NRF52 running SABLE pairing process is 54.3 A, and the av-
erage current when NRF52 running vanilla pairing process is
52.7 pA (an extra 3.04% overhead). This overhead is negligible
for a battery lifetime across different battery capacities, as illus-
trated in Figure 7b. To measure the performance of our active
defense, we run both our and vanilla RPA generation and reso-
lution 100 times on both Google Pixel 2 and NRF52, respectively.
Figure 8 shows these results. We can observe that the average
overhead on NRF52 is around 63.58 (94.46-30.88) us whereas the
smartphone is around 20.54 (88.49-67.95) ys.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

e Passive Defense. For passive defense with synchronized ran-
dom intervals, it does not have any additional overhead if its
T, () is set to be a fixed 15 minutes (as in iOS) since it does
not have any additional operations. However, if T, (¢) becomes
smaller, there will be more frequent address randomizations,
causing more overhead. To quantify this power consumption,
we set 15 minutes as the baseline, vary T, (t) from 3 to 15 with a
stride 3. The overhead on the central device is around 1%, even
if we set T,-(¢)=1 (i.e., randomizing at every minute). For the
peripheral, as shown in Figure 7d, only 6.75% extra power con-
sumption is introduced when T, (¢)=1, which is also negligible.
For its performance, as shown in Figure 8, we can see that it takes
around 88.49 us and 94.46 us for a mobile and development board
to generate an address, respectively (with our active defense).
Therefore, compared to the address randomization interval (e.g.,
a few minutes), such a tiny amount of time is negligible.

8 DISCUSSION

Practicality and Comparison. We have presented one passive
BAT attack and two active BAT attacks. Next, we would like to
compare the practicality (i.e., the cost, difficulty, and impact) of
each attack. In particular, the cost is measured by the resources
spent and also the efforts taken by the attackers; the difficulty is
measured by the condition of the victim central and peripheral
(e.g., whether the attacks require the two devices to be nearby);
the impacts are the possible consequences caused by the attack. As
summarized in Table 2, it can be observed that:

e Passive Attacks (§4). Since these attacks involve only sniffers,
they are less costly. Meanwhile, the attacks do not require at-
tackers to keep probing or building a tunnel. However, such
attacks need uninterrupted monitoring of the traffic. Otherwise,
the attacker will lose the target. Moreover, the attacks will fail
when the central and peripheral are not within the reach.

Active Attacks from Malicious Centrals (§5.1). When com-
pared with the passive attacks, the active BAT attacks from a ma-
licious central do not have the distance limit and do not require
uninterrupted monitoring of the victim. Moreover, in addition
to monitoring user behaviors, attacks can also be used to track
a victim’s past trajectory or instant location. However, such at-
tacks are also subject to limitations: when launching the attacks,
the attacker must probe multiple devices with SCAN_REQ or
SCAN_RSP in order to identify the one of interest. Such oper-
ations can be costly when there are too many devices nearby.

Active Attacks from Malicious Peripherals (§5.2). The ac-
tive BAT attacks from malicious peripherals are most impactful,
practical, and less costly. First, similar to the other active attacks,
the attackers can launch such attacks without a distance limit
and uninterrupted monitoring of the victims. Second, instead of
probing each device independently, such attacks use ADV_IND,
which is a broadcast message. That is, once the attacker broad-
casts a single ADV_IND with an old MAC address, the victim
central will expose itself instantly if it is nearby.

Security Analysis of Our Defenses. In our passive BAT defense,
we rely on synchronized random time intervals at both central and
peripheral to defeat cross interval MAC address tracking. Intuitively,
since the defense requires synchronized random time intervals to

Yue Zhang & Zhigiang Lin

work, and if the attacker can manipulate intervals by removing (e.g.,
through jamming) or injecting packets that are required for both
the central and peripheral to execute the synchronization, it will
disable our defense. However, while it is true that the manipulation
may result in the denial of service (DoS) attack, the attacker cannot
further track the central or the peripheral. Since the central and the
peripheral can be far away from or close to each other (See §6.1),
we then have the following two cases to analyze:

e Two devices are far away. In this case, the two devices indepen-
dently perform their address randomization, and SCAN_REQ or
SCAN_RSP sent from the two devices will not be used to perform
the synchronization. As such, if the attacker removes some or all
of those packets, the devices will behave as normal, no impact on
the random time intervals. Meanwhile, since the attacker does
not have the corresponding IRK, he or she cannot create and
forge a packet with a valid MAC address. The attacker may also
replay an used packet, but it is be prevented by our active defense.

Two devices are close to each other. In this case, the devices
perform randomization according to the exchanged SCAN_REQ
and SCAN_RSP. First, removing some of those packets intention-
ally may result in the failure of the synchronization (e.g., it is
supposed to be the i-th interval, but the peripheral or the central
may still be in the previous (i-1)-th interval). However, an error
correction mechanism can make the random time intervals to be
re-synchronized. Second, forging or replaying the packets will
not work too, the reasons of which are similar to the previous
case, thereby omitted for brevity.

In an extreme case, the attacker may first remove some of the
packets from the traffic, and then replay those “removed” packets,
in the purpose of breaking our BAT active defense. Such attack will
not work as well. Assume that at t(, the attacker first removes all
the packets sent from the peripheral, and then saves those packets.
At t; (ie., to + T), the attacker sends out the collected packets to
probe the central(s). The “true” central will be able to resolve it, and
quickly notice those packets are old ones due to the significant dif-
ferences between those packets and the current time (though those
packets have never been observed before), thereby still defeating
such attacks. Certainly, if the attacker obtains the IRK of the central
or the peripheral, our defense will fail since he or she can forge
the MAC address based on our proposed randomization algorithm.
However, we consider this to be hard since the transmission of the
IRK is protected by encryption.

Ethics and Responsible Disclosure. We did take ethics into
the highest possible standard when launching our BAT attacks.
First, we only performed our attacks against our own devices. Sec-
ond, we have disclosed this vulnerability to Bluetooth SIG, Apple,
Google, Microsoft, Texas Instruments (TI), and Nordic. Bluetooth
SIG assigned CVE-2020-35473 to track this logical-level design flaw,
Google assigned Android-ID 175212130 (and rated our vulnera-
bility as the second highest severity among the total five-levels)
and rewarded us with a bug bounty, Apple assigned an internal
vulnerability-ID 755406462, Microsoft assigned an internal case
tracking-ID MSRC-63104, and TI informed us that they are tracking
the Bluetooth SIG’s recommendations for fixing this vulnerability.

Tracking Bluetooth Low Energy Devices via Allowlist-based Side Channel and Its Countermeasure

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Cost Difficulty

The BAT Attacks Impacts
Involved Uninterrupted Keeping Tunnellin (Requiring Central and
Malicious Devices Passively Monitoring Actively Probing g Peripheral to be Nearby)
Passive Attacks (§4) Sniffer X X v o
Active Attacks from Malicious Centrals (§5.1) Sniffer, Central, Peripheral v VE&X X 000
Active Attacks from Malicious Peripherals (§5.2) Sniffer, Peripheral X X X 0060

Table 2: Summary of Our Attacks. @ means “monitoring the user’s behavior”, ® means “tracking a victim’s past trajectory”,

and ® means “tracking a victim’s real time location”.

9 RELATED WORK

Bluetooth Privacy. Over the past 20 years, numerous Bluetooth de-
vice tracking attacks have been proposed by collecting the advertis-
ing packets (e.g., ADV_IND, SCAN_REQ) using sniffers [1-5, 13, 14, 25—
27, 35-37], as summarized in Table 3. Among them, earlier efforts
such as BlueTrack [13] and BLEB [14] track the Bluetooth devices
that use public addresses. Marco et al. [27] track the Bluetooth
classic devices that do not use address randomization via the infor-
mation leaked from the frame encoding.

However, when the devices use randomized MAC addresses,
although intuitively one can associate a disappeared address and a
newly appeared address to break the address randomization, one
location can have multiple devices, which can appear or disappear
simultaneously (e.g., turning on/off devices, devices moving out/in
the range of sniffers). As such, monitoring the devices solely will
have high false alerts, and extra efforts are needed for the tracking.
To this end, Ludant et al. [26] linked and tracked the BLE addresses
via the collection of Bluetooth Classic (BT) Addresses. Our attacks
instead do not need to collect both Bluetooth classic packets (which
are hard to be collected as discussed in [27]) and BLE packets, and
we only need to collect BLE advertising packets.

There are also tracking attacks against specific implementations
of Bluetooth devices (e.g., Apple devices [36-39] and wearable fit-
ness trackers [40]). Some attacks exploit static payloads (e.g., fixed
manufacture identifiers [2, 3], fixed information elements [41, 42],
and fixed GATT attribute [43])) to track devices. Most of those
attacks are implementation specific (which usually requires un-
changed payload), whereas our BAT attacks are based on protocol
level flaws we identified. There are also tracking attacks requiring
the attacker to obtain keys (e.g., [25, 44, 45]). Our attacks do not
make such assumption. Moreover, unlike the traditional tracking
attacks [3, 18], where the attacker has to collect many BLE packets
and analyze them one by one to identify the victim, our attack from
malicious peripherals, for example, replays an old packet and the
victim will be exposed instantly.

Bluetooth Security. Bluetooth are also subject to multiple secu-
rity attacks such as brute force attacks against PIN (e.g., [46, 47]),
eavesdropping attacks (e.g., [48-50]), MiTM attacks [51-54], and
vulnerable pairing (e.g., [23, 55, 56]). In addition to these link layer
attacks, there are also efforts targeted on Bluetooth applications. For
example, the Bluetooth Misbonding Attacks [21] target peripherals
that do not enforce application layer authentication and BadBlue-
tooth [20] exploits the weakness when the central does not authen-
ticate the peripherals. Compared to these works, we are the first
to exploit the allowlist in Bluetooth protocol for device tracking.
Prior attacks in wireless sensor networks could also be applied
to Bluetooth. For instance, in our Attack Example III, we have

A
eCY
e“\a{w“ v “\ogN\ \""“;e 12 ‘,\‘Q\“\I
3 ﬂ‘?\e -‘“s‘“" “ﬁc\‘a“fi‘\sﬂ“‘“““e(By e a\‘“?’
Attacks l‘«’“ | pEY lw"‘ l‘ﬂ‘ 1«\ ¢ lv"“

Jakobsson et al. [1] X X X v v v
BlueTrack [13] X X X v v v
BLEB [13] x X X v v v
BLE-Guardian [2] X v X v v v
Korolova et al. [5] X v X X v v
Becker et al. [3] X v X v v v
Martin et al. [37] X v X v v v
Celosia et al. [4] X v X v v v
BLEScope [19] X X X v v v
Stute et al.(2019) [39] X v X v v v
Marco et al. [27] X X v v v v
Zhang et al. [25] X v v v v X
FirmwXray [35] X X v v v v
Guillaume et al. [36] X v X v v v
Cominelli et al. [27] X X X v v v
Stute et al.(2021) [38] X v X v v v
Heinrich et al. [44] X v v v v X
Ludant et al. [26] X v X v X v
BAT Attacks v v v v v v

Table 3: Comparison of our BAT attacks with others.

leveraged the concept of the wormhole attacks [29] to establish a
tunnel between a sniffer and the malicious central located nearby
of the stationary peripheral. While wormbhole attack alone could be
used to tunnel connections between a central and a peripheral to
identify a device, it would require additional information such as our
allowslisting side channels when there are multiple devices nearby.

10 CONCLUSION

We have presented BAT attacks by exploiting the single-bit of side
channel of response and no-response from BLE devices with al-
lowlist to track their randomized MAC addresses. Our attacks can
be launched passively, or actively due to the vulnerability of current
RPA generation and resolution algorithm. We have also presented
defense SABLE, by adding a random sequence number when gen-
erating and resolving the RPA-type MAC addresses to defeat our
active BAT attacks, and enforcing an interval unpredictable, central
and peripheral synchronized RPA generation scheme to counter
passive attacks. The experimental results show that our defense
has negligible impact on both the battery consumption and perfor-
mance overhead for the involved centrals and peripherals.

ACKNOWLEDGEMENTS

We would like to thank Shuo Chen, Syed Rafiul Hussain, Moti Yung,
and the anonymous reviewers for their helpful comments on an
early draft of this paper. This research was partially supported by
NSF award 2112471.

REFERENCES

[1] M. Jakobsson and S. Wetzel, “Security weaknesses in bluetooth,” in Cryptogra-
phers’ Track at the RSA Conference. ~Springer, 2001, pp. 176-191.

[2] K.Fawaz, K.-H. Kim, and K. G. Shin, “Protecting privacy of ble device users,” in
25th USENIX Security Symposium (USENIX Security 16), 2016, pp. 1205-1221.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

(3]

(4]

[14]

[15

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25

[26]

[28

[29]

[30

J. K. Becker, D. Li, and D. Starobinski, “Tracking anonymized bluetooth devices,”
Proceedings on Privacy Enhancing Technologies (PETS), vol. 2019, no. 3, pp. 50-65,
2019.

G. Celosia and M. Cunche, “Saving private addresses: an analysis of privacy
issues in the bluetooth-low-energy advertising mechanism,” in Proceedings of the
16th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, 2019, pp. 444-453.

A. Korolova and V. Sharma, “Cross-app tracking via nearby bluetooth low energy
devices,” in Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy (CODASPY), 2018, pp. 43-52.

S. Bluetooth, “Bluetooth core specification version 4.2, Specification of the Blue-
tooth System, 2014.

Apple Inc., “Accessory Design Guidelines for Apple Devices) ,” https://developer.
apple.com/accessories/Accessory-Design-Guidelines.pdf, 2019.

S. Bluetooth, “Bluetooth core specification version 4.1, Specification of the Blue-
tooth System, 2011.

——, “Bluetooth core specification version 5.2, Specification of the Bluetooth
System, 2020.

Google, “Android open source project,” https://source.android.com/.

Nordic, “Bluetooth programming framework,” https://embeddedcentric.com/no
rdic-ble-training/.

Bluetooth-SIG, “Bluetooth core specification version 4.0, Specification of the
Bluetooth System, 2010.

M. Haase, M. Handy et al., “Bluetrack-imperceptible tracking of bluetooth de-
vices,” in Ubicomp Poster Proceedings, vol. 2, 2004.

T. Issoufaly and P. U. Tournoux, “Bleb: Bluetooth low energy botnet for large
scale individual tracking,” in 2017 Ist International Conference on Next Generation
Computing Applications (NextComp). IEEE, 2017, pp. 115-120.

Amazon, “Pro wireless controller for nintendo switch bluetooth controllers
gamepad pc joystick controller for switch controllers with dual vibrations
and motion sensors,” https://www.amazon.com/Bluetooth- Wireless-NS-Switch-
Joystick-Controller/dp/BOS8FMH783R/.

Google, “Android 6.0 changes,” https://developer.android.com/about/versions/m
arshmallow/android-6.0-changes#behavior-hardware-id, 2016.

C. Ellis, H. Wen, Z. Lin, and A. Arora, “Replay (far) away: Exploiting and fix-
ing google/apple exposure notification contact tracing,” Proceedings on Privacy
Enhancing Technologies (PETS), vol. 2022, no. 4, 2022.

C. Matte, M. Cunche, F. Rousseau, and M. Vanhoef, “Defeating mac address
randomization through timing attacks,” in Proceedings of the 9th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, 2016, pp. 15-20.

C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic fingerprinting of vulnerable
ble iot devices with static uuids from mobile apps,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, 2019, pp.
1469-1483.

F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “Badbluetooth: Breaking android
security mechanisms via malicious bluetooth peripherals,” in Proceedings of the
26th Annual Network and Distributed System Security Symposium (NDSS’19), San
Diego, CA, 2019.

M. Naveed, X. Zhou, S. Demetriou, X. Wang, and C. A. Gunter, “Inside job: Un-
derstanding and mitigating the threat of external device mis-binding on android,”
in 21st Annual Network and Distributed System Security Symposium, NDSS 2014,
San Diego, California, USA, February 23-26, 2014, 2014.

L. H. NEWMAN, “Sneaky zero-click attacks are a hidden menace,” https:
//www.wired.com/story/sneaky-zero-click-attacks-hidden-menace/, April 2020,
(Accessed on 12/24/2021).

D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Bias: Bluetooth imperson-
ation attacks,” in Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2020.

D. Antonioli, N. O. Tippenhauer, and K. B. Rasmussen, “The {KNOB} is broken:
Exploiting low entropy in the encryption key negotiation of bluetooth br/edr,” in
28th {USENIX} Security Symposium ({USENIX} Security 19), 2019, pp. 1047-1061.
Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu, “Breaking secure pairing
of bluetooth low energy using downgrade attacks,” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020, pp. 37-54.

N. Ludant, T. D. Vo-Huu, S. Narain, and G. Noubir, “Linking bluetooth le & classic
and implications for privacy-preserving bluetooth-based protocols,” in 2021 IEEE
Symposium on Security and Privacy (SP), 2021.

M. Cominelli, F. Gringoli, P. Patras, M. Lind, and G. Noubir, “Even black cats
cannot stay hidden in the dark: Full-band de-anonymization of bluetooth classic
devices,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp.
534-548.

SENA, “Patch antenna - rp-sma-r/a right-hand thread, 9dbi,” http://www.senane
tworks.com/pat-g01r.html.

Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole attacks in wireless networks,”
IEEE journal on selected areas in communications, vol. 24, no. 2, pp. 370-380, 2006.
Statistics, “Bluetooth device shipments worldwide from 2015 to 2026,
https://www.statista.com/statistics/1220933/global-bluetooth-device-shipment-
forecast/, April 2020, (Accessed on 12/24/2021).

(31

[32

[33

(34]

(36]

[37

[38

[40

(41

[44]

[45]

[46]

[47

'S
&

[49

[50

(51]

[52

[55]

[56]

Yue Zhang & Zhigiang Lin

Adafruit, “Adafruit sniffer,” https://learn.adafruit.com/introducing- the-adafruit-
bluefruit-le-sniffer/introduction.

Ganesh, “The current psoc ez-serial fw does not support rpa for whitelist,”
https://community.cypress.com/thread/51728?start=0&tstart=0, 2020.

S. Labs, “Twhitelisting (silcon labs official document),” https://docs.silabs.com/bl
uetooth/3.0/general/adv-and-scanning/whitelisting, 2020.

E. Garcia-Espinosa, O. Longoria-Gandara, 1. Pegueros-Lepe, and A. Veloz-
Guerrero, “Power consumption analysis of bluetooth low energy commercial
products and their implications for iot applications,” Electronics, vol. 7, no. 12, p.
386, 2018.

H. Wen, Z. Lin, and Y. Zhang, “Firmxray: Detecting bluetooth link layer vul-
nerabilities from bare-metal firmware,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2020.

G. Celosia and M. Cunche, “Discontinued privacy: Personal data leaks in apple
bluetooth-low-energy continuity protocols,” Proceedings on Privacy Enhancing
Technologies, vol. 2020, no. 1, pp. 26—46, 2020.

J. Martin, D. Alpuche, K. Bodeman, L. Brown, E. Fenske, L. Foppe, T. Mayberry,
E. Rye, B. Sipes, and S. Teplov, “Handoff all your privacy-a review of apple’s
bluetooth low energy continuity protocol,” Proceedings on Privacy Enhancing
Technologies, vol. 2019, no. 4, pp. 34-53, 2019.

M. Stute, A. Heinrich, J. Lorenz, and M. Hollick, “Disrupting continuity of apple’s
wireless ecosystem security: New tracking, {DoS}, and {MitM} attacks on {iOS}
and {macOS} through bluetooth low energy,{AWDL}, and {Wi-Fi},” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 3917-3934.

M. Stute, S. Narain, A. Mariotto, A. Heinrich, D. Kreitschmann, G. Noubir, and
M. Hollick, “A billion open interfaces for eve and mallory:{MitM },{DoS}, and
tracking attacks on {iOS} and {macOS} through apple wireless direct link,” in
28th USENIX Security Symposium (USENIX Security 19), 2019, pp. 37-54.

A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering privacy
leakage in ble network traffic of wearable fitness trackers,” in Proceedings of
the 17th International Workshop on Mobile Computing Systems and Applications.
ACM, 2016, pp. 99-104.

M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens, “Why mac
address randomization is not enough: An analysis of wi-fi network discovery
mechanisms,” in Proceedings of the 11th ACM on Asia conference on computer and
communications security, 2016, pp. 413-424.

H. Wen, Q. Zhao, Z. Lin, D. Xuan, and N. Shroff, “A study of the privacy of
covid-19 contact tracing apps,” in International Conference on Security and Privacy
in Communication Networks, 2020.

G. Celosia and M. Cunche, “Fingerprinting bluetooth-low-energy devices based
on the generic attribute profile,” in Proceedings of the 2nd International ACM
Workshop on Security and Privacy for the Internet-of-Things, 2019, pp. 24-31.

A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick, “Who can devices? secu-
rity and privacy of apple’s crowd-sourced bluetooth location tracking system,”
Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 3, pp. 227-245, 2021.
A. Heinrich, M. Stute, and M. Hollick, “Openhaystack: a framework for tracking
personal bluetooth devices via apple’s massive find my network,” in Proceedings of
the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
2021, pp. 374-376.

A. Becker and 1. C. Paar, “Bluetooth security & hacks,” Ruhr-Universitit Bochum,
2007.

Y. Shaked and A. Wool, “Cracking the bluetooth pin,” in Proceedings of the 3rd
international conference on Mobile systems, applications, and services. ACM, 2005,
pp- 39-50.

D. Spill and A. Bittau, “Bluesniff: Eve meets alice and bluetooth” WOOT, vol. 7,
pp. 1-10, 2007.

M. Ryan, “Bluetooth: With low energy comes low security,” in Proceedings
of the 7th USENIX Conference on Offensive Technologies, ser. WOOT 13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 4-4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2534748.2534754

T. Rosa, “Bypassing passkey authentication in bluetooth low energy” IACR Cryp-
tology ePrint Archive, vol. 2013, p. 309, 2013.

D. Kiigler, ““man in the middle” attacks on bluetooth,” in International Conference
on Financial Cryptography. Springer, 2003, pp. 149-161.

K. Haataja and P. Toivanen, “Two practical man-in-the-middle attacks on blue-
tooth secure simple pairing and countermeasures,” IEEE Transactions on Wireless
Communications, vol. 9, no. 1, 2010.

K. Hypponen and K. M. Haataja, ““nino” man-in-the-middle attack on bluetooth
secure simple pairing,” in 2007 3rd IEEE/IFIP International Conference in Central
Asia on Internet. 1EEE, 2007, pp. 1-5.

Y. Zhang, J. Weng, Z. Ling, B. Pearson, and X. Fu, “Bless: A ble application security
scanning framework,” in IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 2020, pp. 636-645.

D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Low entropy key negotiation
attacks on bluetooth and bluetooth low energy.” IACR Cryptol. ePrint Arch., vol.
2019, p. 933, 2019.

——, “Key negotiation downgrade attacks on bluetooth and bluetooth low energy,”
ACM Transactions on Privacy and Security (TOPS), vol. 23, no. 3, pp. 1-28, 2020.

https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf
https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf
https://source.android.com/
https://embeddedcentric.com/nordic-ble-training/
https://embeddedcentric.com/nordic-ble-training/
https://www.amazon.com/Bluetooth-Wireless-NS-Switch-Joystick-Controller/dp/B08FMH783R/
https://www.amazon.com/Bluetooth-Wireless-NS-Switch-Joystick-Controller/dp/B08FMH783R/
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://www.wired.com/story/sneaky-zero-click-attacks-hidden-menace/
https://www.wired.com/story/sneaky-zero-click-attacks-hidden-menace/
http://www.senanetworks.com/pat-g01r.html
http://www.senanetworks.com/pat-g01r.html
https://www.statista.com/statistics/1220933/global-bluetooth-device-shipment-forecast/
https://www.statista.com/statistics/1220933/global-bluetooth-device-shipment-forecast/
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer/introduction
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer/introduction
https://community.cypress.com/thread/51728?start=0&tstart=0
https://community.cypress.com/thread/51728?start=0&tstart=0
https://docs.silabs.com/bluetooth/3.0/general/adv-and-scanning/whitelisting
https://docs.silabs.com/bluetooth/3.0/general/adv-and-scanning/whitelisting
http://dl.acm.org/citation.cfm?id=2534748.2534754
http://dl.acm.org/citation.cfm?id=2534748.2534754

	Abstract
	1 Introduction
	2 Background
	3 Overview of BAT Attacks
	3.1 Key Observation
	3.2 Objectives, Assumptions, and Attack Model
	3.3 Scope

	4 Passive BAT Attacks
	5 Active BAT Attacks
	5.1 Active BAT from Malicious Centrals
	5.2 Active BAT from Malicious Peripherals

	6 Countermeasure
	6.1 Defending Against Passive BAT Attacks
	6.2 Defending Against Active BAT Attacks

	7 Evaluation
	7.1 Experiment Setup
	7.2 Evaluation of Passive BAT Attacks
	7.3 Evaluation of Active BAT Attacks
	7.4 Evaluation of SABLE

	8 Discussion
	9 Related Work
	10 Conclusion
	References

