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“The enclave file can be disassembled, so the algorithms
used by the enclave developer will not remain secret.”

–SGX SDK Manual
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Benchmarks

Original LOC w/ SGX LOC w/ SGXELIDE TC TC Sanitized Sanitized
Benchmarks LOC UC TC UC TC Functions Bytes Functions Bytes

AES 802 472 427 522 540 185 75999 15 3840
DES 473 463 372 513 485 179 75455 9 3296
Sha1 315 423 251 473 364 179 73791 9 1632
Shas 2417 1529 1240 1579 1353 224 80127 54 7968
2048 413 551 192 601 305 208 76351 38 4448
Biniax 3523 3582 193 3632 306 208 76351 38 4448
Crackme 48 316 93 366 206 182 73711 12 1536
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Sanitization/Restoration Time

Remote Data Local Data
Sanitize Stand. Restore Stand. Sanitize Stand. Restore Stand.

Benchmarks Time Dev. Time Dev. Time Dev. Time Dev.
AES 0.09 0.01 4.06 0.54 0.15 0.01 3.76 0.20
DES 0.09 0.01 3.99 0.52 0.14 0.01 3.97 0.75
Sha1 0.09 0.01 3.67 0.35 0.14 0.01 3.97 0.98
Shas 0.09 0.00 4.06 0.53 0.15 0.01 4.26 0.97
2048 0.09 0.01 3.78 0.52 0.15 0.01 3.73 0.28
Biniax 0.09 0.00 4.44 0.61 0.15 0.01 4.32 0.92
Crackme 0.09 0.01 3.53 0.28 0.15 0.00 3.54 0.78
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Discussions

SGXELIDE enclaves are self-modifying!

How do we defend against malicious enclaves?
How do we protect vulnerable enclaves?
How does this influence side-channel attacks?

Limitations and future work
Framework not completely transparent
Would be useful to test SGXELIDE with large-scale software
Framework is proof-of-concept and not production ready
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Conclusion

SGXELIDE

Presented framework for SGX that ensures code confidentiality
Sanitize enclave and dynamically restore code at runtime
Evaluated SGXELIDE’s performance with SGX benchmarks we
developed
Showed SGXELIDE has very little overhead with no performance
penalty after restoration

SGXELIDE Source
github.com/utds3lab/sgxelide
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