
Don’t Leak Your Keys: Understanding, Measuring, and Exploiting
the AppSecret Leaks in Mini-Programs

Yue Zhang∗
The Ohio State University

Yuqing Yang
The Ohio State University

Zhiqiang Lin
The Ohio State University

ABSTRACT
Mobile mini-programs in WeChat have gained significant popu-
larity since their debut in 2017, reaching a scale similar to that of
Android apps in the Play Store. Like Google, Tencent, the provider of
WeChat, offers APIs to support the development of mini-programs
and also maintains a mini-program market within the WeChat
app. However, mini-program APIs often manage sensitive user data
within the social network platform, both on the WeChat client
app and in the cloud. As a result, cryptographic protocols have
been implemented to secure data access. In this paper, we demon-
strate that WeChat should have required the use of the “appsecret”
master key, which is used to authenticate a mini-program, to be
used only in the mini-program back-end. If this key is leaked in the
front-end of the mini-programs, it can lead to catastrophic attacks
on both mini-program developers and users. Using a mini-program
crawler and a master key leakage inspector, we measured 3,450,586
crawled mini-programs and found that 40,880 of them had leaked
their master keys, allowing attackers to carry out various attacks
such as account hijacking, promotion abuse, and service theft. Sim-
ilar issues were confirmed through testing and measuring of Baidu
mini-programs too. We have reported these vulnerabilities and
the list of vulnerable mini-programs to Tencent and Baidu, which
awarded us with bug bounties, and also Tencent recently released
a new API to defend against these attacks based on our findings.

CCS CONCEPTS
• Security and privacy → Web application security; Mobile
and wireless security.

KEYWORDS
Mobile Security; Mobile Super Apps; Miniprogram Security; Cre-
dentials Leakage

ACM Reference Format:
Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t Leak Your Keys:
Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-
Programs. In Proceedings of the 2023 ACM SIGSAC Conference on Computer

∗This author is now with Drexel University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3616591

and Communications Security (CCS ’23), November 26–30, 2023, Copenhagen,
Denmark. 15 pages. https://doi.org/10.1145/3576915.3616591

1 INTRODUCTION

Amini-program, which is a small program restricted in size, is gain-
ing popularity on social network platforms such asWeChat, which
is the third most popular messenger app with 1.2 billion monthly
active users [1]. These mini-programs have greatly expanded the ca-
pabilities of super-apps, such asWeChat, which has almost become
an “operating system” offering more than 900 APIs [6] for executing
more than 4 million mini-programs [5]. These mini-programs cater
to various daily needs of users, including online shopping in vir-
tual stores and scan-to-buy in physical stores. Among the popular
mini-programs running on the WeChat platform, PinDuoDuo, a
group-buying app, is such an example.

While many social network platforms, like Facebook [14], have
provided APIs for third-party developers to access and use the so-
cial network information collected, super apps such as WeChat
have taken it further and made it even more open with their mini-
program paradigm. Mini-programs can access more generalized
user-specific data directly in the platform, maintained by both the
local host-app and remote cloud, through uniformed APIs. For in-
stance, by invoking getPhoneNumber, a WeChat mini-program
can retrieve a user’s telephone number. A telephone number in
mobile super apps is a crucial identifier used to bind the mini-
program account to a specific user, and the super apps even allow
mini-programs to authenticate their users solely through the phone
number without any passwords. Furthermore, in addition to local
resources and user-specific data, WeChat provides online paid
services like Optical Character Recognition (OCR), which converts
images of text to electronic text, to enrich the functionalities of the
mini-programs without adding heavy barriers.

Super apps have implemented access control mechanisms and
cryptography protocols to secure services access and data trans-
mission to protect privacy-sensitive data and paid services from
potential data leaks and abuse by mini-programs. For instance,
when accessing sensitive user records stored in WeChat servers,
WeChat encrypts the data with a user-specific encryption key
(EK or session key in Tencent’s terminology), which the mini-
program back-end requests with the mini-program’s master key
(MK or AppSecret), the mini-program ID, and the user’s login token
(LT). The mini-program back-end then decrypts the data on the
back-end using the retrieved EK. Similarly, when accessing paid
services provided byWeChat, the mini-program back-end requests
an access token with MK, mini-program ID, and uses the obtained
access token to invoke the services. However, not all developers

2411

https://doi.org/10.1145/3576915.3616591
https://doi.org/10.1145/3576915.3616591
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3616591&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Zhang, Yuqing Yang, and Zhiqiang Lin

understand the implications of the untrustworthiness of the mini-
program front-end, and some mistakenly distribute MKs to the front-
end of the mini-program, as confirmed with our manual analysis
of several well-known mini-programs that store their MKs in the
mini-program code, allowing an attacker to easily obtain their MKs.

This study systematically examines MK leaks in WeChat to un-
derstand their prevalence, root causes, and consequences. Our find-
ings can be applied to other super apps, given the similar mecha-
nisms they share. In particular, we show that MK leaks can result in
severe consequences, including user account hijacking, promotion
abuse, and service theft. For example, in WeChat, a common prac-
tice to index users is through their phone numbers. With the leaked
MK of a vulnerable mini-program, an attacker can query the EK from
the WeChat servers to decrypt any encrypted data delivered from
the servers. This enables access to all data maintained by the vic-
tim’s account, such as the user’s citizen ID and shipping address.
Additionally, the attacker can cause financial losses to the victim,
such as gaining cashback and coupons from vendors by manipu-
lating sensitive data, such as group chat information. Finally, with
the obtained MK, the attacker can consume paid services purchased
by the victim for free.

To gauge the severity and prevalence of the MK leak among mini-
programs, we have conducted a measurement study in this paper.
Specifically, by scanning a dataset of 3,450,586 mini-programs, we
discover 40,880 mini-programs that had leaked their MKs. Our eval-
uation also reveals that vulnerable mini-programs are not limited
to unknown developers, but include popular mini-programs from
high-profile vendors such as Nestle, HP, and Tencent. We have re-
ported the MK leakage vulnerabilities and the list of vulnerable
mini-programs to Tencent and been awarded with bug bounties.
Currently, Tencent is actively working with developers to fix this
vulnerability, and some mini-programs have already removed MKs
from their code. Furthermore, Tencent recently released a new API
to defend against attacks based on our findings [7].

Contributions. We make the following contributions:

• Systematic Understanding (§3). We are the first to sys-
tematically examine the sensitive resource access protocols
of mini-programs, resulting in the discovery of MK leakage
vulnerabilities across multiple platforms such as WeChat.

• Empirical Measurement (§4). We develop a measurement
tool and evaluate it with a large set of 3,450,586mini-programs.
The result shows that currently around 40,880 ofmini-programs
that contain MK leakage vulnerability.

• Practical Attacks (§5). We demonstrate two types of novel
attacks with leaked MKs: attacks against sensitive resources
and attacks against cloud services. We show that these at-
tacks can have devastating impacts in the super app ecosys-
tem, such as hijacking user’s account, manipulating user’s
sensitive data, or consuming cloud services for free.

• Countermeasures (§6). In addition to the responsible dis-
closure of this vulnerability as well as the list of 40,880 mini-
programs that leaked MKs, we also shed light on the possible
mitigations and preventions, particularly on how super app
vendors could have fixed this issue.

Name API Encrypted? Price

Sensitive Data

Phone number getPhoneNumber() ✓ -
User Info wx.getUserProfile()

Gender info.gender ✓ -
Nick name info.nickName ✓ -
Avatar info.avatarURL ✓ -

Shared Info wx.getShareInfo() ✓ -
Promoting Messages wx.authPrivateMessage() ✓ -
Group Chat Info wx.getGroupEnterInfo() ✓ -
WeRundata wx.getWeRunData() ✓ -

Cloud Services

AI services
OCR Services

Bank account openapi.ocr.bankCard ✗ ∼$ 1,000
Business License openapi.ocr.businessLicense ✗ ∼$ 1,000
Drive License openapi.ocr.driveLicense ✗ ∼$ 1,000
National ID openapi.ocr.idCard ✗ ∼$ 1,000
Regular Text openapi.ocr.plainText ✗ ∼$ 1,000
License plate openapi.ocr.vehicleLicense ✗ ∼$ 1,000

AI Chat Bot openapi.ans_node_name ✗ 0
AI Products Classification goodclass2 ✗ 0
Translation multilingualMT ✗ 0
Jokebot jokebot ✗ 0
Products Info Extraction goodinfo ✗ 0

Security Services
Black Market Report weixinSecintelligenceresp ✗ 0
Fraud Detection weOpensecRiskservice ✗ ∼$ 5,000
User Risks Detection weOpenSecuseracctRiskLevel ✗ ∼$ 5,000

Map Services
Poi Search poisearch ✗ ∼$ 260
Address Resolution geoc ✗ ∼$ 260
Coords Conversion coordTrans ✗ ∼$ 260
Poi Suggestion poiSuggestion ✗ ∼$ 260

Table 1: Summary of sensitive resourcesmanaged byWeChat.
The price is for 1 million’s invocations of the services [32].

2 BACKGROUND
2.1 Sensitive Resource Access by Mini-programs
There are two types of resource that can only be accessed by mini-
programs in WeChat: (1) sensitive data and (2) cloud services:

• Sensitive Data Access. Sensitive data refers to data gener-
ated by end-users and collected by mini-programs. For exam-
ple, by examining the APIs provided byWeChat and their of-
ficial documentation [6], we have identified multiple privacy-
sensitive data, as shown in Table 1 (note that other super-
apps such as Baidu have similar APIs that can be invoked
by their mini-programs to access sensitive data). This data
includes user information associated with a particular user,
such as their nickname and phone number, which is kept
on WeChat servers. When accessed by third-party mini-
programs through APIs, WeChat will first encrypt the data
and allow them to be decrypted only with a decryption key
that is fetched from the MK on the mini-program’s back-end.

• Cloud Service Access. Cloud services are the services pro-
vided by WeChat to mini-program developers for freeing
them from re-implementing complex functionalities such
as Optical Character Recognition (OCR) services. Some ser-
vices are not provided for free (e.g., fraud detection services

2412

Don’t Leak Your Keys: Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Mini-programs Mobile apps Web apps

Platforms store users’ data on cloud for API use? ✓ ✗ ✗
API for social network resources? ✓ ✗ ✗
Nature support of encryption based access protocol? ✓ ✗ ✗
Nature support of token based access protocol? ✓ ✗ ✗
Nature support of key management protocol? ✓ ✗ ✗
Apps need to be vetted? ✓ ✓ ✗

Table 2: Comparison of Mini-Programs, Mobile Apps, and
Web Apps.

provided by WeChat cost around $5,000 per million invoca-
tions). Having investigated the services provided byWeChat
on the online developer dashboard, we find that those ser-
vices can be grouped into 3 categories as shown in Table 1:
(1) AI services (e.g., for AI chat bots); (2) Security services,
which detects potential user risks as well as fraud risks; and
(3) Map services (e.g., for searching and resolving locations).
When they are accessed by 3rd-party mini-programs through
APIs, WeChat requires a correct access token obtained from
MK at the mini-program’s back-ends.

2.2 Comparison of Mini-Programs, Mobile
Apps, and Web Apps

As shown in ??, WeChat’s mini-programs function like an “op-
erating system” but differ from traditional mobile OS and web
browsers. Unlike mobile apps, mini-programs don’t need installa-
tion. Super apps store user data in the cloud, letting mini-programs
access it via APIs, while mobile OS and browsers use locally stored
data and third-party services like Amazon’s cloud. Mini-programs
have built-in encryption, token-based access, and key management
protocols, whereas other apps can add these independently. Both
mini-programs and mobile apps undergo platform vetting, but web
apps don’t, as anyone can create web pages.

3 UNDERSTANDING THE ATTACK SURFACE
3.1 Parties Involved
Sensitive data access is complicated in WeChat mini-programs,
since multiple parties including WeChat client, WeChat server,
mini-program front-end, and mini-program back-end all need to
be involved, as shown in Figure 1.

• WeChat Client (WC) provides a JavaScript runtime envi-
ronment that enables developers to write and run their mini-
programs using JavaScript. Moreover, it also offers a range
of APIs that support a wide range of needs in mini-program
development, including UI rendering, resource access, and
network accessing.

• WeChat Server (WS) is crucial in theWeChatmini-program
ecosystem. They vet submitted mini-programs (similarly to
how Google Play vets Android apps), and securely store and
deliver sensitive resources (e.g., services and data) to trusted
mini-programs upon request.

• Mini-program’s Front-end (MF) handles UI rendering,
user requests processing, and communicates with the mini-
program back-end to execute specific business logic like

Definition Length
(bits)

Generated
by

Involved
Parties

Validation
Period

Master Key (MK) 256 WS MB, WS ∞
Encryption Key (EK) 128 WS MB, WS User-specific
Login Token (LT) 128 WS WS, MB, WC, MF 5 mins
Access Token (AT) 512 WS WS, MB 120 mins

Table 3: Summary of various keys used inWeChat ecosystem.

Host App Mini-app (Receiver)

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ invokeHandler(API,Msg)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Msg)

 ❺ LaunchReceiver(appID)Offline

 ❻ onShow

❼ loadConfig(Msg)

Offline

Msg

Attacker Host App

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ saveConfig(Msg)

 ❸ LaunchReceiver(appID)

Offline

❹ loadConfig(Msg)

Offline

Msg

 ❻ navigateBackMiniprogram(Msg)

Mini-app (Victim)

 ❼ saveConfig(Msg)

 ❽ LaunchReceiver(appID)

❾ loadConfig(Msg)

 onShow

 onShow

Mini-app (Sender)

WeChat Front-endFront-endBack-end Back-end

Key Key

 ❷ getKey(appIDr)

❸ C = Enc(Key,Req)

❶ Key Negotiation

❾ Req = Dec(Key,C)

 ❽ Key = getKey(appIDs)

❺ saveConfig(C)

 ❻ loadConfig(C)

❹ Send(C)

 ❼ Send(C)

appIDrappIDs

Mini-app’s Back-end

(Victim)

Msg

 ❺ Send(Msg)

Mini-app’s Back-end

(Sender)

Msg

Mini-app’s Back-end

(Receiver)

WeChat Front-end

❶ navigateToMiniprogram(appID,Req)

Req, appID

 ❷ invokeHandler(API,Req)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Req)

 ❺ LaunchReceiver(appID)

❼ loadConfig(Req)

Req

Front-end

Req

Back-end

Mini-app (Receiver)

Mini-app’s Back-end

(Sender)

Mini-app’s Back-end

(Receiver)

Mini-app (Sender)

Host App

❽ Verify(appID)

Host App Mini-app (Receiver)

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ invokeHandler(API,Msg)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Msg)

 ❺ LaunchReceiver(appID)

Offline
 ❻ onShow

❼ loadConfig(Msg)

Offline

Msg

Mini-app (Sender)
Mini-app’s Back-end

(Sender)

Msg

Mini-app’s Back-end

(Receiver)

❽ Verify(appID)

Optional Optional

Back-end

 ❻ callBack

Sender Receiver

I

II

III

WeChat Main-process Front-end

❶ navigateToMiniprogram(appID,Req)

Req, appID

 ❷ invokeHandler(API,Req)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Req)

 ❺ LaunchReceiver(appID)

❼ loadConfig(Req)

Req

Front-end

Req

Back-end

❽ Verify(appID)

Back-end

 ❻ callBack

Sender Miniapp Receiver Miniapp

I

II

III

WeChat Main-process

Req, appID

❸ saveConfig(Msg)

 ❷ LaunchReceiver(appID)

❹ loadConfig(Msg)

Front-end

 ❼ saveConfig(Msg)

 ❽
LaunchReceiver(appI

D)

❾ loadConfig(Msg)

 onShow

Back-end

 ❹ navigateBackMiniprogram(Req)

Front-endBack-end

❶ navigateToMiniprogram(appID,Req)

Sender Miniapp Receiver Miniapp

 ❺ StealInfo(Req)

 ❸ Consume(Req)

Sender Receiver

(I)

(II)

(II)

(IV)

Miniapp's Front-end Back-end

MK(I)

(II)

(III)

❶ getLoginToken

❷ sendLoginToken(LT)

LT

❸ getEK(appID, MK, LT)

EK

❹ getUserData()

❺ C = Enc(EK,D)

 ❻ send(C)

❼ D = Dec(EK,C)

WeChat’s Front-end WeChat’s Back-endAttackers Miniapp’s Back-end

MK

(I)

❶ getLoginToken

❷ sendLoginToken(LTeve)

LTeve

❸ getEK(appID, MK, LT)

EK

❸ getUserData()

❹ D’eve = Enc(Ek’eve,Deve)

❼ D = Dec(EKeve,D’Alice)

MK

❷ getEK(appID, MK, LTeve)

EKeve

❺ Deve = Dec(Ekeve, D’eve)

❻ D’Alice = Enc(Ekeve, DAlice)

(II)

WeChat’s Front-end WeChat’s Back-end

WeChat

Attacker

WeChat

WeChat’s

Server (WS)
Attackers

Mini-Program’s

Back-end (MB)

MK

❶ getLoginToken

LTeve

❸ getUserData()

❹ D’eve = Enc(Ek’eve,Deve)

❼ D = Dec(EKeve,D’Alice)

MK

❷ getEK(appID, MK, LTeve)

EKeve

❺ Deve = Dec(Ekeve, D’eve)

❻ D’Alice = Enc(Ekeve, DAlice)

Mini-Program's

Front-end (MB)

Mini-Program's

Back-end (MB)

MK

(I)

(II)

(III)

❶ getLoginToken

❷ sendLoginToken(LT)

LT

❸ getEK(appID, MK, LT)

EK

❹ getUserData()

❺ C = Enc(EK,D)

 ❻ send(C)

❼ D = Dec(EK,C)

WeChat

Client (WC)
WeChat

Server (WS)

(I)

(II)

WeChat’s Back-end AttackersMiniapp’s Back-end

MK

MK

AT

❶ getAccessToken(appID, MK)

❶ getAccessToken(appID, MK)

❷ InvokeService(AT)

AT

M
a
li

ci
o
u

s
C

a
se

B
en

ig
n

 C
a

se

WeChat’s

Client (WC)

Services

❷ InvokeService(AT)

Services

WeChat’s

Back-end

Miniapp’s

Back-end

MK

➀ getAccessToken(appID, MK)

➁ InvokeService(AT)

AT

Services

 ➀, ➁

Figure 1: Sensitive data access protocols in WeChat mini-
programs

online shopping and ride-hailing. Unfortunately, MF is de-
veloped using JavaScript, making it susceptible to reverse
engineering.

• Mini-Program’s Back-end (MB) is used to store user spe-
cific data related to the mini-program. These MBs are the
backbones of mini-programs that handle both user data gen-
erated from front-end, and user sensitive resources delivered
by WeChat severs.

3.2 Cryptographic Access Control
The MK is a vital key for cryptographic access control in mini-
programs, generated by WeChat upon authentication. WeChat
offers two MK-based protocols for accessing resources: encryption-
based for sensitive data and token-based for sensitive services.

Encryption-based Access Control. To safeguard sensitive user
data from abuse or manipulation, WeChat encrypts it when ac-
cessed by mini-programs through APIs. The encrypted data is sent
back to the mini-program’s back-end for decryption and processing,
following a three-phase process shown in Figure 1:

2413

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Zhang, Yuqing Yang, and Zhiqiang Lin

Keys Data Services Feasible

MK Manipulating Data (✓) Consuming Services for Free (✓) ✓
EK Manipulating Data (✓) N/A ✓
LT Collecting Other’s Data (✗) N/A ✗
AT N/A Consuming Services for Free (✓) ✓

Table 4: Summary of possible attacks. “✓” means the corre-
sponding attack works, while “✗” means does not.

(I) Login Token (LT) Acquisition. WeChat assigns a unique
appID and MK to each mini-program to verify their identity
and developers. However, since sensitive data is linked to
users rather than mini-programs, appID and MK alone are
insufficient. To ensure users only access their data, WeChat
generates a user-specific LT when they log in, which is com-
bined with the appID and MK to obtain the EK (Step ❶). As
shown in Table 3, LT is a 128-bit hex string valid for only five
minutes [18], generated during user login to the WeChat
server. MF delivers it to MB for querying EK within the time
window (Step ❷). This design prevents unauthorized collec-
tion of user data at scale by MB.

(II) Encryption Key (EK) Fetching (❸). EK encrypts user data
and requires appID, MK, and LT for retrieval. To balance pro-
tection against enumeration attacks and mini-program data
processing performance, the EK has a dynamic expiration
period, set to five minutes by default [18]. Its expiration time
may be extended or reduced based on API usage frequency.
Although LT is discarded after obtaining the EK, there’s a pos-
sibility of two separate EK acquisitions returning the same
EK within the expiration period, despite different LTs.

(III) Sensitive Information Encryption and Decryption. MF
uses data fetchingAPIs to retrieve user data (e.g., getPhoneNu
mber) from WS (Step ❹). WS identifies the user and mini-
program from WC’s request, encrypts sensitive data using
the corresponding EK from stage-II, and sends encrypted
data to WC (Step ❺). WC forwards the encrypted data to
its back-end (Step ❻). Decryption should only occur at the
back-end using the EK obtained in stage-III, since the front-
end is untrusted. The back-end decrypts the data (Step ❼)
to obtain the plaintext of sensitive data. The MB may then
use this data for specific business logic, such as retrieving
app-specific data based on decrypted phone number.

Token-based Access Control. WeChat platform has provided
various sensitive services that encapsulate complex functionalities
such as AI chat bot or OCR for mini-program developers to pur-
chase and use. The use of these services is quite straightforward,
which is a two-step process: (i) the MB provides the appID and the
mini-program MK to the WS in exchange for API access token AT
(Step ➀); (ii) then, when invoking services provided by WeChat,
the MB has to attach both AT and the data sent to WS (Step ➁). As
shown in Table 3, AT is 512 bits long and valid for 2 hours.

3.3 Threat Model of WeChat
WeChat has defined four types of keys, each with a distinct pur-
pose, and WeChat has made different assumptions about the secu-
rity of these keys.

• MK serves as the root of WeChat security and is used for
querying EK and AT. WeChat assumes that the MK should
be strictly held within the MS and never disclosed to MF or
any other parties.

• EK is responsible for encrypting and decrypting sensitive
information, such as phone numbers. It is queried by MS and
kept there until it expires. WeChat assumes that only MS,
and not MF, can retrieve the EK and that all encrypted data
must be consumed at MS using the EK.

• LT is crucial for authenticating a user, as it is user-specific
and only the data owner can produce a valid LT based on the
user’s credentials. Additionally, LT is used as the index for
querying the session key. WeChat assumes that attackers
cannot obtain LT, as doing so would require them not only
to install malware, but also to obtain root privileges to access
WeChat’s data.

• AT is a critical key for enabling the consumption of paid
online services. It is queried by MS and remains stored there
until it expires, typically after two hours. WeChat assumes
that the consumption of services using AT is carried out by
MS instead of MF.

3.4 Attack Surface Analysis
While developers are responsible for managing the MK, some may
not adhere to WeChat’s development guidelines [2]. This can
result in developers hardcoding or distributing keys to the wrong
party, such as distributing MS keys to MF, leading to key leaks to
attackers. Violation of the underlying assumptions can result in
possible attacks, as shown in Table 4.

• With the Leak of MK. Developers may hardcode the MK in
MF, creating opportunities for attackers to obtain it through
unpacking the MF. If the MK is leaked, attackers can always
obtain the EK to encrypt and decrypt data, compromising con-
fidentiality and integrity. They can also use the MK to obtain
an access token and consume services for free. As such, the
first assumption made byWeChatmay not always hold true.

• With the Leak of EK. It could be possible that careless mini-
program developers can accidentally send the EK obtained on
MB to MF. If attackers obtain the EK, again, the attacker can
launch data manipulation attacks, although this attack can
last for a short period of time in a particular session and the
attacker has to keep refreshing EK from the mini-program
servers. In addition, in the event that the MK is leaked, the
attacker is able to obtain EK through the encryption-based
access control protocol, though this would be limited to the
attacker’s own EK. As a result, the second assumption made
by WeChat may not always hold true.

• With the Leak of LT. Since LT is linked to an individual user,
attackers can create a malicious mini-program with their
own MK to retrieve and decrypt all sensitive information of a
user who leaks their LT. However, obtaining the LT is difficult,
as user authorization is required explicitly. Though attackers
can try to hack into the user’s account or break WeChat’s
mechanism to generate a valid LT associated with a specific

2414

Don’t Leak Your Keys: Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs CCS ’23, November 26–30, 2023, Copenhagen, Denmark

user, these methods are not practical. Therefore, while at-
tackers can obtain their own LT, they cannot obtain others’
LT. Third assumption made by WeChat remains valid.

• With the Leak of AT. If attackers obtain an AT, they can
misuse it for up to two hours before it expires. Within this
timeframe, they can exploit the compromised AT to consume
services that may not be free, resulting in financial charges
against the developers. Although it may not be practical for
attackers to obtain an AT by compromising the back-end of
the mini-program, developers may mistakenly distribute ATs
to MF, and attackers can also query ATs using a leaked MK.
As a result, the fourth assumption made by WeChat can
also be compromised.

4 MEASURING THE MK LEAKS
Our investigation confirmed that the keys could be leaked in the
front-end of a mini-program, as revealed by the attack surface (§3.4).
However, it remains unclear how widespread key leaks are among
mini-programs. Therefore, we have conducted ameasurement study
to answer the following research questions:

• RQ1:What are the categories of the MK leakedmini-programs?
• RQ2: What are their ratings?
• RQ3: What are the their accessed resources?
• RQ4: Who are their developers?
• RQ5: When are their latest update?
• RQ6: Are there any high profile MK leaked mini-programs?

4.1 Scope and Methodologies

Scope. In this study, we focus on systematically studying MK leaks
to understand their prevalence, root causes, and consequences. We
do not aim to detect attacks caused by leakage of the EK, LT, or
AT. This is because as outlined in §3.3 and §3.4, a leaked MK can
result in the exposure of EK and AT, and it is not possible for LT
to be leaked. We use the example of WeChat to explain MK-based
access control protocols, but note that similar protocols are used
on other mini-program platforms, such as Baidu [4] and Alipay.
Therefore, we focus on WeChat in particular due to its popularity
and support for both sensitive data access and cloud service access.

Collecting Mini-Programs. We used the innersearch API (ob-
tained through reverse engineering of WeChat) to search for and
download mini-programs, and the waVerifyInfo API to collect
developer information [3], if available (as shown in Table 5). We
employed 1,000 commonly used Chinese characters and 1,000 com-
monly used English words as seed keywords, expanding them based
on the names and descriptions of the collected mini-programs, re-
sulting in 14,020 keywords that retrieved 3,450,586 mini-programs.
Note that theWeChatmarket has about 4millionmini-programs [5],
making our dataset likely to cover the majority of them.

Identifying the MK Leaked Mini-Programs. We checked if the
mini-programs had leaked their MK(s) by identifying all 256-bit hexa-
decimal digit strings and pruning them based on the MK validation
API (the fourth API in Table 5). We used a regular expression with
a 32-byte hex-string format of [a-f0-9]32 to search for possible

API Description

Mp.wx.qq.com/wxa-cgi/innersearch Mini-program Searching API
Parameters
query A keyword to search the mini-programs
client_version The WeChat client version
time The timestamp of this query
cookie WeChat client token
... Other omitted parameters

Return value
appID The app ID of the mini-program
label The category of the mini-program
rating The user rating of the mini-program
... Other omitted fields in the return value

Wx.nativgateToMiniProgram() Mini-program Downloading API
Parameters
appID The app ID of the mini-program
version The version (released or debug)

Return value The packed file of the mini-program

Mp.weixin.qq.com/mp/waVerifyinfo Developer Information Downloading API
Parameters
appID The app ID of the mini-program
deviceType The device type of mobile (e.g., Android)
netType Network Connection Information (e.g., WiFi)

Return value
developerInfo The developer information of the mini-program
updateDate The relase date of the mini-program

Api.weixin.qq.com/cgi-bin/token A MK Validation API
Parameters
appID The app ID of the mini-program
secret A MK
grant_type The access type

Return value An access token or error message

Api.weixin.qq.com/sns/jscode2session EK query API (getEK())
Parameters
appID The app ID of the mini-program
secret The Master key (MK)
jscode A login token (LT)

Return value The encryption key (EK)

Table 5: The five important APIs used in our study.

MKs in the mini-program code and validated them using the MK vali-
dation API. The API returns the actual AT if the MK is correct, else it
returns an error code. All mini-programs’ backend, by default, has
its corresponding AT due to free cloud services like Translation as
reported in Table 1. With the downloaded 3,450,586 mini-programs,
we identified 40,880 mini-programs that leaked their MKs.

4.2 The Results
With the detected 40,880 mini-programs, we next seek to answer
the research questions set out earlier by analyzing their category,
ratings, accessed resources, their developers, and last update. In the
following, we provide these results in greater details.

(RQ1) Categories of the MK Leaked Mini-programs. Most mini-
programs in the WeChat mini-program store have been classi-
fied into specific categories, as shown in Table 6. We observed
that the percentage of MK leaked mini-programs and the data or
services they accessed (e.g., phone number, user info, share info,
werun info, AI, security, and location) was diverse, indicating that
MK leakage was widespread across mini-program categories. How-
ever, some categories (e.g., lifestyles and shopping) had a slightly
higher number of vulnerable mini-programs due to the larger num-
ber of mini-programs in those categories. On the other hand, tool,
government, and games had a higher percentage of vulnerable mini-
programs. Unfortunately, all these mini-programs are crucial for
users’ daily lives as they often provide essential services (e.g., QR
code scanning), involve real user identity information and critical

2415

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Zhang, Yuqing Yang, and Zhiqiang Lin

Category
Sensitive Data Cloud Services

Phone number (A1) User info (A1) Share info (A2) Werun info (A2) AI (A3) Security (A3) Location (A3)

ind. # com. % vuln # ind. # com. % vuln # ind. # com. % vuln # ind. # com. % vuln # ind. # com. % vuln # ind. # com. % vuln # ind. # com. % vuln

Business 0 242 0.59 8 644 1.59 0 49 0.12 0 9 0.02 0 5 0.01 10 855 2.12 0 0 0.00
Education 1 775 1.90 114 3,065 7.78 15 635 1.59 0 33 0.08 0 6 0.01 132 3,957 10.00 0 1 0.00
e-Learning 0 39 0.10 2 103 0.26 2 22 0.06 0 9 0.02 0 0 0.00 37 134 0.42 0 0 0.00
Entertainment 0 42 0.10 6 234 0.59 3 74 0.19 0 2 0.00 0 0 0.00 11 268 0.68 0 0 0.00
Finance 0 33 0.08 0 74 0.18 0 10 0.02 0 3 0.01 0 2 0.00 0 96 0.23 0 0 0.00
Food 0 511 1.25 8 1,369 3.37 0 158 0.39 0 6 0.01 0 0 0.00 16 1,846 4.55 0 0 0.00
Games 1 23 0.06 133 422 1.36 92 170 0.64 0 3 0.01 0 0 0.00 250 473 1.77 0 0 0.00
Government 0 141 0.34 24 524 1.34 0 47 0.11 0 7 0.02 0 3 0.01 24 700 1.77 0 0 0.00
Health 0 161 0.39 4 448 1.11 1 47 0.12 1 11 0.03 0 4 0.01 4 559 1.38 0 0 0.00
Photo 0 2 0.00 1 32 0.08 0 4 0.01 0 1 0.00 0 0 0.00 1 36 0.09 0 0 0.00
Job 0 101 0.25 1 275 0.68 0 36 0.09 0 1 0.00 0 2 0.00 2 390 0.96 0 0 0.00
Lifestyle 5 1,440 3.53 93 4,183 10.46 4 590 1.45 0 22 0.05 0 9 0.02 124 5,658 14.14 0 1 0.00
Shopping 0 1,885 4.61 41 7,174 17.65 6 1,434 3.52 1 65 0.16 0 9 0.02 52 9,504 23.38 0 1 0.00
Social 1 55 0.14 13 282 0.72 0 62 0.15 0 6 0.01 0 3 0.01 15 320 0.82 0 0 0.00
Sports 1 38 0.10 6 224 0.56 1 25 0.06 3 44 0.11 0 0 0.00 8 253 0.64 0 0 0.00
Tool 8 761 1.88 181 3,332 8.59 33 432 1.14 8 43 0.12 0 17 0.04 466 4,327 11.72 2 2 0.01
Traffic 1 161 0.40 6 465 1.15 0 33 0.08 0 2 0.00 0 4 0.01 8 665 1.65 0 1 0.00
Travelling 0 31 0.08 1 137 0.34 0 12 0.03 0 0 0.00 0 0 0.00 2 191 0.47 0 0 0.00
Uncategorized 0 0 0.00 0 3 0.01 0 1 0.00 0 0 0.00 0 0 0.00 0 5 0.01 0 0 0.00

TOTAL 18 6,441 15.80 642 22,990 57.81 157 3,841 9.78 13 267 0.68 0 64 0.16 1,162 30,237 76.81 2 6 0.02

Table 6: Statistics of the identified vulnerable mini-programs. Note that ind. stands for individual developers and com. stands
for enterprise developers (i.e., by company).

Category
Ratings distribution

1.0-1.9 2.0-2.9 3.0-3.9 4.0-4.9 5.0 Unrated

ind. # com. % vuln # ind. # com. % vuln # ind. # com. % vuln # ind. # com. % vuln # ind. # com. % vuln # ind. # com. % vuln

Business 0 0 0.00 0 1 0.00 0 4 0.01 0 38 0.09 0 4 0.01 12 812 2.02
Education 0 1 0.00 0 4 0.01 0 38 0.09 7 216 0.55 0 15 0.04 126 3,714 9.39
e-Learning 0 0 0.00 0 2 0.00 0 4 0.01 0 11 0.03 0 1 0.00 37 118 0.38
Entertainment 0 2 0.00 0 7 0.02 2 17 0.05 1 23 0.06 0 0 0.00 8 226 0.57
Finance 0 0 0.00 0 2 0.00 0 2 0.00 0 11 0.03 0 0 0.00 0 82 0.20
Food 0 0 0.00 0 1 0.00 0 2 0.00 0 49 0.12 0 2 0.00 16 1,795 4.43
Games 0 0 0.00 18 23 0.10 63 124 0.46 9 37 0.11 0 0 0.00 161 294 1.11
Government 0 0 0.00 0 2 0.00 0 7 0.02 0 48 0.12 0 1 0.00 24 645 1.64
Health 0 0 0.00 0 1 0.00 0 3 0.01 0 49 0.12 0 2 0.00 4 510 1.26
Photo 0 1 0.00 0 0 0.00 0 2 0.00 1 7 0.02 0 0 0.00 0 27 0.07
Job 0 0 0.00 0 1 0.00 0 10 0.02 0 29 0.07 0 1 0.00 2 351 0.86
Lifestyle 0 0 0.00 0 1 0.00 0 37 0.09 3 227 0.56 1 19 0.05 120 5,398 13.50
Shopping 0 2 0.00 0 0 0.00 2 23 0.06 10 299 0.76 0 26 0.06 42 9,205 22.62
Social 0 0 0.00 0 3 0.01 0 5 0.01 1 38 0.10 0 0 0.00 14 279 0.72
Sports 0 0 0.00 0 0 0.00 0 2 0.00 0 33 0.08 1 6 0.02 7 213 0.54
Tool 0 3 0.01 3 24 0.07 4 48 0.13 19 325 0.84 4 20 0.06 441 3,955 10.75
Traffic 0 0 0.00 0 5 0.01 0 16 0.04 0 71 0.17 0 3 0.01 8 574 1.42
Travelling 0 0 0.00 0 0 0.00 0 3 0.01 0 12 0.03 0 1 0.00 2 175 0.43
Uncategorized 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 5 0.01

TOTAL 0 9 0.02 21 77 0.24 71 347 1.02 51 1,523 3.85 6 101 0.26 1,024 28,378 71.92

Table 7: Distribution of the detailed ratings of mini-programs

administrative services (e.g., government tools), or involve payment
(e.g., shopping) and in-game trading.

(RQ2) Ratings of the MK Leaked Mini-programs. Compared to
traditional platforms like Google Play, the mini-program store does
not furnish information about the total number of downloads for
each mini-program. Nevertheless, we can estimate its popularity
by evaluating its rating. It is worth noting that the rating becomes
available only after a sufficient number of users have employed
and rated the corresponding mini-program [47]. By utilizing this
rating, we can gauge the popularity of a mini-program and link it

to the corresponding mini-program category, as demonstrated in
Table 7. The table illustrates that mini-programs with lower ratings
are more likely to have a greater number and percentage of vulner-
able mini-programs (i.e., MK leaked mini-programs). This is likely
because developers of mini-programs with higher ratings may de-
vote more effort to ensuring security and privacy to maintain their
competitive edge.

(RQ3) Accessed Resources of the MK Leaked Mini-programs.
As shown in §5, attackers can use different attacks depending

2416

Don’t Leak Your Keys: Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs CCS ’23, November 26–30, 2023, Copenhagen, Denmark

20
17

01
20

17
07

20
18

01
20

18
07

20
19

01
20

19
07

20
20

01
20

20
07

20
21

01
20

21
07

20
22

01

0
200
400
600
800

1000
1200 rated

unrated

20
17

01
20

17
07

20
18

01
20

18
07

20
19

01
20

19
07

20
20

01
20

20
07

20
21

01
20

21
07

20
22

01

0
200
400
600
800

1000
1200 ind

com

20
17

01
20

17
07

20
18

01
20

18
07

20
19

01
20

19
07

20
20

01
20

20
07

20
21

01
20

21
07

20
22

01

0
200
400
600
800

1000
1200 accessed

nonaccessed

20
17

01
20

17
07

20
18

01
20

18
07

20
19

01
20

19
07

20
20

01
20

20
07

20
21

01
20

21
07

20
22

01

0

500

1000

1500

2000

2500
data
service

Figure 2: The trending of all vulnerable mini-programs w.r.t rating, developer, accessed resource type, and accessed data type.

Associated
Apps

Rated Unrated Total

com # apps # com # apps # com # apps
>=20 0 0 16 417 16 417
19 0 0 2 38 2 38
18 0 0 2 36 2 36
17 0 0 1 17 1 17
16 0 0 3 48 3 48
15 1 15 2 30 3 45
14 0 0 1 14 1 14
13 1 13 4 52 5 65
12 3 36 6 72 9 108
11 0 0 1 11 1 11
10 0 0 9 90 9 90
9 3 27 9 81 12 108
8 1 8 24 192 25 200
7 1 7 29 203 30 210
6 1 6 26 156 27 162
5 6 30 69 345 75 375
4 7 28 155 620 161 648
3 21 63 333 999 353 1,062
2 100 200 1,300 2,600 1,388 2,800
1 1,624 1,624 22,357 22,357 23,805 23,981

TOTAL 1,769 2,057 24,349 28,378 25,781 30,435

Table 8: Numbers of vulnerable mini-programs associated
with the same software development enterprises.

on the sensitive resources accessed by mini-programs. To under-
stand the impact of MK leaks in these vulnerable mini-programs,
we present statistics in Table 6 based on APIs used. In particu-
lar, we examined the API names directly in the code to identify
mini-programs that utilized sensitive data. Moreover, we employed
api.weixin.qq.com/cgi-bin/get_current_selfmenu_info to in-
spect the specific services utilized by a mini-program (without in-
voking these services to verify their availability). Our findings show
that 24,701 mini-programs accessed sensitive data and accessed at
least one cloud service, making them vulnerable to attacks such as
account hijacking (A1), promotion abuse (A2), and service theft (A3)
(The details of those attacks will be introduced in §5). Interestingly,
we also discovered that there are 6,907 vulnerable mini-programs
that do not access any MK-related resources at all. However, these
mini-programs may still be vulnerable since they could potentially
be utilized to access MK-related resources in the future.

(RQ4) The Developers of the MK Leaked Mini-programs. We
now investigate the developers of these vulnerable mini-programs
and their frequency of errors. There are two types of developers:
individual and enterprise. Tencent provides enterprise name and
tax ID for enterprise developers, but not for individual developers.
Thus, we can only present statistics for vulnerable mini-programs

developed by companies, excluding 4,676 developed by individuals.
For companies, we collected developer information if available,
and Table 8 shows the statistics of associated mini-programs. Most
companies developed only one vulnerable mini-program, but some,
such as “Suzhou Yutianxia”, developed 30.

(RQ5) Latest Update of the MK Leaked Mini-programs. The
mini-program’s metadata includes the latest updated timestamp,
allowing us to determine how long the MK leakage vulnerability
has existed. We also analyze the resources accessed, ratings, and
developer information grouped by the latest update month to ob-
serve trends over time (Figure 2). Our observations are as follows:
(i) MK leakage vulnerability has been there since the first year when
Tencent introduced the mini-program into WeChat (e.g., a Calen-
dar mini-program leaked the MK in January 2017 and was never
updated). (ii) Over time, the number of vulnerable mini-programs
decreased regardless of the accessed data resource or rating, but
those developed by companies still constitute a significant portion
of the vulnerable mini-programs.

(RQ6) High Profile MK Leaked Mini-programs. Lastly, we in-
vestigate the implications of our attacks by identifying the vulner-
able mini-programs. We found 107 mini-programs developed by
Fortune top-500 companies, and those with multiple vulnerable
mini-programs are listed in Table 9. Notably, (i) some high-profile
companies made the same mistake across multiple mini-programs
(e.g., Nestle); (ii) Tencent, the WeChat provider, is the top-ranked
company with MK leaks in their mini-programs; (iii) some mini-
programs from high-profile companies only leaked their MKwithout
accessing sensitive information. As discussed, while these mini-
programs cannot be attacked currently, they remain vulnerable if
new functionalities are added (e.g., phone number fetching).

5 EXPLOITING THE MK LEAKS
We have found vulnerable mini-programs that exposed their app se-
crets, allowing for two types of attacks: (i) attacks against sensitive
data (§5.1), where the attacker aims to modify sensitive data; and
(ii) attacks against cloud services (§5.2), where the attacker uses
the victim mini-program’s paid cloud services without cost.

5.1 Attacks Against Sensitive Data

AttackWorkflow. In our threat model, the attacker can obtain the
mini-program front-end package and manipulate network packets.
This allows them to unpack the program and trigger sensitive data

2417

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Zhang, Yuqing Yang, and Zhiqiang Lin

Company Ratings Category Data Attacks

Tencent

5.0 games ➀ A1
5.0 tool ➀ A1
5.0 entertainment ➀,➁ A1, A2
4.6 health
5.0 entertainment ➀ A1
4.8 tool ➀ A1
4.7 education
4.6 games ➀ A1
4.7 social ➀ A1
4.6 tool ➀ A1
5.0 tool
5.0 e-learning ➂ A2
5.0 health ➀ A1
5.0 games ➀ A1

games ➀ A1
education A3

5.0 games ➁ A2

Nestle

4.3 food ➂,➀ A1, A2
5.0 tool ➂,➀ A1, A2

lifestyle ➂,➀ A1, A2
4.9 food ➂ A2
4.8 shopping ➂,➀ A1, A2
4.9 shopping ➂,➀ A1, A2

Sanofi
4.7 health ➂,➀ A1, A2
5.0 business ➂,➀ A1, A2
5.0 business ➂,➀ A1, A2

business ➂,➀ A1, A2

China Unicom
5.0 finance ➂ A2
5.0 finance ➂,➀ A1, A2
4.8 tool
4.1 shopping ➂ A2

Bank Of China
4.3 shopping ➀ A1
4.3 shopping ➀ A1

business ➀ A1

Hitachi
5.0 tool ➀ A1
5.0 tool ➀ A1
5.0 business ➀ A1

Shou Gang tool A3
5.0 lifestyle

China Mobile 4.3 finance
4.7 finance

ICBC 5.0 lifestyle ➂ A2
traffic ➀,➁,➃

Volkswagen 5.0 shopping ➀ A1
shopping ➀,➁

Table 9: The top-10 Fortune 500 companies that have the
most number of mini-programs leaked the MK. ➀ user info;
➁ shared info; ➂ phone number; ➃ werun data.

communication for retrieval or manipulation. The attack workflow
involves two steps as shown in Figure 3:

(I) Obtaining Attacker’s Encryption Key (EK). To start the
attack, assume an attacker 𝐸𝑣𝑒 , he needs to first get his own
LT, denoted LT𝑒𝑣𝑒 , from the WeChat server (Step ❶). Next,
he provides the leaked MK, the mini-program appID (easily
obtained in the meta-data of a mini-program), and LT𝑒𝑣𝑒 to
the WeChat server (Step ❷). Since MK, appID, and LT𝑒𝑣𝑒 are
all valid, the WeChat server will send his EK (i.e., EK𝑒𝑣𝑒) as
what it does typically for the mini-program’s back-end to
𝐸𝑣𝑒 . Note that prior to this login, the server may already have
a copy of EK𝑒𝑣𝑒 if 𝐸𝑣𝑒 has logged in before the mini-program
server. Also, if WeChat server has refreshed the EK𝑒𝑣𝑒 , 𝐸𝑣𝑒

Host App Mini-app (Receiver)

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ invokeHandler(API,Msg)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Msg)

 ❺ LaunchReceiver(appID)Offline

 ❻ onShow

❼ loadConfig(Msg)

Offline

Msg

Attacker Host App

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ saveConfig(Msg)

 ❸ LaunchReceiver(appID)

Offline

❹ loadConfig(Msg)

Offline

Msg

 ❻ navigateBackMiniprogram(Msg)

Mini-app (Victim)

 ❼ saveConfig(Msg)

 ❽ LaunchReceiver(appID)

❾ loadConfig(Msg)

 onShow

 onShow

Mini-app (Sender)

WeChat Front-endFront-endBack-end Back-end

Key Key

 ❷ getKey(appIDr)

❸ C = Enc(Key,Req)

❶ Key Negotiation

❾ Req = Dec(Key,C)

 ❽ Key = getKey(appIDs)

❺ saveConfig(C)

 ❻ loadConfig(C)

❹ Send(C)

 ❼ Send(C)

appIDrappIDs

Mini-app’s Back-end

(Victim)

Msg

 ❺ Send(Msg)

Mini-app’s Back-end

(Sender)

Msg

Mini-app’s Back-end

(Receiver)

WeChat Front-end

❶ navigateToMiniprogram(appID,Req)

Req, appID

 ❷ invokeHandler(API,Req)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Req)

 ❺ LaunchReceiver(appID)

❼ loadConfig(Req)

Req

Front-end

Req

Back-end

Mini-app (Receiver)

Mini-app’s Back-end

(Sender)

Mini-app’s Back-end

(Receiver)

Mini-app (Sender)

Host App

❽ Verify(appID)

Host App Mini-app (Receiver)

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ invokeHandler(API,Msg)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Msg)

 ❺ LaunchReceiver(appID)

Offline
 ❻ onShow

❼ loadConfig(Msg)

Offline

Msg

Mini-app (Sender)
Mini-app’s Back-end

(Sender)

Msg

Mini-app’s Back-end

(Receiver)

❽ Verify(appID)

Optional Optional

Back-end

 ❻ callBack

Sender Receiver

I

II

III

WeChat Main-process Front-end

❶ navigateToMiniprogram(appID,Req)

Req, appID

 ❷ invokeHandler(API,Req)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Req)

 ❺ LaunchReceiver(appID)

❼ loadConfig(Req)

Req

Front-end

Req

Back-end

❽ Verify(appID)

Back-end

 ❻ callBack

Sender Miniapp Receiver Miniapp

I

II

III

WeChat Main-process

Req, appID

❸ saveConfig(Msg)

 ❷ LaunchReceiver(appID)

❹ loadConfig(Msg)

Front-end

 ❼ saveConfig(Msg)

 ❽
LaunchReceiver(appI

D)

❾ loadConfig(Msg)

 onShow

Back-end

 ❹ navigateBackMiniprogram(Req)

Front-endBack-end

❶ navigateToMiniprogram(appID,Req)

Sender Miniapp Receiver Miniapp

 ❺ StealInfo(Req)

 ❸ Consume(Req)

Sender Receiver

(I)

(II)

(II)

(IV)

Miniapp's Front-end Back-end

MK(I)

(II)

(III)

❶ getLoginToken

❷ sendLoginToken(LT)

LT

❸ getEK(appID, MK, LT)

EK

❹ getUserData()

❺ C = Enc(EK,D)

 ❻ send(C)

❼ D = Dec(EK,C)

WeChat’s Front-end WeChat’s Back-endAttackers Miniapp’s Back-end

MK

(I)

❶ getLoginToken

❷ sendLoginToken(LTeve)

LTeve

❸ getEK(appID, MK, LT)

EK

❸ getUserData()

❹ D’eve = Enc(Ek’eve,Deve)

❼ D = Dec(EKeve,D’Alice)

MK

❷ getEK(appID, MK, LTeve)

EKeve

❺ Deve = Dec(Ekeve, D’eve)

❻ D’Alice = Enc(Ekeve, DAlice)

(II)

WeChat’s Front-end WeChat’s Back-end

WeChat

Attacker

WeChat

WeChat

Server (WS)
Attackers

Mini-Program’s

Back-end (MB)

MK

❶ getLoginToken

LTeve

❸ getUserData()

❹ D’eve = Enc(Ek’eve,Deve)

❼ D = Dec(EKeve,D’Alice)

MK

❷ getEK(appID, MK, LTeve)

EKeve

❺ Deve = Dec(Ekeve, D’eve)

❻ D’Alice = Enc(Ekeve, DAlice)

Mini-Program's

Front-end (MB)

Mini-Program's

Back-end (MB)

MK

(I)

(II)

(III)

❶ getLoginToken

❷ sendLoginToken(LT)

LT

❸ getEK(appID, MK, LT)

EK

❹ getUserData()

❺ C = Enc(EK,D)

 ❻ send(C)

❼ D = Dec(EK,C)

WeChat

Client (WC)
WeChat

Server (WS)

(I)

(II)

WeChat’s Back-end AttackersMiniapp’s Back-end

MK

MK

AT

❶ getAccessToken(appID, MK)

❶ getAccessToken(appID, MK)

❷ InvokeService(AT)

AT

M
a
li

ci
o
u

s
C

a
se

B
en

ig
n

 C
a

se

WeChat

Client (WC)

Services

❷ InvokeService(AT)

Services

WeChat

Server (WS)

Mini-Program’s

Back-end (MB)

MK

➀ getAccessToken(appID, MK)

➁ InvokeService(AT)

AT

Services

 ➀, ➁

Figure 3: Attacks Against Sensitive Data

will get a new one, and the mini-program back-end will de-
tect the EK change as well (at Step ❻) and request for this
new EK𝑒𝑣𝑒 from theWeChat server by asking 𝐸𝑣𝑒 to provide
his 𝐿𝑇𝑒𝑣𝑒 again (details are omitted here for brevity). There-
fore, it does not matter whether the mini-program server
has a copy of EK𝑒𝑣𝑒 or not.

(II) Sensitive Data Retrieval and/or Manipulation. In this
stage, the attacker 𝐸𝑣𝑒 initiates a request for sensitive data
(e.g., getPhoneNumber) and prompts WeChat client to re-
trieve his or her own data (Step ❸). The WeChat client
sends a request to its server, which encrypts the requested
data such as 𝐸𝑣𝑒’s Phone number 𝐷𝑒𝑣𝑒 (Step ❹). The server
returns the encrypted data, represented by𝐷 ′

𝑒𝑣𝑒 , to 𝐸𝑣𝑒 , who
can then choose to discard it and manipulate the information.
Nevertheless, the attacker must first decrypt the cipher to ex-
amine the packet format since they are unaware of the data’s
structure (Step ❺). Only then can the attacker create falsified
data. Next, the attacker re-encrypts the fake data using the
same EK (Step ❻). For example, 𝐸𝑣𝑒 can change his phone
number to Alice’s (i.e., 𝐷𝐴𝑙𝑖𝑐𝑒). Since the mini-program’s
backend has the same EK as the attacker, it can decrypt the ci-
pher and obtain the modified data (i.e., phone number𝐷𝐴𝑙𝑖𝑐𝑒)
(Step ❼). If there is no consistency check between the phone
number and the EK (likely true at this moment according to
our experiment), the attacker can break into Alice’s account.

Now, the attacker can directly obtain and modify the information
of interests. It turns out such data manipulation can cause severe
consequences. In the following, we would like to demonstrate the
implication of these attacks by using two concrete examples unique
in the super apps: account hijacking and promotion abuse.

2418

Don’t Leak Your Keys: Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs CCS ’23, November 26–30, 2023, Copenhagen, Denmark

POST /sbkminiapi/api/mini/SNS/DecodeBySessionId HTTP/1.1
Host: nescafeofficecafe.nestleprofessional.cn
{"sessionId":"f3d3166416804afca858b4f35e7176eb",
 "iv":"Tf2s2x5ymqX9CqpqB6s6OA==",

"encryptedData":"UG0jLnZyvI/9knC5+sBIt2R4qNnIxIPYuFUATmxSVAl7+fiFCI431QAN4KtQRH1IPqPag38fih
tpw78JuR9E0NTEgYZb2k3lYfYWVzURrh/eeQbBdy7mviFfEdpvhw/oDN7/5Qae+WOahlS3x8MW1xmGykMzfHfHUVFmT
1vDtc/1OgRcOviNMq2aaa5F3q9m/gDFvBrB6s+/JgUylCO/Jw==“
}

{ “phoneNumber”:“137****7089",
 "purePhoneNumber":"137****7089",
 "countryCode":"86",
 "watermark":
 {"timestamp":1619948088,
 "appid":"wx1bb769d037cd1204"}}

import requests
MK="c5bfc2f3********06d32a08c5a4397“
appid="wx1bb769d037cd1204"
LT="043FpdGa1fczXA0HiYHa1DxTZj4FpdGh"
request.get("https://api.weixin.qq.com/sns/jscode2s
ession?appid="+appid+"&secret="+MK+"&js_code="+LT)

{
 “session_key”:“a9ah7ZiIDSxZU6oTzLCW6g==",
 “openid”:“ozF5L5KfNCrV9IWxp7bzshfUowhw",
 "unionid":"oirId1bDzwqsbPhITe3VfuWPaPR4"
}

GET /checkSigna?
signature=82423f46449469a8a5c3983
efab06c5f1456c9c3×tamp=16199
48064&encrypt_type=login&nonce=22
08800081<=
043FpdGa1fczXA0HiYHa1DxTZj4FpdGh&
encrypt_kb=140&
encrypt_data=1.3.2 HTTP/1.1

(I
) O

bt
ai

ni
ng

 A
tt

ac
ke

r’
s

E
nc

ry
pt

io
n

K
ey

 (E
K

)
(I

I)
 U

se
r

Ph
on

e
N

um
be

r
R

et
ri

ev
al

 a
nd

 M
an

ip
ul

at
io

n

POST /sbkminiapi/api/mini/SNS/DecodeBySessionId HTTP/1.1
Host: nescafeofficecafe.nestleprofessional.cn
{
 "sessionId":"f3d3166416804afca858b4f35e7176eb",
 "iv":"oqoILJ0lzHPyCM5pRmcvXg==",

"encryptedData":"M7mbLgnlz7HExQMBwyCLSMn%2BbTEvej75HiyodIFdbi4WyhF%2BPh9v5%2B1c1DmhD7PPzPnd%2F
pB2sd7F5sakqoq0eKhlLiZaQJtQS56HK0BC08g5x9k6sHd6bhMdG7HWS4f1peKF5qFA2es39VWk2F%2FLSh3cLJB3qS8m7
7jYptBEsqRto%2BmCopnNxXBBnOiP%2FLCQt6kF0C8gMqfuPvXWsD03yQ%3D%3D“

}

❶ ❷ ❸

❹ ❺

❻

Request ResponseRequest

EKencryptedData

AES

{ “phoneNumber”:“189****3630",
 "purePhoneNumber":"189****3630",
 "countryCode":"86",
 "watermark":
 {"timestamp":1619948088,
 "appid":"wx1bb769d037cd1204"}}

AES

encryptedData

Request

Request

Figure 4: An excerpt of attack traffic traces

(A1) Account Hijacking Attacks. Since a mini-program’s back-
end usually needs to maintain a database to keep user’s record
and this database needs to be indexed, the mini-program back-
ends usually use predictable data such as the phone number to
index each user (this is particularly true in China since most citizen
has a cell phone number, and this number has been used almost
as an identity). As such, with MK, the attacker can retrieve the
victim’s information by changing the predictable data (e.g., the
phone number) to a victim’s, logging into other users’ accounts
for illicit purposes. For instance, he or she can steal the discount
offers or even free offers given to high-value loyal customers, such
as hotel free night certificates or rewards points.

We now present such a concrete attack against a mini-program
named “We Proudly Serve” (WPS) from Nestle to demonstrate its
consequences. Note that this mini-program has fixed the vulnera-
bility after we made the responsible disclosure. Specifically, to carry
out our attack, we first registered two accounts, a victim account
and an attack account, and then executed the following steps:

(I) Obtaining Attacker’s Encryption Key (EK). In this stage,
we first got LT from WeChat server, and used the obtained
LT, mini-program appID, and the leaked MK to query the en-
cryption key EK (Step ❶). To get the LT fromWeChat server,
we used a well-known MITM proxy Burp Suite [39] to in-
spect the traffic between the WeChat client and its server.
By default, when a victim mini-program invokes wx.login,
the LTwill be delivered to the front-end and require the front-
end to send it to the back-end. In our attack, we intercepted
the LT (i.e., the encrypt_code in Figure 4) without sending it
to the back-end as shown in Figure 4. Next, we programmed
a python script to query the EK from WeChat server, and
the obtained LT was then fed to the getEK() API (Step ❷).
Specifically, getEK() takes three inputs, including the pub-
lic accessible appID, the secret (i.e., MK), and Js_code (i.e.,

the LT obtained in Step ❶). As shown in Figure 4, WeChat
server returned the encryption key EK, which is encoded
using Base64 (Step ❸).

(II) Phone Number Retrieval and Manipulation. In this
stage, we intentionally triggered WPS’s front-end to invoke
getPhoneNumber, and manipulated the encrypted phone
number sent from the WeChat server to trick the back-
end of WPS into believing it is interacting with the victim’s
account. More specifically, we first triggered WPS to invoke
getPhoneNumber. getPhoneNumber is a callback function,
which is called when we click the corresponding button.
Then we intercepted the cipher that is about to be sent
to the mini-program back-end (Step ❹), and this cipher
was initially received by the mini-program from WeChat
server when invoking the getPhoneNumber API. Accord-
ing to WeChat’s official document [18], WeChat uses the
standard cryptographic algorithms, and therefore, we easily
implemented our own script to decrypt and encrypt the en-
cryptedData using the obtained EK, and inspected its format,
so that we can forge a fake phone number in the following
steps (Step ❺). After inspecting the format of the decrypted
plain-text, we then replaced the attacker’s phone number
(i.e.,137****7089) with our victim’s (i.e., 189****3630"),
and encrypted the modified phone number using EK. At this
time, the attacker can send the encrypted data (the plaintext
of which is the modified phone number) to the back-end of
WPS (Step ❻). As discussed, the EK used by the backend
of WPS to decrypt the phone number and EK used by the
attacker to encrypt the phone number are the same, and
therefore, our modified phone number was successfully de-
crypted by the back-end ofWPS, and used byWPS to retrieve
the user information. It is interesting to note that much of the
retrieved information is collected and maintained by WPS,

2419

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Zhang, Yuqing Yang, and Zhiqiang Lin

meaning that if we hijack multiple accounts by enumerating
all the phone numbers, we can harvest a large amount of
WPS’s user information.

Even with root access to a phone, attackers cannot manipulate
encrypted data without the MK. While plaintext phone numbers
can be changed during user registration, they are protected by SMS
authentication. Later on, all phone numbers are encrypted and sent
directly to the WeChat server, never exposing plaintext to the front-
end of the mini-program or WeChat app. Without MK, attackers
won’t be able to mount the account hijacking.

(A2) Promotion Abuse Attacks. Attackers can manipulate sen-
sitive data other than phone numbers, such as WeRunData and
ShareInfo. In the mini-program paradigm, promoting services
to more users is crucial for success, and convenient access to so-
cial networks empowers mini-programs to promote products more
effectively. Some mini-programs offer incentives, such as sharing
promotions via group chats, which can range from trial products
to real cash. However, attackers who manipulate encrypted WeRun-
Data or ShareInfo can easily exploit these promotions and earn
rewards without actually sharing promotion information to multi-
ple group chats by manipulating group chat identifiers.

Case I: Promotion Abuse via WeRunDataManipulation. Promo-
tion abuse attacks can be achieved through manipulating WeRun-
Data data. For example, we discovered that a bankingmini-program
from Industrial and Commercial Bank of China (ICBC) that uses the
WeRunData for promotion where users gain the “energetic value”
with the steps they walked each day, and such a value can be used to
redeem for gifts in the shop. By inspecting the unpacked JavaScript
code, we found that WeRunData is obtained with getWeRunData
and then the encrypted data is sent to the back-end via AJAX re-
quest. However, as the MK is leaked, the attacker can abuse these
promotions by arbitrarily setting the daily steps walked across a
week and sending the request to the mini-program back-end. Specif-
ically, the attacker can first use EK to decrypt t.encryptedData
and change the original daily steps from, for example, zero to a
hundred thousand. Given that the attacker can have multiple ac-
counts, theoretically, the attacker can perform the attack at a scale
to harm the vendors.

Case II: Promotion Abuse via ShareInfo Manipulation. Aside
from WeRunData, promotion abuse attacks can also be achieved
by manipulating ShareInfo. We discovered that numerous mini-
programs reward their users with red packets, a type of monetary
gift, when they share the mini-program with their group chats.
This is accomplished by fetching the group chat ID returned by
getShareInfo. For example, as shown in Figure 5, we found that
there is a mini-program that rewards users with red packets for
sharing with a unique group chat. The mini-program’s back-end
verifies the encrypted data returned by getShareInfo to ensure
that the sharing is genuine and prevent users from cheating. How-
ever, similar to the previous case, with the leaked MK, an attacker
can exploit this security measure by repeatedly sharing the program
and modifying the group chat ID. We have tested this mini-program
by playing it normally and noticed that it gives 1 to 10 cents of
random red packets to users when sharing this mini-program with
a unique group. Given that it takes around 3 seconds at most to

Don’t Leak Your Keys: Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs This is a preprint of our CCS 2023, 2023

1 onShareAppMessage: function(a){
2 var e=parseInt(a.target.dataset.info), return {
3 success: function(){
4 wx.getShareInfo({
5 shareTicket: t,
6 success: function(a){
7 this.shareJudge(t, a.encryptedData, a.iv);
8 }
9 })
10 }
11 }
12 }
13 shareJudge: function(a, e, i){
14 s=setConfig.url+"/api/enve/shareGetTimes", l={

15 token: this.globalData.token,

16 shareTicket: a,

17 encryptedData: e,
18 iv: i
19 };
20 t.request(s, l, function(a){

21 2e4 == a.data.code ? (wx.showToast({
22 title: "share success"
23 })) : wx.showToast({
24 title: "please share to differerent groupchat"
25 })
26 }
27 }

Figure 7: Promotion Abuse via ShareInfoManipulation

victim mini-program’s appID to the WeChat server, which
will reply the corresponding AT if both the MK and appID are
legitimate, allowing attacker to gain access to all the services
enabled by the victim (Step ➀).

(II) Service Invocation. In this stage, the attacker just needs to
send a request to the WeChat server with the obtained AT,
victim’s appID, and the JSON object containing parameters
to invoke the enabled services. The server will return the
result as invoked by the victim mini-program (Step ➁). An
online OCR API charges $1,000 for every 1 million invoca-
tions. Attackers could exploit the service by creating their
own mini-program or query interface that consumes the
OCR service for free using the leaked MK, potentially causing
a loss of thousands of dollars.

(A3) Service Theft Attacks. All vulnerable mini-programs using
cloud services were found to be susceptible to service theft, allowing
attackers to invoke paid services for free once they obtain the
corresponding access token using the leaked MK. We investigated a
few examples, including Tencent’s medical appointment platform,
which used location services for searches, and an online game
requiring identity verification using OCR (in China, an online game
user may not be able to register for a game account unless he or she
presents a valid identity, which prevents children from 18 years and
younger from game addiction). Additionally, several mini-game
programs enabled WeChat’s security service to identify user risk
levels. Exploiting the leaked MK, an attacker could use these services
to build an online portal for commercial use without paying for
anything to Tencent.

6 DISCUSSIONS
6.1 Mitigation and Prevention
Fundamentally, the MK leakage problem is a cryptogrphic key man-
agement problem. Since the WeChat client cannot be trusted, we

Super App Name Company Back-end
Stores MK

Data
Access

Service
Access

Download
API

Verify
API

WeChat [19] APPSECRET Tencent ✓ ✓ ✓ ✓ ✓
WeCom [19] APPSECRET Tencent ✓ ✓ ✓ ✓ ✓
QQ [37] APPSECRET Tencent ✓ ✓ ✓ ✓ ✓
Baidu [4] CLIENT_SECRET Baidu ✓ ✓ ✓ ✓ ✓
Alipay [8] AES_KEY Alibaba ✓ ✓ ✗ ✓ ✗
Taobao [8] AES_KEY Alibaba ✓ ✓ ✗ ✓ ✗
DingTalk [35] APPSECRET Alibaba ✓ ✗ ✓ ✓ ✓
Tiktok [12] APPSECRET Bytedance ✓ ✓ ✓ ✓ ✓
JINRI Toutiao [12] APPSECRET Bytedance ✓ ✓ ✓ ✓ ✓

Table 11: The list of super-apps that used cryptographic ac-
cess control

must rely on both the WeChat server and the mini-program back-
end to properly manage the keys. At a high level, there could be
three possible approaches to mitigate or even prevent MK leaks.
• Vetting the mini-programs systematically. One mitigation
solution is to use the detection method introduced in §4.1 to vet
mini-programs. In particular, when a mini-program is submitted,
WeChat must extract the byte code from the mini-program, and
detect all possible MK leaks. A mini-program that fails to meet the
vetting requirements will not be allowed to be released. Since
WeChat controls the life cycle of the MK, it would be easier for
them to perform such a detection. For example, in our analysis, to
confirmwhether the grepped hex strings are MKs, we have to send
each MK to WeChat server, and analyze the responses. However,
WeChat can fetch these keys directly from their databases.

• Removing the encrypted data forwarding from the un-
trusted client when requesting sensitive data. According to
the sensitive data access protocols described in Figure 1,WeChat
should have redesigned Step ❺-❼ by removing the data forward-
ing step at Step ❻. This is because the current design provides
an opportunity for attackers to modify the ciphertext sent by the
WeChat server. Consequently, WeChat should let getUser-
Data API communicate to the mini-program backend first, and
let the back-end directly get the data from the WeChat server,
instead of allowing the client to request and then forward. How-
ever, this defense may require a completely new mechanism to
make it secure. Currently, AT is directly fetched by the MS from
WS, since AT does not need the user’s authorization (e.g., AT is
only used to consume the services ofWS). However, if we directly
let the two back-ends exchange the encrypted data (without the
user’s authorization, i.e., LT, sent from the front end), theMSmay
try to crawl all the users’ sensitive data for malicious purposes.

• Using signing and integrity checking. Since the data ma-
nipulation attacks we demonstrated involve the modification
of the ciphertext of the messages sent by the WeChat server,
WeChat can then first sign the encrypted message using Ten-
cent’s private key, and then ask the mini-program back-end to
verify the integrity of the message with Tencent’s public key,
though this can have additional computation overhead. Encour-
agingly, we have noticed that WeChat has released a new API
auth.checkEncryptedData [7] to check the data integrity based
on this recommended defense.
It is important to note that the latter two defense can only fix the

attacks against sensitive data. To mitigate against attacks against
paid cloud services is relatively easy, and we can adopt traditional

Figure 5: Promotion Abuse via ShareInfo Manipulation

share a mini-program to a groupchat, an attacker can theoretically
get $20,000 dollars worth of red packets in a week.

5.2 Attacks against Paid Cloud Services

AttackWorkflow. Since MK is also used to access the cloud services
provided by WeChat, the attacker may use the leaked MK to fetch
its corresponding access token AT and consume the paid services
for free. The attacker takes place with the role of mini-program’s
back-end, and launches the attacks with the following two steps:

(I) Obtaining the API Access Token (AT). To obtain the API
Access Token, the attacker just needs to send the MK and the
victim mini-program’s appID to the WeChat server, which
will reply the corresponding AT if both the MK and appID are
legitimate, allowing attacker to gain access to all the services
enabled by the victim (Step ➀).

(II) Service Invocation. In this stage, the attacker just needs to
send a request to the WeChat server with the obtained AT,
victim’s appID, and the JSON object containing parameters
to invoke the enabled services. The server will return the
result as invoked by the victim mini-program (Step ➁). An
online OCR API charges $1,000 for every 1 million invoca-
tions. Attackers could exploit the service by creating their
own mini-program or query interface that consumes the
OCR service for free using the leaked MK, potentially causing
a loss of thousands of dollars.

(A3) Service Theft Attacks. All vulnerable mini-programs using
cloud services were found to be susceptible to service theft, allowing
attackers to invoke paid services for free once they obtain the
corresponding access token using the leaked MK. We investigated a
few examples, including Tencent’s medical appointment platform,
which used location services for searches, and an online game
requiring identity verification using OCR (in China, an online game
user may not be able to register for a game account unless he or she
presents a valid identity, which prevents children from 18 years and
younger from game addiction). Additionally, several mini-game

2420

Don’t Leak Your Keys: Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs CCS ’23, November 26–30, 2023, Copenhagen, Denmark

programs enabled WeChat’s security service to identify user risk
levels. Exploiting the leaked MK, an attacker could use these services
to build an online portal for commercial use without paying for
anything to Tencent.

6 DISCUSSIONS
6.1 Mitigation and Prevention
Fundamentally, the MK leakage problem is a cryptogrphic key man-
agement problem. Since the WeChat client cannot be trusted, we
must rely on both the WeChat server and the mini-program back-
end to properly manage the keys. At a high level, there could be
three possible approaches to mitigate or even prevent MK leaks.
• Vetting the mini-programs systematically. One mitigation
solution is to use the detection method introduced in §4.1 to vet
mini-programs. In particular, when a mini-program is submitted,
WeChat must extract the byte code from the mini-program, and
detect all possible MK leaks. A mini-program that fails to meet the
vetting requirements will not be allowed to be released. Since
WeChat controls the life cycle of the MK, it would be easier for
them to perform such a detection. For example, in our analysis, to
confirmwhether the grepped hex strings are MKs, we have to send
each MK to WeChat server, and analyze the responses. However,
WeChat can fetch these keys directly from their databases.

• Removing the encrypted data forwarding from the un-
trusted client when requesting sensitive data. According to
the sensitive data access protocols described in Figure 1,WeChat
should have redesigned Step ❺-❼ by removing the data forward-
ing step at Step ❻. This is because the current design provides
an opportunity for attackers to modify the ciphertext sent by the
WeChat server. Consequently, WeChat should let getUser-
Data API communicate to the mini-program backend first, and
let the back-end directly get the data from the WeChat server,
instead of allowing the client to request and then forward. How-
ever, this defense may require a completely new mechanism to
make it secure. Currently, AT is directly fetched by the MS from
WS, since AT does not need the user’s authorization (e.g., AT is
only used to consume the services ofWS). However, if we directly
let the two back-ends exchange the encrypted data (without the
user’s authorization, i.e., LT, sent from the front end), theMSmay
try to crawl all the users’ sensitive data for malicious purposes.

• Using signing and integrity checking. Since the data ma-
nipulation attacks we demonstrated involve the modification
of the ciphertext of the messages sent by the WeChat server,
WeChat can then first sign the encrypted message using Ten-
cent’s private key, and then ask the mini-program back-end to
verify the integrity of the message with Tencent’s public key,
though this can have additional computation overhead. Encour-
agingly, we have noticed that WeChat has released a new API
auth.checkEncryptedData [7] to check the data integrity based
on this recommended defense.
It is important to note that the latter two defense can only fix the

attacks against sensitive data. To mitigate against attacks against
paid cloud services is relatively easy, and we can adopt traditional
defenses in web security. For example, in the regular case, the

Super App Name Company Back-end
Stores MK

Data
Access

Service
Access

Download
API

Verify
API

WeChat [18] APPSECRET Tencent ✓ ✓ ✓ ✓ ✓
WeCom [18] APPSECRET Tencent ✓ ✓ ✓ ✓ ✓
QQ [33] APPSECRET Tencent ✓ ✓ ✓ ✓ ✓
Baidu [4] CLIENT_SECRET Baidu ✓ ✓ ✓ ✓ ✓
Alipay [8] AES_KEY Alibaba ✓ ✓ ✗ ✓ ✗
Taobao [8] AES_KEY Alibaba ✓ ✓ ✗ ✓ ✗
DingTalk [31] APPSECRET Alibaba ✓ ✗ ✓ ✓ ✓
Tiktok [13] APPSECRET Bytedance ✓ ✓ ✓ ✓ ✓
JINRI Toutiao [13] APPSECRET Bytedance ✓ ✓ ✓ ✓ ✓

Table 10: The list of super-apps that used cryptographic ac-
cess control

service request is from different IP addresses and different accounts.
As such, the back-end may set up the rate limit to prevent the
services from being abused. In cases where the attacker with the
leaked MK switches accounts and changes IP address, developers
may have to update MK to trade off security and usability.

6.2 Generality of our Study
We are confident that our findings on the WeChat mini-program
paradigm can be applied to other platforms that have a similar
design, such as QQ, Alipay, Baidu, Taobao, and TikTok. As shown
in Table 10, these platforms may have different names for their
app secrets, but they all have sensitive data or services for their
mini-programs to access and are required to store their MK on their
back-end systems. Thus, a compromised app secret could poten-
tially lead to similar attacks on these mini-programs. We verified
our findings by testing on Baidu [4], which confirmed that the
attacks and the methods we used to detect MK leakage worked as
expected. Particularly, we focused on Baidu for three reasons: (i)
Baidu mini-programs are developed by Baidu Inc., which is inde-
pendent from Tencent. (ii) Baidu has over 150,000 mini-programs,
making it more popular than other platforms like DingTalk with
only around 20,000 mini-programs. (iii) Baidu provides sensitive
data and cloud services, unlike platforms such as Alipay that only
offer access to sensitive data without service access.

First, our attacks are applicable to Baidu as they use a similar
architecture to WeChat to protect sensitive data and cloud services.
Particularly, Baidu encrypts sensitive data using a user-specific
encryption key, which is later decrypted at the back-end using
the retrieved encryption key. Similar to WeChat, Baidu uses the
CLIENT_SECRET (i.e., MK) to query access tokens to consume their
services. We tested our attacks on 10 Baidu mini-programs that
leaked their CLIENT_SECRET, and all 10 were vulnerable to our at-
tacks (we choose not to disclose their names due to ethics concerns).
For example, we have been able to execute account hijacking and
service theft attacks with success. However, due to the unavailabil-
ity of APIs to access ShareInfo and WeRunData on Baidu, we are
unable to carry out promotion abuse attacks. The attack details are
similar to those used in WeChat, so we have omitted them for the
sake of brevity. It’s noteworthy that even though Baidu’s documen-
tation mentions that sensitive data is signed, they did not provide
an API to verify the signature on the mini-programs’ back-ends [4],
which may explain why the tested mini-programs do not verify the
signature and are vulnerable to attacks.

Second, our methodology for collecting and verifying the cor-
rectness of the MK for Baidu mini-programs is similar to that used

2421

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Zhang, Yuqing Yang, and Zhiqiang Lin

for WeChat. Specifically, navigateToSmartMiniprogram API can
be used to download Baidu mini-programs by providing their ap-
pIDs, making our designed crawler easily consumable for Baidu
mini-programs. Additionally, Baidu also has an API to verify the
correctness of the MK. This API is necessary since encryption keys or
tokens cannot be delivered to untrusted mini-program front-ends.
Indeed, our investigation revealed that, besides Baidu andWeChat,
all other platforms have mini-program downloading APIs, and 7
out of 9 platforms have an API to verify the MK. This suggests that
the methodology for collecting mini-programs and verifying their
secrets is similar across other platforms, in addition to WeChat
and Baidu.

Third, the problem of MK leakage also exists in Baidu. We col-
lected 171,989 Baidu mini-programs and used a regular expression
to search for possible MKs in the mini-program code ([a-zA-Z0-
9]32), which we validated using the MK validation API. Our findings
show that 7,476 Baidu mini-programs (4.35%) have leaked their MKs.
For readers interested in more details, we have included a detailed
measurement for Baidu in our Appendix-A.

6.3 Ethics Concerns
During our experiments, we strictly adhered to community prac-
tices to prevent harm to victims or super apps. We respected rate
limits defined by WeChat and Baidu servers throughout our study.
While downloading mini-programs, we maintained a maximum of
six requests per minute, taking over six months to collect them all.
In the verification of MKs, we followed the same rate limits, and for
WeChat mini-programs, we reported leaked MKs to Tencent, con-
ducted experiments with approved methods, and reported all such
cases. Our testing was conducted within controlled parameters,
solely involving our accounts, devices, and servers, avoiding at-
tacks on third-party entities. We responsibly disclosed our findings,
earning bug bounties from Tencent and Baidu, who confirmed and
addressed the vulnerabilities. Certain mini-programs, like those
from Toyota, Nestle, and Cisco, have rectified vulnerabilities by
eliminating MKs. We noted some vendors mistakenly updated MKs
instead of removing them. Additionally, WeChat’s introduction of
the auth.checkEncryptedData API, based on our recommended
defense, was acknowledged during our interactions with Tencent,
reflecting the significant impact of our study on the vendors.

7 RELATEDWORK

Mini-Program Studies. Lu et al. [22] examined the security of the
mini-program paradigm by focusing on access control mechanisms.
More recently, Zhang et al. [45] explored identity confusion in
WebView-based super apps, while Yang et al. [44] discovered a new
cross mini-app request forgery attack. Other efforts have been made
to understand this novel paradigm. For instance, Zhang et al.[47]
developedMiniCrawler to download mini-programs and conducted
a large-scale measurement, while Hao et al. [17] studied the system
architecture and key technologies used by WeChat mini-programs.
Liu et al. [20] created a dynamic analysis framework for WeChat
mini-programs and evaluated their tool on 152 open-source mini-
programs. Wang et al. [35] introduced TaintMini, a solution for
tracking sensitive data flow in mini-programs via a data flow graph.

They also uncovered hidden APIs in super apps [37], revealing
exploit potential. In APIDiff [36], they identified API execution vari-
ations in WeChat across platforms by auto-generating test cases,
revealing API discrepancies in presence, permissions, and outcomes.
Yang et al. [43] systematically studied security measures, threats,
and trade-offs of the super apps. Our work investigates the misuse
of cryptographic keys, specifically the MK, by mini-programs and
their potential attack consequences. Baskaran et al. [11] also exam-
ined the secret leakage. However, their exploration and analysis
primarily target cloud services. Their definition of vulnerabilities
differs as well; they don’t confirm if the leaked app secret is gen-
uinely self-leakage. Instead, they view both self-leakage and the
leakage of other mini-apps’ app secrets as vulnerabilities.

API Misuse. API misuse is a critical topic in software development,
as highlighted in several studies [9, 16, 19, 25, 30, 46]. Such misuse
can result in security vulnerabilities, as evidenced by the discovery
of API misuse in third-party mobile payment systems that allowed
attackers to bypass payment processes [42], and the exploitation of
Android fingerprint APIs to launch attacks on vulnerable apps [12].
Researchers have developed various tools and techniques to detect
and prevent API misuse. For instance, SAFEWAPI[9] uses Web API
specifications to identify APImisuses in JavaScript web applications,
while ARBITRAR[19] leverages active learning to classify valid and
invalid usages of target API methods. Ren et al.[25] construct a
knowledge graph from API reference documentation to enhance
API misuse detection, while MuDetect[30] employs a graph-based
representation and ranking strategy to detect API misuses. Addi-
tionally, Gorski et al. [16] propose an API-integrated security advice
approach to help software developers write more secure code for
difficult-to-use cryptographic APIs. ExampleCheck [46] analyzed
over 217,818 Stack Overflow posts and discovered that 31% of them
potentially contained API usage violations.

Credentials Leakage and Detection. Credentials may be hard-
coded in open-source projects, which can lead to security vulner-
abilities. Sinha et al. [29] and Singh et al.[28] discuss the issue of
API key leaks, in which malicious users steal API keys from public
code repositories. Shi et al. [27] studied leaked payment creden-
tials for Cashiers serving over one billion users using PayKeyMiner.
Wen et al. [40] developed a real-time, large-scale comprehensive
secret scanner for GitHub called SecretHunter. Michael et al. [23]
detected potential credential leakage (such as SSH keys and API
tokens) from GitHub repositories with a hybrid approach that in-
volves both automatic detection and manual validation. Basak et
al. [10] studied current key management practices by analyzing
key leakage in GitHub. Lounici et al. [21] and Saha et al. [26] detect
key leakage in GitHub using machine learning. PassFinder [15]
employs deep neural networks to effectively detect user password
leakage from public repositories on GitHub. Compared to previ-
ous studies that focused on key leakages in Github, our study is
unique in that we focus on mini-programs instead. Also, unlike
other studies that aim to improve detection methods, we use simple
methods to detect keys and ensure no false positives by validating
the correctness of keys using API.

Credentials may also be hardcoded in the front-end of mobile
apps, which can lead to security vulnerabilities. Viennot et al. [34]

2422

Don’t Leak Your Keys: Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs CCS ’23, November 26–30, 2023, Copenhagen, Denmark

performed the first study of secret authentication key usage and
its problems in Android apps using PlayDrone. Zhou et al. [48]
developed a tool called CredMiner, which can programmatically
identify and recover developer credentials from native Android
apps. They identified 302 email credentials and 58 Amazon AWS
credentials over 36,561 native apps. Zuo et al. [49] conducted a
study on cloud service credentials in mobile apps and discussed
their root causes and impacts. Wen et al. [41] scanned 100 popular
iOS apps and identified that 48 of them had misused credentials,
including credential leakage, using iCredFinder. Nan et al. [24]
developed a semantics-driven solution that utilizes NLP to automat-
ically discover credentials in modern mobile apps. Moreover, Wang
et al. [38] recover cloud credentials from apps, infer their capabili-
ties in the cloud, and verify if the capabilities exceed the legitimate
needs of the apps. Once again, the focus of other works is primarily
on detection methods, such as using machine learning or NLP. In
contrast, our focus is on the problem space, where we demonstrate
how credentials can lead to various attacks in mini-programs.

In summary, our work stands apart from previous efforts for
three main reasons. First, we detect MK leaks in the innovative mini-
program paradigm, contrastingwith prior instances found inGithub
or mobile app code. Second, our study diverges from others that
primarily enhance credential detection methods. Instead, we delve
into comprehending mini-program development practices, unique
credential-related protocols, and the security implications of leaked
credentials. Third, the protocols we scrutinize significantly differ
from earlier investigations. Mini-programs incorporate distinct
key management, encryption-based resource access, and token-
based resource access protocols, absent in mobile apps or web
browsers. These protocols, including those from third-party services
like Amazon or Facebook, are novel and understanding them aids in
grasping security challenges in the novel mini-program paradigm.
Furthermore, our attacks yield fresh security consequences. While
prior attacks might involve leaked keys for service consumption,
akin to our service theft attack, novel mini-programs introduce new
features, exploited in attacks like promotion abuse, where vendors
harness unique werun data to attract users.

8 CONCLUSION
We have presented the first systematic study of the cryptographic
access control in mini-programs, and found that WeChat has made
the developers heavily involved in the security related implemen-
tation including key management, encryption, and decryption. As
such, the developers can mistakenly leak their master keys to the
untrusted front-end, leading to various attacks such as account
hijacking and promotion abuse. With a large-scale measurement
study, we have discovered that 40,880 mini-programs leaked their
MKs. In addition to the responsible disclosure of this vulnerability
and also the list of the vulnerable mini-programs to Tencent, we
have also discussed the possible countermeasures, particularly on
how Tencent could have fixed this issue. So far, Tencent has provided
a new API to mitigate the attacks based on our recommendations.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their insightful feedback.
This research was supported in part by NSF award 2330264. Any

opinions, findings, and conclusions in this paper are those of the
authors only and do not necessarily reflect the views of NSF.

REFERENCES
[1] “Most popularmessaging apps,” https://www.statista.com/statistics/258749/most-

popular-global-mobile-messenger-apps/, (Accessed on 08/26/2023).
[2] “Security guide,” https://developers.weixin.qq.com/miniprogram/dev/framewo

rk/security.html.
[3] “Wechat developer information,” https://developers.weixin.qq.com/community

/develop/doc/0002ae37438a800cb88a73ef151400, (Accessed on 08/26/2023).
[4] “Baidu Documentation,” https://smartprogram.baidu.com/docs/develop/functi

on/login_process/, 03 2020, (Accessed on 08/26/2023).
[5] “Decoded: WeChat Mini Programs For Cultural Destinations,”

https://jingculturecommerce.com/decoded-wechat-mini-programs-for-
cultural-destinations-part-one/, 03 2020, (Accessed on 08/26/2023).

[6] “WeChat API categories,” https://developers.weixin.qq.com/miniprogram/en/de
v/api/, 03 2020, (Accessed on 08/26/2023).

[7] “Tencent Documentation (auth.checkEncryptedData),” https://deve
lopers.weixin.qq.com/miniprogram/dev/api-backend/open-api/user-
info/auth.checkEncryptedData.html, 03 2022.

[8] Alipay, “Alipay mini-program documentation,” https://opendocs.alipay.com/co
mmon/02mse3.

[9] S. Bae, H. Cho, I. Lim, and S. Ryu, “Safewapi: Web api misuse detector for web
applications,” in Proceedings of the 22nd ACM SIGSOFT international symposium
on foundations of software engineering, 2014, pp. 507–517.

[10] S. K. Basak, L. Neil, B. Reaves, and L. Williams, “What are the practices for secret
management in software artifacts?” in 2022 IEEE Secure Development Conference
(SecDev). IEEE, 2022, pp. 69–76.

[11] S. Baskaran, L. Zhao, M. Mannan, and A. Youssef, “Measuring the leakage and
exploitability of authentication secrets in super-apps: The wechat case,” in 26nd
International Symposium on Research in Attacks, Intrusions and Defenses (RAID
2023), 2023.

[12] A. Bianchi, Y. Fratantonio, A. Machiry, C. Kruegel, G. Vigna, S. P. H. Chung, and
W. Lee, “Broken fingers: On the usage of the fingerprint api in android.” in NDSS,
2018.

[13] Bytedance, “Bytedance mini-program documentation,” https://microapp.bytedan
ce.com/docs/zh-CN/mini-app/develop/server/interface-request-credential/get-
access-token.

[14] facebook, “Facebook for developers,” https://developers.facebook.com/.
[15] R. Feng, Z. Yan, S. Peng, and Y. Zhang, “Automated detection of password leakage

from public github repositories,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 175–186.

[16] P. L. Gorski, L. L. Iacono, D. Wermke, C. Stransky, S. Möller, Y. Acar, and S. Fahl,
“Developers deserve security warnings, too: On the effect of integrated security
advice on cryptographic {API} misuse,” in Fourteenth Symposium on Usable
Privacy and Security (SOUPS 2018), 2018, pp. 265–281.

[17] L. Hao, F. Wan, N. Ma, and Y. Wang, “Analysis of the development of wechat
mini program,” in Journal of Physics: Conference Series, vol. 1087, no. 6. IOP
Publishing, 2018, p. 062040.

[18] T. inc., “Wechat mini-program’s official document (data verification and encryp-
tion),” https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-
ability/signature.html, 2020.

[19] Z. Li, A. Machiry, B. Chen, M. Naik, K. Wang, and L. Song, “Arbitrar: User-guided
api misuse detection,” in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 1400–1415.

[20] Y. Liu, J. Xie, J. Yang, S. Guo, Y. Deng, S. Li, Y. Wu, and Y. Liu, “Industry practice
of javascript dynamic analysis on wechat mini-programs,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 2020,
pp. 1189–1193.

[21] S. Lounici, M. Rosa, C. M. Negri, S. Trabelsi, and M. Önen, “Optimizing leak
detection in open-source platforms with machine learning techniques.” in ICISSP,
2021, pp. 145–159.

[22] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang, “Demystifying
resource management risks in emerging mobile app-in-app ecosystems,” in Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 569–585.

[23] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git? characterizing secret
leakage in public github repositories,” in 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019, 2019.

[24] Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang, “Finding clues for your
secrets: Semantics-driven, learning-based privacy discovery in mobile apps.” in
NDSS, 2018.

[25] X. Ren, X. Ye, Z. Xing, X. Xia, X. Xu, L. Zhu, and J. Sun, “Api-misuse detection
driven by fine-grained api-constraint knowledge graph,” in 2020 35th IEEE/ACM

2423

https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://developers.weixin.qq.com/miniprogram/dev/framework/security.html
https://developers.weixin.qq.com/miniprogram/dev/framework/security.html
https://developers.weixin.qq.com/community/develop/doc/0002ae37438a800cb88a73ef151400
https://developers.weixin.qq.com/community/develop/doc/0002ae37438a800cb88a73ef151400
https://smartprogram.baidu.com/docs/develop/function/login_process/
https://smartprogram.baidu.com/docs/develop/function/login_process/
https://jingculturecommerce.com/decoded-wechat-mini-programs-for-cultural-destinations-part-one/
https://jingculturecommerce.com/decoded-wechat-mini-programs-for-cultural-destinations-part-one/
https://jingculturecommerce.com/decoded-wechat-mini-programs-for-cultural-destinations-part-one/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/dev/api-backend/open-api/user-info/auth.checkEncryptedData.html
https://developers.weixin.qq.com/miniprogram/dev/api-backend/open-api/user-info/auth.checkEncryptedData.html
https://developers.weixin.qq.com/miniprogram/dev/api-backend/open-api/user-info/auth.checkEncryptedData.html
https://opendocs.alipay.com/common/02mse3
https://opendocs.alipay.com/common/02mse3
https://microapp.bytedance.com/docs/zh-CN/mini-app/develop/server/interface-request-credential/get-access-token
https://microapp.bytedance.com/docs/zh-CN/mini-app/develop/server/interface-request-credential/get-access-token
https://microapp.bytedance.com/docs/zh-CN/mini-app/develop/server/interface-request-credential/get-access-token
https://developers.facebook.com/
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/signature.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/signature.html

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Zhang, Yuqing Yang, and Zhiqiang Lin

International Conference on Automated Software Engineering (ASE). IEEE, 2020,
pp. 461–472.

[26] A. Saha, T. Denning, V. Srikumar, and S. K. Kasera, “Secrets in source code:
Reducing false positives using machine learning,” in 2020 International Conference
on COMmunication Systems & NETworkS (COMSNETS). IEEE, 2020, pp. 168–175.

[27] S. Shi, X. Wang, K. Zeng, R. Yang, and W. C. Lau, “An empirical study on mobile
payment credential leaks and their exploits,” in Security and Privacy in Commu-
nication Networks: 17th EAI International Conference, SecureComm 2021, Virtual
Event, September 6–9, 2021, Proceedings, Part II 17. Springer, 2021, pp. 79–98.

[28] V. Singh and S. Pandey, “Revisiting cloud security attacks: Credential attack,” in
Rising Threats in Expert Applications and Solutions: Proceedings of FICR-TEAS 2020.
Springer, 2021, pp. 339–350.

[29] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, “Detecting and mitigating
secret-key leaks in source code repositories,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories. IEEE, 2015, pp. 396–400.

[30] A. Sven, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “Investigating
next steps in static api-misuse detection,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp. 265–275.

[31] D. Talk, “Dingding talk mini-program documentation,” https://open.dingtalk.co
m/document/orgapp-server/how-to-call-apis.

[32] Tencent, “The price of ai services,” https://developers.weixin.qq.com/miniprogr
am/dev/platform-capabilities/service-market/intro.html.

[33] ——, “Qq mini-program documentation,” https://q.qq.com/wiki/develop/minipr
ogram/server/open_port/port_use.html.

[34] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google play,” in The
2014 ACM international conference on Measurement and modeling of computer
systems, 2014, pp. 221–233.

[35] C. Wang, R. Ko, Y. Zhang, Y. Yang, and Z. Lin, “Taintmini: Detecting flow of
sensitive data in mini-programs with static taint analysis,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), 2023.

[36] C.Wang, Y. Zhang, and Z. Lin, “One size does not fit all: Uncovering and exploiting
cross platform discrepant apis in wechat,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023.

[37] ——, “Uncovering and exploiting hidden apis in mobile super apps,” in Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
2023.

[38] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Credit karma: Understanding security
implications of exposed cloud services through automated capability inference,”
in 31st {USENIX} Security Symposium ({USENIX} Security 23), 2023.

[39] S. Wear, Burp Suite Cookbook: Practical recipes to help you master web penetration
testing with Burp Suite. Packt Publishing Ltd, 2018.

[40] E. Wen, J. Wang, and J. Dietrich, “Secrethunter: A large-scale secret scanner for
public git repositories,” in 2022 IEEE International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom). IEEE, 2022, pp.
123–130.

[41] H. Wen, J. Li, Y. Zhang, and D. Gu, “An empirical study of sdk credential misuse
in ios apps,” in 2018 25th Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 2018, pp. 258–267.

[42] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu, “Show me the
money! finding flawed implementations of third-party in-app payment in android
apps.” in NDSS, 2017.

[43] Y. Yang, C. Wang, Y. Zhang, and Z. Lin, “Sok: Decoding the super app enigma:
The security mechanisms, threats, and trade-offs in os-alike apps,” arXiv preprint
arXiv:2306.07495, 2023.

[44] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp request forgery: Root causes,
attacks, and vulnerability detection,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022, pp. 3079–3092.

[45] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang, G. Yang, and
M. Yang, “Identity confusion in webview-based mobile app-in-app ecosystems,”
in 31st {USENIX} Security Symposium ({USENIX} Security 22), 2022.

[46] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are code examples
on an online q&a forum reliable?: a study of api misuse on stack overflow,” in 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 886–896.

[47] Y. Zhang, B. Turkistani, A. Y. Yang, C. Zuo, and Z. Lin, “A measurement study
of wechat mini-apps,” in SIGMETRICS ’21: ACM SIGMETRICS / International
Conference on Measurement and Modeling of Computer Systems, Virtual Event,
2021.

[48] Y. Zhou, L. Wu, Z. Wang, and X. Jiang, “Harvesting developer credentials in
android apps,” in Proceedings of the 8th ACM conference on security & privacy in
wireless and mobile networks, 2015, pp. 1–12.

[49] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak? uncovering the data
leakage in cloud from mobile apps,” in 40th IEEE Symposium on Security and
Privacy (SP), May 2019, pp. 1296–1310.

A MEASURING THE MK LEAKS IN BAIDU
In a similar manner to our measurement of MK leaks inWeChat, we
also measured MK leaks in Baidu. However, as Baidu currently does
not have the last update timestamp in its metadata, we conducted
a measurement study to answer just the following five research
questions:

• RQ1:What are the categories of the MK leakedmini-programs?
• RQ2: What are their popularity?
• RQ3: What are their accessed resources?
• RQ4: Who are their developers?
• RQ5: Are there any high profile MK leaked mini-programs?

Category UserInfo (#) % PhoneNumber (#) %

Automobile 81 1.42% 40 1.01%
Business 620 10.84% 398 10.01%
Charity 1 0.02% 1 0.03%
E-commerce 26 0.45% 15 0.38%
Education 261 4.56% 168 4.22%
Efficiency 175 3.06% 92 2.31%
Entertainment 62 1.08% 33 0.83%
Finance 5 0.09% 2 0.05%
Food 44 0.77% 24 0.60%
Government 45 0.79% 29 0.73%
Health 1 0.02% 0 0.00%
Information 289 5.05% 114 2.87%
IT tech 21 0.37% 12 0.30%
Lifestyle 367 6.42% 253 6.36%
Medical 47 0.82% 5 0.13%
News 2 0.03% 2 0.05%
Post service 30 0.52% 23 0.58%
Real estate 340 5.95% 440 11.06%
Shopping 1,793 31.35% 1,222 30.72%
Social 53 0.93% 38 0.96%
Sports 25 0.44% 19 0.48%
Tool 11 0.19% 2 0.05%
Traffic 29 0.51% 22 0.55%
Travelling 636 11.12% 607 15.26%
Uncategorized 755 13.20% 417 10.48%
Total 5,724 100% 3,996 100%

Table 11: Statistics of the identified vulnerable Baidu mini-
programs w.r.t their categories. The percentage represents
the proportion of vulnerable mini-programs accessing a
particular resource, compared to the total number of mini-
programs accessing that resource.

In total, we found that 7,476 of the 171,989 Baidu mini-programs
(4.35%) we collected have leaked their MKs. In the following, we
provide the answers for these five RQs with respect to these mini-
programs.

(RQ1) Categories of the MK Leaked Mini-programs. Similar
to WeChat, most Baidu mini-programs have been classified into
specific categories, as shown in Table 11. Since Baidu does not
permit individual developers to release their mini-programs, all of
them are developed by different companies. It is noticeable that
shopping, business, and traveling mini-programs have a slightly
higher number of vulnerable mini-programs due to the larger num-
ber of mini-programs in those categories. As these mini-programs
typically involve payments, attacking them through their leaked
MK may have broad security implications.

2424

https://open.dingtalk.com/document/orgapp-server/how-to-call-apis
https://open.dingtalk.com/document/orgapp-server/how-to-call-apis
https://developers.weixin.qq.com/miniprogram/dev/platform-capabilities/service-market/intro.html
https://developers.weixin.qq.com/miniprogram/dev/platform-capabilities/service-market/intro.html
https://q.qq.com/wiki/develop/miniprogram/server/open_port/port_use.html
https://q.qq.com/wiki/develop/miniprogram/server/open_port/port_use.html

Don’t Leak Your Keys: Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Download Times UserInfo (#) % PhoneNumber (#) %

(0, 1,000] 1,479 25.86% 1,002 25.19%
(1,000, 2,000] 952 16.65% 647 16.26%
(2,000, 3,000] 785 13.73% 522 13.12%
(3,000, 4,000] 430 7.52% 319 8.02%
(4,000, 5,000] 545 9.53% 408 10.26%
(5,000, 10,000] 867 15.16% 634 15.94%
(10,000, 100,000] 644 11.26% 436 10.96%
(100,000, 1M] 16 0.28% 9 0.23%
> 1M 1 0.02% 1 0.03%

Total 5,719 100% 3,578 100%

Table 12: Statistics for vulnerable Baidumini-programs based
on downloads. Note that some lack download times, leading
to a lower total count of mini-programs with user info and
phone access than in Table 11.

Service Name Description Enabled
by default

Login Services for users to Login ✓

Book Shelf Online bookshelf services
for e-learning apps ✗

Coupon Services for developers manage coupons ✓
Resource Management Services for developers manage online resources ✓
Template Messages Services for manage template messages ✓
Customer Messages Services for manage customer messages ✓
Risk Detection Services for detecting malicious users ✓
QR Code Services for creating QR code ✓
Comment Management Services for managing comments ✓
Content Security Services for detecting illegal content ✗

Table 13: Summary of the Baidu-managed cloud services.

Number of Apps Downloaded <= 5000 Downloaded > 5000 Total

1 3981 1422 5403
2 183 126 309
3 55 35 90
4 27 19 46
5 23 21 44
6 20 7 27
7 9 7 16
8 10 7 17
9 6 5 11
10 5 4 9

> 10 20 10 30

Table 14: Numbers of vulnerable mini-programs associated
with the same software development companies. Note that
not all apps have their developer information available.

(RQ2) Popularity of the MK Leaked Mini-programs. As illus-
trated in Table 12, the statistics of identified vulnerable Baidu mini-
programs with respect to their download times, which signify their
popularity, are reported. It is evident that the majority of vulner-
able Baidu mini-programs exhibit relatively low download times,
with over 50% of them residing within the (0, 1,000] and (1,000,
2,000] ranges. This finding implies that less popular mini-programs
are more susceptible to security vulnerabilities. Nevertheless, it
is crucial to emphasize that even in the (100,000, 1M] and >1M
ranges, instances still exist. This observation serves as a reminder
that security issues can persist, regardless of the high download
rates of certain mini-programs.

(RQ3) Accessed Resources of the MK Leaked Mini-programs.
Both Table 11 and Table 12 display the accessed resources of vul-
nerable Baidu mini-programs. It can be observed that they ac-
cess more UserInfo than PhoneNumber. The discrepancy could
suggest that developers exercise greater caution when handling
sensitive data, such as phone numbers. Nevertheless, a signifi-
cant number of mini-programs still access this information. Mean-
while, we would like to note that since Baidu lacks APIs for ac-
cessing ShareInfo and WeRunData, we only provide statistics on
the number of mini-programs that utilize UserInfo and PhoneNum-
ber. In contrast to WeChat, Baidu does not offer APIs such as
api.weixin.qq.com/cgi-bin/get_current_selfmenu_info to
verify the enabled services of specific mini-programs. The sole
method to determine the availability of services is to invoke them,
which can raise ethical concerns. Consequently, we cannot show-
case the enabled services of these mini-programs.

However, as demonstrated in Table 13, we notice that numerous
services are enabled by default, indicating that attackers can launch
service theft with success. It is evident that some of these services
are employed to manage essential online resources (e.g., images,
videos) within the mini-programs. An attacker could potentially
delete these resources by exploiting service theft attacks. Addi-
tionally, certain APIs can send messages (e.g., template message
services and customer message services) directly to mini-programs
running on users’ devices, potentially tricking users into believing
and clicking on phishing websites (i.e., the attacker may masquer-
ade as an official party to send phishing messages). Interestingly,
many of these APIs (e.g., resource management services) have a rate
limit, meaning that if an attacker actively utilizes these services,
developers may lose the opportunity to invoke them.

(RQ4) The Developers of the MK Leaked Mini-programs. As
shown in Table 14, the data is categorized into the number of vul-
nerable mini-programs and the number of companies, which are
separated into two groups: those with mini-programs downloaded
less than or equal to 5,000 times, and those with mini-programs
downloaded more than 5,000 times. Fewer companies have multiple
vulnerable mini-programs. For instance, there are 309 companies
with 2 vulnerable mini-programs, 110 companies with 3 vulnera-
ble mini-programs. This trend could suggest that having multiple
vulnerable mini-programs is relatively rare. There are also 30 com-
panies with more than 10 vulnerable mini-programs. For example,
a company named “ShangFang (ShenZhen) Tech Inc.” developed 87
vulnerable mini-programs.

(RQ5) High Profile MK Leaked Mini-programs. We also discov-
ered that 21 mini-programs were developed by Fortune 500 compa-
nies, including many prominent names such as Sony, HP, Amazon,
and Toyota. These findings indicate that even large, well-established
companies can make mistakes when it comes to developing secure
mini-programs. Among the 21 mini-programs, 16 of them accessed
the user’s phone number or personal information. In addition to
these well-known companies, Baidu, the provider, developed 39
vulnerable mini-programs. Of these, 33 accessed the user’s phone
number or personal information. This highlights the importance of
addressing security concerns across organizations of all sizes and
reputations in order to protect user privacy and maintain trust.

2425

	Abstract
	1 Introduction
	2 Background
	2.1 Sensitive Resource Access by Mini-programs
	2.2 Comparison of Mini-Programs, Mobile Apps, and Web Apps

	3 Understanding the Attack Surface
	3.1 Parties Involved
	3.2 Cryptographic Access Control
	3.3 Threat Model of WeChat
	3.4 Attack Surface Analysis

	4 Measuring the MK Leaks
	4.1 Scope and Methodologies
	4.2 The Results

	5 Exploiting the MK Leaks
	5.1 Attacks Against Sensitive Data
	5.2 Attacks against Paid Cloud Services

	6 Discussions
	6.1 Mitigation and Prevention
	6.2 Generality of our Study
	6.3 Ethics Concerns

	7 Related Work
	8 Conclusion
	References
	A Measuring The MK Leaks in Baidu

