
SGXELIDE: Enabling Enclave Code Secrecy via
Self-Modification

Erick Bauman1, Huibo Wang1,
Mingwei Zhang2, Zhiqiang Lin1,3

1University of Texas at Dallas
2Intel Labs

3The Ohio State University

CGO 2018



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

2 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Intel SGX
Provides secure enclaves

Memory regions isolated from all
other code
Cannot be accessed by OS or
hypervisor

3 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Intel SGX
Provides secure enclaves
Memory regions isolated from all
other code

Cannot be accessed by OS or
hypervisor

3 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Intel SGX
Provides secure enclaves
Memory regions isolated from all
other code
Cannot be accessed by OS or
hypervisor

3 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Hypervisor

Hardware

Operating System

App App App

Trusted

4 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Hypervisor

Hardware

Operating System

App App App

Trusted

4 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Client

Disk

Application

Enclave

Code Data

5 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Client

Enclave

Disk

Application

Enclave

Code Data

Code Data

5 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Client

Enclave

Disk

Attest
Application

Enclave

Code Data

Code Data

5 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Client

Enclave

Disk

Attest
Application

Enclave

Code Data

Code Data

Data Integrity

5 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Client

Enclave

Disk

Attest
Application

Enclave

Code Data

Code Data

Code Integrity
Data Integrity

5 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Client

Enclave

Disk

Attest
Application

Enclave

Code Data

CodeSecret 
Data

Data

Code Integrity
Data Integrity

5 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Client

Enclave

Disk

Attest
Application

Enclave

Code Data

CodeSecret 
Data

Data Secret 
Data

Code Integrity
Data Integrity

Data Confidentiality

5 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Client

Enclave

Disk

Attest
Application

Enclave

Code Data

CodeSecret 
Code

Data Secret 
Data

?

Code Integrity
Data Integrity

Data Confidentiality

5 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

Client

Enclave

Disk

Attest
Application

Enclave

Code Data

CodeSecret 
Code

Data Secret 
Data

?

Code Integrity
Data Integrity

Data Confidentiality
Code Confidentiality

5 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Intel SGX

“The enclave file can be disassembled, so the algorithms
used by the enclave developer will not remain secret.”

–SGX SDK Manual

6 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE

Definition
Elide: To leave out or omit

7 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Challenges

Enclaves must be signed and unmodified until initialization

The entire enclave cannot be encrypted
Any secrets cannot be stored in the enclave
There should be minimal toolchain changes

8 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Challenges

Enclaves must be signed and unmodified until initialization
The entire enclave cannot be encrypted

Any secrets cannot be stored in the enclave
There should be minimal toolchain changes

8 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Challenges

Enclaves must be signed and unmodified until initialization
The entire enclave cannot be encrypted
Any secrets cannot be stored in the enclave

There should be minimal toolchain changes

8 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Challenges

Enclaves must be signed and unmodified until initialization
The entire enclave cannot be encrypted
Any secrets cannot be stored in the enclave
There should be minimal toolchain changes

8 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Main Idea

Redact (or sanitize) secrets and restore at runtime

9 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist

User specifies secrets (e.g. annotations)
Minimizes code that must be encrypted
Burden of annotating secrets on developer
Risk of mistakes

Whitelist
Only specify code that must not be redacted
Applicable to any enclave
No need for developer to mark secrets
More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist
User specifies secrets (e.g. annotations)

Minimizes code that must be encrypted
Burden of annotating secrets on developer
Risk of mistakes

Whitelist
Only specify code that must not be redacted
Applicable to any enclave
No need for developer to mark secrets
More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist
User specifies secrets (e.g. annotations)
Minimizes code that must be encrypted

Burden of annotating secrets on developer
Risk of mistakes

Whitelist
Only specify code that must not be redacted
Applicable to any enclave
No need for developer to mark secrets
More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist
User specifies secrets (e.g. annotations)
Minimizes code that must be encrypted
Burden of annotating secrets on developer

Risk of mistakes

Whitelist
Only specify code that must not be redacted
Applicable to any enclave
No need for developer to mark secrets
More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist
User specifies secrets (e.g. annotations)
Minimizes code that must be encrypted
Burden of annotating secrets on developer
Risk of mistakes

Whitelist
Only specify code that must not be redacted
Applicable to any enclave
No need for developer to mark secrets
More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist
User specifies secrets (e.g. annotations)
Minimizes code that must be encrypted
Burden of annotating secrets on developer
Risk of mistakes

Whitelist

Only specify code that must not be redacted
Applicable to any enclave
No need for developer to mark secrets
More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist
User specifies secrets (e.g. annotations)
Minimizes code that must be encrypted
Burden of annotating secrets on developer
Risk of mistakes

Whitelist
Only specify code that must not be redacted

Applicable to any enclave
No need for developer to mark secrets
More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist
User specifies secrets (e.g. annotations)
Minimizes code that must be encrypted
Burden of annotating secrets on developer
Risk of mistakes

Whitelist
Only specify code that must not be redacted
Applicable to any enclave

No need for developer to mark secrets
More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist
User specifies secrets (e.g. annotations)
Minimizes code that must be encrypted
Burden of annotating secrets on developer
Risk of mistakes

Whitelist
Only specify code that must not be redacted
Applicable to any enclave
No need for developer to mark secrets

More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Blacklist vs. Whitelist

Blacklist
User specifies secrets (e.g. annotations)
Minimizes code that must be encrypted
Burden of annotating secrets on developer
Risk of mistakes

Whitelist
Only specify code that must not be redacted
Applicable to any enclave
No need for developer to mark secrets
More code must be encrypted

10 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Our Solution

Sign sanitized enclave and restore secrets after initializing

Encrypt all nonessential functions
Use remote attestation
Use both local and remote storage

11 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Our Solution

Sign sanitized enclave and restore secrets after initializing
Encrypt all nonessential functions

Use remote attestation
Use both local and remote storage

11 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Our Solution

Sign sanitized enclave and restore secrets after initializing
Encrypt all nonessential functions
Use remote attestation

Use both local and remote storage

11 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Our Solution

Sign sanitized enclave and restore secrets after initializing
Encrypt all nonessential functions
Use remote attestation
Use both local and remote storage

11 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Overview

Enclave

Runtime 
Restorer

Sanitizer

secret.so

dummy.so

secret 
enclave
code

Compiler,
Linker

Compiler,
Linker

dummy 
enclave 
code

secret.so

sanitized.so

secret
data

Dummy Enclave Code Generation

Normal Enclave Code Generation

Runtime Secret Enclave Code Restoration

12 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Remote vs. Local Data

Secret 
Data

13 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Remote vs. Local Data

Secret 
Data

13 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Remote vs. Local Data

Secret 
Key

Secret 
Data

14 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Remote vs. Local Data

Secret 
Key

Secret 
Data

14 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Remote vs. Local Data

Secret 
Key

Secret 
Data

14 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Remote Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

secret
data

meta
data

15 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Remote Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

secret
data

meta
data

1

15 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Remote Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

secret
data

meta
data

1

2

15 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Remote Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

meta
data

secret
data

meta
data

1

2

3

15 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Remote Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

meta
data

secret
data

meta
data

1

2

3

4

15 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Remote Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

secret
data

meta
data

secret
data

meta
data

1

2

3

4

5

15 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Remote Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

secret
data

meta
data

secret
data

meta
data

1

2

3

4

5

6

15 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Remote Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

secret
data

meta
data

secret
data

meta
data

sealed 
secret data

1

2

3

4

5

6

7

15 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Local Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

meta
data

encrypted 
secret data

16 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Local Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

meta
data

1

encrypted 
secret data

16 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Local Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

meta
data

1

2

encrypted 
secret data

16 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Local Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

meta
data

meta
data

1

2

3

encrypted 
secret data

16 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Local Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

meta
data

meta
data

1

2

3

encrypted 
secret data

4

16 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Local Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

secret
data

meta
data

meta
data

1

2

3
5

encrypted 
secret data

4

16 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Local Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

secret
data

meta
data

meta
data

1

2

3
5 6

encrypted 
secret data

4

16 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Design - Local Data

Authentication 
Server

User Platform

Application

Enclave

Untrusted Code

File
System

secret
data

meta
data

meta
data

sealed 
secret data

1

2

3
5 6

7

encrypted 
secret data

4

16 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Benchmarks

Original LOC w/ SGX LOC w/ SGXELIDE TC TC Sanitized Sanitized
Benchmarks LOC UC TC UC TC Functions Bytes Functions Bytes

AES 802 472 427 522 540 185 75999 15 3840
DES 473 463 372 513 485 179 75455 9 3296
Sha1 315 423 251 473 364 179 73791 9 1632
Shas 2417 1529 1240 1579 1353 224 80127 54 7968
2048 413 551 192 601 305 208 76351 38 4448
Biniax 3523 3582 193 3632 306 208 76351 38 4448
Crackme 48 316 93 366 206 182 73711 12 1536

17 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Sanitization/Restoration Time

Remote Data Local Data
Sanitize Stand. Restore Stand. Sanitize Stand. Restore Stand.

Benchmarks Time Dev. Time Dev. Time Dev. Time Dev.
AES 0.09 0.01 4.06 0.54 0.15 0.01 3.76 0.20
DES 0.09 0.01 3.99 0.52 0.14 0.01 3.97 0.75
Sha1 0.09 0.01 3.67 0.35 0.14 0.01 3.97 0.98
Shas 0.09 0.00 4.06 0.53 0.15 0.01 4.26 0.97
2048 0.09 0.01 3.78 0.52 0.15 0.01 3.73 0.28
Biniax 0.09 0.00 4.44 0.61 0.15 0.01 4.32 0.92
Crackme 0.09 0.01 3.53 0.28 0.15 0.00 3.54 0.78

18 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Overhead - Remote Data

AES DES
Sha1

Shas
Crackme

99%

100%

101%

102%

103%

104%

105%

R
el

at
iv

e
Pe

rfo
rm

an
ce

w/ SGX

w/ SGXELIDE

19 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

SGXELIDE Overhead - Local Data

AES DES
Sha1

Shas
Crackme

99%

100%

101%

102%

103%

104%

105%

R
el

at
iv

e
Pe

rfo
rm

an
ce

w/ SGX

w/ SGXELIDE

20 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Discussions

SGXELIDE enclaves are self-modifying!

How do we defend against malicious enclaves?
How do we protect vulnerable enclaves?
How does this influence side-channel attacks?

Limitations and future work
Framework not completely transparent
Would be useful to test SGXELIDE with large-scale software
Framework is proof-of-concept and not production ready

21 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Discussions

SGXELIDE enclaves are self-modifying!
How do we defend against malicious enclaves?

How do we protect vulnerable enclaves?
How does this influence side-channel attacks?

Limitations and future work
Framework not completely transparent
Would be useful to test SGXELIDE with large-scale software
Framework is proof-of-concept and not production ready

21 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Discussions

SGXELIDE enclaves are self-modifying!
How do we defend against malicious enclaves?
How do we protect vulnerable enclaves?

How does this influence side-channel attacks?

Limitations and future work
Framework not completely transparent
Would be useful to test SGXELIDE with large-scale software
Framework is proof-of-concept and not production ready

21 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Discussions

SGXELIDE enclaves are self-modifying!
How do we defend against malicious enclaves?
How do we protect vulnerable enclaves?
How does this influence side-channel attacks?

Limitations and future work
Framework not completely transparent
Would be useful to test SGXELIDE with large-scale software
Framework is proof-of-concept and not production ready

21 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Discussions

SGXELIDE enclaves are self-modifying!
How do we defend against malicious enclaves?
How do we protect vulnerable enclaves?
How does this influence side-channel attacks?

Limitations and future work

Framework not completely transparent
Would be useful to test SGXELIDE with large-scale software
Framework is proof-of-concept and not production ready

21 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Discussions

SGXELIDE enclaves are self-modifying!
How do we defend against malicious enclaves?
How do we protect vulnerable enclaves?
How does this influence side-channel attacks?

Limitations and future work
Framework not completely transparent

Would be useful to test SGXELIDE with large-scale software
Framework is proof-of-concept and not production ready

21 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Discussions

SGXELIDE enclaves are self-modifying!
How do we defend against malicious enclaves?
How do we protect vulnerable enclaves?
How does this influence side-channel attacks?

Limitations and future work
Framework not completely transparent
Would be useful to test SGXELIDE with large-scale software

Framework is proof-of-concept and not production ready

21 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Discussions

SGXELIDE enclaves are self-modifying!
How do we defend against malicious enclaves?
How do we protect vulnerable enclaves?
How does this influence side-channel attacks?

Limitations and future work
Framework not completely transparent
Would be useful to test SGXELIDE with large-scale software
Framework is proof-of-concept and not production ready

21 / 23



Introduction Background and Overview Design and Implementation Evaluation Conclusion

Conclusion

SGXELIDE

Presented framework for SGX that ensures code confidentiality
Sanitize enclave and dynamically restore code at runtime
Evaluated SGXELIDE’s performance with SGX benchmarks we
developed
Showed SGXELIDE has very little overhead with no performance
penalty after restoration

SGXELIDE Source
github.com/utds3lab/sgxelide

22 / 23

github.com/utds3lab/sgxelide


Introduction Background and Overview Design and Implementation Evaluation Conclusion

Conclusion

SGXELIDE

Presented framework for SGX that ensures code confidentiality
Sanitize enclave and dynamically restore code at runtime
Evaluated SGXELIDE’s performance with SGX benchmarks we
developed
Showed SGXELIDE has very little overhead with no performance
penalty after restoration

SGXELIDE Source
github.com/utds3lab/sgxelide

22 / 23

github.com/utds3lab/sgxelide


Introduction Background and Overview Design and Implementation Evaluation Conclusion

Thank You

Enclave

Runtime 

Restorer
Sanitizer

secret.so

dummy.so

secret 
enclave
code

Compiler,

Linker

Compiler,

Linker

dummy 
enclave 
code

secret.so

sanitized.so

secret
data

Dummy Enclave Code Generation

Normal Enclave Code Generation

Runtime Secret Enclave Code Restoration

outer enclave inner enclave

meta
data

erick.bauman@utdallas.edu
github.com/utds3lab/sgxelide

23 / 23

github.com/utds3lab/sgxelide

	Introduction
	Background and Overview
	Design and Implementation
	Evaluation
	Conclusion

