
Detecting and Measuring Misconfigured Manifest in
Android Apps

Yuqing Yang
The Ohio State University

Mohamed Elsabagh
Kryptowire

Chaoshun Zuo
The Ohio State University

Ryan Johnson
Kryptowire

Angelos Stavrou
Kryptowire

Zhiqiang Lin
The Ohio State University

ABSTRACT

The manifest file of an Android app is crucial for app security as
it declares sensitive app configurations, such as access permissions
required to access app components. Surprisingly, we noticed a num-
ber of widely-used apps (some with over 500 million downloads)
containing misconfigurations in their manifest files that can result
in severe security issues. This paper presents ManiScope, a tool to
automatically detect misconfigurations of manifest files when given
an Android APK. The key idea is to build a manifest XML Schema
by extracting manifest constraints from the manifest documenta-
tion with novel domain-aware NLP techniques and rules, and val-
idate manifest files against the schema to detect misconfigurations.
We have implemented ManiScope, with which we have identified
609,428 (33.20%) misconfigured Android apps out of 1,853,862 apps
from Google Play, and 246,658 (35.64%) misconfigured ones out of
692,106 pre-installed apps from 4,580 Samsung firmwares, respec-
tively. Among them, 84,117 (13.80%) of misconfigured Google Play
apps and 56,611 (22.95%) of misconfigured pre-installed apps have
various security implications including app defrauding, message
spoofing, secret data leakage, and component hijacking.
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1 INTRODUCTION

Android follows a declarative app deployment model where each
app is required to declare certain configurations in a file named
AndroidManifest.xml in the root directory of an app package
(APK) [3]. This app manifest file describes essential information
about the app to both Android marketplaces and the Android OS
to guarantee proper publishing, installation, and execution of the
app on an end-user’s device. Among many others, an app mani-
fest file declares a variety of important information, including the
unique app package name, Android versions compatible with the
app, app components and their security and access control settings,
permissions requested by the app, and configurations necessary for
libraries and features needed by the app.

Due to its importance to app security and reliability, an app
manifest file must pass multiple checks by Android app develop-
ment tools during app development [6], by Google Play during app
publishing [20], and by the Android runtime during app installa-
tion and execution [5]. However, by examining the open-source
code and documentation on how Android validates a manifest file,
we found that the validation process does not provide systematic
coverage of all possible manifest misconfigurations. While we can-
not access the source code of Google Play, we notice from this
documentation [11] that Google Play just filters the elements and
attributes that are related to feature requirements and compatibility,
so as to avoid the app being installed on an incompatible device.
Consequently, this can lead to apps with misconfigured manifest
files in the wild, creating security issues as witnessed by the dis-
closed CVEs (e.g., CVE-2017-16835 [1] and CVE-2017-17551 [2]).
Moreover, our preliminary investigation showed that even some
applications associated with world’s top vendor, e.g., Amazon as
shown in Figure 1, may also involve such mistakes, which may lead
to concerning purchase replay attack, inflicting losses to the vendor.

As such, it is imperative to perform a large-scale study to under-
stand the problem of the misconfigured manifest files, including the
history of this misconfiguration problem, the prevalence of miscon-
figuration in current market, and the impact of these miconfigured
manifest in the entire ecosystem, so as to raise the awareness from
the community and draw insights to help mitigate this problem. To
perform a systematic and automatic check of the misconfiguration,
we utilize a standard approach to validate the XML files with XSD
schema. To generate the XSD schema, we leverage the official doc-
umentation of Android manifest file, which is provided by Google
because it is the only source and standard for developer’s reference
when creating manifest files. Putting it all together, we develop
ManiScope, an NLP-based context-aware analysis tool to identify
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the manifest entities and their constraints from the documentation,
and then generate the XSD for the validation.

We have implemented ManiScope and tested it with 1,853,862
Android apps collected from Google Play between January 2020
and May 2020, and 692,106 pre-installed apps from 4,580 Samsung
firmwares (which were released between September 2011 and Janu-
ary 2020) collected from SamMobile [18]. Our investigation revealed
a worrying situation: for Googe Play apps, ManiScope detected
265,028 misconfigured elements in 230,330 apps and 718,207 mis-
configured attributes in 428,440 apps (in total 609,428 unique mis-
configured apps). For the pre-installed apps, ManiScope detected
1,731,451 misconfigured elements in 152,046 apps and 386,346 mis-
configured attributes in 114,494 apps (in total 246,658 unique mis-
configured apps). These results indicate a concerning prevalence of
manifest misconfigurations across mobile apps, and these problems
can date back to the very early Android version (as early as Android
2.0+). Moreover, we found that 84,117 (13.80%) of misconfigured
Google Play apps and 56,611 (22.95%) of misconfigured pre-installed
apps could have various security issues, ranging from component
hijacking, data leakage, and app crashes, among others.
Contributions.We make the following contributions:

• We present ManiScope, a novel and open-source tool that is able
to extract manifest constraints from the Android documentation,
build a manifest XML Schema, and detect misconfigurations in
Android app manifests.

• We propose novel domain- and context-aware NLP techniques to
extract manifest constraints from the documentation and handle
ambiguities and incomplete sentences in the natural language
texts of the documentation.

• We present a large-scale study on over 2.4 million apps and de-
tected that about a third of these apps contain misconfigurations.
We provide an analysis of the prevelance, history and the security
threats of these misconfigurations and their root causes.

2 PRELIMINARIES

2.1 Android App Manifest File

An Android app is packaged as an archive file (APK) that con-
tains app code, assets, certificates, along with an app manifest file
called AndroidManifest.xml, which is an XML file that specifies
app components (the building blocks of an app, such as activity
and receiver), permissions, and various configurations needed
for the proper execution of the app [3]. When installing an app,
the Android PackageParser configures the app’s metadata and
runtime settings based on the configurations defined in the app’s
AndroidManifest.xml [5].

As illustrated in Figure 1, app manifest files are composed of
XML elements. Each element has a start and an end tag, can have a
number of attributes (e.g., attribute android:name at line 5 that sets
the name of the receiver element), and can contain other nested
elements. The elements are organized in a tree structure where
a child element can belong to only one parent element (e.g., the
<intent-filter> element at line 6 is nested in its parent element
<receiver>).

01 <manifest package="com.example.app"...>
02  ...
03  <application ...>
04  ...
05   <receiver android:name="com.amazon.*">
06    <intent-filter>
07     <action
08      android:name="com.amazon.*.NOTIFY"
09      android:permission="com.amazon.*.Permission.NOTIFY">
11     </action>
12    </intent-filter>
13   </receiver>
14  ...
15  </application>
16  ...
17 </manifest>

01

Figure 1: A simplified excerpt from the manifest file of a

real-world app containing a misplaced permission attribute.

Due to the severity of this misconfiguration, we redacted the

name of the app and the vulnerable component until the

issue is patched.

2.2 Misconfigurations in Manifest Files

The structure of a manifest XML tree specifies the relative positions
of the manifest elements, though it does not enforce any particular
occurrence constraints. Elements and attributes in an Android app
manifest file can be required or optional, and some elements can
also occur multiple times. For example, according to the Android
Manifest Documentation [3], an <action> element must occur at
least once inside an <intent-filter> parent element.

When developing Android apps, developers have to manually
configure appmanifest files, though there are some tools to partially
automate some of the configurations. Such manual configurations
can certainly introduce errors, as evidenced by the example in
Figure 1 in which the android:permission attribute, which is sup-
posed to declare the permission required to access the <receiver>
component, is incorrectly placed in the <action> element instead
of <receiver>. As a result, the receiver component is left unpro-
tected at runtime, allowing arbitrary apps to access and invoke its
functionality.

To avoid misconfigurations, developers must clearly understand
the XML Schema of app manifest files, i.e., the correct structure and
constraints governing elements and attributes in a manifest file. In
general, an XML Schema describes three classes of requirements
[19], violating any of which causes misconfiguration: (1) Manifest
vocabulary and structure, describing what the valid elements and
attributes are and where exactly they can be placed. (2) Occurrence
constraints dictating how many times an element or an attribute
can appear. (3) Valid attribute values and their data types. Mis-
configurations resulting from violating these requirements can be
classified based on their root causes into the following categories:

• Misplaced elements and attributes, which can be caused by (1)
an element exceeding the upper bound of an occurrence (e.g., can
only appear once but appeared multiple times), or (2) an element
placed in an unexpected parent (e.g., if <action> element has an
invalid parent <receiver>), or (3) an attribute declared inside a
wrong element (e.g., android:permission in Figure 1).

• Absent elements and attributes, which occurs when a required
element or attribute is missing, i.e., violating its lower bound
occurrence constraint.



01  <xs:element name="intent-filter">
02    <xs:complexType mixed="true">
03      <xs:sequence>
04        <xs:element ref="action" minOccurs="1" />
05        <xs:element ref="category" />
06        <xs:element ref="data" />
07      </xs:sequence>
08      <xs:attribute name="autoVerify" type="xs:string"/>
09      ...
10    </xs:complexType>
11  </xs:element>
12  <xs:element name="action">
13    <xs:complexType mixed="true">
14      <xs:sequence>
15      </xs:sequence>
16      <xs:attribute name="name" type="xs:string"/>
17      ...
18    </xs:complexType>
19  </xs:element>

Figure 2: Example XSD schema snippet for detecting the

misconfiguration in Figure 1.

• Unexpected elements and attributes, which can be caused by
an element or attribute that does not appear in the valid manifest
vocabulary, e.g., an undefined <foo> element or a misspelled
element in the app manifest file.

• Wrong attribute values, which can be caused by an attribute
value that does not satisfy the required data types or allowed data
values for the attribute, e.g., value true or false is misspelled
for a Boolean type.

Note that a misplaced element or attribute could also be cate-
gorized as absent. For instance, if <action> is misplaced inside
<data>, which is required by <intent-filter>, it is identified as
missing under <intent-filter> and misplaced under <data>.

2.3 Approaches for Validating Manifest Files

App manifest files must be validated to ensure their correctness. In
fact, Google provides a number of tools for this purpose. In particu-
lar, at development time, Android Studio checks the manifest XML
tree for the absence of some critical elements and attributes [6].
During the publishing phase, Google Play checks the app mani-
fest file and applies filters on special compatibility elements (e.g.,
<compatible-screen>) to decide which devices are compatible
with an app [20]. At installation time, the Android PackageParser
parses the app manifest file in the APK, checks for required ele-
ments, and configures the app runtime accordingly [5].

A systematic and well-known approach to validate a manifest
XML file is through the use of a corresponding XML Schema file
that defines the constraints on the structure and content of the XML
file. However, by checking the source code of AOSP [4], we did not
find any XML Schema for app manifest files. Instead we found that
AOSP uses hand-rolled code to validate manifest files [5]. We found
that while AOSP validates all manifest attribute values and their
data types [8], it uses ad-hoc constraints to validate the manifest
structure itself (e.g., only checking for occurrence of certain ele-
ments and attributes). These hardcoded checks result in incomplete
coverage since hand-rolling a complete XML validator that can
capture all possible cases of misoccurrences is an exhaustive and
error-prone task. As a result, many apps end up on the market with
critical misconfigurations, as shown in Figure 1.

Therefore, to systematically validate app manifest files, we need
to construct the XML Schema for Android app manifests and then
perform the validation using the schema file. In particular, we need
to know both the structure and occurrence constraints of elements
and attributes of an Android manifest file, where the structure refers
to the specific child and parent elements at each particular position
of the XML tree and their corresponding attributes, and occurrence
constraints refer to the upper and lower bounds of the occurrences
of a child element in the tree, i.e., whether it is optional or required
and how many times it can appear under the same parent.

After obtaining the structures and occurrence constraints of XML
elements and attributes, various XML Schema languages, such as
Document Type Definition (DTD) [12], Relax-NG [17], Schema-
tron [13], and XML Schema Definition (XSD) [45], can be used to
develop a specification using these structures and constraints to val-
idate XML files. XSD is the most popular one among these schema
languages since it is also written in XML, offers a strong set of speci-
fication facilities, and is widely supported by XML parsing packages
for many programming languages [7, 21]. XSD supports various fea-
tures that can be used to directly describe the correct structure and
constraints of Android manifest elements and attributes: it can de-
clare valid child elements and attributes of each element, minimum
and maximum occurrence of elements, and whether an attribute is
required or optional, and so on. An example of an XSD file is shown
in Figure 2. All the tag names in XSD files begin with common
prefix xs: since they all belong to the XML Schema (XS) names-
pace. Manifest elements such as <intent-filter> are declared
one-by-one using <xs:element>. It can be noticed that an element
is an <xs:complexType> if it contains both child elements and at-
tributes. Child elements are then specified inside <xs:sequence>
as <xs:element> references, and their number of occurrences are
specified using the minOccur and maxOccur attributes. Similarly,
valid attributes are specified in <xs:attribute> schema elements.
For a full treatment of XSD, we refer interested readers to XSD
definition [45].

3 OVERVIEW

The goal of this study is to understand the prevalence, history and
security impact of the misconfiguration of Android manifest files.
As such, we need to first generate the validation schema for the
manifest files. To do so, an intuitive approach is to extract manifest
constraints by analyzing the documentation as it is the official guide
used by app developers to develop manifest files. Unfortunately, this
is still non-trivial, requiring overcoming multiple key challenges as
discussed in the following.

3.1 Challenges

C1: Identifying Manifest-Related Documentation Pages. To
automatically extract constraints from the documentation, the first
challenge is to identify the documentation pages relevant to app
manifest files. Currently, there are over 1, 000 HTML pages in the
latest version of the Android documentation, and they specify con-
straints not only related to developing Android apps and configur-
ing manifest files, but also to other XML files such as the Android
resource XML file, which share the similar structure as the manifest
documentation. As such, we need to avoid capturing descriptions
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in every documentation page; otherwise, a large amount of con-
straints irrelevant to manifest file configuration may be erroneously
extracted.
C2: Handling Ambiguity and Incompleteness in Manifest De-

scriptions. It is challenging for an automated system to deal with
ambiguities in the descriptions of manifest elements and attributes
since they are written in free-form text. Compared with prior NLP-
based document mining techniques (e.g., [22, 32, 43]), we need to
perform more complex tasks because we need to not only identify
manifest entities referred to in a sentence and determine their re-
lationships (parent or child), applicable positional and quantitative
constraints (see §2), but also translate them to valid XSD.

Fortunately, we find that sentences discussing manifest elements
and attributes have common structures. First, sentences describing
how to configure manifest entities are mostly imperative sentences
that use modal verbs, whereas descriptions specifying maximal
occurrences use numerical words to emphasize that an element is
unique (e.g., ‘there is only one...’). Second, we find that the subjects
and objects of complete sentences refer to the parent and child ele-
ments respectively. For example, in sentence ‘An <intent-filter>
element must contain one or more <action> elements’, <action> is
the current element and <intent-filter> is its parent. Although
in some contexts, the parent element may be omitted for brevity
(e.g., ‘The name must be specified’), the overall structure of subject–
verb–object (SVO) remains.
C3: Performing Context-Aware and Domain-Guided Parsing.

Since sentences in the documentation may omit parent elements
for brevity, there may be relevant manifest constraints not captured
by the above two sentence structures. In addition, specifications
irrelevant to manifest constraints may be mistakenly identified as
manifest constraints when they use sentences with SVO structure.
Therefore, we need to carefully filter out irrelevant sentences by
reasoning about the context in which a sentence occurs and also
using the domain-knowledge extracted to guide the filtering.

Interestingly, we noticed that the structural information in the
manifest documentation can help build domain-knowledge and
identify sentence contexts. Specifically, (1) the omitted entities are
often in a structure context. For example, there is a sentence in the
documentation for <activity> ‘The name must be specified’, the
omitted <activity> is exactly the name of the documentation. (2)
The element and attribute names in the titles of each section (such
as contained in) yields a dictionary as well as the structure of
manifest-related entities, which can be used to build the domain
knowledge and filter out the irrelevant and misplaced ones.

<action>
syntax:

<action android:name="string" />
contained in:

<intent-filter>
description:

Adds an action to an intent filter. An <intent-filter> element must contain one or 
      more <action> elements. If there are no <action> elements in an intent filter, the 
      filter doesn't accept any Intent objects. See Intents and Intent Filters for details on 
      intent filters and the role of action specifications within a filter.
attributes:

android:name
The name of the action. Some standard actions are defined in the Intent 

             class as ACTION_string constants...

Figure 4: An excerpt from Google’s official documentation

for the <action> element.

3.2 Problem Scope and Assumptions

In this work, we focus on identifying and measuring the unex-
pected, misplaced, and missing manifest configurations by using
constraints extracted from the Android manifest documentation.
We assume that the manifest documentation is the ground truth
that specifies all constraints needed for validating a manifest file.
We also assume that input manifest files have valid value types
since this is a requirement for compiling an app and is already han-
dled by Android development tools. Finally, extracting constraints
from undocumented manifest elements or attributes that may be
internally supported by Android is out of scope.

4 DETAILED DESIGN

The workflow of ManiScope is shown in Figure 3. At a high level, it
contains five key components: Document Collector (§4.1), Positional
Constraint Extractor (§4.2), Quantitative Constraint Extractor (§4.3),
Scheme Generator (§4.4), and finallyManifest Validator (§4.5). In this
section, we present the detailed design of these components.

4.1 Document Collector

As described in C1, we need to automatically collect the docu-
mentations related to the manifest file, and extract the structured
sections and descriptions for positional and quantitative constraint
extraction, respectively. To avoid overly capturing the irrelevant
elements and attributes when only using the structure of a docu-
ment to determine whether it is related to an app manifest, we use
a recursive top-down traversal algorithm to identify the attributes
and elements related to manifest descriptions. In particular, the
Document Collector traverses the documentation pages by starting
from the documentation page of the root element <manifest>, then
recursively visiting the documentation pages of each child element.
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Figure 5: An example illustrating the dependencies between the words in a sentence, and how the documentation sentences are

divided into subject and object clauses. ManiScope partitions the sentences into subject and object phrases, and leverages the

dependencies to recognize the elements and attributes with a state machine based parsing approach.

As a result, it fetches manifest documentation pages for all elements
that appear in the manifest file.

4.2 Positional Constraint Extractor

Given the collected manifest documentation pages, our Positional
Constraint Extractor parses each documentation page and extracts
child elements under ‘can contain’ and ‘must contain’ sections
and attributes under attributes sections, respectively. These child
elements and attributes are used to construct positional constraints,
i.e., valid child elements and attributes for each parent element. For
example, when parsing the document example in Figure 4, there
is an android:name in the attributes section; therefore, we in-
fer that <action> can have a child attribute of android:name. We
also infer that the <action> element has no child elements because
there is neither ‘can contain’ nor ‘must contain’ sections in
its documentation page. When all the positional constraints are
extracted, the parser generates a dictionary of all of the names of
valid elements and attributes, which is used for filtering out non-
manifest related constraints that may be mistakenly identified by
the NLP parser. In addition, the parser also extracts descriptions
of elements under the descriptions section, and attributes under
each attribute name, which are required to extract quantitative
constraints as described next.

4.3 Quantitative Constraint Extractor

Since the quantitative constraints are located in descriptions, our
Quantitative Constraint Extractor uses NLP techniques to extract
these constraints from free-form sentences in the descriptions. How-
ever, these natural language sentences are usually ambiguous and in-
complete. To deal with the challenges of complex sentences (C2) and
improve extraction precision (C3), we design two sub-components:
(1) Entity Recognizer (§4.3.1) to identify manifest entities (i.e., ele-
ments and attributes) and handle ambiguities, and (2) Constraint
Filter (§4.3.2) to filter out non-manifest related constraints.

4.3.1 Entity Recognizer. As discussed in C2, to extract constraints
from free-form sentences, we need to extract manifest entities, their
relationships, and handle missing references. To illustrate these
challenges, we present two sentences in Figure 5 with a normal
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Figure 6: The finite state machine (FSM) for identifying ele-

ments, attributes, and $context.

voice (containing nsubj dependency) and a passive voice (contain-
ing nsubjpass dependency). The first sentence is written in normal
voice, and it suggests that there is a minimum constraint for the
child element <action> in the parent element <intent-filter>.
We observe that these sentences often appear in Subject-Verb-
Object structure. For instance, the subject phrase could be ‘An
<intent-filter> element’, and the object phrase could be ‘one or more
<action> elements’. Therefore, we can extract the parent and child
entity from the subject phrase and child phrase, respectively. How-
ever, since these phrases still contain complex structures such as
modifiers and conjectures, we still need to locate the exact word
such as <intent-filter> from these phrases, and to handle sentences
where object phrases are omitted (e.g., ‘The name must be specified’).
To this end, we extract this information by first (𝑖) recognizing sen-
tence dependencies using a Finite State Machine (FSM), then (𝑖𝑖)
handling missing entities using contextual information.
(I) Recognizing Sentence Dependencies. We observe that in
sentences specifying manifest constraints, the parent and child
manifest entity appear in subject and object phrases, respectively
(e.g., the child element <action> is in the object phrase ‘one <ac-
tion> element’). Therefore, our Entity Recognizer extracts the parent
and child entity by identifying the dependencies of subject and



Table 1: Context filtering rules of ManiScope.

Rules to filter out non-manifest constraints

ID Type Rule to filter out candidate constraint Insights

R1 context ¬𝑝𝑎𝑟𝑒𝑛𝑡 .𝑖𝑛𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 () ∧ ¬𝑐ℎ𝑖𝑙𝑑.𝑖𝑛𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 () If both manifest parent and child are not mentioned in sentence, it is not likely to relate to manifest constraint.
R2 context ¬𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑝𝑎𝑟𝑒𝑛𝑡 ) ∧ ¬𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑐ℎ𝑖𝑙𝑑) If neither parent nor child is in manifest dictionary of element and attribute names, it is not a manifest constraint
R3 context 𝑐ℎ𝑖𝑙𝑑𝑒𝑥 ∉ 𝑝𝑎𝑟𝑒𝑛𝑡𝑒𝑥 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 If extracted child entity does not exist in the parent’s valid manifest children, it is not a valid manifest constraint.
R4 sentence ‘𝑎𝑑𝑣𝑐𝑙 ’ ∈ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ∨ ‘𝑎𝑐𝑙 ’ ∈ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 The adverbial clause of C in ‘A must specify B when C’ voids the constraint that A ‘must contain’ B.
R5 word ‘𝑛𝑢𝑚𝑚𝑜𝑑 ’ ∉ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ∧ (𝑤 ∉ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑓 𝑜𝑟 𝑤 ∈ {𝑚𝑜𝑑𝑎𝑙 𝑣𝑒𝑟𝑏𝑠 }) If sentence contains neither nummod (‘only one’) nor model verbs (‘must contain’), there is no occurrence constraint.

Rules to identify misspelled elements and attributes

ID Type Rule to identify misspelled entities Insights

R6 attribute ∃𝑎 ∈ 𝑎𝑡𝑡𝑟𝑠 : 𝑎.𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (‘android:’) = 𝑛𝑎𝑚𝑒.𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (‘android:’) Attributes may fail to include android namespace prefix: if android: is replaced, the postfix is the same.
R7 element ∃𝑒 ∈ 𝑒𝑙𝑒𝑚𝑠 : 𝑒.𝑙𝑜𝑤𝑒𝑟 () = 𝑛𝑎𝑚𝑒.𝑙𝑜𝑤𝑒𝑟 () Characters may be mistakenly capitalized: when all being converted to all lower case, the name is in dictionary.
R8 attribute ∃𝑎 ∈ 𝑎𝑡𝑡𝑟𝑠 : 𝑎.𝑙𝑜𝑤𝑒𝑟 () = 𝑛𝑎𝑚𝑒.𝑙𝑜𝑤𝑒𝑟 () Characters may be mistakenly capitalized: when all being converted to all lower case, the name is in dictionary.
R9 element ∃𝑒 ∈ 𝑒𝑙𝑒𝑚𝑠 : 0 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒.𝑙𝑜𝑤𝑒𝑟 (), 𝑛𝑎𝑚𝑒.𝑙𝑜𝑤𝑒𝑟 ()) ≤ 𝛼 If edit distance between encountered name and an entity in dictionary is less than 𝛼 , it is a typo.
R10 attribute ∃𝑎 ∈ 𝑎𝑡𝑡𝑟𝑠 : 0 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎.𝑙𝑜𝑤𝑒𝑟 (), 𝑛𝑎𝑚𝑒.𝑙𝑜𝑤𝑒𝑟 ()) ≤ 𝛼 If edit distance between encountered name and an entity in dictionary is less than 𝛼 , it is a typo.

object phrases until it finds a manifest entity or aborts the parsing
based on the FSM, according to the dependency encountered at
each word. We first identify dependencies used in the extraction
procedure, including subjects (nsubj, nsubjpass), direct objects
(dobj), adjective and noun modifiers (amod, nmod), compound state-
ments (compound), and determiners (det) such as the name of an
element. We then process these dependencies using the FSM to
trace dependencies and identify entities as shown in Figure 6.

In the following, we discuss how our FSM-based approach works
using an example of extracting the parent element <intent-filter>
from the first sentence in Figure 5. Specifically, as shown in Figure 6,
starting at the state verb (points to the word ‘contain’ in the input
as shown in Figure 5), our Entity Recognizer first moves to the noun
state (points to word ‘element’) based on the state transition of
nsubj. Next it moves to adjective state through amod and points
to the word ‘<intent-filter>’. Since there are no more dependencies
according to the parsed dependencies illustrated in Figure 5, the
Entity Recognizer moves to a special identified state through the
none edge. A none edge is a special edge where the state cannot
be transferred. As such, when reaching the identified state, we
successfully identify the word ‘<intent-filter>’ as a manifest entity. If
there is no object phrase in the sentence (e.g., no object phrase after
‘specified’ in ‘The name must be specified’), the Entity Recognizer re-
gards the corresponding entity as missing and holds its processing
until more context information is collected, which will be handled
in the next step. If the Entity Recognizer moves to the exit state
without reaching the identified state, the tracing process aborts
and no constraint is extracted from the sentence.
(II) Identifying Context Information.Due to the complexity and
ambiguity of sentences, there is a chance where manifest-related
constraint is not uncovered by our Entity Recognizer. In general,
there are two scenarios where a sentence containing manifest con-
straints may be missed: 1) when the sentence has a missing entity
that needs context information to be resolved (e.g., ‘The namemust
be specified’), and 2) when the identified word does not point to
a specific manifest element or attribute (e.g., ‘this element must
be placed inside the <manifest> element’). Therefore, we need to
handle these incomplete and ambiguous manifest entities to avoid
missing manifest constraints. To accomplish this, we notice that
contextual information in documentation sections and paragraphs
provide enough hints for inferring these missing entities.

• Section-level Context. Section-level context refers to informa-
tion about element and attribute names associated with section ti-
tles in the documentation . For example, if the sentence ‘The name

must be specified’ appears in the description of the android:name
attribute in the documentation section for <activity>, we can
associate it with the <activity> element as its attribute. When
a parent entity is missing, we associate the parent entity with
the element name in the title of documentation (because only
elements can be parent entities that contain child elements or
attributes). When a child entity is missing, we associate the en-
tity with the nearest section context: if the sentence is in the
description of an element, we associate the entity with the el-
ement name; if it is in an attribute description, we associate it
with the attribute name.

• Paragraph-level Context. At the beginning of paragraphs, we
observe that a key sentence is often used to summarize the mean-
ing or functionality of an element or attribute. As such, we utilize
this context to improve the constraint extraction by identify-
ing the subject and object from the first sentence of the para-
graph (taking sentence dependencies into account). Of course,
not all paragraphs provide contextual information in the first
sentence, and non-manifest related information may be mis-
takenly generated. For example, in the documentation of the
android:backupAgent attribute under the <application> el-
ement, the first sentence says ‘The name of the class that im-
plements the application’s backup agent’. Although the sentence
merely indicates that the attribute is associated with a backup
agent class in the source code, the context information may be
mistakenly extracted as backupAgent. As a result, when we later
encounter the sentence ‘The name must be specified’ in the con-
text of android:backupAgent we may identify the child to be
‘name’ but mistakenly identify parent as backupAgent, which
is not a valid manifest entity. Hence, it is vital for utilizing the
knowledge we extracted about manifest file to filter out these
non-manifest constraints to avoid mistakes in the schema.

4.3.2 Constraint Filter. As discussed in C3, when extracting man-
ifest constraints by parsing sentence structures, non-manifest con-
straints can appear in sentences with similar structures. Meanwhile,
constraints not related to manifest may occur when we infer miss-
ing entities from contextual information. For example, in the de-
scription of android:label in <activity> documentation, ‘The
label is displayed on-screen when the activity must be represented
to the user.’ has a similar ‘subject-verb-object’ structure: written
in passive voice with a modal verb ‘must’, our Entity Recognizer
identifies the child entity <activity> from the subject phrase, then
extracts the missing parent from context information in the section
title (i.e., <activity>). Subsequently, our Entity Recognizer would



extract a constraint that says ‘<activity>must be in <activity>’,
which is of course incorrect. As such, we need to filter out these
erroneously-extracted constraints, and have designed five rules as
shown in Table 1 to filter out the non-manifest constraints at three
levels: context, sentence, and word.

• Context Filter. The context filter uses the contextual relation-
ship between the parent and child entity to filter the non-related
constraints. There are three rules used by this filter: (R1) When
extracting constraints from broken phrases and sentences that
do not contain any manifest entities, our recognizer may treat
both the parent and child as missing and extract them from the
context. However, there may be sentences completely irrelevant
to manifest constraints where both parent and child entities are
mistakenly inferred from the context. Hence, we need to focus
on sentences containing at least one entity explicitly related to
manifest (not inferred from contexts). As such, the constraints
where both the parent and the child are extracted from contextual
information need to be filtered out. (R2)As we focus on manifest-
related constraints, it is natural that we force all identified parents
and children to be contained in the manifest dictionary. (R3) In
addition, we need to further ensure that extracted child is within
the valid children list of the extracted parents. For instance, if a
parent is action and a child is <intent-filter>, this is not a
valid manifest constraint because we know from manifest dictio-
nary that <intent-filter> cannot be a child of <action>.

• Sentence Filter. On top of contextual information, the sentence
structures also provide hint for improving the accuracy. Particu-
larly, in ruleR4, we use sentence structure to filter sentences with
noun (acl) or adverbial clauses (advcl) that voids occurrence
constraints in main clauses such as ‘must have’. For example, in
‘You should always declare this attribute if you want to configure
[...]’, although it seems to be a minimal constraint because this is
an imperative sentence with a phrase should always, the adver-
bial clause ‘if you want to configure’ have voided such minimal
requirement because it indicates that the attribute is mandatory
only when the developer wants a certain configuration to be
effective, whereas it is optional if developers do not want the
configuration. Thus, the attribute mentioned in such a sentence
is still optional in the manifest file.

• Word Filter. We also utilize words in sentences to reduce errors
in occurrence constraint extraction, both for minimal and maxi-
mal constraints. On one hand, model verbs that carry strong tone
like ‘must’ have to appear to clearly convey the minimal con-
straints (‘must have’ constraints). Therefore, we systematically
checked all the modal verbs, and found only must and should
conveys such strong tone, whereas other modal verbs can merely
convey suggestions or predictions, such as will and may. On the
other hand, numerical modifiers, when accompanied by model
verb, help identifying maximum constraints. For example, in
‘Only one instance of the <compatible-screens> element is allowed
in the manifest’, the manifest entity <compatible-screens> has
a numerical modifier one. Therefore, it specifies that the max-
imum of the element is 1. As such, the word filter filters out
non-manifest constraints with a set of modal verb keywords and
the numerical modifier dependency nummod (R5)

4.4 Schema Generator

With positional constraints and quantitative constraints extracted
and reformed into structured data, we then generate the XSD file for
validation. In particular, the positional constraints are transformed
by declaring each element with xs:element and then listing its
child elements in <xs:element> and attributes in <xs:attribute>,
respectively, e.g., in the declaration of <intent-filter> at line
1 in Figure 2, it contains references to child elements such as
<action> at line 4, and attributes such as android:autoVerify at
line 8 (which is declared at line 11). With the structure of elements
and attributes being constructed in XSD, quantitative constraints
are generated by setting minOccurs and maxOccurs for elements,
and required for attribute (no maxOccurs for attributes as they
are unique by nature). For example, the minimum occurrence of
<action> is 1, and therefore the minOccurs of <action> is set to 1.

4.5 Manifest Validator

With the generated XSD schema, our Manifest Validator validates
an app manifest file by detecting three types of misconfigurations:
missing, misplaced, and unexpected. Missing entities are identified
when the validator finds an element or attribute missing. Misplaced
and misspelled entities, however, are both reported as unexpected
keywords, so we need to compare the related element or attribute
name with the manifest dictionary. If the entity is a valid mani-
fest name, it is considered misplaced; otherwise, the entity name
is misspelled. However, although our validator can detect all the
unexpected attributes and elements, they are not always misspelled
by developers. For example, compilers may add attributes to pro-
vide information of the compiler, and there may be system-only
elements and attributes that do not appear in the documentations.
As such, to avoid false-positives of identifying these manifest en-
tities as “misspelled”, we only focus on the following three types
of misspelling errors:

• Prefix Errors. This error occurs when developers forget to add
or mistakenly add the android: prefix for an attribute (e.g.,
android:package v.s. package, and android:name v.s. name).
To identify this type of error, we remove the android: prefix of
the encountered attribute name and compare the attribute name
to attributes names in the manifest dictionary (R6).

• Capitalization Errors. A capitalization error occurs when the
name of an element or attribute is mistakenly capitalized (e.g.,
meta-data v.s. Meta-Data). To identify such errors, we match
the lowercase prefix-free strings of unexpected names to names
in the manifest dictionary (R7 and R8).

• Typos. To identify misspelled element or attribute names (e.g.
meta-data v.s. mata-data) we compute the Levenshtein edit dis-
tance between an unexpected name and names in the manifest
dictionary and check if it is below a certain threshold 𝛼 , indicat-
ing the twowords are highly similar (R9 andR10). This threshold
must be larger than 0, because no typos will be identified other-
wise. However, if this threshold is set too high, it may introduce
a large amount of false-positives (e.g., the distance between unex-
pected name tag and a validmanifest element name data is 3, and
hence if the distance is set too high, our tool will regard the tag as
a misspelled). To minimize possible false-positives, we set 𝛼 = 1
as default value for our tool, though it can be configured by users.



5 EVALUATION

We have implemented ManiScope in Python. For documentation
parsing, we used the lxml [14] and BeautifulSoup4 [9] libraries. To
extract grammatical structures from sentences, we used the NLTK
CoreNLP Parser 3.9.2 [26]. We evaluated ManiScope on 1.8 million
Android apps downloaded from Google Play between January 2020
and May 2020, and 0.6 million pre-installed apps collected from
4,580 Samsung firmware (released between September 2011 and
January 2020) from SamMobile [18]. We used axmlparserpy [16] to
decode the binary manifest file of each APK into plain-text XML.
Our experiments were carried out on a laptop running Ubuntu
18.04.1 with 8 GB RAM and an Intel Core i7-8500U CPU. In this
section, we first present our evaluation results of schema extraction
in §5.1. Then, we present our findings with regard to misconfig-
urations in §5.2. Lastly, we provide statistics on security-related
misconfigurations in §5.3.

5.1 Manifest Constraint Extraction

(I) Extraction Result. We first present how ManiScope performs
when provided with the Android documentation. Since it is a fully
automated system, it can parse all Android documentation includ-
ing the historical ones. As such, we tested ManiScope with 20
different Android documentation from Android developers website
from the most recent one (after 7.1.2) to the oldest available one,
namely Android 1.6, and this result is reported in Table 2. Note that
the source code of the historical documentation after 7.1.2 is no
longer published on public Google repositories, and we obtain the
most recent one by directly fetching the online HTML files.

In particular, as illustrated in the first row for themost recent doc-
umentation, ManiScope collected 26 documentation files related to
manifest declaration, and identified in total 348 sections containing
849 paragraphs. When printing them in a format preserved manner
(they are organized in a structure), we obtained 190 pages. Among
the paragraphs parsed, ManiScope found that 1,326 sentences are
written in normal voice and 256 are written in passive voice. Ad-
ditionally, there are 404 phrases that do not have nominal subjects,
either in normal voice or passive voice, which are identified as
simple phrases rather than complete sentences. Our Constraint Fil-
ter filtered over 90% of non-manifest related constraints through
context-filtering rules, and the word filter rules filtered out addi-
tional 1.3% of non-manifest constraints, and eventually it obtained
254 manifest constraints for 28 elements and 125 attributes.
(II) The Evolution of Manifest Documentations. Being able
to analyze the historical manifest documentation, we can draw
insights such as how they evolved. As such, we quantified such
evolution by presenting the difference between two adjacent ver-
sion of manifest documentations, as shown in Figure 7. First, we
observe that the total sentences of manifest constraints, although
added or removed, are constantly growing, where the growth rate
can range from 0% to over 50%. Second, we notice that during up-
dates, sentences may often be removed with new sentences added,
be those removal of deprecated elements or attributes or changes
made to descriptions. Interestingly, we also observe that fixing for
some typos that eventually caused confusion among developers

Table 2: Constraint Extraction Statistics of ManiScope. (vers.

= version, sect. = section, para. = paragraph, constr. = con-

straints, extra. = extracted)

Documentations Parsed Sentences Recognized Constraints Filtered Constr.

Vers. files pages sect. para. words phrase normal passive context clause word Extra.

7.1.2+ 26 190 348 849 28,765 404 1,326 256 2,379 139 34 254
7.1.2 26 158 308 687 25,585 361 1,135 235 2,104 126 21 219
7.1.1 26 158 308 687 25,585 361 1,135 235 2,104 126 21 219
7.0.0 26 157 305 672 25,292 358 1,115 232 2,078 125 21 216
6.0.1 26 148 302 665 25,294 361 1,119 233 2,094 122 22 217
6.0.0 26 148 302 665 25,294 361 1,119 233 2,094 122 22 217
5.1.1 26 148 301 656 25,025 362 1,108 227 2,076 123 21 216
5.1.0 26 148 301 656 25,025 362 1,108 227 2,076 123 21 216
5.0.0 26 146 298 643 24,592 352 1,094 224 2,058 122 20 213
4.4.4 26 143 292 612 22,846 340 1,006 210 1,900 120 19 200
4.4.3 26 143 292 612 22,846 340 1,006 210 1,900 120 19 200
4.4.2 26 143 292 612 22,846 340 1,006 210 1,900 120 19 200
4.1.2 26 138 286 589 22,009 321 971 208 1,834 115 14 194
4.1.1 26 138 285 585 21,867 317 963 207 1,821 115 14 193
4.0.4 26 128 283 598 23,235 348 1,019 218 1,933 122 15 191
2.3.7 24 109 262 514 19,552 288 881 186 1,651 109 12 178
2.3.6 24 109 262 514 19,552 288 881 186 1,651 109 12 178
2.2.3 24 95 262 507 19,459 284 888 192 1,632 110 12 179
2.1 24 92 257 487 18,331 269 838 180 1,548 105 12 174
1.6 24 89 256 482 17,756 264 804 176 1,501 102 12 172
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Figure 7: The evolution of manifest documentations

resulted in some of the misconfigurations, which will be introduced
in the correctness evaluation of documentation later.
(III) False Positives (FPs) and FalseNegatives (FNs)Analysis of

Extracted Constraints. The accuracy of the extracted constraints
directly determines the accuracy of our misconfiguration detection.
Therefore, we must first make sure there is no false positive or false
negative. If so, we must correct them. To validate the accuracy of
our constraint extraction, we chose the most recent documentation
and manually constructed the schema by going over all the docu-
mentations. In total, there are 190 pages with 849 paragraphs. To
generate the ground truth, we have two security researchers each
read the documentations, manually extracted the constraints, wrote
the manifest schemas; then the two researchers cross-validated
their results to converge. It took 20 days for both researchers to
read the documentation, pick out manifest-related documentations,
understand contexts, construct schema, and validate them.

Then, we compared the manually constructed ground-truth
schemas with the automatically generated ones. Among them, we
found no false positives but 3 false negatives in constraint genera-
tion out of 257 (1.17%) total schema constraints generated manually.
The reason is that the documentation of compatible-screen did



Table 3: Detailed overview of the identified misconfigurations with respect to the number of downloads for Google Play apps,

and different system version for pre-installed apps. Note that Cap. represents Capitalization error.

Google Play apps

Total installs

Misplaced element Missing element Misspelled element Misplaced attribute Missing attribute Misspelled attribute

# Apps # Misplaced # Apps # Missing # Apps # Cap. # Typo # Apps # Misplaced # Apps # Missing # Apps # Prefix # Cap. # Typo

1B+ 8 11 0 0 0 0 0 14 166 0 0 15 128 0 0
100M-1B 76 116 1 1 1 1 0 114 297 0 0 131 531 0 0

10M-100M 595 709 8 9 4 1 3 1,057 2,154 8 10 940 2,441 0 0
1M-10M 3,323 4,617 37 97 123 4 121 6,226 10,350 47 53 3,098 6,791 0 0
100k-1M 11,156 13,759 139 311 635 5 632 18,740 28,198 106 115 5,400 11,569 0 0
10k-100k 27,070 32,837 452 740 1,154 7 1,148 41,973 62,823 144 147 7,865 14,754 0 0
1k-10k 50,937 60,110 744 1,102 2,193 12 2,181 76,104 119,184 242 246 11,303 26,234 0 0
100-1k 65,252 72,285 854 1,124 1,553 4 1,558 107,344 154,858 339 343 15,992 55,119 0 0
0-10 69,482 76,645 422 516 251 5 246 127,018 173,644 562 565 16,904 47,486 1 4
total 227,899 261,089 2,657 3,900 5,914 39 5,889 378,590 551,674 1,448 1,479 61,648 165,053 1 4

Pre-installed apps

Firmware ver.

Misplaced element Missing element Misspelled element Misplaced attribute Missing attribute Misspelled attribute

# Apps # Misplaced # Apps # Missing # Apps # Cap. # Typo # Apps # Misplaced # Apps # Missing # Apps # Prefix # Cap. # Typo

9 0 0 701 769 0 0 0 785 2,311 0 0 1,471 4,169 0 0
8 3 3 7,360 38,153 9 9 0 9,349 43,049 0 0 15,719 45,033 0 0
7 82 82 16,626 98,104 0 0 0 15,914 61,749 0 0 5,500 13,562 0 0
6 634 634 49,056 795,310 0 0 0 14,882 62,440 0 0 0 0 0 0
5 87 87 58,844 771,054 0 0 0 18,510 71,356 0 0 2 2 0 0
4 8 8 18,973 27,013 0 0 0 20,411 58,930 0 0 22,154 1,158 21,549 0
3 0 0 72 72 0 0 0 131 335 0 0 12 30 0 0
2 0 0 153 153 0 0 0 386 670 0 0 3 3 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

total 814 814 151,785 1,730,628 9 9 0 80,368 300,840 0 0 44,861 63,957 21,549 0

not follow the documentation structure. In particular, it did not
specify its child elements in the ‘can contain’ section as other
documentations but in the ‘child elements’ section which is a
new section that does not exist in other documentations. As a
result, ManiScope failed to determine that (1) screen is a child of
compatible-screen, and (2) android:screenSize and android:
screenDensity is valid attribute in screen, resulting in 3 false
negatives. As this is due to the inconsistent structure of the docu-
mentation and easy to fix, we manually added these elements and
attributes to the generated schema of all versions, and then the
generated schema is used to perform the large scale analysis on
Android apps as presented next.

5.2 Manifest Misconfiguration Detection

(I) Detection Result. With the XML schemas reconstructed by
ManiScope, we then use them to detect the misconfigurations
in most recent apps in Google Play and preinstalled apps in his-
torical firmware, whose overall results are presented in Table 3.
Note that the subtotal of apps may not always be equal to the
subtotal of misconfigurations as a single app may contain multiple
misconfigurations. For Google Play apps, we identified 812,763 mis-
placed configurations, 5,379 missing configurations, and 165,093
misspelled configurations. For pre-installed apps, we found 301,654
misplaced configurations, 1,730,628 missing configurations, and
85,515 misspelled configurations. We found that manifest miscon-
figurations are quite prevalent in real-world apps where more than
30% of these apps have at least one misconfiguration.
Misplaced Configuration. Most of the misconfigurations among
manifest files are misplaced configurations, and ManiScope iden-
tified 261,089 misplaced elements and 551,674 misplaced attributes
among the 1.8 million Google Play apps, and 814 misplaced el-
ements and 300,840 misplaced attributes among the 0.6 million
pre-installed apps, as shown in Table 3. We also found that most of
the misplaced attributes were related to feature requirements (e.g.,

android:hardwareAcclerated, android:required), and most of
the misplaced elements were frequently used manifest elements
(e.g., <meta-data>, <category>), and elements used to configure
access permissions (e.g., <permission>, <uses-permission>). Ad-
ditionally, we observed misconfigurations in extremely popular
apps related to icons and themes (e.g., the YouTube app contained
a misplaced android:theme attribute), although they are likely to
be of no security concern.
Missing Configuration. For Google Play apps, missing config-
urations occur in both elements and attribute. For missing ele-
ments, all the 3,900 misconfigurations are related to <action> ele-
ment in <intent-filter> element. The missing attributes, on the
other hand, mainly involved in component name attributes (e.g.,
android:name) and compatibility attributes (e.g., android:minSdk
Version). One possible explanation is that the compiler already
examines some critical missing problems and aborts compilation
if these misconfigurations exist. However, missing configurations
are still concerning since they can result in unavailability of app
components and create compatibility issues. For example, if the
android:minSdkVersion attribute in the <uses-sdk> element is
missing, the system regards the app as compatible with all Android
versions, which can cause the app to crash.

For pre-installed apps, although ManiScope did not find any
missing attributes, we still identified a large amount of missing
<action> (1,673,727 of 1,730,628) and <application> (56,901 of
1,730,628). This could be explained by the difference between pre-
installed apps and Google Play apps. For instance, compared with
Google Play apps that rely on Intents to perform functionality, most
of the pre-installed apps do not need to specify actions for intent-
filter, and therefore many <action> elements are not present in
<intent-filter> element.
Misspelled Configuration. ManiScope detected a large num-
ber of misspelled elements and attributes. Among them, we found
that there are many more typos than capitalization errors (such as



Table 4: CVSS 3.1 scores of security-related misconfigurations. AV: Attack Vector, AC: Access Complexibility, C: Confidentiality

Impact, I: Integrity Impact, A: Availability Impact, G: Google play app, P: pre-installed app. #: None, G#: Low,  : High.

Type Category Name AV AC C I A Score
∗

Severity # G # P Sample Impact

Element Permission permission Local Low   # 7.7 High 2,722 0 Component hijacking
uses-permission Local Low # #  6.2 Medium 1,037 0 App crashing

Attribute

Compatibility minSdkVersion Local Low # G#  6.8 Medium 2,156 408 Data leakage
required Local Low # #  6.2 Medium 21,855 0 App crashing

Functionality

allowBackup Physical Low    6.8 Medium 7,432 25,999 Data leakage
enabled Local Low # # G# 4 Medium 1,114 2 Data leakage
excludeFromRecents Local High G# # # 2.9 Low 2,395 12,013 Replay attack
exported Local Low G# G# G# 5.9 Medium 2,120 1,734 Component hijacking
largeHeap Local Low # # G# 4 Medium 7,086 3,950 App crashing
multiprocess Local Low G# G# G# 5.9 Medium 15,511 0 App crashing
persistent Local Low # # G# 4 Medium 16,429 2,391 App crashing
priority Local High # # G# 2.9 Low 2,477 6,907 Component hijacking
taskAffinity Local Low G# G# G# 5.9 Medium 555 5,291 Component hijacking

Permission permission Local Low   # 7.7 High 10,348 36 Component hijacking
protectionLevel Local Low   # 7.7 High 6,839 6,787 Component hijacking

∗ : For all entries, Privileges Required (PR) is None, User Interaction (UI) is None, and Scope (S) is Unchanged. † : The total downloads of all apps in this category.

Service v.s. service) in misspelled elements. Also, most of the cap-
italization errors of elements (30 of 39) have the first character capi-
talized (e.g., Activity). All the 9 capitlization errors in pre-installed
apps are the first-character-caplitalization problem of <service>
(i.e., Service). For typos of elements, most are due to spelling errors
(e.g., mata-data v.s. meta-data, which accounts for 5,585 miscon-
figuration among the 6,446 misconfigurations). Another source
of typos comes from a missing hyphen (e.g., intentfilter v.s.
intent-filter), and incorrect usage of plural/singular form (e.g.,
support-screen v.s. support-screens). For pre-installed apps,
472 out of 486 misconfigurations are typo from intent-filter
to intent-flter, whereas the rest 14 are plural problems, i.e.,
permission spelled into permissions. For the top misspelled at-
tributes, we found that missing prefixes are most prevalent (e.g.,
exported v.s. android:exported).
(II) FP and FN Analysis of the Detected Misconfigurations.

To confirm whether there are any FPs and FNs in the identified
misconfigurations, we manually checked random samples of 500
misconfigurations identified by ManiScope from pre-installed and
Google Play apps, respectively. Among these 1,000 misconfigu-
rations, we identified zero FNs but 27 FPs (2.70%). For the false
positives, we found that the root cause is due to the typos in the
official documentations, which involve two attributes: (1) 5 out
of 27 FPs involve android:allowBackup, which was misspelled
into android:allowbackup from 4.4.2 to 4.4.4. As such, ManiS-
cope may only regard android:allowbackup as correct name for
a certain version. If a manifest file contains android:allowBackup
in application element, which is actually correct, ManiScope
identifies it as misspelled instead, resulting in a FP. (2) 22 out of 27
FPs involve resizeableActivity, where the android: prefix is
missing from the documentation. As such, ManiScope will identify
the correct attribute with prefix as misspelled, resulting in a FP.
Interestingly, although the typo of allowBackup is fixed after 4.4.4
(but still causing FPs when ManiScope analyzes apps for these
versions), the typo of resizeableActivity remained until our
responsible disclosure as in July 2021.

The reason why we have zero FN is two-fold. First, identifica-
tion of positional constraint will not yield FN because we have
enforced an allow-list mechanism to detect misplaced manifest en-
tities. As such, the positional constraint will be even stricter than

the documentation if we fail to extract any positional constraints.
As manifest files containing misplaced element will for sure be
inconsistent with the documentation, it will for sure be identified
as misplaced by ManiScope. Second, although the quantitative
constraint extraction which involves NLP may have FN if we fail to
extract some quantitative constraints (thus making the constraint
less strict than documentation), we have manually validated with
the documentations and found no such a problem.

5.3 Security-Related Misconfigurations

(I) Severity and impacts of the misconfiguration. To deter-
mine the security impact of these misconfigurations, we manu-
ally checked all of the elements and attributes associated with the
misconfigurations to understand their potential security impact.
Among them, we identified 2 elements and 13 attributes that could
have an impact on security. To rate the security severity of the
identified misconfigurations, we categorized them based on their
expected severity according to the CVSS (Common Vulnerability
Scoring System) 3.1 [10] scoring metric. This metric is widely used
in industry and academia to provide an assigned Common Vulner-
abilities and Exposures (CVE) with a severity score. A CVSS score
includes six metrics that can be scored with values of high, medium,
and low security impact: the attack vector (same network, adjacent
network, local, or physical access), access complexity (whether an
attacker can expect repeatable success or needs to create certain
conditions), confidentiality impact (whether all the exported com-
ponents are divulged to the attacker), integrity impact (whether the
attacker can manipulate the file and data freely), and availability
impact (whether it causes a denial of service, or heavy performance
losses). The CVSS scores for these 15 misconfigurations are pre-
sented in the Score-column of Table 4.

According to the CVSS system, among these 15 misconfigura-
tions that could cause security concerns, 3 of them have high sever-
ity, 10 have medium severity, and 2 have low severity. These miscon-
figurations can result in various security issues, including compo-
nent hijacking, data leakage, and app crashing. For instance, we can
see that apps with a misplaced android:permission attribute are
associated with most installs, which may cause purchasing replay
attacks. In addition, some misconfigurations (e.g., the data leakage
and component hijacking caused by the android:allowBackup



Table 5: Distributions of security-related misconfiguration in Google Play and Preinstalled apps.
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ART & DESIGN 21,303 1,076 6 2 4 52 18 2 19 7 73 146 876 6 0 13 11
AUTO & VEHICLES 11,971 419 9 5 2 129 13 5 15 11 27 82 103 19 0 63 31

BEAUTY 10,259 353 19 0 19 204 4 0 2 1 15 71 70 6 1 5 13
BOOKS & REFERENCE 98,634 2,216 67 28 99 925 29 15 13 32 415 365 377 23 2 268 272

BUSINESS 104,354 5,667 51 33 96 2,585 114 128 67 237 473 181 367 99 15 167 1,431
COMICS 2,758 120 0 2 10 11 48 0 0 1 1 18 18 1 0 19 2

COMMUNICATION 36,602 2,310 39 17 27 446 28 40 101 69 105 1,071 1,057 103 53 68 154
DATING 3,405 294 3 7 4 28 7 1 1 2 4 210 217 10 0 1 6

EDUCATION 161,908 5,626 183 47 333 1,713 243 402 29 476 547 917 964 82 1 516 618
ENTERTAINMENT 139,840 5,254 408 38 66 1,347 288 42 58 104 439 1,564 1,422 129 17 390 312

EVENTS 9,544 751 1 5 6 367 22 17 2 10 25 31 32 5 0 1 273
FINANCE 43,315 2,856 49 16 49 1,222 64 22 22 107 590 141 155 62 3 41 776

FOOD & DRINK 40,630 958 34 5 25 376 78 17 12 28 45 131 150 32 1 102 68
GAME 296,079 16,706 74 602 404 866 5,370 102 91 84 406 1,224 1,204 426 362 6,580 167

HEALTH & FITNESS 57,481 1,671 26 8 53 607 90 23 25 46 143 303 339 117 1 110 149
HOUSE & HOME 9,246 326 4 1 3 146 4 2 2 14 29 37 55 17 0 15 40

LIBRARIES & DEMO 4,866 119 2 1 7 42 5 3 2 6 25 7 20 2 0 3 2
LIFESTYLE 113,470 4,737 74 16 57 2,403 170 27 50 89 668 387 514 111 2 285 273

MAPS & NAVIGATION 19,082 819 5 4 12 385 12 3 20 36 41 43 102 27 3 20 214
MEDICAL 20,998 802 7 45 33 328 17 9 10 22 65 22 32 28 1 85 146

MUSIC & AUDIO 130,235 5,064 1,292 13 21 422 285 28 20 55 83 2,420 2,473 150 6 103 78
NEWS & MAGAZINES 40,664 2,387 65 7 24 319 13 14 351 70 203 593 632 31 1 657 50

PARENTING 2,531 114 3 1 7 47 5 3 2 6 8 10 19 13 0 4 8
PERSONALIZATION 91,609 5,060 7 2 15 170 45 17 585 54 171 2,703 1,665 192 22 243 51

PHOTOGRAPHY 51,093 2,535 5 6 9 330 20 7 18 17 1,425 657 730 41 1 40 71
PRODUCTIVITY 53,150 2,251 43 17 71 1,051 77 43 52 93 224 97 161 101 22 88 317

SHOPPING 38,943 1,904 15 10 504 670 48 14 16 58 111 172 219 43 1 26 201
SOCIAL 33,288 1,886 56 43 24 608 41 21 13 48 198 581 646 69 4 24 100
SPORTS 30,937 1,237 30 9 18 356 46 12 40 74 42 338 374 41 2 128 84
TOOLS 103,933 4,561 108 30 116 1,914 155 73 269 191 197 544 701 397 32 122 390
TRAVEL 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TRAVEL & LOCAL 53,138 3,124 20 13 26 1,651 58 14 389 42 239 113 355 46 1 105 466
VIDEO PLAYERS 12,873 577 11 2 7 77 7 5 20 24 42 193 248 37 1 46 58

WEATHER 5,718 337 6 2 5 58 8 3 79 6 7 139 132 11 0 10 7
Total 1,853,862 84,117 2,722 1,037 2,156 21,855 7,432 1,114 2,395 2,120 7,086 15,511 16,429 2,477 555 10,348 6,839

# Pre-installed apps

Android Version # Firm. # Apps # Misconf. Element Attribute

9 41 10,559 390 0 0 6 0 32 0 112 67 0 0 2 103 97 0 37
8 331 69,515 4,129 0 0 92 0 366 0 1,734 296 391 0 33 689 1,023 1 501
7 523 133,643 7,313 0 0 253 0 707 0 2,182 358 1,025 0 58 1,118 711 0 1,428
6 607 132,537 7,071 0 0 57 0 960 0 1,906 140 1,071 0 125 1,072 1,019 1 1,616
5 1052 177,512 8,580 0 0 0 0 546 0 2,497 265 773 0 843 1,137 1,636 1 2,179
4 1974 163,933 31,420 0 0 0 0 23,388 2 3,527 608 643 0 1,330 2,742 802 33 1,026
3 10 1,201 54 0 0 0 0 0 0 0 0 42 0 0 10 2 0 0
2 42 3,206 96 0 0 0 0 0 0 55 0 5 0 0 36 1 0 0

Total 4,580 692,106 59,053 0 0 408 0 25,999 2 12,013 1,734 3,950 0 2,391 6,907 5,291 36 6,787
Total Downloads: 0–1K: 1K–1M: 1M–1B: 1B+:

and android:exported attributes) may also affect both thousands
of Google Play apps and pre-installed apps. However, compared to
Google Play apps, the pre-installed apps make less mistakes, and
these pre-installed apps contain significantly less misconfigurations
in elements and several attributes (e.g., permission). This might be
explained by the limited but essential functionalities of pre-installed
apps that make developers avoid using some manifest entities.
(II) Affected apps with security-related misconfiguration.

To further understand the effects of these misconfigurations, we
grouped the Google Play apps based on their categories and the
pre-installed apps on the firmware versions, as shown in Table 5,
where the cell color denotes the scale of total install numbers of
affected apps. We notice that most of the misconfigured apps are in
the game category, which may be explained by additional system
resources required by games to avoid decreased performance or
process termination. For pre-installed apps, the misconfigured apps

also grow as total amount of apps grow: most of the pre-installed
apps are in version 4 to 8, and the problem still exists in recent
devices after version 7.

6 SECURITY CASE STUDIES

6.1 Component Hijacking

There are several attributes in the manifest file to protect a compo-
nent from unauthorized access (i.e., component hijacking). However,
with misconfigurations of those attributes, the component would
have been exposed to attackers. Through a victim’s component, a
malicious app can perform illicit actions such as component hijack-
ing, assume there is a malicious app in the victim’s phone and this
app will attack the app with misconfigured attributes.
Misplaced android:permission attribute. This attribute speci-
fies the permissions required by other apps for component com-
munication, in order to defend against unauthorized access from



Table 6: Top five categories of apps affected by security-

related misconfigurations of different types.

Table A.
Permission

App category # App

Pa
ym

en
t Game 6,406

News 621
Education 488
Books 255
Personalization 237

Cl
ou

d
M
sg

Lifestyle 104
Sports 61
Entertainment 55
Tools 55
Books 47

SM
S
M
sg

Tools 11
Productivity 10
Communication 6
Social 3
Lifestyle 1

Table B.
Allow Backup

App category # App

Game 5,368
Entertainment 288
Music 285
Education 238
Lifestyle 168
Tools 155
Business 99
Health 86
Food 78
Productivity 72
Travel 56
Finance 53
Comics 48
Sports 46
Shopping 45

Table C.
Protected Broadcast
App category # App

M
ed
ia

Photography 2,317
Entertainment 299
Video 227
Tools 212
Music 171

H
ea
ds
et

Finance 12
Communication 3
Productivity 2
Auto 2
Personalization 1

US
B

Personalization 3
Communication 2
Photography 2
Books 1
Lifestyle 1

Total downloads: 0–1K: 1K–1M: 1M–1B: 1B+:

apps that do not have these permissions. Misplaced permissions
will allowing arbitrary apps to interact with them, thereby making
the apps vulnerable to component hijacking attacks. As presented
in Table 6(A), among the 10,348 apps that contained misplaced
permission attributes, 9,627 of them were related to payment as
shown in Figure 1, and all of these affected payment components
are associated with the Amazon Appstore with the majority of these
apps being games (6,561/9,627). We were surprised to find that this
flaw primarily stemmed from an incorrect code snippet provided
by Amazon official support team [15] for the Amazon in-app pur-
chasing SDK. Technically, this permission is used to protect the app
from fraudulent attempts to replay transactions. Ironically, such
protection is voided by the erroneous code snippet, leaving thou-
sands of apps vulnerable to fraudulent attacks: with the permission
enforcement ineffective, apps can be exploited by purchasing an
in-app item and capturing the transaction receipt sent from Ama-
zon Appstore to the app, then replaying that same receipt to the
corresponding receiver at will to repurchase more units without
paying. This vulnerability impacted very popular apps, some of
which with more than 100 million installs. We responsibly disclosed
this vulnerability to impacted app developers and Amazon, and it
has been confirmed right after our disclosure.

6.2 Data Leakage

On Android, private app data can be copied out of a device using
the adb backup command if an app has its android:allowBackup
attribute set to true. In this case study, we present a data leakage
caused by a misplaced android:allowBackup attribute.
Misplaced android:allowBackup attribute.This attribute should
be set in the <application> element to specify whether or not the
app allows its data to be backed up and restored. When developers
set this attribute to false, their intentions are likely to keep sensi-
tive user data protected by preventing this data from being extracted
from the device. However, if developers configure it to be false and
misplace it, it will lead to data leakage attacks (i.e., perform backup
through adb) since the default value of this attribute is true. In
total, we have identified 7,432 Google Play apps that have such mis-
configuration, as shown in Table 6(B). A concrete example we have

investigated is a game named superOscar (with over 10 million
downloads) where the android:allowBackup="false" is placed
inside the <manifest> element, allowing attackers with physical
access to obtain the login credentials through the backup process.

6.3 Channel Hijacking

Interestingly, on top of the misconfigurations of manifest elements
or attributes that are in the documentation, we also detected a wide
usage of elements and attributes that are not on the documentation,
appearing as unexpected elements/attributes but not identified as
typos. This is caused by a set of undocumented manifest entities for
applications from Android or OEM producers carrying system sig-
nature only, which are designed for testing or privilege-protected
configuration. Unfortunately, there are still third-party developers
that attempt to use these elements or attributes for configuration,
which will eventually be ignored by Android. For instance, among
the undocumented elements, we found a particular element called
protected-broadcast which appeared in 4,098 apps in total. Due
to space limits, we only present the top five categories of each
types of componentss as presented in Table 6(C), which contains
3,261 apps in total. This element is only usable by pre-installed
privileged system apps and the Android framework, allowing them
to restrict certain broadcast actions to be sent only by the system.
When this element is configured in third-party apps, the Android
PackageParser will silently ignore the element and no protection
will be granted. This can create a severe vulnerability since any app
on the device can send these messages and the receiving app will
treat them as though they have been sent by the system.

7 DISCUSSION

7.1 The Root Causes

There are multiple reasons why misconfigurations exist in the man-
ifest of real-world Android apps. One plausible cause of misconfig-
urations is developer’s carelessness, which is similar to the causes
of many other security vulnerabilities. Ideally, instead of allowing
developers to manually configure the manifests, additional tools
should be provided to automate these configurations to reduce
potential errors. Second, as evidenced in §5, the official documenta-
tion pages provided by Google can contain mistakes (e.g., typos, or
missing attributes). These errors can cause confusion to developers,
and lead to misconfigurations in the manifest files. Finally, similar
to many other bugs, code reuse is another root cause. For instance,
the Amazon app defrauding case caused by the manifest misconfig-
uration of the component exposed 9,474 apps to defrauding due to
a single misplaced attribute, and we believe this is because develop-
ers likely copied the same code from the official guide on Amazon
website when integrating the amazon in-app purchasing service.

7.2 Mitigation

Explicit warnings during validation. The Android operating
system currently only triggers error logs on essential problems in
app manifest files, and these error logs cannot be easily viewed by
the users. Android system could proactively display the warnings to
developers and end-users, to help them identify and fix any issues.



Correct and clear documentations. IDE and SDK providers such
as Google and Amazon, should provide clear documentation to fa-
cilitate developer comprehension for manifest configuration. They
also need to ensure that the code snippets provided in their docu-
mentation and online resources are correct. Otherwise, defects in
the manifest snippets could be propagated to a large number of apps.
In addition, they should provide systematic, rigorous validation
tools for developers to proactively detect and fix misconfigurations.
Ensuring manifest file correctness. For app developers, they
have to ensure that they understand the configurations correctly,
and then leverage automated tools to reduce errors. Meanwhile,
they have to be careful copying snippets online as they may contain
mistakes that eventually impair the security of their applications.

7.3 Limitations and Future Work

Covering undocumented elements and attributes. Although
ManiScope identified all the manifest elements and attributes de-
fined in the official documentation, there may be other elements
and attributes defined elsewhere. For instance, developers might
define their own attributes and elements. Also, there might be some
attributes and elements exclusively for pre-installed apps. Future
work could automate the element and attribute extraction from
other sources in addition to the official documentation.
Providing more comprehensive case studies. In this paper, we
only discussed security-related cases from three categories of mis-
confgiurations. An immediate future work could be performing
more comprehensive case studies to measure and identify the po-
tential attacks to raise the attention from community and fix the
problems to prevent from exploitation.

7.4 Responsible Disclosure

We have disclosed our findings to Amazon about the issues in
apps that use its in-app purchasing SDK, and the incorrect snip-
pets in its documentation and online forum. We have also dis-
closed all issues involving android:allowBackup attribute and
<protected-broadcast> element to developers of impacted apps.
Our disclosure of themisconfigurations have been confirmed by var-
ious developers, and we were informed that they have fixed or will
fix the issue in the future. We had also informed Google about typos
in documentations, and the issue was then fixed on July 13th, 2021.

8 RELATEDWORK

Extracting information of interest using NLP techniques. As
a powerful technique, NLP has been widely used to extract infor-
mation of interest from free-form texts. For example, to extract
constraints from technical documents, Kof et al. and Sadoun et
al. [36, 42] combined lexical, syntactical, and semantic analysis. Ko-
rner et al. [37] integrated part-of-speech tagger, statistic parser, and
named entity recognizer to extract the information after splitting
the text into chunks, and then validated them with common sense.
NLP has also been used to solve various security issues, such as de-
tecting policy declaration and contradictions (e.g., [22]), bug finding
(e.g., [27]), and cybercrime (e.g., [29, 38, 39, 41, 46]). All of these ef-
forts also need to solve the ambiguity problem. Various approaches
have been proposed, by adopting data mining [44], developing deep

learning models [32], or using crowd-sourcing approaches to man-
ually identify ontologies [43, 47]. We enrich the state-of-the-art
with NLP techniques to extract XSD from documentations.
Android security analysis. Numerous prior efforts on Android
security have mainly focused on investigating and identifying secu-
rity threats in Android apps including requesting excessive permis-
sions, component hijacking, and insecure driver implementations.
For instance, for analyzing permission issues in Android systems,
PSCout [23] adopted code analysis to trace the path of API calls and
permission checks, produced a specification of API permission re-
quirements, while Backes et al. [24] performed analysis of Android
permission model across different Android versions. Approaches to
derive precise protection by converting CFG [24] to Access-control
flow graph determining necessary protections have also been pro-
posed [24]. Additionally, there have been efforts that looked into
insecure components and driver implementations [30, 31, 34, 40, 50–
52]. Compared to these efforts, we systematically investigate novel
security issues caused by manifest misconfigurations.
Detecting misconfigurations. On detecting misconfigurations
of Android manifest files, Jha et al [33] identified configuration
errors in about 13, 000 Android apps using manually constructed
constraints. The study, however, relies on predefined rules gathered
by manually reading the documentations, and therefore cannot be
adopted to generate schema for various versions of documentations
for pre-installed app validation. Additionally, the manual approach
did not provide a comprehensive coverage of manifest configu-
rations, quantitative constraints, nor potential security issues. To
identify potential policy misconfigurations in access control sys-
tems, Bauer et al. [25] applied association rule mining on previously
observed accesses to extract statistical patterns (i.e., rules), and then
used the rules to detect misconfigurations. Das et al. [28] proposed
to detect inconsistencies of access control updates by correlating
access control between group memberships and using statistical
techniques to find differences between users. Yuan et al. [49] dis-
covered user-defined policy violations and inconsistencies among
firewall rules. There are a number of other blackbox [35, 53, 54]
and whitebox [48] approaches to detect misconfigurations. To the
best of our knowledge, none of the existing efforts have been used
to analyze misconfigurations in Android app manifests.

9 CONCLUSION

We have presented ManiScope, a tool to automatically construct
Android app manifest schema from the official documentation and
detect misconfigurations in app manifest files. ManiScope employs
novel domain-aware NLP parsing and pruning techniques that allow
it to accurately capture positional and quantitative constraints on
manifest elements and attributes. We have tested ManiScope with
1,853,862 Google Play apps and 692,106 preinstalled apps, with
which ManiScope identified 609,428 misconfigured Google Play
apps and 246,658 misconfigured preinstalled apps, respectively. We
provided an in-depth analysis and measurement of the security
threats posed by these misconfigurations, together with case studies
to show their potential impacts.
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