
Uncovering and Exploiting Hidden APIs in Mobile Super Apps

Chao Wang
The Ohio State University

Yue Zhang∗
The Ohio State University

Zhiqiang Lin
The Ohio State University

ABSTRACT

Mobile applications, particularly those from social media platforms
such as WeChat and TikTok, are evolving into “super apps” that
offer a wide range of services such as instant messaging and media
sharing, e-commerce, e-learning, and e-government. These super
apps often provide APIs for developers to create “miniapps” that
run within the super app. These APIs should have been thoroughly
scrutinized for security. Unfortunately, we find that many of them
are undocumented and unsecured, potentially allowing miniapps
to bypass restrictions and gain higher privileged access. To sys-
tematically identify these hidden APIs before they are exploited
by attackers, we have developed a tool APIScope with both static
analysis and dynamic analysis, where static analysis is used to
recognize hidden undocumented APIs, and dynamic analysis is
used to confirm whether the identified APIs can be invoked by
an unprivileged 3rd-party miniapps. We have applied APIScope
to five popular super apps (i.e., WeChat, WeCom, Baidu, QQ, and
Tiktok) and found that all of them contain hidden APIs, many of
which can be exploited due to missing security checks. We have
also quantified the hidden APIs that may have security implica-
tions by verifying if they have access to resources protected by
Android permissions. Furthermore, we demonstrate the potential
security hazards by presenting various attack scenarios, including
unauthorized access to any web pages, downloading and installing
malicious software, and stealing sensitive information. We have
reported our findings to the relevant vendors, some of whom have
patched the vulnerabilities and rewarded us with bug bounties.

CCS CONCEPTS

• Security and privacy → Web application security; Mobile

and wireless security.

KEYWORDS

Hidden APIs, Superapp Security, Miniapp Security

ACM Reference Format:

Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. Uncovering and Exploiting
Hidden APIs in Mobile Super Apps. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’23), November

∗This author is now with Drexel University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3616676

26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3576915.3616676

1 INTRODUCTION

Over the past a few years, we have witnessed a rapid growth of
the miniapp paradigm [29], in which a mobile super app (e.g.,
WeChat [6] and TikTok [5]) provides a seamless runtime environ-
ment for a miniapp, a web-app alike small application, for enhanced
user experience (e.g., install-less) and stickiness with the super app
(e.g., a user can access almost all the daily services without leaving
it). Today, more than 4.3 million miniapps [7] have been developed
inWeChat (a super app with 1.2 billion monthly active users [1]),
surpassing the total number of Android apps in Google Play (which
has about 2.7 million as of November 2022 [2]). These miniapps of-
fer a variety of daily services from transportation (e.g., ride hailing),
e-commerce (e.g., online shopping), e-learning, e-government (e.g.,
pandemic control and contact tracing), mobile gaming, to entertain-
ment (e.g., short-form user videos), and so on. They are developed
by both the 1st-party (i.e., the one who makes the super app plat-
form), as well as the 3rd-party (i.e., developers who create additional
software based on the platform provided by the 1st-party).

Obviously, since both the 1st-part and the 3rd-party miniapps
are all built on top of the APIs provided by the super app platform,
they would have used the same set of the APIs. However, by per-
forming a manual analysis, we discovered discrepancies in the APIs
used by these miniapps. For instance, privileged APIs like openUrl
are present in the 1st-party miniapps like Tencent Doc [4], which
has more than 200 million online consumers. openUrl can open
arbitrary URLs, but the 3rd-party miniapps cannot use openUrl and
must use the wx.request API to ensure that the URLs are checked
by WeChat to prevent the loading of malicious content. Moreover,
not all APIs are equally mentioned in the official documentation.
The Chinese version of the development documentation comprises
975 APIs [8], while the English version has only 570 APIs [9]. Ad-
ditionally, none of the privileged APIs, such as openUrl are ever
referenced in the official documentation, regardless of the language.
Thus, there may be undocumented APIs in the super app platforms
(at least in WeChat). Such undocumented APIs may pose security
risks. For example, they may have a higher level of privilege, as they
are designed exclusively for use by the 1st-party apps. In order to en-
sure security, super apps should implement proper access controls
for these privileged APIs, such as allowing access solely through
an approved list for the 1st-party miniapps. Otherwise, they may
be a weak spot for unauthorized access by the 3rd-party miniapps.

Although our manual analysis with the host app and its 1st-party
miniapp implementation has yielded surprising findings, it is cer-
tainly not scalable nor complete. Meanwhile, given the fact that so
many super apps are available today, it will be extremely helpful if
we can have a tool to identify all of the hidden APIs if that is possi-
ble from their implementations. Also, since privileged APIs without

2471

https://doi.org/10.1145/3576915.3616676
https://doi.org/10.1145/3576915.3616676
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3616676&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chao Wang, Yue Zhang, and Zhiqiang Lin

any checks can be easily exploited by malicious miniapps, we must
inform the super app vendors to patch the missing or misplaced
checks. Motivated by these pressing needs, in this paper, we present
APIScope, a binary analysis tool combined with both static and
dynamic analysis to systematically scrutinize hidden APIs, which
are undocumented, from super app implementations.

Multiple challenges must be addressed while developing APIS-
cope. Particularly, several programming languages have been used
to implement a super app at various layers (e.g., JavaScript at the
miniapp layer, C/C++ at the JavaScript runtime layer, and Java at
the service abstraction layer provided by the host app), and conse-
quently it is challenging to recognize how APIs across these differ-
ent languages and interfaces are invoked. Second, after identifying
an undocumented API, it is also challenging to classify whether it
is an API that can be invoked by third-party miniapps. Fortunately,
we have addressed these challenges and successfully implemented
APIScope. There are two key components inside APIScope: Static
API Recognition and Dynamic API Classification. At a high level, it
takes a super app binary as well as its list of public APIs as input,
and identifies the hidden APIs based on the invariants of the func-
tions and interfaces from the public APIs in the super apps using
Static API Recognition. Next, it dynamically executes the identified
APIs to confirm whether they are true APIs, and further classi-
fies them into checked and unchecked ones based on whether it
can only be invoked by the 1st-party miniapps using Dynamic API
Classification.

We have tested APIScope with five popular super apps:WeChat,
WeCom, Baidu, QQ, and TikTok. Our evaluation results show that
all the tested super apps contained hidden APIs. Interestingly, our
study found hidden APIs in different categories, with some super
apps having more hidden APIs than documented ones. For exam-
ple, the API category of Payment of WeChat contains 28 hidden
APIs, which is significantly more than its documented ones (i.e.,
only one). We also measure the usage of hidden APIs in both 1st
party miniapps and 3rd party miniapps. We found that the use of
undocumented APIs is common among both the 1st-party miniapps
and the 3rd-party miniapps regardless of their category.

It is evident that not all hidden APIs may pose security risks
whenmisused. Therefore, our objective was to dive into the security
implications of hidden APIs. Specifically, we focused on the hidden
APIs that lack security checks but can access sensitive Android OS
resources. To achieve this, we proposed the use of dynamic analysis
techniques. Our dynamic analysis approach involves identifying
APIs that call native APIs, which can access sensitive resources. We
achieved this by hooking APIs that access sensitive resources and
monitoring their use by unchecked and undocumented APIs. After
conducting our investigation, we found that WeChat has 39 hidden
unchecked APIs (7.77%) that invoke Android APIs protected by
permissions. Similarly, WeCom has 40 (6.75%), Baidu has 8 (7.61%),
Tiktok has 32 (26.23%), and QQ has 38 (12.88%) such APIs, which
can have security risks.

To further validate our findings, we conducted several attack
case studies by developing a number of malicious miniapp using
these hidden APIs. Specifically, in WeChat, we developed a ma-
licious mini-app to exploit the hidden private_openUrl API to
access arbitrary malicious content without detection by the super

User Data
Services

Service
Abstraction

Layer
Bluetooth
Services

Network
Services

Customized
V8 Layer V8 Interfaces

JavaScript
Framework

Layer
JavaScript APIs

Application
Layer

MiniApps

...

Host App

JavaScript
Implementation

JavaScript
Implementation

C/C++
Implementation

Java
Implementation

Java & C/C++
ImplementationAndroid OSOS Layer

Host App Layer
Java & C/C++

Implementation

Figure 1: Architecture of Super App Runtime in Android

apps. Additionally, by using the installDownloadTask hidden API,
we developed a mini-app that can download and install harmful
Android apps surreptitiously. Malicious apps have the capability to
pilfer a user’s sensitive information. Our demonstration reveals the
utilization of hidden APIs such as captureScreen, which enables
malicious miniapps to steal screenshots, getLocalPhoneNumber,
which permits theft of the user’s phone number, and searchCon-
tacts, which facilitates the theft of the user’s contact information.

Contributions. We make the following contributions:
• We are the first to discover that super apps may provide hidden,
i.e., undocumented, APIs (for the 1st-party miniapps), and those
hidden APIs that do not have permission checks can be exploited
by the 3rd-party miniapps for privileged accesses.

• We propose APIScope to systematically identify and classify the
hiddenAPIs in super apps, with two novel techniques to statically
recognize the APIs and dynamically execute and classify them.

• We implement APIScope, and evaluate it with 5 super apps and
find all of them containing hidden APIs, some of which can be
exploited by malicious 3rd-party miniapps. We have made the re-
sponsible disclosure to their vendors, and received bug bounties
from some of them.

2 BACKGROUND

Miniapps are programs that run on top of host apps instead of
directly on the operating system. Host apps have to function like
an operating system and provide resources (e.g., location, phone
numbers, addresses, and social network information) to miniapps
through APIs. Mobile super apps are organized in a layered architec-
ture, with each layer focusing on different aspects like portability,
security, and convenience, but working together to support miniapp
execution within host apps, as shown in Figure 1:
• Mini-Application Layer, which is the top layer of a super-app
runtime. All miniapps, including the 1st-party and 3rd-party
miniapps, are located in this layer. To prevent one miniapp from
accessing resources of other miniapps, the host app creates an
isolated process for each miniapp. If privileged access is given
to the 1st-party miniapps, it must be controlled and checked
to prevent the 3rd-party miniapps from using them. Typically,
miniapps are implemented using JavaScript [29].

2472

Uncovering and Exploiting Hidden APIs in Mobile Super Apps CCS ’23, November 26–30, 2023, Copenhagen, Denmark

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer
Miniapp

❶ Invoking

JavaScript API

❸ Passing

Invocation Request

Host App

❹ Binder IPC

❺ Returning Results
❻ Returning Results

❼ Returning Results

❽ Returning Results

❷ Passing Invocation

Request

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer

Malicious

Miniapp
Host App

openUrl

openUrl

openUrl

private_openUrl

private_openUrl

private_openUrl

getLocation

getLocation
getLocation

private_openUrl

getLocation

1// Implementation of Docuemented API getLocation

2 package com.tencent.mm.plugin.appbrand.jsapi.m;

3 public class x extends a {

4 public static final int CTRL_INDEX = 17;

5 public static final String NAME = "getLocation";

6

7 @Override

8 public final void b(IAppBrandComponent env, JSONObject data,int cId){

9 // some other logic

10 env.doCallback(cId, env.Map2JSON(result));

11 }

12 }

13

14 // Implementation of Undocumented API openUrl

15 package com.tencent.mm.plugin.appbrand.jsapi.n;

16 public class y extends a {

17 public static final int CTRL_INDEX = 201;

18 public static final String NAME = "openUrl";

19

20 @Override

21 public final void b(IAppBrandComponent env,JSONObject data, int cId){

22 // some other logic

23 env.doCallback(cId, env.Map2JSON(result));

24 }

25 }

26

27 // Implementation of Undocumented API private_openUrl

28 package com.tencent.mm.plugin.appbrand.jsapi.n;

29 public class z extends a {

30 public static final int CTRL_INDEX = 406;

31 public static final String NAME = "private_openUrl";

32

33 @Override

34 public final void b(IAppBrandComponent env,JSONObject data, int cId){

35 // some other logic

36 env.doCallback(cId,env.Map2JSON(result));

37 }

38 }

1 // Docuemented API Implementation of Baidu

2 package com.baidu.swan.apps.scheme.actions.f;

3 public class a extends aa {

4 public a (e context) {

5 super(context, "/swanAPI/getLocation");

6 }

7

8 @Override

9 public boolean a (Context c, Scheme s, CallbackHandler cb, SwanApp a){

10 // some other logic

11 }

12 }

13

14 // Unocuemented API Implementation of Baidu

15 package com.baidu.swan.apps.impl.account.a;

16 public class f extends aa {

17 public f (e context) {

18 super(context, "/swanAPI/getBDUSS");

19 }

20

21 @Override

22 public boolean a (Context c, Scheme s, CallbackHandler cb, SwanApp a){

23 // some other logic

24 }

25 }

1 WeixinJSBridge = function(global) {

2 var NativeGlobal = global.NativeGlobal;

3 var globalCount = 0;

4

5 function invokeMethod(apiName, params, callbackHandler) {

6 params = WeixinNativeBuffer.pack(params);

7 var filteredParams = paramFilter(params || {}),

8 callbackId = ++globalCount;

9 callbackQueue[callbackId] = callbackHandler,

10 a(apiName, params, callbackId) {

11 callbackId = NativeGlobal.invokeHandler(apiName, params,

12 callbackId);

13 invokeCallbackHandler(callbackId, callbackHandler)

14 }(apiName, filteredParams, callbackId)

15 }

16 return this;

17 }(global);

wx.getLocation('wgs84')

 Object(WeixinJSBridge.invokeMethod)("getLocation", 'wgs84', Callback{})

function a("getLocation", 'wgs84', callbackId)

 NativeGlobal.invokeHandler("getLocation", 'wgs84',callbackId)

1 wx.getLocation = function (arg) {

2 var params = 0 < arguments.length && void 0 !== arg ? arg : {};

3 Object(WeixinJSBridge.invokeMethod)("getLocation", params, {

4 beforeSuccess: function(e) {

5 // Code Omitted //

6 }

7 })

8 }

Figure 2: APIs implementations of WeChat.

• JavaScript Framework Layer provides APIs for resource ac-
cesses and management, which are consumed by miniapps in the
Application Layer. These APIs allowminiapps to access resources
(such as location-based services) and manage UI elements (such
as opening a new UI window). The JavaScript Framework Layer
is also implemented using JavaScript.

• CustomizedV8 Layer, which provides support for native C/C++
libraries such as WebGL to power the execution of miniapps. It
also acts as a bridge between the JavaScript Framework layer and
lower-layers. Whenminiapps call APIs such as wx.getLocation,
the Framework layer sends the API name and parameters to the
Customized V8 layer, which then passes the request to the un-
derlying layers. This layer is usually implemented using C/C++.

• Service Abstraction Layer, which provides an interface to ac-
cess services from either the super apps (e.g., user account infor-
mation) or the underlying OS (e.g., Bluetooth, location-based ser-
vices). In the case of the wx.getLocationAPI, this layer commu-
nicates with the host app using IPC to invoke the Java API get-
SystemService(LOCATION_SERVICE) to retrieve the current lo-
cation. This layer is implemented using a combination of Java
and C/C++ code for the Android platform.

3 MOTIVATION AND PROBLEM STATEMENT

3.1 Key Observations

As alluded earlier, when manually inspecting the implementation
of some of the 1st-party miniapps offered by WeChat, we found
that other than the public APIs that all the miniapps can access
without restrictions, the 1st-party miniapp Tencent Doc actually
uses some undocumented APIs (e.g., openUrl for opening arbitrary
URLs). Moreover, the designers of WeChat do not make the APIs

available to be public (their documentation does not even mention
openUrl), and have placed security checks to prevent openUrl from
being accessed by arbitrary miniapps. For example, whenever a
3rd-party miniapp attempts to invoke openUrl,WeChat will throw
an insufficient permission exception (i.e., “fail: no permission”)
and terminate its execution. The use of openUrl in the 1st-party
Tencent Doc miniapp prompted us to investigate the possibility
of other hidden APIs offered byWeChat without proper security
checks. This inspired us to explore the feasibility of identifying and
exploiting these APIs, but we faced two challenges: (i) identifying
the hidden APIs and (ii) properly invoking them to test for poten-
tial vulnerabilities. Through further exploration, we made two key
observations to address these challenges.

Observation-I: Undocumented API Recognition. By manually
inspecting the implementation of WeChat, we found that multi-
ple suspicious undocumented functions are co-located with their
documented APIs. That is, those functions and the public APIs are
located in the same super app packages, and their implementations
look similar to that of the documented APIs (e.g., they have similar
function signature, similar parameter type and return value type).
We start by inferring whether those functions are indeed undoc-
umented APIs, since intuitively the public APIs and undocumented
APIs are APIs, and the developers would have followed the same
practice to implement them. Without surprise, we found the imple-
mentation of openUrl, which confirms our observation. In Figure 2,
we show 3 API implementations of WeChat. Although the code
is highly obfuscated (where the names of the classes and methods
are replaced with meaningless letters, such as “a”,“b”), we still can
observe some invariants: WeChat’s public API getLocation (line
1–13) and its undocumented API openUrl (line 14–25) both have
the same parameter types and return types, as well as the same
superclass (i.e., class b). As such, we can use these invariants (e.g.,
the superclass of the API, the parameters of the API) collected from
the public APIs to search for possible undocumented APIs. For
instance, as shown in Figure 2, we identified another function pri-
vate_openUrl (lines 28–38) that has the same function signature,
which is very likely an undocumented API.

Observation-II: UndocumentedAPI Invocation.Although there
may be undocumented APIs (e.g., private_openUrl) provided by
WeChat, we have to find a way to invoke them (if they are indeed
APIs). Interestingly, when we directly invoke undocumented APIs
such as private_openUrl in a miniapp, we obtain an error, “fail:
not supported”, which is different from the error we observed
when invoking openUrl with “fail: no permission”. As such,
we infer that the accessibility of the API private_openUrl is not
the same as that of openUrl (since the observed error messages are
different), and there may be a way to invoke it. As such, we further
inspected the normal invocation of the documented APIs, and seek
to obtain insights from the process.

To be more precise, as described in §2, the JavaScript Framework
Layer acquires the invocation request during a regular API call and
transfers it to the lower layers via the interfaces exposed by the
Customized V8 Layer. In Figure 3, we provide a code snippet illus-
trating the API invocation chain of WeChat, where the invocation
request for the getLocation API (line 3 in the top-left frame) is

2473

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chao Wang, Yue Zhang, and Zhiqiang Lin

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer
Miniapp

❶ Invoking

JavaScript API

❸ Passing

Invocation Request

Host App

❹ Binder IPC

❺ Returning Results
❻ Returning Results

❼ Returning Results

❽ Returning Results

❷ Passing Invocation

Request

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer

Malicious

Miniapp
Host App

openUrl

openUrl

openUrl

private_openUrl

private_openUrl

private_openUrl

getLocation

getLocation
getLocation

private_openUrl

getLocation

1 WeixinJSBridge = function(global) {

2 var NativeGlobal = global.NativeGlobal;

3 var globalCount = 0;

4

5 function invokeMethod(apiName, params, callbackHandler) {

6 params = WeixinNativeBuffer.pack(params);

7 var filteredParams = paramFilter(params || {}),

8 callbackId = ++globalCount;

9 callbackQueue[callbackId] = callbackHandler,

10 a(apiName, params, callbackId) {

11 callbackId = NativeGlobal.invokeHandler(apiName, params,

12 callbackId);

13 invokeCallbackHandler(callbackId, callbackHandler)

14 }(apiName, filteredParams, callbackId)

15 }

16 return this;

17 }(global);

wx.getLocation({type:'wgs84'})

 Object(WeixinJSBridge.invokeMethod)("getLocation", 'wgs84', Callback{})

function a("getLocation", 'wgs84', callbackId)

 NativeGlobal.invokeHandler("getLocation", 'wgs84',callbackId)

1// Implementation of Docuemented API getLocation

2 package com.tencent.mm.plugin.appbrand.jsapi.m;

3 public class x extends a {

4 public static final int CTRL_INDEX = 17;

5 public static final String NAME = "getLocation";

6

7 @Override

8 public final void b(IAppBrandComponent env, JSONObject data,int callbackId) {

9 // some other logic

10 env.doCallback(callbackId, env.Map2JSON(result));

11 }

12 }

13

14 // Implementation of Undocumented API openUrl

15 package com.tencent.mm.plugin.appbrand.jsapi.n;

16 public class y extends a {

17 public static final int CTRL_INDEX = 201;

18 public static final String NAME = "openUrl";

19

20 @Override

21 public final void b(IAppBrandComponent env,JSONObject data, int callbackId) {

22 // some other logic

23 env.doCallback(callbackId, env.Map2JSON(result));

24 }

25 }

26

27 // Implementation of Undocumented API private_openUrl

28 package com.tencent.mm.plugin.appbrand.jsapi.n;

29 public class z extends a {

30 public static final int CTRL_INDEX = 406;

31 public static final String NAME = "private_openUrl";

32

33 @Override

34 public final void b(IAppBrandComponent env,JSONObject data, int callbackId) {

35 // some other logic

36 env.doCallback(callbackId,env.Map2JSON(result));

37 }

38 }

1 // Docuemented API Implementation of Baidu

2 package com.baidu.swan.apps.scheme.actions.f;

3 public class a extends aa {

4 public a (e context) {

5 super(context, "/swanAPI/getLocation");

6 }

7

8 @Override

9 public boolean a (Context c, Scheme scheme, CallbackHandler cb, SwanApp app){

10 // some other logic

11 }

12 }

13

14 // Unocuemented API Implementation of Baidu

15 package com.baidu.swan.apps.impl.account.a;

16 public class f extends aa {

17 public f (e context) {

18 super(context, "/swanAPI/getBDUSS");

19 }

20

21 @Override

22 public boolean a (Context c, Scheme scheme, CallbackHandler cb, SwanApp app){

23 // some other logic

24 }

25 }

1 wx.getLocation = function (arg) {

2 var params = 0 < arguments.length && void 0 !== arg ? arg : {};

3 Object(WeixinJSBridge.invokeMethod)("getLocation", params, {

4 beforeSuccess: function(e) {

5 // Code Omitted //

6 }

7 })

8 }

Figure 3: An Example of WeChat API Invocation At JavaScript Framework Layer.

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer
Miniapp

❶ Invoking

JavaScript API

❸ Passing

Invocation Request

Host App

❹ Binder IPC

❺ Returning Results
❻ Returning Results

❼ Returning Results

❽ Returning Results

❷ Passing Invocation

Request

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer

Malicious

Miniapp
Host App

openUrl

openUrl

openUrl

private_openUrl

private_openUrl

private_openUrl

getLocation

getLocation
getLocation

private_openUrl

getLocation

1 WeixinJSBridge = function(global) {

2 var NativeGlobal = global.NativeGlobal;

3 var globalCount = 0;

4

5 function invokeMethod(apiName, params, callbackHandler) {

6 params = WeixinNativeBuffer.pack(params);

7 var filteredParams = paramFilter(params || {}),

8 callbackId = ++globalCount;

9 callbackQueue[callbackId] = callbackHandler,

10 a(apiName, params, callbackId) {

11 callbackId = NativeGlobal.invokeHandler(apiName, params,

12 callbackId);

13 invokeCallbackHandler(callbackId, callbackHandler)

14 }(apiName, filteredParams, callbackId)

15 }

16 return this;

17 }(global);

wx.getLocation({type:'wgs84'})

 Object(WeixinJSBridge.invokeMethod)("getLocation", 'wgs84', Callback{})

function a("getLocation", 'wgs84', callbackId)

 NativeGlobal.invokeHandler("getLocation", 'wgs84',callbackId)

1// Implementation of Docuemented API getLocation

2 package com.tencent.mm.plugin.appbrand.jsapi.m;

3 public class x extends a {

4 public static final int CTRL_INDEX = 17;

5 public static final String NAME = "getLocation";

6

7 @Override

8 public final void b(IAppBrandComponent env, JSONObject data,int callbackId) {

9 // some other logic

10 env.doCallback(callbackId, env.Map2JSON(result));

11 }

12 }

13

14 // Implementation of Undocumented API openUrl

15 package com.tencent.mm.plugin.appbrand.jsapi.n;

16 public class y extends a {

17 public static final int CTRL_INDEX = 201;

18 public static final String NAME = "openUrl";

19

20 @Override

21 public final void b(IAppBrandComponent env,JSONObject data, int callbackId) {

22 // some other logic

23 env.doCallback(callbackId, env.Map2JSON(result));

24 }

25 }

26

27 // Implementation of Undocumented API private_openUrl

28 package com.tencent.mm.plugin.appbrand.jsapi.n;

29 public class z extends a {

30 public static final int CTRL_INDEX = 406;

31 public static final String NAME = "private_openUrl";

32

33 @Override

34 public final void b(IAppBrandComponent env,JSONObject data, int callbackId) {

35 // some other logic

36 env.doCallback(callbackId,env.Map2JSON(result));

37 }

38 }

1 // Docuemented API Implementation of Baidu

2 package com.baidu.swan.apps.scheme.actions.f;

3 public class a extends aa {

4 public a (e context) {

5 super(context, "/swanAPI/getLocation");

6 }

7

8 @Override

9 public boolean a (Context c, Scheme scheme, CallbackHandler cb, SwanApp app){

10 // some other logic

11 }

12 }

13

14 // Unocuemented API Implementation of Baidu

15 package com.baidu.swan.apps.impl.account.a;

16 public class f extends aa {

17 public f (e context) {

18 super(context, "/swanAPI/getBDUSS");

19 }

20

21 @Override

22 public boolean a (Context c, Scheme scheme, CallbackHandler cb, SwanApp app){

23 // some other logic

24 }

25 }

1 wx.getLocation = function (arg) {

2 var params = 0 < arguments.length && void 0 !== arg ? arg : {};

3 Object(WeixinJSBridge.invokeMethod)("getLocation", params, {

4 beforeSuccess: function(e) {

5 // Code Omitted //

6 }

7 })

8 }

Figure 4: The Workflow of API invocations. Public API in-

vocation getLocation (green line); Checked Undocumented

API openUrl (red line); Unchecked Undocumented API pri-
vate_openUrl (purple line).

eventually passed to the NativeGlobal.invokeHandler function
(line 11 in the bottom-left frame), which in turn conveys the API
invocation request to the underlying layers. Notably, the Native-
Global.invokeHandler function receives three inputs: the API
name (e.g., getLocation), the API parameters, and a callback func-
tion ID (which enables the API to manage the asynchronous call).

Given that NativeGlobal.invokeHandler can deliver the nor-
mal invocation request to the underlying layers, we conclude that
it also has the capabilities to deliver undocumented API invocation
requests. Therefore, we feed the API name private_openUrl and
its parameter (which is a URL) to the interface and let it pass the
API name and the URL to the underlying layers. Interestingly, we
find that the underlying layers handle the passed API name and the
parameter as normal API invocations and further pass the invoca-
tion requests to the host apps. As shown in Figure 4, whileWeChat
restricts the undocumented APIs to be accessed by mini-apps, un-
fortunately we find that not all undocumented APIs are protected
through security checks. In particular,WeChat has enforced the se-
curity check for the undocumented API openUrl, but it does not add
the security checks for the undocumented API private_openUrl,
which has the exact same functionalities as openUrl. Also, the API
name and parameters are not obfuscated since they have to be
passed to lower layers.

3.2 Problem Statement and Scope

Since our manual investigation has revealed that there are indeed
hidden APIs in the super app platform and some of them can be
exploited, the goal of this work is to develop techniques to uncover
them. More specifically, we need to recognize the hidden APIs
based on how documented APIs are implemented and executed,
and meanwhile test them to determine whether they can be invoked
by the 3rd-party miniapps to bypass security restrictions (or those
APIs themselves may have vulnerabilities). Please note that we do
not consider all those 3rd-party invocable APIs as exploitable, since
whether an API is exploitable depends on the functionalities of the
APIs (e.g., the API implements privileged operations).

Also, since there are multiple super apps available today, ideally,
we would like to develop generic techniques to cover them all.
However, our observation is heavily based on the miniapp run-time
architecture presented in Figure 1. Therefore, the super apps that
do not follow this architecture, e.g., do not use V8 engine to execute
their miniapp code, will be out of our scope. Finally, because of
the convenience and also our expertise, we focus on the super
apps running on Android platform, though in theory our approach
should also work for the iOS platform.

3.3 Threat Model

As previously discussed, our objective is to develop techniques for
detecting hidden APIs that lack security checks before a malicious
app exploits them. In this context, the attacker is a malware that
has been installed on the user’s mobile device. We will not delve
into the details of how this malware can be installed, as we believe
it is practical to assume that super apps are not aware of such types
of malware until we report our findings to them. It is worth noting
that previous research on super apps has also made similar assump-
tions [24]. Undocumented APIs refer to functions or APIs that are
not included in the official documentation, regardless of whether
it is in English or Chinese. An attacker could acquire knowledge
about the existence of these hidden APIs by reverse engineering
the super app client or by reading technical blogs on the internet.
Specifically, undocumented APIs may have access to sensitive re-
sources that are safeguarded by Android OS. If an attacker exploits
these APIs, they can launch attacks against the victim users.

2474

Uncovering and Exploiting Hidden APIs in Mobile Super Apps CCS ’23, November 26–30, 2023, Copenhagen, Denmark

4 CHALLENGES AND INSIGHTS

(I) Challenges in API Recognition. The first step of our APIS-
cope is to identify undocumented APIs when given a host app.
Intuitively, it sounds trivial, since when given an API, we could
compare it with the APIs released on the official documentation to
decide whether it is documented or not. However, it is challenging
to determine whether an internal function or an interface is an API.
For instance, there are 3,702 functions and interfaces implemented
in JavaScript, not to mention those implemented in 92 native C/C++
libraries, and 56,492 Java classes inWeChat’s latest version. Note
that we do not have to consider the functions at lower-layer’s imple-
mentations (i.e., any layer below the JavaScript framework), since
the hidden APIs are not exposed at these layers. Obviously, we
cannot directly treat all these functions as APIs.

Also, although for a specific implementation of host apps (e.g.,
WeChat), simple pattern matching approaches can be applied to
recognize APIs. For example, when implementing the callbacks of
the APIs, WeChat uses android.webkit.ValueCallback at the
Service Abstraction layer to handle all the callback results. From
the callbacks, we can locate the corresponding APIs and extract
patterns to pinpoint the rest APIs. However, there are multiple
super apps, each of which could have different implementations.
For example, unlike the implementation of WeChat, TikTok uses
com.he.jsbinding.JsContext.ScopeCallback at the Service Ab-
straction layer to handle the callback results of their APIs, and the
pattern for WeChat will fail when dealing with TikTok. Moreover,
such a pattern-matching approach requires recognizing callbacks
first, which may be challenging due to the code obfuscation. As
discussed in §3.1, the miniapp is executed on top of the super apps
(e.g., Android apps), which is often heavily obfuscated. It is hard
to recognize callbacks statically unless we fully understand the
obfuscated code, and as such, we need a more obfuscation-resilient
approach instead of simple pattern matching.

Insights. We notice that there exist some invariants such as the
method signatures of public APIs and their superclasses in the API
implementations, as illustrated in §3.1 based on super app WeChat
(e.g., every API has the same superclass a, though this name is
obfuscated; every public API must contain the name of the API for
the references by the miniapps, and this cannot be obfuscated but
can be easily recognized). As such, we can first extract these API in-
variants based on these public API implementations, from which to
recognize the rest of the APIs. This process can be automated since
it is easy to identify these API invariants when the implementation
of public APIs is provided.

(II) Challenges in API Classification. Once we have identified
all these hidden APIs, we still need to further classify them into dif-
ferent categories and determine whether they are invocable (when
there is no security check). It will be very challenging if we only use
static analysis to decide this, and thus we need to rely on dynamic
analysis to dynamically invoke them. However, to invoke a hidden
API, we still need to recognize the interface that can communicate
with the underlying layers. Although we have already known that
the interface communicates with the underlying layers takes the
API name as its inputs (as described in §3.1), it is still challenging

to know whether this interface accepts the API name as its in-
put before we actually execute it (due to the obfuscated JavaScript
code). Meanwhile, although multiple dynamic tools are available
for JavaScript, they cannot be applied to our case directly due to
the highly customized JavaScript framework implementations. For
example, most JavaScript analysis tools (e.g., Jalangi2 [27]) are de-
signed for traditional web browsers. They cannot run with the
super apps since the offered APIs are different. Moreover, most of
these tools need to instrument the testing instances, which involves
the modification of the testing instances. In our case, the testing
instances are the miniapps (not web applications), which usually
have integrity checks and cannot be modified easily.

Insights. To invoke the API for its behavior classification, we need
to find the interface, e.g., NativeGlobal.invokeHandler as shown
in Figure 3. Interestingly, to identify this interface, we can monitor
how a public API is executed, e.g., how it is invoked (its name, pa-
rameters), and when it is passed between the boundary of the layers.
More specifically, we notice that we can use function trace analysis
to identify interfaces such as NativeGlobal.invokeHandler, since
the API execution starts from the invocation, and ends at the inter-
face boundary. By tracing all of the function executions with their
parameters and then identifying them based on the use of the API
name, which is passed as parameters, we can automatically identify
the interface, which is typically the last invocation point in the
JavaScript layer. With the identified invocation point, we can then
feed it with different API names and invoke them to classify further
(e.g., whether they can be invoked by the 3rd-party miniapps).

5 APISCOPE

As shown in Figure 5, our developed APIScope consists of two
phases of analysis—static analysis first and then dynamic analysis,
with the following two key components:
• Static API Recognition (§5.1). This component takes the bi-
nary code of super apps (i.e., APKs) and the list of the official
APIs in the documentation as input, and produces the undocu-
mented APIs as output. At a high level, it first decompiles the
APKs by Soot [3], automatically extracts the invariants based on
the public APIs, and then uses the invariants to recognize the
hidden APIs from the implementations of super apps.

• Dynamic API Classification (§5.2). This component takes the
hidden APIs as input, and classifies them into three different cat-
egories: unchecked hidden APIs (exploitable by 3rd miniapps),
checked APIs (available to only the 1st-party miniapps), and
non-APIs, as the final output. At a high level, it first uses the
Test Case Generator to produce two types of test cases: one is for
API invocation identification executed by a lightweight tracing
engine for the monitored execution, and the other is for API clas-
sification. With these test cases, APIScope eventually identifies
the interfaces as well as the categories of the APIs.

5.1 Static API Recognition

To recognize APIs, APIScope first needs to extract the invariants
based on the decompiled code of public APIs. With the invariants, it
then recognizes the hidden APIs. Therefore, it is a two-step process.
In the following, we describe these two steps in greater details.

2475

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chao Wang, Yue Zhang, and Zhiqiang Lin

Super Apps

Static API Recognition (§ 5.1)

Decompiled Code

JavaScript

Runtime
JavaScript

Runtime

API

Probing

(I) Automatic

Invariants

Extraction

(III) Dynamic API Probing for

API Category Classification

Testing

Cases

Testing

Cases
Testing Cases

Generator

Decompiler

(II) Undocumented

API Recognition

(II) Forward Slicing for API

Invocation Identification

Forward

Slicing

G PE

Dynamic API Classification (§ 5.2)

Results

(I) Test Case

Generation

Public APIs

Undocumented

Checked API

Undocumented

Unchecked API

Undocumented

APIs

Figure 5: APIScope Architecture

Step-I: Automatic Invariants Extraction. APIScope first needs
to extract the invariants based on the decompiled code of the public
APIs. from the implementations of the super apps. In particular,
when given an API, APIScope will aggressively identify as many in-
variants as possible from the implementation, and these invariants
include: (i) the method signatures (e.g., the return type, the number
of the parameters, and parameter types); (ii) the superclass; (iii) the
super packages (e.g., in super app Baidu com.baidu.swan.apps is
the super package of com.baidu.swan.apps.scheme.actions.f
as shown in Figure 6), and (iv) their callers. Again, they are invari-
ants because they will not be changed in the API implementation
(both public and undocumented) for a specific super app, though
the specific content for the invariant may be changed across super
apps. For instance, in the superclass invariant of APIs, in WeChat,
when comparing any two implementations of the provided APIs
(e.g., getLocation and private_openUrl), we can easily recog-
nize that they are both extended from the superclass a, as shown
in Figure 2; similarly, the superclass of APIs provided by Baidu is
extended from the same superclass aa, as shown in Figure 6.

Step-II: Undocumented API Recognition. With the invariants,
APIScope then recognizes the undocumented APIs. In particular, it
iterates each of the function implementations again, by matching
the invariants extracted; if it matches with all the invariants as in the
public APIs and it has not been added in the undocumented set yet,
this function’s implementation is an undocumented API. That is, we
have used quite restrictive patterns that need to exist in all public
API implementations for a particular super app, and a function
must contain all of these invariants in order to be considered an
undocumented API.

5.2 Dynamic API Classification

With the identified undocumented APIs, next we need to invoke
each of them to decide whether they can be exploited by attackers
based on the error messages obtained while executing the corre-
sponding test cases for each of the API. This is a three-step process,
starting from test case generation, followed by API invocation
identification using function trace analysis, and finally the API
classification through dynamic API probing.

Step-I: Test CaseGeneration. In this step, we use our test case gen-
erator to produce test cases. The test cases are the JavaScript code
snippets that contain the APIs to be invoked (with their parameters
configured). For example, wx.getLocation({type: "wgs84"}) is
a test case for testing API wx.getLocation (how to invoke such
test cases will be described in API invocation identification). There
are two types of test cases: one for API invocation identification and

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer
Miniapp

❶ Invoking

JavaScript API

❸ Passing

Invocation Request

Host App

❹ Binder IPC

❺ Returning Results
❻ Returning Results

❼ Returning Results

❽ Returning Results

❷ Passing Invocation

Request

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer

Malicious

Miniapp
Host App

openUrl

openUrl

openUrl

private_openUrl

private_openUrl

private_openUrl

getLocation

getLocation
getLocation

private_openUrl

getLocation

1// Implementation of Docuemented API getLocation

2 package com.tencent.mm.plugin.appbrand.jsapi.m;

3 public class x extends a {

4 public static final int CTRL_INDEX = 17;

5 public static final String NAME = "getLocation";

6

7 @Override

8 public final void b(IAppBrandComponent env, JSONObject data,int cId){

9 // some other logic

10 env.doCallback(callbackId, env.Map2JSON(result));

11 }

12 }

13

14 // Implementation of Undocumented API openUrl

15 package com.tencent.mm.plugin.appbrand.jsapi.n;

16 public class y extends a {

17 public static final int CTRL_INDEX = 201;

18 public static final String NAME = "openUrl";

19

20 @Override

21 public final void b(IAppBrandComponent env,JSONObject data, int cId){

22 // some other logic

23 env.doCallback(callbackId, env.Map2JSON(result));

24 }

25 }

26

27 // Implementation of Undocumented API private_openUrl

28 package com.tencent.mm.plugin.appbrand.jsapi.n;

29 public class z extends a {

30 public static final int CTRL_INDEX = 406;

31 public static final String NAME = "private_openUrl";

32

33 @Override

34 public final void b(IAppBrandComponent env,JSONObject data, int cId){

35 // some other logic

36 env.doCallback(callbackId,env.Map2JSON(result));

37 }

38 }

1 // Docuemented API Implementation of Baidu

2 package com.baidu.swan.apps.scheme.actions.f;

3 public class a extends aa {

4 public a (e context) {

5 super(context, "/swanAPI/getLocation");

6 }

7

8 @Override

9 public boolean a (Context c, Scheme s, CallbackHandler cb, SwanApp a){

10 // some other logic

11 }

12 }

13

14 // Unocuemented API Implementation of Baidu

15 package com.baidu.swan.apps.impl.account.a;

16 public class f extends aa {

17 public f (e context) {

18 super(context, "/swanAPI/getBDUSS");

19 }

20

21 @Override

22 public boolean a (Context c, Scheme s, CallbackHandler cb, SwanApp a){

23 // some other logic

24 }

25 }

1 WeixinJSBridge = function(global) {

2 var NativeGlobal = global.NativeGlobal;

3 var globalCount = 0;

4

5 function invokeMethod(apiName, params, callbackHandler) {

6 params = WeixinNativeBuffer.pack(params);

7 var filteredParams = paramFilter(params || {}),

8 callbackId = ++globalCount;

9 callbackQueue[callbackId] = callbackHandler,

10 a(apiName, params, callbackId) {

11 callbackId = NativeGlobal.invokeHandler(apiName, params,

12 callbackId);

13 invokeCallbackHandler(callbackId, callbackHandler)

14 }(apiName, filteredParams, callbackId)

15 }

16 return this;

17 }(global);

wx.getLocation('wgs84')

 Object(WeixinJSBridge.invokeMethod)("getLocation", 'wgs84', Callback{})

function a("getLocation", 'wgs84', callbackId)

 NativeGlobal.invokeHandler("getLocation", 'wgs84',callbackId)

1 wx.getLocation = function (arg) {

2 var params = 0 < arguments.length && void 0 !== arg ? arg : {};

3 Object(WeixinJSBridge.invokeMethod)("getLocation", params, {

4 beforeSuccess: function(e) {

5 // Code Omitted //

6 }

7 })

8 }

Figure 6: APIs implementations of Baidu. Note that lines 1 –

12 contain a documented API, and lines 14 – 25 contain an

undocumented API.

the other for API classification. The goal of API invocation identifi-
cation is to execute the documented API, and use the function trace
analysis to identify the invocation point. Therefore, we only need
to generate a few test cases (which are the test cases of documented
APIs). However, in API classification, which invokes the undocu-
mented APIs and categorizes them based on their outputs, we need
to produce at least one valid test case for each undocumented API
(to obtain the outputs). In particular, since each API may accept
one or multiple parameters, to produce a valid test case, we have
to identify all the types (e.g., Integer, Boolean) of the parameters,
through which we can further feed each API a list of parameter
instances in the right order (e.g., testAPI(true, 1234)):
• Parameter Type Extraction.While APIScope could identify
the types of parameters through documentation analysis, such
an approach cannot identify the types of parameters for undoc-
umented APIs. Therefore, we need a more reliable approach to
ensure that we can extract parameter types for both documented
and undocumented APIs. Our idea is to analyze the implemen-
tations of the APIs, since we have already identified the imple-
mentations for both documented and undocumented APIs as de-
scribed in §5.1. For instance, inWeChat’s implementation, we no-
tice that the types of the parameters of an API can be recognized
by inspecting the methods invoked by JSON instances, e.g., in the
implementation of getLocation, we can notice that a JSON ob-
ject invokes method optString("paramname", paramvalue),
which indicates that getLocation has a “paramname” parameter

2476

Uncovering and Exploiting Hidden APIs in Mobile Super Apps CCS ’23, November 26–30, 2023, Copenhagen, Denmark

with type String. Similarly, if the API accepts a Boolean value as
its parameter, there will be amethod optBoolean("paramname",
paramvalue) in its implementation.

• Parameter Instance Generation. The parameters must be
instantiated before being fed into the APIs.We used a pre-defined
template-based approach to instantiate the parameters. At a high
level, the template specified the appropriate values with different
types that can be used to produce the parameters (e.g., “1” and “0”
are used when the “type” of the parameter is of type “number”,
and “test” was used when the “type” of the parameter is of type
“string”). For instance, WeChat API showToast (which shows a
message to the user) has two parameters title and duration,
with types string and number, respectively. As such, we produced
an instance with the predefined template, where title is set to
“test” and duration is set to “1”. Using such a template method,
we successfully instantiated all the parameters.

• Parameter Order Permutation. Although we have instanti-
ated the parameters, we still do not know the orders of those
parameters for the undocumented APIs, as the parameters in the
Service Abstraction layer are all encapsulated in JSON objects.
Therefore, we have to properly order the parameters, and we
use a brute-force approach. For example, true and 1234 are two
parameters of testAPI, which could have two possible combina-
tions: testAPI(true, 1234)) and testAPI(1234, true). We
just assume that all those combinations are valid and invoke
them one-by-one (the invalid ones will be filtered out during the
API classification, which will be described later). Given that one
API can accept no more than 4 parameters (which results in 24
combinations), according to our static analysis with the code, we
believe such a brute-force approach is acceptable.
Specifically, we would like to clarify certain technical details.

First, during our dynamic analysis, we only explore a limited range
of inputs. This is because dynamic tracing does not require a broad
range of input to expose hidden APIs. Additionally, the test case gen-
eration is sufficient for testing security checks, such as whether the
hidden API is protected by security checks. In other words, as long
as valid inputs are provided to the API, our tool can trigger the API
if there are no security checks. If there are security checks, we can
observe errors. Our objective is not to enumerate all possible inputs,
as we are not fuzzing the actual hidden API. Second, hidden APIs
may require complex parameter types, such as JSON-objects. These
complex parameter types are combinations of other basic parameter
types (e.g., integer, string), and can be recursively derived until they
become primitive types. For instance, an object may contain a string,
an integer, and a boolean. We can simply inflate each parameter
based on its respective parameter type. As APIs implemented in the
Service Abstraction Layer lack states or context, it is unnecessary
to determine their execution state within this layer. Our testing pro-
cess involves providing our tool with a code snippet containing the
API to be tested, which is sufficient for our purposes. The JavaScript
Framework Layer handles most of the checks, so the API invocation
is checked before its order or dependency state is resolved.

Step-II: API Invocation Identification. Next, APIScope needs to
execute the generated test cases on top of our customized V8 engine
to identify how the documented API is invoked, so that it can later

similarly invoke the undocumented ones. Intuitively, when we test
a specific API, we need to compile and produce a testing miniapp
that contains the API for our test. However, this approach is not
scaled and can slow down our testing performance. Interestingly,
we notice that we can let the V8 engine directly inject the JavaScript
code into the JavaScript Framework Layer (the V8 engine has a
function named script, which accepts JavaScript code as input,
and injects the code for the JavaScript Framework Layer to execute).
Since the JavaScript code is injected into the JavaScript Framework
layer, the super apps will handle the code as they handle the code
in a regular miniapp.

Also, in most cases, V8 Engine has a built-in Profiler, but the
super apps do not directly expose any interfaces for developers to
use. Meanwhile, although it is true that different platforms may
customize the V8 Engine to enable their desired functionalities,
they will not intentionally remove the built-in Profiler since it is
also helpful for their own debugging purposes. Therefore, as long
as we can find a way to invoke Profiler, we will be able to collect
the traces. Fortunately, we can use Frida [15], an Android hooking
tool, to dynamically instrument the V8 Engine to invoke startPro-
filing of Profiler and let it start profiling, and collect the function
traces of documented API execution.

With the collected function traces, we then present how to find
the desired interface using function trace analysis, a standard tech-
nique widely used in program analysis. As discussed in §3.1, API
invocation is a complicated process involving multiple layers. For-
tunately, the Profiler only runs inside the JavaScript Framework
layer, and we can just monitor the function traces produced at
this layer since we aim to identify how to invoke an API from the
JavaScript layer. In particular, our analysis starts from the API of
our interests (e.g., wx.getLocation), identifies all the functions
involved based on the dependencies of parameter and API names,
and eventually identifies the last invocation function, e.g., NativeG-
lobal.invokeHandler (see Figure 3), which is the desired interface
we aim to discover. Specifically, the dependencies are indeed the
chained relationship, andwe actually build such dependencies based
on the parameters that are fed into the functions (we can monitor
the changes of parameters of the functions). For example, when
we execute wx.getLocation, we will observe a function named
NativeGlobal.invokeHandler that takes a parameter named get-
Location as its inputs. Therefore, we know that wx.getLocation
and NativeGlobal.invokeHandler have dependencies.

To provide a detailed explanation of how our trace analysis
works, we will utilize an example that features the implementa-
tions of API invocations across three layers, namely the JavaScript
Framework layer, the Customized V8 layer, and the Service Ab-
straction layer. The process begins with the JavaScript Frame-
work layer, which initiates the API invocation by calling Native-
Global.invokeHandler. This invocation is then handed over to
the Customized V8 layer, which is responsible for handling it. As
shown in Figure 7, this step is represented line 10 of the JavaScript
Framework layer’s implementation. Next, the Customized V8 layer
extracts critical information from the API invocation, including the
API name, its parameters, and any corresponding callbacks. This in-
formation is obtained from lines 28–32 of the Customized V8 layer’s
implementation. The Customized V8 layer then proceeds to invoke

2477

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chao Wang, Yue Zhang, and Zhiqiang Lin

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer
Miniapp

❶ Invoking

JavaScript API

❸ Passing

Invocation Request

Host App

❹ Binder IPC

❺ Returning Results
❻ Returning Results

❼ Returning Results

❽ Returning Results

❷ Passing Invocation

Request

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer

Malicious

Miniapp
Host App

openUrl

openUrl

openUrl

private_openUrl

private_openUrl

private_openUrl

getLocation

getLocation
getLocation

private_openUrl

getLocation

1 WeixinJSBridge = function(global) {

2 var NativeGlobal = global.NativeGlobal;

3 var globalCount = 0;

4

5 function invokeMethod(apiName, params, callbackHandler) {

6 params = WeixinNativeBuffer.pack(params);

7 var filteredParams = paramFilter(params || {}),

8 callbackId = ++globalCount;

9 callbackQueue[callbackId] = callbackHandler,

10 a(apiName, params, callbackId) {

11 callbackId = NativeGlobal.invokeHandler(apiName, params,

12 callbackId);

13 invokeCallbackHandler(callbackId, callbackHandler)

14 }(apiName, filteredParams, callbackId)

15 }

16 return this;

17 }(global);

wx.getLocation({type:'wgs84'})

 Object(WeixinJSBridge.invokeMethod)("getLocation", 'wgs84', Callback{})

function a("getLocation", 'wgs84', callbackId)

 NativeGlobal.invokeHandler("getLocation", 'wgs84',callbackId)

1// Implementation of Docuemented API getLocation

2 package com.tencent.mm.plugin.appbrand.jsapi.m;

3 public class x extends a {

4 public static final int CTRL_INDEX = 17;

5 public static final String NAME = "getLocation";

6

7 @Override

8 public final void b(IAppBrandComponent env, JSONObject data,int callbackId) {

9 // some other logic

10 env.doCallback(callbackId, env.Map2JSON(result));

11 }

12 }

13

14 // Implementation of Undocumented API openUrl

15 package com.tencent.mm.plugin.appbrand.jsapi.n;

16 public class y extends a {

17 public static final int CTRL_INDEX = 201;

18 public static final String NAME = "openUrl";

19

20 @Override

21 public final void b(IAppBrandComponent env,JSONObject data, int callbackId) {

22 // some other logic

23 env.doCallback(callbackId, env.Map2JSON(result));

24 }

25 }

26

27 // Implementation of Undocumented API private_openUrl

28 package com.tencent.mm.plugin.appbrand.jsapi.n;

29 public class z extends a {

30 public static final int CTRL_INDEX = 406;

31 public static final String NAME = "private_openUrl";

32

33 @Override

34 public final void b(IAppBrandComponent env,JSONObject data, int callbackId) {

35 // some other logic

36 env.doCallback(callbackId,env.Map2JSON(result));

37 }

38 }

1 // Docuemented API Implementation of Baidu

2 package com.baidu.swan.apps.scheme.actions.f;

3 public class a extends aa {

4 public a (e context) {

5 super(context, "/swanAPI/getLocation");

6 }

7

8 @Override

9 public boolean a (Context c, Scheme scheme, CallbackHandler cb, SwanApp app){

10 // some other logic

11 }

12 }

13

14 // Unocuemented API Implementation of Baidu

15 package com.baidu.swan.apps.impl.account.a;

16 public class f extends aa {

17 public f (e context) {

18 super(context, "/swanAPI/getBDUSS");

19 }

20

21 @Override

22 public boolean a (Context c, Scheme scheme, CallbackHandler cb, SwanApp app){

23 // some other logic

24 }

25 }

1 wx.getLocation = function (arg) {

2 var params = 0 < arguments.length && void 0 !== arg ? arg : {};

3 Object(WeixinJSBridge.invokeMethod)("getLocation", params, {

4 beforeSuccess: function(e) {

5 // Code Omitted //

6 }

7 })

8 }

1 // Implementation of invokeHandler in NativeGlobal JavaScript Object (C++)

2 int magicbrush::BindingNativeGlobal::BindTo(v8::Object *a1, v8::Isolate *a2){

3 /* Code Omitted */

4

5 v13 = 0;

6 v7 = (v8::Value *)mm::JSGet<v8::Local<v8::Value>>(a1, v6, "NativeGlobal", &v12);

7 if (!v7 || (v9 = (int)v7, !v8::Value::IsObject(v7)))

8 v9 = v8::Object::New(a1, v8);

9 v13 = v9;

10

11 /* Code Omitted */

12

13 mm::JSSetWithData((int)a1,

14 v13,

15 (int)"invokeHandler",

16 (int)magicbrush::nativeglobal::invokeHandler,

17 a2);

18 mm::JSSet<v8::Local<v8::Object>>(a1, *a3, "NativeGlobal", v13);

19 return v13;

20 }

21

22 int magicbrush::nativeglobal::invokeHandler(v8::Isolate *a1, _DWORD *a2) {

23 /* Code Omitted */

24

25 mm::JSConvert<std::string, void>::fromV8(api_name, a1, v6);

26 mm::JSConvert<char16_t const*, void>::fromV8(api_param, a1, v6);

27 mm::JSConvert<int, void>::fromV8(callback_id, a1, v6);

28 Java_com_tencent_magicbrush_MBRuntime_nativeInvokeHandler(

29 api_name,

30 api_param,

31 callback_id

32)

33

34 /* Code Omitted */

35 }

1 // Implementation of invoke handler in Java framework

2 package com.tencent.magicbrush;

3 public abstract class MBRuntime {

4 protected String nativeInvokeHandler(String apiName, String apiParam, int id) {

5 if (this.nativeHandler != null) {

6 try {

7 return this.nativeHandler.invoke(apiName, apiParam, id);

8 } catch (Throwable e) {

9 Logger.printStackTrace("MBRuntime", e, "crash when invoke jsapi!");

10 throw e;

11 }

12 }

13 Logger.error("MBRuntime", "no native invoke handler");

14 return "";

15 }

16 }

1 WeixinJSBridge = function(global) {

2 var NativeGlobal = global.NativeGlobal;

3 var globalCount = 0;

4

5 function invokeMethod(apiName, params, callbackHandler) {

6 params = WeixinNativeBuffer.pack(params);

7 var filteredParams = paramFilter(params || {}),

8 callbackId = ++globalCount;

9 callbackQueue[callbackId] = callbackHandler,

10 a(apiName, params, callbackId) {

11 callbackId = NativeGlobal.invokeHandler(apiName, params,

12 callbackId);

13 invokeCallbackHandler(callbackId, callbackHandler)

14 }(apiName, filteredParams, callbackId)

15 }

16 return this;

17 }(global);

JavaScript Framework Layer Customized V8 Layer

Service Abstraction Layer

Figure 7: The implementations of API invocations across three layers (WeChat)

the relevant APIs at the Service Abstraction Layer through the use
of the Java Native Interface (JNI) [21]. Finally, during the API invo-
cations at the Service Abstraction layer (line 4), this layer may need
to communicate with the Customized V8 layer for additional op-
erations, such as performing permission checks if the API requires
them.We have omitted this code for the sake of brevity. In summary,
our trace analysis provides insight into the entire process of API
invocations across the three layers of the system. We track the flow
of control and collect data on API names, parameters, and callbacks
to enable a more comprehensive analysis of the system’s behavior.

Step-III: Dynamic Probing for API Category Classification.

With the identified interfaces of how to invoke a public API, we then
use it to similarly invoke undocumented APIs, by first generating
the corresponding test cases, and then injecting the JavaScript code
using the script function into the V8 engine, as described earlier.
When executing a particular test case, there could be three types
of outcomes: the tested “API” is a checked API (when invoked, a
permission denial will be observed based on the standard error
messages), the tested “API” is an unchecked API (which can be
invoked successfully), the tested “API” is not an API. As such, we
can use the following strategies to identify them.
• Unchecked APIs. Similar to the public APIs, the unchecked
undocumented APIs can be invoked without requiring additional
permissions. As such, we first deliver a public API invocation
request, such as getLocation, and record the feedback of the
host app. For example, WeChat and Baidu will not print any
errors when the invocation request gets approved, and we then
use this as a signature to see whether an invocation request is
successfully executed.

• CheckedAPIs. The checked APIs are the APIs that are protected
by security checks, which can only be invoked by their 1st-party
miniapps. In the event of a security check failure, the super apps
will generate error messages notifying the user of insufficient
permissions. This exception applies to all APIs within various

super apps, albeit with minor variations in the error messages
displayed. For example, when the 3rd-party mini-apps attempt
to invoke a checked API of WeChat, the host app will throw
an error message “fail: no permission”. For WeCom, the
error message becomes “fail: access denied”. Therefore, we
use keywords such as “fail”, “no permission” and “access
denied” to match and decide whether the invocation request
gets denied. If so, it is a checked API.

• Non-APIs. Theoretically, APIScope may have false positives,
and as such, our tool may mistakenly recognize some non-APIs.
Therefore, we need to filter them out. To that end, we first create
an invalid request and then send it to the host app to see the
feedback. For example, if we initiate an invalid request and send
it to WeChat, WeChat will reject the invocation request and
throw an error message “fail: not supported”. Then, such
an error message is used as a signature to match the non-APIs.
As an example, in the case of WeChat, if we attempt to use the

API openUrl, the super app will generate an error message stating
“fail: no permission”. This error message implies that the API
is a checked hidden API. On the other hand, if we use the API
private_openUrl, the super appwill handle the invocation request
as a regular request without displaying any error message. As a
result, we can conclude that this API is an unchecked hidden API.

6 EVALUATION

6.1 Experiment Setup

The Tested Host Apps. Today, there are quite a number of super
apps that support the execution of miniapps. Although we wish to
test all of them, eventually we selected five of them, as shown in
Table 1, and these include WeChat, WeCom and QQ from Tencent
Holdings Ltd., Baidu from Baidu Inc., and TikTok from ByteDance
Ltd. We excluded other super apps such as Alipay and Snapchat
particularly because they do not build on the V8 engine (making our

2478

Uncovering and Exploiting Hidden APIs in Mobile Super Apps CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Name Vendor Version V8 Date Installs

1st-party miniapp

being tested?

Baidu Baidu 12.21 7.6 08/13/2021 5,000,000+ ✓
QQ Tencent 8.8 7.2 10/05/2021 10,000,000+ ✓
TikTok ByteDance 17.9 7.2 10/19/2021 1,000,000,000+ ✗
WeChat Tencent 8.0 8.0 07/21/2021 100,000,000+ ✓
WeCom Tencent 3.1 8.0 09/14/2021 100,000+ ✓

Table 1: Summary of the Tested Super Apps

tool unsuitable for them at this moment). Also, to study the security
issues of the tested super apps correspondingly, we registered an
account in each platform, downloaded their development tools and
SDKs, built miniapps by following their official documents, and
inspected their code. Among them, Baidu has a relatively closed
ecosystem, where only the enterprise developers are allowed to
register as their developers. However, they allow individuals to
apply for trial accounts to use their development tools to develop
miniapps, and therefore, we tested Baidu using their trial accounts.

The TestedMiniapps.We believe it is important to measure the us-
age of undocumented APIs in the 1st-party and 3rd-party miniapps
for two reasons. First, understanding how the 1st-party miniapps
use these APIs can help us comprehend the entire ecosystem. Sec-
ond, if the 3rd-party developers know about these APIs, they may
use them, which can lead to security issues if these APIs have ac-
cess to sensitive resources. To analyze the usage of undocumented
APIs in 1st-party miniapps, we searched for interfaces provided by
host apps and collected 236 miniapps from WeChat and WeCom,
340 miniapps from Baidu, and 24 miniapps from QQ. We could not
find information about the 1st-party miniapps of TikTok, so we
did not report their API usage. We could not scan all 3rd-party
miniapps because there is no public dataset or crawlers available.
Therefore, we can only measure the usage of hidden APIs among
the 3rd-party miniapps within theWeChat ecosystem. We collected
267, 359 miniapps using Mini-Crawler [37] within 3 weeks.

The Testing Environment. We performed our static analysis on
one laptop, which has 6 cores, Intel Core i7-10850H (4.90 GHz)
CPUs and 64 GB RAM, and our dynamic analysis on a Google Pixel
4 running Android 11 and aGoogle Pixel 2 running Android 9, since
we particularly focused on the Android version of miniapps.

6.2 Effectiveness

The effectiveness evaluation aims to quantify how APIScope un-
covered the hidden APIs in terms of the specific numbers for the
involved analysis (which is presented in Table 2), and their quali-
ties (i.e., whether there are any false positives). It is worth noting
that the manually created cases are indeed rare. For example, for
Baidu, we automatically created 423 test cases, and created another
56 test cases manually, so the manual efforts are around 11%, i.e.,
56/(56+423) = 0.11. Other super apps even have a lower amount of
manual efforts than Baidu (e.g., WeCom has 2.9 % manual efforts).

Specifically, the effectiveness of our static analysis is measured
by the identification of API invariants, the number of identified
API candidates (i.e., the functions that are very likely to be APIs).
However, whether those API candidates are really APIs are deter-
mined in dynamic API classification. For the API invariants, while
we have listed four invariants in §5.1, not all of them will exist in
all super apps (e.g., Baidu and QQ do not have caller invariant), as
shown in Table 2. That is why APIScope aggressively identifies as

many invariants as possible. With these invariants, it sufficiently
recognizes the undocumented APIs even though some of them do
not exist in other super apps. During static API recognition, APIS-
cope recognized in total 1,829 API candidates for these super apps.
Among them, WeCom contains the most hidden API candidates
(683), followed by WeChat (containing 575 API candidates). Tiktok
has fewer API candidates (i.e., 124 API candidates), likely due to its
smallest LoC compared to other super apps.

The effectiveness of dynamic analysis is measured by the number
of traced functions during API invocation identification and the
number of test cases used during API classification. Among the test
cases, we also quantify the number of automatically generated test
cases and manually created test cases. We can see that most of the
test cases are automatically generated by our test case generation
algorithm, and the number of automatically generated test cases is
greater than the number of API candidates due to the parameter
order permutation (as discussed in §5.2). With our dynamic classifi-
cation for the identified APIs, APIScope detected a large number
of hidden APIs, many of which are unchecked (as reported in Ta-
ble 2). WeChat has more APIs (590 public APIs, 502 undocumented
unchecked APIs, and 65 undocumented checked APIs) than the
other super apps. However, TikTok has a relatively small number
of APIs (383 public APIs, 120 undocumented unchecked APIs, and
2 undocumented checked APIs). With respect to the percentage
of undocumented unchecked and checked APIs, WeCom has the
most undocumented unchecked APIs (46.3%) and undocumented
checked APIs (6.4%).

Correctness of Our Result.We quantify whether there are any
false positives or false positives for the identified hidden APIs. First,
a false positive here means that the identified API is not hidden, or
is not an API. By design, APIScope will not have false positives for
two reasons: (1) the invariants we extracted have very strict patterns
(they have to exist among all public APIs and all of them have to be
present in the undocumented APIs), and (2) our dynamic probing
for API classification can filter out those non-APIs, which eliminate
potential false positives. Nevertheless, we still thoroughly scruti-
nized each API identified forWeChat by conducting a manual check
to ensure that there were no false positives. In other words, we
made sure that the tool did not mistakenly classify non-APIs as APIs.
Thanks to our design, we did not come across any false positives
during our examination. Second, with respect to false negatives (i.e.,
“true” hidden API is missed by APIScope), we note that theoretically
APIScope could have false negatives, for instance, if our invariants
are too strong. However, we will not be able to quantify this, since
we do not have the ground truth, unless we can manually examine
each line of code. Therefore, we leave this to future work.

Categories of the Identified APIs. With the identified APIs,
we can then obtain some insights with them, such as which cate-
gory contains more hidden APIs. To this end, we manually walked
through each API, and categorize them based on the categories of
the documented ones, to classify the undocumented (i.e., hidden)
APIs. This result is presented in Table 3. Interestingly, we found
that most of the categories contain undocumented unchecked APIs.
In particular, for some of the super apps (e.g.,WeChat), their undoc-
umented unchecked APIs can be even more than the documented

2479

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chao Wang, Yue Zhang, and Zhiqiang Lin

Name

Input Static Analysis Dynamic Analysis Output

#Size
(MBs)

of
LoC

of Public
API

API Invariants # of Hidden API

Candidates

Invocation

Identification

(# of Traced
Functions)

API Classification

(# of Test Cases)
of

Checked

API

of
Unchecked

API

of
Non

APIMethod

Signature

Super

Class

Super

Package
Callers

of Auto

Generated

of Manually

Created

Baidu 123.6 2,005,003 464 ✓ ✓ ✓ ✗ 143 30 423 56 25 113 5
QQ 138.6 1,557,805 506 ✓ ✓ ✓ ✗ 304 43 1,083 61 6 295 3
TikTok 6.2 718,395 383 ✓ ✓ ✓ ✓ 124 37 352 53 2 122 0
WeChat 199.2 1,609,650 590 ✓ ✓ ✓ ✓ 575 28 2,184 66 65 502 8
WeCom 224.8 1,067,273 606 ✓ ✓ ✓ ✓ 683 31 2,315 70 82 593 8

Table 2: Effectiveness of APIScope with the tested super apps. The terms “Signature”, “Super Class”, “Super Package”, and

“Callers” have consistent meanings with those defined in §5.1.

Available APIs

WeChat WeCom Baidu TikTok QQ

D % UU % UC % D % UU % UC % D % UU % UC % D % UU % UC % D % UU % UC %

Base

Basic 5 71.4 2 28.6 - 0.0 6 66.7 3 33.3 - 0.0 8 72.7 2 18.2 1 9.1 7 63.6 4 36.4 - 0.0 3 100.0 - 0.0 - 0.0
App 13 39.4 14 42.4 6 18.2 13 37.1 16 45.7 6 17.1 8 42.1 10 52.6 1 5.3 6 50.0 6 50.0 - 0.0 9 34.6 17 65.4 - 0.0
Debug 15 88.2 2 11.8 - 0.0 15 88.2 2 11.8 - 0.0 1 3.3 28 93.3 1 3.3 - 0.0 - 0.0 - 0.0 20 100.0 - 0.0 - 0.0
Misc 10 58.8 7 41.2 - 0.0 10 55.6 8 44.4 - 0.0 9 100.0 - 0.0 - 0.0 10 52.6 9 47.4 - 0.0 9 100.0 - 0.0 - 0.0

UI

Interaction 6 46.2 7 53.8 - 0.0 6 46.2 7 53.8 - 0.0 7 41.2 10 58.8 - 0.0 9 81.8 2 18.2 - 0.0 6 40.0 9 60.0 - 0.0
Navigation 4 44.4 5 55.6 - 0.0 4 40.0 6 60.0 - 0.0 4 100.0 - 0.0 - 0.0 5 100.0 - 0.0 - 0.0 4 33.3 8 66.7 - 0.0
Animation 32 100.0 - 0.0 - 0.0 32 100.0 - 0.0 - 0.0 21 95.5 1 4.5 - 0.0 1 100.0 - 0.0 - 0.0 31 100.0 - 0.0 - 0.0
WebView - 0.0 22 95.7 1 4.3 - 0.0 24 96.0 1 4.0 - 0.0 3 75.0 1 25.0 - 0.0 3 100.0 - 0.0 - 0.0 16 100.0 - 0.0
Misc 20 27.0 54 73.0 - 0.0 20 25.6 58 74.4 - 0.0 37 77.1 11 22.9 - 0.0 14 73.7 5 26.3 - 0.0 18 42.9 24 57.1 - 0.0

Network

Request 5 55.6 4 44.4 - 0.0 5 55.6 4 44.4 - 0.0 2 66.7 1 33.3 - 0.0 6 60.0 4 40.0 - 0.0 4 66.7 2 33.3 - 0.0
Download 7 24.1 21 72.4 1 3.4 7 23.3 22 73.3 1 3.3 11 100.0 - 0.0 - 0.0 - 0.0 4 100.0 - 0.0 6 60.0 4 40.0 - 0.0
Upload 7 50.0 5 35.7 2 14.3 7 46.7 6 40.0 2 13.3 6 100.0 - 0.0 - 0.0 - 0.0 4 100.0 - 0.0 6 75.0 2 25.0 - 0.0
Websocket 14 93.3 1 6.7 - 0.0 14 93.3 1 6.7 - 0.0 13 100.0 - 0.0 - 0.0 7 77.8 2 22.2 - 0.0 13 86.7 2 13.3 - 0.0
Misc 23 88.5 3 11.5 - 0.0 23 85.2 4 14.8 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 10 55.6 8 44.4 - 0.0

Storage 10 66.7 5 33.3 - 0.0 10 66.7 5 33.3 - 0.0 10 100.0 - 0.0 - 0.0 10 90.9 1 9.1 - 0.0 10 83.3 2 16.7 - 0.0

Media

Map 8 14.3 48 85.7 - 0.0 8 14.3 48 85.7 - 0.0 7 100.0 - 0.0 - 0.0 6 100.0 - 0.0 - 0.0 9 36.0 16 64.0 - 0.0
Image 6 60.0 4 40.0 - 0.0 6 60.0 4 40.0 - 0.0 6 85.7 1 14.3 - 0.0 5 83.3 1 16.7 - 0.0 6 60.0 4 40.0 - 0.0
Video 14 35.0 26 65.0 - 0.0 14 31.8 30 68.2 - 0.0 19 95.0 1 5.0 - 0.0 8 80.0 2 20.0 - 0.0 14 63.6 8 36.4 - 0.0
Audio 64 84.2 9 11.8 3 3.9 64 79.0 14 17.3 3 3.7 44 100.0 - 0.0 - 0.0 44 81.5 10 18.5 - 0.0 61 85.9 10 14.1 - 0.0
Live 26 46.4 30 53.6 - 0.0 26 39.4 40 60.6 - 0.0 8 100.0 - 0.0 - 0.0 19 100.0 - 0.0 - 0.0 23 57.5 17 42.5 - 0.0
Recorder 16 84.2 3 15.8 - 0.0 16 84.2 3 15.8 - 0.0 12 100.0 - 0.0 - 0.0 11 91.7 1 8.3 - 0.0 15 88.2 2 11.8 - 0.0
Camera 9 60.0 6 40.0 - 0.0 9 52.9 8 47.1 - 0.0 9 50.0 9 50.0 - 0.0 20 95.2 1 4.8 - 0.0 4 36.4 7 63.6 - 0.0
Misc 12 75.0 3 18.8 1 6.3 12 75.0 3 18.8 1 6.3 18 100.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 6 100.0 - 0.0 - 0.0

Location 3 42.9 4 57.1 - 0.0 3 42.9 4 57.1 - 0.0 7 100.0 - 0.0 - 0.0 3 100.0 - 0.0 - 0.0 3 100.0 - 0.0 - 0.0
Share 4 33.3 7 58.3 1 8.3 4 16.7 19 79.2 1 4.2 3 100.0 - 0.0 - 0.0 5 71.4 2 28.6 - 0.0 5 35.7 9 64.3 - 0.0
Canvas 60 74.1 21 25.9 - 0.0 60 74.1 21 25.9 - 0.0 46 92.0 4 8.0 - 0.0 49 98.0 1 2.0 - 0.0 48 92.3 4 7.7 - 0.0
File 39 97.5 1 2.5 - 0.0 39 92.9 3 7.1 - 0.0 35 100.0 - 0.0 - 0.0 34 97.1 1 2.9 - 0.0 37 97.4 1 2.6 - 0.0

Open API

Login 2 100.0 - 0.0 - 0.0 5 83.3 1 16.7 - 0.0 3 42.9 1 14.3 3 42.9 2 100.0 - 0.0 - 0.0 2 100.0 - 0.0 - 0.0
Navigate 2 33.3 2 33.3 2 33.3 2 22.2 5 55.6 2 22.2 3 100.0 - 0.0 - 0.0 7 100.0 - 0.0 - 0.0 2 50.0 1 25.0 1 25.0
User Info 2 16.7 7 58.3 3 25.0 5 23.8 13 61.9 3 14.3 1 10.0 6 60.0 3 30.0 2 13.3 13 86.7 - 0.0 2 28.6 4 57.1 1 14.3
Payment 1 3.4 13 44.8 15 51.7 1 3.2 15 48.4 15 48.4 1 50.0 - 0.0 1 50.0 1 33.3 1 33.3 1 33.3 2 22.2 7 77.8 - 0.0
Bio-Auth 3 27.3 3 27.3 5 45.5 3 21.4 6 42.9 5 35.7 - 0.0 - 0.0 - 0.0 - 0.0 1 100.0 - 0.0 3 100.0 - 0.0 - 0.0
Enterprise - 0.0 1 100.0 - 0.0 5 17.9 6 21.4 17 60.7 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0
Misc 14 19.4 42 58.3 16 22.2 14 16.7 54 64.3 16 19.0 16 57.1 2 7.1 10 35.7 25 55.6 20 44.4 - 0.0 12 13.0 78 84.8 2 2.2

Device

Wi-Fi 9 100.0 - 0.0 - 0.0 9 100.0 - 0.0 - 0.0 10 100.0 - 0.0 - 0.0 4 100.0 - 0.0 - 0.0 9 100.0 - 0.0 - 0.0
Bluetooth 18 60.0 11 36.7 1 3.3 18 58.1 12 38.7 1 3.2 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 18 100.0 - 0.0 - 0.0
Contact 1 10.0 5 50.0 4 40.0 1 9.1 6 54.5 4 36.4 1 33.3 2 66.7 - 0.0 - 0.0 - 0.0 - 0.0 1 25.0 2 50.0 1 25.0
NFC 5 26.3 14 73.7 - 0.0 9 39.1 14 60.9 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 5 100.0 - 0.0 - 0.0
Screen 4 36.4 6 54.5 1 9.1 4 36.4 6 54.5 1 9.1 3 100.0 - 0.0 - 0.0 9 100.0 - 0.0 - 0.0 4 100.0 - 0.0 - 0.0
Phone 1 4.3 21 91.3 1 4.3 1 4.3 21 91.3 1 4.3 1 100.0 - 0.0 - 0.0 1 100.0 - 0.0 - 0.0 1 50.0 1 50.0 - 0.0
Misc 28 63.6 15 34.1 1 2.3 28 59.6 18 38.3 1 2.1 21 80.8 5 19.2 - 0.0 16 69.6 7 30.4 - 0.0 28 82.4 6 17.6 - 0.0

AI
CV 19 100.0 - 0.0 - 0.0 19 100.0 - 0.0 - 0.0 18 90.0 2 10.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0
Misc - 0.0 - 0.0 - 0.0 - 0.0 1 100.0 - 0.0 11 100.0 - 0.0 - 0.0 7 100.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0

AD 19 95.0 1 5.0 - 0.0 19 95.0 1 5.0 - 0.0 9 64.3 4 28.6 1 7.1 13 61.9 8 38.1 - 0.0 3 25.0 9 75.0 - 0.0
Uncategorized 30 38.5 47 60.3 1 1.3 30 36.6 51 62.2 1 1.2 15 53.6 10 35.7 3 10.7 17 68.0 7 28.0 1 4.0 34 68.0 15 30.0 1 2.0

All 590 51.0 502 43.4 65 5.6 606 47.3 593 46.3 82 6.4 464 77.1 113 18.8 25 4.2 383 75.8 120 23.8 2 0.4 506 62.7 295 36.6 6 0.7

Table 3: Categories of Documented and Undocumented APIs. “D” means documented APIs; “UU” means undocumented

unchecked APIs; “UC” means undocumented checked APIs.

APIs in some of the categories (e.g., the API category Payment
has 28 undocumented APIs, which is way more than their docu-
mented APIs). Finally, we found that some well-documented APIs
of a specific super app may not be open to the public in other su-
per apps. For example, getUserInfo is an undocumented API of

Baidu, while WeChat has the same API with the same function-
alities, which is publicly accessible. Finally, since APIScope is a
systematic and mostly automated tool, it can inspect API changes
based on previous versions of the super app implementations as
long as we can obtain both their APKs and documentation.

2480

Uncovering and Exploiting Hidden APIs in Mobile Super Apps CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Category

WeChat WeCom Baidu QQ
U# App % # U# App % # U# App % # U# App %

Business 14 49 28.6 16 49 32.7 21 38 55.3 1 3 33.3
Education 6 26 23.1 7 26 26.9 5 16 31.3 - 3 0.0
E-learning 5 9 55.6 5 9 55.6 12 33 36.4 - 1 0.0
Entertainment 9 17 52.9 9 17 52.9 29 75 38.7 2 2 100.0
Finance 1 1 100.0 1 1 100.0 21 23 91.3 - - 0.0
Food - - 0.0 - - 0.0 - 5 0.0 - - 0.0
Games 18 36 50.0 18 36 50.0 - - 0.0 - - 0.0
Government 2 7 28.6 2 7 28.6 3 8 37.5 1 1 100.0
Health 2 7 28.6 2 7 28.6 1 5 20.0 - 1 0.0
Job - 1 0.0 - 1 0.0 - - 0.0 - - 0.0
Lifestyle 2 5 40.0 2 5 40.0 3 15 20.0 - 1 0.0
Photo 3 7 42.9 3 7 42.9 - - 0.0 - - 0.0
Shopping 1 1 100.0 1 1 100.0 - 2 0.0 - - 0.0
Social 4 8 50.0 4 8 50.0 1 4 25.0 - 1 0.0
Sports - - 0.0 - - 0.0 - 1 0.0 - - 0.0
Tool 15 55 27.3 15 55 27.3 16 47 34.0 4 8 50.0
Traffic 3 5 60.0 3 5 60.0 4 10 40.0 - 1 0.0
Travelling 2 2 100.0 2 2 100.0 1 56 1.8 1 2 50.0
Uncategorized - - 0.0 - - 0.0 1 2 50.0 - - 0.0
Total 87 236 36.9 90 236 38.1 118 340 34.7 9 24 37.5

Table 4: The 1st party miniapps that have used the undoc-

umented APIs. The first column indicates the number of

the 1st-party mini-apps using undocumented APIs, and the

second column represents the total number of the 1st-party

mini-apps. We calculate the percentage of mini-apps by us-

ing the first column divided by the second.

Usage of Hidden APIs (Among the 1st-party Miniapps).We
obtained many 1st-party miniapps and classified them into cate-
gories based on their meta-data. From the data in Table 4, we found
that the use of undocumented APIs is common among the 1st-party
miniapps regardless of their category. WeCom had the highest per-
centage of the 1st-party miniapps using undocumented APIs at
38.1%, followed by QQ at 37.5%, WeChat at 36.9%, and Baidu at
34.7%. We also observed that the 1st-party miniapps in the Trav-
eling, Shopping, and Finance categories were more likely to use
undocumented APIs, and these APIs were often related to payment.
For example, many miniapps in these categories would use the
undocumented API verifyPaymentPassword to verify payment
passwords.

Next, we sought to understand the most popular undocumented
APIs and how often they are used by the 1st-party miniapps. We
grouped the APIs by name and counted the number of miniapps
that used each API. This information is presented in table Table 5.
We found that 7 undocumented APIs provided by Baidu were used
by their 1st-party miniapps, 34 undocumented APIs provided by
WeChat were used by their 1st-party miniapps (only 19 of which
are listed in Table 5 due to space constraints), 43 undocumented
APIs provided byWeCom were used by their 1st-party miniapps
(again, only those used by more than two miniapps are shown),
and 14 undocumented APIs provided by QQ were used by their
1st-party miniapps.

Finally, we present whether there are anymissing security checks
for these undocumented APIs from our API classification result in
the last column of Table 5. We found that 3 out of 7 (42.9%) APIs
used by Baidu’s 1st-party miniapps do not have security checks
and can be invoked and exploited by its 3rd-party miniapps; 16 of
34 (47.06%) APIs of WeChat; 22 of 43 (51.16%) APIs of WeCom; and
12 of 14 (85.7%) APIs of QQ can be exploited by their 3rd-party
miniapps. We also noticed that different vendors have different
security restrictions on their undocumented APIs. For example,

API Name Category # App % *App w/ Check

B
a
i
d
u

swan.button Interaction 104 88.14 ✗
swan.login Login 31 26.27 ✓
swan.postMessage Uncategorized 8 6.78 ✗
swan.getBDUSS User Info 4 3.39 ✓
swan.getCommonSysInfo System 3 2.54 ✓
swan.getUserInfo User Info 3 2.54 ✗
swan.getChannelID Uncategorized 2 1.69 ✓

W
e
C
h
a
t

wx.hideNavigationBar Bar 28 32.18 ✗
wx.requestSubscribeMessage Subscribe 25 28.74 ✗
wx.showNavigationBar Bar 23 26.44 ✗
wx.requestVirtualPayment Payment 11 12.64 ✓
wx.openUrl Misc 8 9.20 ✓
wx.hideHomeButton Interaction 8 9.20 ✗
wx.enterContact Contact 5 5.75 ✓
wx.drawCanvas Canvas 5 5.75 ✗
wx.setPageOrientation Misc 4 4.60 ✗
wx.operateWXData Misc 4 4.60 ✗
wx.getBackgroundFetchData Misc 3 3.45 ✗
wx.setBackgroundFetchToken Misc 3 3.45 ✗
wx.startFacialRecognitionVerify Bio-Auth 3 3.45 ✓
wx.checkIsSupportFacialRecognition Bio-Auth 2 2.30 ✓
wx.navigateBackApplication Navigate 2 2.30 ✗
wx.navigateBackNative Navigate 2 2.30 ✓
wx.onDeviceOrientationChange Device 2 2.30 ✗
wx.openBusinessView View 2 2.30 ✗
wx.verifyPaymentPassword Payment 2 2.30 ✓

W
e
C
o
m

wx.hideNavigationBar Bar 28 31.11 ✗
wx.requestSubscribeMessage Subscribe 25 27.78 ✗
wx.showNavigationBar Bar 23 25.56 ✗
wx.requestVirtualPayment Payment 11 12.22 ✓
wx.openUrl Misc 8 8.89 ✓
wx.hideHomeButton Interaction 8 8.89 ✗
wx.enterContact Contact 5 5.56 ✓
wx.drawCanvas Canvas 5 5.56 ✗
wx.setPageOrientation Misc 4 4.44 ✗
wx.operateWXData Misc 4 4.44 ✗
wx.getBackgroundFetchData Misc 3 3.33 ✗
wx.setBackgroundFetchToken Misc 3 3.33 ✗
wx.startFacialRecognitionVerify Bio-Auth 3 3.33 ✓
wx.checkIsSupportFacialRecognition Bio-Auth 2 2.22 ✓
wx.navigateBackApplication Navigate 2 2.22 ✗
wx.navigateBackNative Navigate 2 2.22 ✓
wx.openBusinessView Misc 2 2.22 ✗
wx.qy.chooseAttach File 2 2.22 ✓
wx.qy.chooseWxworkContact Enterprise 2 2.22 ✓
wx.qy.chooseWxworkVisibleRange Enterprise 2 2.22 ✓
wx.qy.openWechatWebviewUrl WebView 2 2.22 ✗
wx.qy.postNotification System 2 2.22 ✓
wx.qy.showUserProfile User Info 2 2.22 ✓
wx.qy.wwLog Uncategorized 2 2.22 ✗
wx.qy.wwOpenUrlScheme Uncategorized 2 2.22 ✓
wx.verifyPaymentPassword Payment 2 2.22 ✓

Q
Q

qq.openUrl Misc 4 44.44 ✗
qq.addRecentColorSign UI 3 33.33 ✗
qq.exitMiniProgram App 2 22.22 ✗
qq.getGroupInfo User Info 2 22.22 ✗
qq.getGroupInfoExtra User Info 2 22.22 ✗
qq.getPerformance System 1 11.11 ✗
qq.getQua Uncategorized 1 11.11 ✗
qq.getUserInfoExtra User Info 1 11.11 ✗
qq.invokeNativePlugin System 1 11.11 ✓
qq.notifyNative System 1 11.11 ✗
qq.openScheme Misc 1 11.11 ✓
qq.requestMidasPayment Payment 1 11.11 ✗
qq.toggleSecureWindow UI 1 11.11 ✗
qq.wnsRequest App 1 11.11 ✗

Table 5: The popular hidden APIs invoked by the 1st-party

miniapps.

WeChat andWeCom place security checks on their undocumented
APIs that are related to payment (wx.requestVirtualPayment),
authentication (wx.startFacialRecognitionVerify) and access
to resources (wx.openUrl).

Usage of Hidden APIs (Among the 3rd-partyMiniapps). Based
on the data presented in Table 6, we have discovered that the uti-
lization of undocumented APIs is widespread among the 3rd-party
miniapps, regardless of their category. The percentage of the 3rd-party
miniapps employing undocumented APIs is 29.54%. Our obser-
vations have further revealed that the 3rd-party miniapps in the

2481

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chao Wang, Yue Zhang, and Zhiqiang Lin

Category # U # App %

Business 8,116 14,887 54.52
E-learning 335 2,088 16.04
Education 2,738 40,410 6.78
Entertainment 1,286 5,258 24.46
Finance 262 1,408 18.61
Food 1,107 6,345 17.45
Games 1,777 4,745 37.45
Government 929 7,808 11.90
Health 795 6,422 12.38
Job 177 4,399 4.02
Lifestyle 11,846 35,371 33.49
Photo 136 1,981 6.87
Shopping 44,629 46,202 96.60
Social 217 5,694 3.81
Sports 312 3,378 9.24
Tool 3,423 72,301 4.73
Traffic 580 6,502 8.92
Travelling 309 2,160 14.31

Total 78,974 267,359 29.54

Table 6: The 3rd party WeChat miniapps that have used the

undocumented APIs.

Shopping and Business categories are more inclined to use undocu-
mented APIs, particularly those linked to sensitive operations like
payment.

In addition, we conducted an analysis to comprehend the most
popular undocumented APIs and the frequency of their usage by the
3rd-party miniapps. We categorized the APIs by name and tallied
the number of miniapps that leveraged each API. We have found
that 103 undocumented APIs provided by WeChat were utilized by
their 3rd-party miniapps. Among these APIs, it is notable that 79
of them lack security checks. As shown in Table 7, we present a
summary of undocumented APIs that have been utilized by over
50 mini-apps. It is evident that a majority of these hidden APIs
lack proper security measures. To further understand the details,
we delved into a selection of them to uncover why the 3rd-party
mini-apps have knowledge of them and whether they are being
exploited.

Our investigation has yielded some intriguing findings. (i) While
some APIs are not publicly documented, Tencent does share them
with certain vendors who work closely with them and permit these
vendors to request access. An example of such an API is request-
FacetoFacePayment [25] (which is used by 40,091 miniapps). (ii)
There were some concealed APIs that were once freely available for
use without any security checks. However, Tencent subsequently
banned them. One such API is “openUrl” [22]. Interestingly, even
though Tencent has banned the usage of this API, a whopping
17,140 miniapps have yet to remove the invocation of this API from
their code (obviously, this will not work). This API has already
been banned by Tencent prior to our report. (iii) There are still
some APIs that remain usable until we notify Tencent of the issue.
For example, captureScreen (12 miniapps used this API) can be
utilized to obtain the user’s sensitive information (See §7.2).

7 EXPLOITING UNCHECKED HIDDEN APIS

7.1 Quantifying the Security Risks

Methodology. After quantifying the number of unchecked undoc-
umented APIs, our goal is to gain a better understanding of whether
or not these APIs pose any security risks. While it is possible to

API Name Category # App % *App w/ Check

wx.requestFacetoFacePayment Payment 40,091 14.98 ✓
wx.operateWXData Misc 21,834 8.16 ✗
wx.setPageOrientation UI 18,499 6.91 ✗
wx.enterContact Contact 17,421 6.51 ✓
wx.openUrl Misc 17,140 6.41 ✓
wx.preloadWebview WebView 15,335 5.73 ✓
wx.navigateBackNative Navigate 13,407 5.01 ✓
wx.editTextWithPopForm Misc 13,390 5.00 ✗
wx.openAddressWithLightMode Address 13,390 5.00 ✗
wx.requestPersonalPay Payment 10,263 3.84 ✗
wx.previewMedia Media 6,635 2.48 ✗
wx.drawCanvas Canvas 6,055 2.26 ✗
wx.openBusinessView Misc 3,800 1.42 ✗
wx.onDeviceOrientationChange Device 1,626 0.61 ✗
wx.startFacialRecognitionVerify Bio-Auth 1,239 0.46 ✓
wx.checkIsSupportFacialRecognition Bio-Auth 669 0.25 ✓
wx.notifyBLECharacteristicValueChanged Bluetooth 603 0.23 ✗
wx.getBackgroundFetchData Misc 498 0.19 ✗
wx.setBackgroundFetchToken Misc 485 0.18 ✗
wx.startFacialRecognitionVerifyAndUploadVideo Bio-Auth 464 0.17 ✓
wx.updateApp Update 448 0.17 ✗
wx.openOfflinePayView UI 324 0.12 ✓
wx.sendBizRedPacket Payment 212 0.08 ✓
wx.getVideoInfo Video 193 0.07 ✗
wx.compressVideo Video 148 0.06 ✗
wx.setBLEMTU Bluetooth 127 0.05 ✗
wx.getPhoneNumber User Info 122 0.05 ✗
wx.openVideoEditor Video 118 0.04 ✗
wx.chooseContact Contact 100 0.04 ✗
wx.openChannelsLive Misc 97 0.04 ✗
wx.openAddress Address 96 0.04 ✗
wx.setMenuStyle Menu 74 0.03 ✗

Table 7: The popular hidden APIs invoked by the 3rd-party

WeChat miniapps.

manually analyze each API individually, it is not very practical
or reliable, especially given the vast number of APIs we need to
analyze (more than 1,500 APIs). However, our observation is that
for an undocumented API to have potential security implications,
it must be able to access sensitive information and resources on the
Android system (e.g., location, files, and the internet). Therefore,
if we find that the hidden API calls a native API, we can conclude
that it has the potential to pose security risks. Otherwise, we can
proceed to examine the implementation of each method within that
hidden API, conducting the process recursively as needed.

However, not all invoked APIs manipulate sensitive resources
within the Android system. For example, the android.graphics
API offers graphics tools that allow developers to draw directly onto
the screen. It is evident that invoking these APIs would not result in
any security consequences. Therefore, we consider APIs that access
resources protected by permissions (such as location, the Internet,
and file system) to have security risks. Consequently, we opted to
utilize a lightweight dynamic analysis approach to identify such
APIs. Specifically, we hook all Android APIs that access sensitive
resources, which are typically protected by Android permissions,
and invoke unchecked undocumented APIs one by one. By monitor-
ing whether the sensitive resource access APIs are invoked during
this process, we can determine whether the undocumented APIs
are implemented based on them. Furthermore, we are able to infer
whether these APIs posed any security risks. While this approach
may not uncover all the APIs since the execution of the hidden APIs
may depend on the parameters and may not trigger the underlying
security sensitive APIs, it can at least provide a lower-bound.

Results. We categorize the hidden APIs by analyzing the Android
APIs that utilize the resources and grouping them accordingly. As
shown in Table 8, we have identified 39 APIs (7.77%) in WeChat, 40
APIs (6.75%) in WeCom, 8 APIs (7.08%) in Baidu, 32 APIs (26.67%)

2482

Uncovering and Exploiting Hidden APIs in Mobile Super Apps CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Resource

WeChat WeCom Baidu Tiktok QQ
UUS % # UUS % # UUS % # UUS % # UUS %

Bluetooth 3 0.59 3 0.51 - - - - - -
Camera 1 0.20 1 0.17 - - - - 1 0.34
Location - - - - - - - - 1 0.34
Media 5 0.96 5 0.84 - - 11 9.17 11 3.73
NFC 3 0.59 3 0.51 - - - - - -
Network 16 3.19 16 2.70 7 6.19 20 16.67 24 8.14
Package 3 0.59 4 0.67 1 0.88 - - 1 0.34
Storage 25 4.98 26 4.38 3 2.65 2 1.67 8 2.71
Telephony - - - - - - 1 0.83 - -
Total 39 7.77 40 6.75 8 7.08 32 26.67 38 12.88

Table 8: The sensitive resources that undocumented

unchecked APIs accessed. UUS means undocumented

unchecked sensitive APIs. Please note that a single hidden

API may have access to multiple types of resources. There-

fore, the total number of hidden APIs may not be equal to

the sum of all the APIs that have been identified for each

individual resource type.

in Tiktok and 38 APIs (12.88%) in QQ that invoke Android APIs
that are protected by permissions. It should be noted that WeChat
and WeCom have the most APIs that can access sensitive resources,
while Baidu has the least number of such APIs. This is likely due to
the fact that super apps require more Android permissions. To be
more specific, WeChat requires 92 permissions, which is larger than
that of Baidu (82). These accessed sensitive resources include cam-
era, location, audio, and Internet. It is important to note that hidden
APIs that access sensitive resources do not necessarily mean that
they can access them without requiring permission. Specifically, in
addition to the resources that are safeguarded by Android permis-
sions, we are also including SharedPreferences in our checklist.
This is because miniapps may utilize this Android API to store files
in the space belonging to the super apps, which could potentially
compromise the files of both the super apps and other apps.

Next, our objective is to understand the Android APIs utilized
by the undocumented APIs. For this purpose, we count the number
of Android APIs invoked by each hidden API of the super app, and
classify them based on the names of the corresponding Android
API Packages. We exclude the API packages that only be invoked
once. It can be observed from Figure 8 that the API most commonly
used is SharedPreferences. This is reasonable, as many of the
APIs involve file operations. The available APIs consist of those
dedicated to saving screenshots onto disks, which can be utilized
to launch A3. Besides file access APIs, numerous hidden APIs make
use of Internet access APIs for different purposes, including pay-
ment processing, network resource access, and more. The currently
available APIs comprise those responsible for website access, which
can be leveraged to trigger A1, APIs created for APK downloading
and installation, which can be utilized to launch A2, and APIs for
querying contact information, which can be employed to initiate A5.
Please note that there are also APIs that access NFC, Camera, and
Telephony Manager (which can be used to launch A4). However,
since they have only been invoked once, we have excluded them.

7.2 Attack Case Studies

We present a few case studies to demonstrate how we can exploit
those hidden unchecked (i.e., unprotected) APIs. For proof of con-
cept, we present five case studies covering from arbitrary webpage
access to information theft, as shown in Table 9.

Bl
ue

to
ot

hD
ev

ice
Bl

ue
to

ot
hA

da
pt

er
Bl

ue
to

ot
hG

at
t

Bl
ue

to
ot

hM
an

ag
er

Bl
ue

to
ot

hG
at

tC
ha

ra
ct

er
ist

ic
Bl

ue
to

ot
hG

at
tS

er
vi

ce
Ca

m
er

a
Lo

ca
tio

nM
an

ag
er

M
ed

ia
M

et
ad

at
aR

et
rie

ve
r

M
ed

ia
Ex

tra
ct

or
M

ed
ia

Fo
rm

at
Au

di
oM

an
ag

er
M

ed
ia

Pl
ay

er
Au

di
oD

ev
ice

In
fo

Nf
cA

da
pt

er
Nd

ef
Re

co
rd

Nd
ef

M
es

sa
ge

Lo
ca

lS
er

ve
rS

oc
ke

t
Ne

tw
or

kI
nf

o
Co

nn
ec

tiv
ity

M
an

ag
er

Ns
dM

an
ag

er
W

ifi
In

fo
Ip

Pr
ef

ix
W

ifi
M

an
ag

er
Lin

kP
ro

pe
rti

es
W

ifi
Ne

tw
or

kS
pe

cif
ie

r
Ne

tw
or

kR
eq

ue
st

M
ac

Ad
dr

es
s

W
ifi

Co
nf

ig
ur

at
io

n
Pa

ck
ag

eM
an

ag
er

Sh
ar

ed
Pr

ef
er

en
ce

s

100

101

102

Nu
m

be
r o

f U
se

s

API Usage by Super App
WeChat
WeCom
Baidu
TikTok
QQ

Figure 8: Android APIs used by the hidden APIs from differ-

ent companies.

Attacks Targeted Resources Exploited APIs Vulnerable Super Apps

A1 Web Resources
private_openUrl

openUrl
postMessage

WeChat,WeCom
QQ, Baidu

A2 Web Resources

installDownloadTask
addDownloadTaskStraight

startDownloadAppTask
installApp

WeChat,WeCom
QQ

A3 User information captureScreen WeChat, WeCom
A4 User phonenumber getLocalPhoneNumber Tiktok
A5 User contacts searchContacts WeChat

Table 9: Summary of the attacks we tested

(A1) Arbitrary Web Page Access. We made a malicious miniapp
that can open anywebpage using the hiddenAPI private_openUrl.
Super apps usually have an allowlist of approved domains to prevent
users from accessing untrusted sources (i.e., miniapps usually utilize
the official API wx.request to access websites, and any network
requests made through this API will be thoroughly vetted), but our
malware can bypass these restrictions and navigate to any webpage
without being vetted. This vulnerability allows our miniapp to open
phishing websites and steal sensitive information, which is more
powerful than previous phishing attacks [24]. We were successful
in this attack on several super apps but could not test it on TikTok
because it does not have the necessary APIs. This vulnerability is a
significant security risk for super apps because they have a unique
threat model that differs from web browsers. Super apps only allow
access to specific domains, unlike web browsers that can access any
website. This vulnerability has been confirmed as a high-severity
vulnerability by Tencent.

(A2) Malware Download and Installation. We developed a
malicious miniapp that can download and install malware using
APIs installDownloadTask or addDownloadTaskStraight. Reg-
ular miniapps cannot download or install APK files on a mobile
device because they have limited capabilities and can only down-
load certain file types from specific servers. However, by using these
APIs, a miniapp can download and install harmful APKs, which can
cause significant damage to the user’s mobile security and privacy.

2483

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chao Wang, Yue Zhang, and Zhiqiang Lin

This attack works on both WeChat and WeCom. Finally, although
APKs cannot be installed without the user consent, miniApps is
running inside the Super Apps, and as long as Super App has the in-
stalling permission (which most users will grant because they trust
Super Apps), the malicious miniApp can install arbitrary APKs.

(A3) Screenshot-based Information Theft.Wemade a malicious
miniapp that uses the captureScreen to secretly take screenshots
and store them without the user’s permission. This could be used
by attackers to steal sensitive information like passwords and credit
card numbers from the user’s screen. The consequences of this kind
of attack are serious. For example, the attacker could use them to
steal the victim’s identity and open fake accounts or make illegal
purchases. They could also use the screenshots to commit financial
fraud by stealing the victim’s credit card.

(A4) Phone Number Theft. The malicious miniapps may use
getLocalPhoneNumber to illicitly obtain the user’s phone numbers.
The hidden API is implemented by getLine1Number, which is a
built-in feature of the Android SDK intended to provide the phone
number associated with the SIM card currently inserted in the de-
vice. Nevertheless, access to phone number information from the
SIM card may be blocked or restricted by some carriers or manufac-
turers, thereby rendering this attack unsuccessful in certain cases.

(A5) Contact Information Theft. A miniapp can potentially ac-
cess sensitive information, such as friend list (including the user-
names and WeChat ID) using searchContacts. Our experiments
were conducted primarily in 2021, during which we found that this
hidden API was still functional based on our raw results. Upon re-
porting the issue to WeChat, we were informed that another group
had already reported the problem to them (CVE-2021-40180 [28]),
and that the exploit no longer works on the new version of WeChat.

8 DISCUSSION

Limitations and Future Work. While effective, APIScope has
room for improvement. It’s prone to false positives and negatives,
although none have surfaced during dynamic validation andmanual
checks. Although currently tested on Android, more work is needed
to extend support to other platforms. However, our findings are
generally applicable since miniapp codebases tend to be similar.
Notably, APIScope is restricted to V8 engine-powered super-apps
and isn’t compatible with others like Alipay.

Our study uncovered vulnerabilities in hidden APIs, such as
installDownloadTask and addDownloadTaskStraight, suscep-
tible to SQL injection attacks. Exploiting these, attackers could
manipulate download URLs in super app file tasks. Additionally,
dumpHeapSnapshot and HeapProfiler APIs are flawed, misused
by our miniapp to write to unauthorized files. Android’s efforts to
prevent this fall short, endangering essential files like chat histo-
ries, undermining security measures of super apps. Our experiment
demonstrated overwriting EnMicroMsg.db, an WeChat chat his-
tory file. These vulnerabilities could lead to serious consequences,
motivating us to create a tool identifying hidden API vulnerabilities
(e.g., SQL injection, buffer overflow).

Ethics and Responsible Disclosure. Being an attack work by
nature, we must carefully address the ethical concerns. To this

end, we have followed the community practice when exploiting
the vulnerabilities and demonstrated our attacks. First, for proof of
concept, we developed quite a number of malicious miniapps and
launched attacks against our own accounts and devices. We have
never uploaded our malicious miniapps onto the markets to harm
other users. Second, we have disclosed the vulnerabilities and our
attacks againstWeChat to Tencent in September 2021, and the other
four super apps in November 2021. They have all acknowledged and
confirmed our findings, and so far among them Tencent (the biggest
super app vendor with 1.2 billion monthly users) has confirmed
with 4 vulnerabilities, ranked 1 low, 2 medium, and 1 high, and
awarded us with bug bounty and fixed them. TikTok has been
patched too, but not Baidu at this time of writing.

9 RELATEDWORK

Super Apps Security. More and more super apps have started to
support the miniapp paradigm. Correspondingly, its security has
received increasing attention. For instance, Lu et al. [24] identi-
fied multiple flaws in WeChat, and demonstrated how an attacker
would be able to launch phishing attacks against mobile users and
collect sensitive data from the host apps. Zhang et al. [37] devel-
oped a crawler, and understood the super apps by measuring the
program practices of the provided miniapps, including how often
the miniapp code will be obfuscated. Most recently, Zhang et al. [36]
studied the identity confusion in WebView-based super apps, and
identified that multiple super apps contain this vulnerability. A new
attack named cross-miniapp request forgery (CMRF) [35] was also
recently discovered, which exploits the missing checks of miniapp
IDs for various attacks. Wang et al. introduced TaintMini, a method
for tracing sensitive data flow in mini-programs using a data flow
graph [30]. Through APIDiff, they also identified API variations in
WeChat across platforms by generating test cases, revealing dis-
crepancies in presence, permissions, and outcomes [31]. Zhang et
al. [38] delved into the exploitation of cryptographic keys within
miniapps. Baskaran et al. [12] studied how developers’ unsafe habits
(i.e., hardcoding keys) can lead to mini-app bypassing super-app
authentication. Yang et al. [34] explore the super app paradigm,
studying security measures, threats (13 security mechanisms, 10
threats), and trade-offs. It reveals violations due to system issues,
isolation, and suggests improvements for security and privacy. Dif-
ferently from those works, our study uncovers the undocumented
APIs provided by the super apps and demonstrates how they can
be exploited.

Undocumented API Detection and Exploitation. APIScope is
the first system to detect and exploit undocumented APIs in mobile
super apps likeWeChat. Previous work has focused on detecting
undocumented APIs in other platforms, such as Android and iOS,
or on identifying missing security checks (e.g., [10, 14, 19, 23, 26]).
For example, PScout analyzed undocumented APIs in Android [11],
and Li et al. showed that there are 17 undocumented Android APIs
that are widely accessed by the 3rd-party apps [20]. El-Rewini
and Aafer studied access control vulnerabilities caused by residual
APIs [16]. In addition, there are ways to invoke undocumented
APIs in iOS [17, 32] and detect their abuses [13]. Yang et al. [33]
proposed BridgeScope to identify sensitive JavaScript bridge APIs

2484

Uncovering and Exploiting Hidden APIs in Mobile Super Apps CCS ’23, November 26–30, 2023, Copenhagen, Denmark

in hybrid apps. Undocumented APIs have also been found in the
Java language and exploited by attackers [18]. APIScope builds on
this prior work to specifically focus on mobile super-apps. Finding
hidden APIs in super apps using traditional techniques is difficult
due to the combination of web views, host native apps, and mini app
execution environments, along with code scattering and obfusca-
tion. Our new approach monitors parameter propagation to detect
API usage, using robust signatures based on super classnames and
public methods. We have also created a method for automatic test
case generation and API classification.

10 CONCLUSION

In this paper, we have revealed that super apps often contain undoc-
umented and unchecked APIs for their 1st-party mini-apps, which
can grant elevated privileges such as APK downloading, arbitrary
web view accessing, and sensitive information querying. Unfortu-
nately, these undocumented APIs can be exploited by malicious
3rd-party mini-apps, as they lack security checks. To address this
issue, we have designed and implemented APIScope, a tool that can
statically identify these undocumented APIs and dynamically verify
their exploitability. Through our testing on five popular super apps
such asWeChat and TikTok, we have found that all of them contain
these types of APIs. Our findings suggest that super app vendors
must thoroughly examine and take caution with their privileged
APIs to prevent them from being exploited.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful feedback.
This research was supported in part by NSF award 2330264. Any
opinions, findings, and conclusions in this paper are those of the
authors only and do not necessarily reflect the views of NSF.

REFERENCES

[1] “6 powerful wechat statistics you need to know in 2022,” https://brewinteractive.
com/wechat-statistics/, (Accessed on 08/27/2023).

[2] “Google play store: number of apps 2022 | statista,” https://www.statista.com/
statistics/266210/number-of-available-applications-in-the-google-play-store/,
(Accessed on 08/27/2023).

[3] “Soot:a framework for analyzing and transforming java and android applications,”
http://soot-oss.github.io/soot/, (Accessed on 08/27/2023).

[4] “Tencent app,” https://www.nbd.com.cn/articles/2022-12-01/2576229.html.
[5] “Tiktok - make your day,” https://www.tiktok.com/, (Accessed on 08/27/2023).
[6] “Wechat mini programs showcases new capabilities to celebrate its third anniver-

sary,” https://www.tencent.com/en-us/articles/2200946.html.
[7] “What are wechat mini-programs? a simple introduction - walkthechat,” https:

//walkthechat.com/wechat-mini-programs-simple-introduction/, (Accessed on
08/27/2023).

[8] “WeChat Chinese Documentation,” https://developers.weixin.qq.com/
miniprogram/en/dev/api/, 04 2022, (Accessed on 08/27/2023).

[9] “WeChat English Documentation,” https://developers.weixin.qq.com/
miniprogram/en/dev/api/, 04 2022, (Accessed on 08/27/2023).

[10] M. Alhanahnah, Q. Yan, H. Bagheri, H. Zhou, Y. Tsutano, W. Srisa-An, and
X. Luo, “Dina: Detecting hidden android inter-app communication in dynamic
loaded code,” IEEE Transactions on Information Forensics and Security, vol. 15, pp.
2782–2797, 2020.

[11] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing the android
permission specification,” in Proceedings of the 2012 ACM conference on Computer
and communications security, 2012, pp. 217–228.

[12] S. Baskaran, L. Zhao, M. Mannan, and A. Youssef, “Measuring the leakage and
exploitability of authentication secrets in super-apps: The wechat case,” in 26nd
International Symposium on Research in Attacks, Intrusions and Defenses (RAID
2023), 2023.

[13] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iris: Vetting private api abuse in
ios applications,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015, pp. 44–56.

[14] K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter: Automated
black-box auditing for web authentication and authorization flaws,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security,
2020, pp. 1953–1970.

[15] A. Druffel and K. Heid, “Davinci: Android app analysis beyond frida via dynamic
system call instrumentation,” in International Conference on Applied Cryptography
and Network Security. Springer, 2020, pp. 473–489.

[16] Z. El-Rewini and Y. Aafer, “Dissecting residual apis in custom android roms,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 1598–1611.

[17] J. Han, S. M. Kywe, Q. Yan, F. Bao, R. Deng, D. Gao, Y. Li, and J. Zhou, “Launching
generic attacks on ios with approved third-party applications,” in International
Conference on Applied Cryptography and Network Security. Springer, 2013, pp.
272–289.

[18] S. Huang, J. Guo, S. Li, X. Li, Y. Qi, K. Chow, and J. Huang, “Safecheck: safety
enhancement of java unsafe api,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 2019, pp. 889–899.

[19] S. M. Kywe, Y. Li, K. Petal, and M. Grace, “Attacking android smartphone systems
without permissions,” in 2016 14th Annual Conference on Privacy, Security and
Trust (PST). IEEE, 2016.

[20] L. Li, T. F. Bissyandé, Y. Le Traon, and J. Klein, “Accessing inaccessible android
apis: An empirical study,” in 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2016, pp. 411–422.

[21] S. Liang, The Java native interface: programmer’s guide and specification.
Addison-Wesley Professional, 1999.

[22] Listen, “How to use “openUrl”?” https://developers.weixin.qq.com/community/
develop/article/doc/00000efea1c4785424fc1dd4e51c13.

[23] B. Livshits and J. Jung, “Automatic mediation of {Privacy-Sensitive} resource
access in smartphone applications,” in 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 113–130.

[24] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang, “Demystifying
resource management risks in emerging mobile app-in-app ecosystems,” in Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 569–585.

[25] MayBG, “How to use “requestFacetoFacePayment”?” https://developers.weixin.
qq.com/community/develop/doc/000cce1ebd80006b1e8f5185b56800.

[26] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark hazard: Learning-based,
large-scale discovery of hidden sensitive operations in android apps.” in Pro-
ceedings of the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, 2017.

[27] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective record-replay
and dynamic analysis framework for javascript,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, 2013, pp. 488–498.

[28] vuldb, “Cve-2021-40180,” https://vuldb.com/?id.205138.
[29] W3C, “Miniapp standardization white paper,” https://w3c.github.io/miniapp/

white-paper/, 2020.
[30] C. Wang, R. Ko, Y. Zhang, Y. Yang, and Z. Lin, “Taintmini: Detecting flow of

sensitive data in mini-programs with static taint analysis,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), 2023.

[31] C.Wang, Y. Zhang, and Z. Lin, “One size does not fit all: Uncovering and exploiting
cross platform discrepant apis in wechat,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023.

[32] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, “Jekyll on ios: When benign apps
become evil,” in 22nd {USENIX} Security Symposium ({USENIX} Security 13),
2013, pp. 559–572.

[33] G. Yang, A. Mendoza, J. Zhang, and G. Gu, “Precisely and scalably vetting
javascript bridge in android hybrid apps,” in International Symposium on Re-
search in Attacks, Intrusions, and Defenses. Springer, 2017, pp. 143–166.

[34] Y. Yang, C. Wang, Y. Zhang, and Z. Lin, “Sok: Decoding the super app enigma:
The security mechanisms, threats, and trade-offs in os-alike apps,” arXiv preprint
arXiv:2306.07495, 2023.

[35] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp request forgery: Root causes,
attacks, and vulnerability detection,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022, pp. 3079–3092.

[36] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang, G. Yang, and
M. Yang, “Identity confusion in webview-based mobile app-in-app ecosystems,”
in 31st {USENIX} Security Symposium ({USENIX} Security 22), 2022.

[37] Y. Zhang, B. Turkistani, A. Y. Yang, C. Zuo, and Z. Lin, “A measurement study of
wechat mini-apps,” in Abstract Proceedings of the 2021 ACM SIGMETRICS/Interna-
tional Conference on Measurement and Modeling of Computer Systems, 2021.

[38] Y. Zhang, Y. Yang, and Z. Lin, “Don’t leak your keys: Understanding, measuring,
and exploiting the appsecret leaks in mini-programs.” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security, 2023.

2485

https://brewinteractive.com/wechat-statistics/
https://brewinteractive.com/wechat-statistics/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://soot-oss.github.io/soot/
https://www.nbd.com.cn/articles/2022-12-01/2576229.html
https://www.tiktok.com/
https://www.tencent.com/en-us/articles/2200946.html
https://walkthechat.com/wechat-mini-programs-simple-introduction/
https://walkthechat.com/wechat-mini-programs-simple-introduction/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/community/develop/article/doc/00000efea1c4785424fc1dd4e51c13
https://developers.weixin.qq.com/community/develop/article/doc/00000efea1c4785424fc1dd4e51c13
https://developers.weixin.qq.com/community/develop/doc/000cce1ebd80006b1e8f5185b56800
https://developers.weixin.qq.com/community/develop/doc/000cce1ebd80006b1e8f5185b56800
https://vuldb.com/?id.205138
https://w3c.github.io/miniapp/white-paper/
https://w3c.github.io/miniapp/white-paper/

	Abstract
	1 Introduction
	2 Background
	3 Motivation and Problem Statement
	3.1 Key Observations
	3.2 Problem Statement and Scope
	3.3 Threat Model

	4 Challenges and Insights
	5 APIScope
	5.1 Static API Recognition
	5.2 Dynamic API Classification

	6 Evaluation
	6.1 Experiment Setup
	6.2 Effectiveness

	7 Exploiting Unchecked Hidden APIs
	7.1 Quantifying the Security Risks
	7.2 Attack Case Studies

	8 Discussion
	9 Related Work
	10 Conclusion
	References

