
Derandomizing Kernel Address Space Layout for Memory
Introspection and Forensics

Yufei Gu
The University of Texas at Dallas

800 W. Campbell RD
Richardson, TX 75080

yufei.gu@utdallas.edu

Zhiqiang Lin
The University of Texas at Dallas

800 W. Campbell RD
Richardson, TX 75080

zhiqiang.lin@utdallas.edu

ABSTRACT
Modern OS kernels including Windows, Linux, and Mac OS all
have adopted kernel Address Space Layout Randomization (ASLR),
which shifts the base address of kernel code and data into different
locations in different runs. Consequently, when performing intro-
spection or forensic analysis of kernel memory, we cannot use any
pre-determined addresses to interpret the kernel events. Instead,
we must derandomize the address space layout and use the new
addresses. However, few efforts have been made to derandomize the
kernel address space and yet there are many questions left such as
which approach is more efficient and robust. Therefore, we present
the first systematic study of how to derandomize a kernel when
given a memory snapshot of a running kernel instance. Unlike the
derandomization approaches used in traditional memory exploits
in which only remote access is available, with introspection and
forensics applications, we can use all the information available in
kernel memory to generate signatures and derandomize the ASLR.
In other words, there exists a large volume of solutions for this
problem. As such, in this paper we examine a number of typical
approaches to generate strong signatures from both kernel code and
data based on the insight of how kernel code and data is updated, and
compare them from efficiency (in terms of simplicity, speed etc.) and
robustness (e.g., whether the approach is hard to be evaded or forged)
perspective. In particular, we have designed four approaches includ-
ing brute-force code scanning, patched code signature generation,
unpatched code signature generation, and read-only pointer based
approach, according to the intrinsic behavior of kernel code and data
with respect to kernel ASLR. We have gained encouraging results
for each of these approaches and the corresponding experimental
results are reported in this paper.

CCS Concepts
•Security and privacy → Operating systems security; Oper-
ating systems security; Virtualization and security; •Applied
computing→ System forensics;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’16, March 09 - 11, 2016, New Orleans, LA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3935-3/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2857705.2857707

Keywords
Kernel Address Space Layout Randomization; Virtual Machine
Introspection; Memory Forensics

1. INTRODUCTION
Address space layout randomization (ASLR) [27] has become

a prominent defense against the attacks that use a hard-coded ad-
dress to compromise vulnerable systems. Examples of such attacks
include Internet worms that use the same virtual address to com-
promise the control flow of the same vulnerable program, or some
kernel rootkits that overwrite the same virtual address to hide or
redirect the kernel control flow. At a high level, ASLR randomizes
the base address of program code and data including both heap and
stack. Consequently, traditional memory exploits through return-
into-libc [10, 19] or return oriented programming (ROP) [24, 9]
can be mitigated because of the memory address diversity enabled
by ASLR. ASLR has also been pushed to the kernel space due to
the existence of the exploitable vulnerabilities in OS kernels as
well as the threats from kernel rootkits. Modern OS kernels such as
Windows, Linux, and Mac OS all have adopted ASLR to randomize
both the kernel code and the kernel data including those in kernel
global, heap and stack regions. As such, the address of kernel code
and data (e.g., system call dispatcher table) will be relocated to
different memory locations in different runs.

The implication of kernel ASLR has twofold: on one hand it
significantly decreases the success rate of kernel memory exploits
as well as some kernel rootkit attacks; on the other hand it also
hinders the application of online kernel introspection [14] and
offline kernel memory forensics, both of which need to interpret
(or reconstruct) kernel events outside of the (guest) OS. Specifically,
for an introspection and forensic tool to be effective, it often requires
a pre-knowledge of the OS kernel such as where kernel code and
important kernel data structure is located. For instance, to interpret
a system call event, it requires to know the address of the system
call tables (e.g., [13]); to intercept the kernel object allocation and
deallocation, it requires to know the addresses of the functions that
manages the kernel heaps (e.g., [30]); to traverse certain dynami-
cally allocated kernel objects, it needs to know their rooted global
addresses (e.g., [12]). Unfortunately, kernel ASLR will randomize
these addresses, and we must derandomize them for introspection
and forensics.

From the offense perspective, there are already several attempts to
derandomize the user space ASLR. In particular, Shacham et al. [25]
demonstrated the first brute-force linear search approach, which only
requires 216 probes at worst (215 on average) to derandomize the
address space of a vulnerable program for a 32-bit ASLR implemen-
tation. Such a brute-force approach was also used in recent BROP [8]
attack to bypass the ASLR protection. Additionally, another way

http://dx.doi.org/10.1145/2857705.2857707

to derandomize ASLR is through information leakage. Roglia et
al. [21] demonstrated a surgical approach to return to randomized
libc by exploiting information about the base address of libc
in victim process memory and also combing the code fragments
available at fixed locations and use them to discover the address
of other libc functions. Meanwhile, unlike this single memory
disclosure, recent JIT-ROP [26] attack leverages multiple memory
disclosures to bypass fine-grained ASLR through repeatedly abusing
a memory disclosure to map an application’s memory layout on-the-
fly and dynamically discover the attack gadgets.

Interestingly, while we can use these offensive techniques, which
have only the remote access to derandomize the user space ASLR,
we have the local access of the entire memory for introspection
or forensics applications and we can leverage such an advantage
to derandomize the kernel ASLR. For instance, memory forensics
tools such as Volatility [29] uses a KDBG signature (a sequence
of bytes) to derandomize Windows kernel address space. In other
words, there are too many options (e.g., too many signatures) to
perform the derandomization when having the physical access of
the kernel memory. Given such a large volume of solution space,
there is however no study that has searched for the optimal solutions
in terms of both robustness (i.e., hard to evade) and efficiency (i.e.,
having a fast performance).

Therefore, in this paper, we conduct the first systematic study
to search for the optimal solutions for introspection and forensics
to derandomize the kernel ASLR. In particular, since the key chal-
lenge lies in deriving the strong and robust signatures inside kernel
memory, we systematically examine both kernel read-only code
and data that can be used to derandomize the ASLR. For read-only
kernel data, we examine the strings and entries of code pointers
(e.g., jump tables) and we propose to use the entries of the code
pointers as the signatures. For kernel code, we examine how kernel
code is updated, from which to derive the robust signatures. We
also perform a comparison study among these approaches by using
robustness and efficiency metrics.

In summary, this paper makes the following contributions:

• We make the first systematic study in searching for the optimal
solutions of derandomizing kernel ASLR for virtual machine
introspection and memory forensics.

• We revisit, examine, and devise four different approaches
from kernel code and data perspective. Among them, three
are novel approaches that have not been reported, and they
explore the intrinsic properties of kernel code and also the
way of how kernel code and data is updated.

• We have implemented these approaches and compared them
using the metrics of robustness and efficiency. We have tested
20 recent Linux kernels, and the detailed experimental results
are reported in this paper.

2. BACKGROUND AND RELATED WORK
Software is so complicated today especially for an OS kernel, and

it contains inevitable vulnerabilities. As discussed earlier, due to the
existence of exploitable vulnerabilities inside OS kernels and those
rootkit attacks, modern OSes all have pushed ASLR into kernel
space, for instance:

• Microsoft Windows. Starting from Windows Vista (released
in January 2007) [2], Microsoft has enabled ASLR inside the
kernel space.

• Linux. Starting from the kernel version 3.14 (released in
March 2014) [5], Linux supports the kernel ASLR. While

currently it is disabled by default, users can turn it on by
configuring the kernel compilation options and then rebuilding
the kernel.

• Mac OS. Starting from OS X Mountain Lion 10.8 (released in
July 2012) [4], the entire system (include the kernel) supports
ASLR.

Therefore, kernel ASLR has become a de facto standard for mod-
ern OS. At a high level, it relocates both kernel code and data into
different locations in different runs of the kernel. Consequently, we
must derandomize the kernel address space layout before performing
the introspection or forensics analysis.

State-of-the-art. A straightforward approach to derandomize the
kernel ASLR would be devising strong signatures from OS kernel
code or data, and then searching for them to derandomize the ad-
dress. Volatility [29], a memory forensic analysis tool, uses such an
approach to derandomize the Windows kernel (currently it does not
support Linux kernel yet). Specifically, Volatility uses the Windows
KdDebuggerDataBlock (KDBG), a data structure maintained
by the Windows kernel for debugging purposes. KDBG contains
a list of the running processes and loaded kernel modules. It also
contains some version information. Identifying this data structure in
memory can reveal many useful information including certain code
addresses of the kernel. Meanwhile, the header of this data structure
also contains some unique binary for different Windows versions,
which can serve as signatures.

Therefore, Volatility contains a kdbgscan plugin, which is par-
ticularly designed to scan the KDBG, from which to derandomize
the ASLR. A list of the signatures used by kdbgscan is presented
in Table 1. We can notice that these signatures are very short (at most
14 bytes in length), and more importantly, these data are located
in writable kernel data sections, which means a non-collaborative
guest OS can easily cheat the introspection or the forensics tool. We
have verified that the signatures used by kdbgscan can be easily
modified without crashing the kernel. Therefore, we need robust
signatures to derandomize the kernel ASLR. Our paper focuses on
how to derive such robust signatures.

Other related works. There are also efforts focusing on fingerprint-
ing guest OS kernel version. While derandomzing kernel ASLR
and kernel version fingerprinting are different problems, they share
certain similarity in that they both have to derive and search for
strong signatures from an OS kernel. Meanwhile, kernel version
fingerprinting can be used as a first step for derandomizing the
ASLR for a specific kernel, though it might also be possible to
use the strong and unique signatures to directly derandomize the
kernel ASLR without the fingerprinting step. Therefore, kernel
fingerprinting technique can help derandomize the kernel ASLR.
The signatures used in the kernel ASLR derandomization can also
complement the kernel fingerprinting depending on whether they
are unique or not.

In the past a few years, there are a number of efforts focusing on
how to fingerprint the guest OS version when having the physical
access of the computer (e.g., in the cloud environment for cloud
providers). UFO [20] is one such a system that explores the discrep-
ancies in the CPU state for different OSes. By profiling, extracting,
and differing the values in CPU registers such as GDT, IDT, CS,
CR, and TR, UFO can generate unique signatures for a family of
Windows kernels.

OS-Sommelier [15] is another system that explores robust signa-
tures from kernel code to fingerprint the guest OS. More specifically,

Kernel Version Signature (Byte Sequence) Size (Bytes)
VistaSP0x86 00 00 00 00 00 00 00 00 4b 44 42 47 28 03 14
VistaSP1x86 00 00 00 00 00 00 00 00 4b 44 42 47 30 03 14
VistaSP2x86 00 00 00 00 00 00 00 00 4b 44 42 47 30 03 14
VistaSP0x64 00 f8 ff ff 4b 44 42 47 28 03 10
VistaSP1x64 00 f8 ff ff 4b 44 42 47 30 03 10
VistaSP2x64 00 f8 ff ff 4b 44 42 47 30 03 10
Win7SP1x64 00 f8 ff ff 4b 44 42 47 40 03 10
Win7SP1x86 00 00 00 00 00 00 00 00 4b 44 42 47 40 03 14
Win7SP0x86 00 00 00 00 00 00 00 00 4b 44 42 47 40 03 14
Win7SP0x64 00 f8 ff ff 4b 44 42 47 40 03 10

Win2008SP1x86 00 00 00 00 00 00 00 00 4b 44 42 47 30 03 14
Win2008SP2x86 00 00 00 00 00 00 00 00 4b 44 42 47 30 03 14
Win2008SP1x64 00 f8 ff ff 4b 44 42 47 30 03 10
Win2008SP2x64 00 f8 ff ff 4b 44 42 47 30 03 10

Win2008R2SP0x64 00 f8 ff ff 4b 44 42 47 40 03 10
Win2008R2SP1x64 00 f8 ff ff 4b 44 42 47 40 03 10

Win8SP0x86 00 00 00 00 00 00 00 00 4b 44 42 47 60 03 14
Win8SP1x86 00 00 00 00 00 00 00 00 4b 44 42 47 60 03 14
Win8SP0x64 03 f8 ff ff 4b 44 42 47 60 03 10
Win8SP1x64 03 f8 ff ff 4b 44 42 47 60 03 10
Win2012x64 03 f8 ff ff 4b 44 42 47 60 03 10

Win2012R2x64 03 f8 ff ff 4b 44 42 47 60 03 10

Table 1: KDBG Signatures used by Volatility to Derandomize
the Kernel.

it computes the core kernel code hash to precisely fingerprint an OS,
and these core kernel code is identified by correlative disassembling,
code and signature normalization, and resilient signature matching
techniques. OS-Sommelier+ [16] further combines kernel data struc-
ture for the fingerprinting. Instead of precisely identifying the core
kernel code from the memory snapshot and computing the hash,
Sdkernel [23] utilizes an approximate matching tool Sdhash [22]
to extract kernel fingerprints from the content of the disk images.
Sdkernel would work well for disk forensics but not on memory
since kernel code can be significantly changed due to the dynamic
patching issues discussed in §3.2.

Most recently, Ahmed et al. [6] proposed the use of relocation
tables in the program binary code to compute their fingerprints.
Their key idea is that relocation tables tend to be distinct, and the
relative addresses among the relocation entries can hence be used to
build unique signatures. Their experimental results show that this
approach can achieve very high accuracy but not 100% for Windows
binaries (they have not tested any Linux binaries yet).

3. OVERVIEW
In this section, we give an overview of what we aim to achieve

in this paper. We first define our research problem in §3.1, then
enumerate the challenges faced to derandomize the kernel ASLR in
§3.2, and finally present an outline of the approaches we will study
in §3.3.

3.1 Problem Statement
The goal of our work is to investigate the optimal solutions

for derandomizing the kernel address space for introspection and
forensics. Under such application scenarios, we have the physical
access of the target computers, and consequently there exist a large
number of solutions for this problem. Therefore, we would like to
also answer the questions of what the solution space is and which
solution is more optimal. To this end, we define two metrics to
evaluation the possible solutions.

• Robustness: Since there could exist non-cooperative guest
OS running in a cloud (e.g., criminals who want to defeat
the memory forensics, or kernel rootkits that have tampered
with the kernel memory), the signatures generated for the
derandomization should be robust; namely, it should be quite

challenging for an adversary to modify the signatures, or
generate fake ones to mislead the derandomization process.

• Efficiency: Given the fact that the size of the kernel memory
is usually very large and there could also be millions of VMs
running in a cloud, we would prefer faster approaches — the
faster the derandomization takes (or the simpler the approach
is), the better.

Threat Model, Scope, and Assumptions. We focus on derandom-
izing the kernel ASLR for cloud providers or forensic investigators
where they have the physical access of the OS memory. We assume
there are non-cooperative cloud users (e.g., cyber criminals), or there
exists kernel malware which can manipulate or forge the signatures.
Also, we focus on x86 platform, and the OS we aim to derandomize
are the recent Linux kernels since version 3.14. Meanwhile, we do
not attempt to compare all the possible approaches, and instead we
would like to design and compare the approaches that tend to be
simple, robust, and efficient.

3.2 Challenges
Intuitively, while we can use those sophisticated offensive tech-

niques such as the brute-force probing [25] or memory disclosure
attack [21, 26] to derandomize the kernel ASLR, a more efficient
approach would be to derive robust signatures from both kernel
code and data, and use them for the derandomization. Therefore, the
central problem we aim to solve is how to derive such signatures. In
the following, we discuss the challenges faced during this step.

3.2.1 Kernel Code is Non Static
The most straightforward approach is to directly use the entire

kernel code as the signatures, and search for the memory to locate
them. However, such an approach cannot have 100% accuracy
because kernel code is actually non static [17], and there exists
various complicated kernel patching techniques during the kernel
loading and even during the kernel run-time. More specifically,
modern Linux kernel, the target of our work, often involves the
following dynamic kernel code patching:

• Relocation. Relocation is typically needed by a linker when
linking object code to produce the final executable for user
space program. Relocation is also needed when loading kernel
modules or loading ASLR-enabled kernel. Specifically, as the
current ASLR basically shifts the base address of kernel code
and kernel global data, there is a need to dynamically patch the
static hard coded addresses in both kernel code (e.g., certain
memory address operand) and kernel data (e.g., jump table
entries in read-only global data sections). The location of these
static addresses are described in the relocation entries in relo-
cation table sections of the binary code (e.g., .rel.text,
.rel.data and .rel.rodata sections). Two examples
of the relocation patching are illustrated in Fig. 1. We can see
from the first example that when this mov instruction gets
loaded into different memory locations, its target memory
address operand has been accordingly patched (e.g., from
0xa7b000 to 0xcb7b000).

• Alternative Instructions. One optimization strategy used by
modern Linux kernel is to dynamically replace some (old)
instructions with more efficient alternatives. The benefits
of this mechanism is to allow distributors to ship generic
kernels which can then be self-optimized according to the

0xc0103045: 89 0c c5 00 a0 9e c0 mov DWORD PTR [eax*8-0x3f616000],ecx

0xcc203045: 89 0c c5 00 a0 ae cc mov DWORD PTR [eax*8-0x33516000],ecx

0xcc200033: b9 00 b0 b7 0c mov ecx,0xcb7b000

0xc0100033: b9 00 b0 a7 00 mov ecx,0xa7b000

Figure 1: Relocation patching.

0xc0101149: 8d 74 26 00 lea esi,[esi+eiz*1+0x0]

0xc012c793: 8d 76 00 lea esi,[esi+0x0]

0xcc22c793: 0f ae e8 lfence

0xcc201149: 0f 18 00 prefetchnta BYTE PTR [eax]

0xcc20114c: 90 nop

Figure 2: Alternative instruction patching.

CPU configuration at load time. For instance, the code built
for older CPUs can take advantage of the alternative instruc-
tions added later in the newer CPUs. To use such patching,
kernel developers have to explicitly declare the instruction
substitution through macro definition statement in the kernel
source code. For example, the following code snippet shows
how an old lock and addl instruction sequence is replaced
by mfence instruction if the CPU has XMM2 enabled:

#define mb() alternative("lock; addl $0,0(%%esp)",

"mfence", X86_FEATURE_XMM2)

These alternative patching definitions will be translated by
compilers and then stored in special data sections such as
.altinstructions and.altinstr_replace section
in the kernel binary code. The kernel will apply alternative
instructions by invoking apply_alternative function
at load time. Fig. 2 also shows two examples of this alternative
instruction patching.

• Symmetric Multiprocessing. In addition to the relocation
and alternative instruction patching, kernel also has some
other special patching. One example is the critical section
locking and unlocking of the execution of Symmetric Multi-
Processing (SMP) CPUs [3]. Note that SMP is an architecture
that allows multiple CPUs to share the same memory. It is
widely used in modern computers.

Since in SMP mode, multiple CPUs can simultaneously access
the same piece of memory, there are some regions of the kernel
code that would become critical sections. In this situation, the
critical section must be locked. However, kernel only activates
these locks if it is operating in a multiple CPU environment.
The SMP patching can occur at both load time and run time.
During the loading phase, if kernel detects it runs in SMP
mode, it will apply the SMP unlock and lock patching, as
illustrated in Fig. 3.

Additionally, the Linux kernel also supports enabling and
disabling SMP CPUs at run time. This makes such patching

0xc1001d19: f0 80 48 0a 40 lock or BYTE PTR [eax+0xa],0x40

0xc1001d19: 3e 80 48 0a 40 or BYTE PTR [eax+0xa],0x40

0xc1001d19: 3e 80 48 0a 40 or BYTE PTR [eax+0xa],0x40

0xc1001d19: f0 80 48 0a 40 lock or BYTE PTR [eax+0xa],0x40

Figure 3: SMP unlock and lock patching.

occur at run time. In particular, Linux kernel uses the functions
alternatives_smp_lock and alternatives_smp
_unlock to a live kernel in memory to add or remove locks.

• Function Tracing: Function tracing is a mechanism which
requires runtime code patching. The tracer is usually used
to debug the kernel or measure performance. It is commonly
called at the beginning of each function within the kernel.
For performance reasons, each tracer call is replaced by a
NOP slide when the tracing feature is currently disabled. For
example, instruction call mcount is patched by a NOP
instruction, e.g., xchg %ax, %ax. As such, the system will
run with virtually no overhead when function tracing is dis-
abled.

Similar to relocation patching, function tracing patching is
also informed by special data sections (e.g.,__mcount_loc)
that tracks where these tracing functions are located in the
.text section. This special data section is generated during
the compile time. Then during the kernel booting phase,
before SMP is initialized, kernel will scan this special data
section and update all the function tracing call site into NOPs.
When tracing is enabled, the NOPs are patched back to calls.

In addition to those outlined above, there also exists other sophis-
ticated kernel code patching such as jump label optimization and
load-time hypercall patching [17]. They all show strong evidence
that kernel code is non static and we have to deal with this challenge
while deriving code signatures.

3.2.2 Kernel Data is Huge
Unlike kernel code (which tends to be small), there is a huge

volume of kernel data located in different data sections (e.g., global,
heap, and stack) in the memory. Apparently, writable data such
as those in kernel heap and stack cannot be used as signatures,
though their shape might be able to serve as the signatures [18, 28].
Therefore, the most intuitive approach would be to use the read-only
data (such as the strings) as the signatures. However, string may be
manipulated by adversaries [11, 7], and we must use the immutable
ones. As a result, the key challenge lies in how to search for the
unique and immutable kernel data and use them as the signatures.

3.3 Study Overview
Again, the goal of this work is to explore the possible optimal

approaches to derandomizing kernel ASLR for introspection and
forensics applications, and compare them in terms of robustness
and efficiency. Since a program including OS kernel is composed of
code and data, we divide the possible approaches into code-based
and data-based, as illustrated in Fig. 4.

• Kernel Code-based Approaches. Modern Linux kernel con-
tains several mega-bytes of code. Thus, too much information

Kernel
memory

Kernel
data

Kernel
code data

Patched
Kernel code

Unpatched
Kernel code

Read‐only
Kernel data

Writable
Kernel data

Brute‐force
Approach

§4.1

Kernel code Kernel code Kernel data Kernel data

Read‐only Read‐only

Approach

Patched code Unpatched code

§4.2 §4.3
Robust Graph ead o y

values,strings
ead o y

code pointers
Patched code

based Approach
Unpatched code
based Approach

Read‐only pointer

§5.1

Signature

Robust Value y p
based ApproachInvariant Signature

Figure 4: An Overview of the Investigated Approaches in Our Study.

can be used as the signatures. At a high level, the longer the
signature is, the more robustness it is (because adversaries
need to spend more efforts forging it for instance). On the
other hand, we would prefer less sophisticated approaches
because we also aim for efficiency. Similar to the brute-force
approach used to break the ASLR [25], one of the simplest
approach would be to directly scan the entire kernel memory
and locate the base address of the kernel code, and we call
this brute-force-approach (§4.1). However, this approach is
not ideal because kernel code is not static and it would not
achieve a 100% byte-by-byte matching. Therefore, more nat-
ural approaches would be to generate the derandomization
signatures based on the patched code and unpatched code:

– Signatures from Patched Code. While kernel patching
is so complicated, there could be approaches that lever-
age the rules in the patching and derive the signatures.
We can hence explore the intrinsic properties enforced
by the patching and generate the signatures, and we will
demonstrate one such an approach in §4.2.

– Signatures from Unpatched Code. If we can distill
the patched code, the rest will be the unpatched one,
from which we can generate the signatures. Certainly
the challenge will be how to identify those unpatched
code, we will discuss a novel approach we devised in
§4.3.

• Kernel Data-based Approaches. Kernel data can be divided
into writable kernel data, and read-only data. Correspondingly,
there exist different approaches based on this:

– Writable kernel data. For writable data such as those
located in kernel heap, we cannot directly use their
values as the signatures, and instead we may use their
shapes of the data structure as signatures, as demon-
strated by earlier approach SigGraph [18]. In this study,
we will not evaluate the feasibility of such an approach
as it is too sophisticated, though it is possible to be used.

– Read-only kernel data. Then we can look at the kernel
read-only data. Constant strings are one of such candi-
dates. However, strings can be manipulated by strong
adversaries without crashing the kernel. While it is pos-
sible to systematically identify these non-manipulable
strings (e.g., through fuzzing as in robust value invariant
signatures [11]), we believe again this is too sophis-
ticated, and instead we would like to focus on other
non-manipulable data. We will discuss another novel
approach we designed in §5.1.

4. DERIVING SIGNATURES FROM KER-
NEL CODE

4.1 Brute-force Code Matching Approach
The first and simplest approach is to directly scan the kernel code

in memory using the entire code image from the disk. For a 32-bits
Linux kernel, there are a maximum of 16 bits used in the random-
ization according to the default kernel configuration. Therefore,
assume the kernel code has K bytes, the worst case complexity of
this byte-by-byte brute-force scanning would take 216K number of
comparisons. While there could be some optimizations, such as only
using a subset of pages instead of all disk code for the scanning.

However, a caveat is that there will be no 100% byte-by-byte
matching of the in-memory code and the in-disk code because of
the dynamic patching of the kernel code (as discussed in §3.2).
Fortunately, there will be only one peak match ratio, since it is very
unlikely that there are two copies of the same kernel code in the
memory. Therefore, we present a rigorous algorithm in Algorithm 1
for this peak-value based brute-force approach we used in our
evaluation. Basically, it uses a byte-by-byte matching for each page
(by calling PageMatching, which returns how many bytes get
matched) and if more than half page of the data gets matched (line
8), then it compares with the next page. If all the code in disk has
been checked, and the final match ratio has the highest peak value,
then we output the based address of the kernel code (line 15).

The advantage of this brute-force approach is that it is the simplest
(no sophisticated analysis required), and has very strong robustness
since it uses the entire kernel code as the signatures. The disadvan-

Algorithm 1: A Brute-Force Based Code Matching Approach
Data: Kernel Page Size 4096;
Input: Kernel memory snapshot: M with Mp pages; Kernel

code in disk D with Dp pages;
Result: The base address of the randomized kernel code

1 begin
2 peak ← 0;
3 R← 0;
4 for i ∈ {0..Mp} do
5 matched← 0;
6 j ← 0;
7 while j < Dp do
8 M [i]← GetVirtualPageContent (M, i);
9 if (k ← PageMatching (M[i], D[j]) and

k > 2048) then
10 j ← j + 1; matched← matched+ k ;

11 else
12 j← 0; break;

13 if ((j == Dp) and (matched/D > peak)) then
14 peak ← matched/D; R← GetVirtualAddr

(M , i− j);

15 return R;

tage is it is very slow as shown in our experiment in §6 and also
it may have false negatives as discussed in §7 when facing strong
adversaries.

4.2 Patched Code Based Approach
While there are too many instructions that can be patched, we

notice that there are still certain rules we can leverage. One is that
kernel must know where to patch and how to patch. In particular,
for relocation-based patching, kernel needs to use the information
stored in relocation entries such as .rel.text, which means we
can also leverage them to locate where to patch; for alternative
instructions, kernel binary code also stores what those alternative
instructions are and how to patch them (by invoking the internal
kernel function apply_alternative). While we can re-execute
the logic implemented in apply_alternative to locate the
alternative instruction patched code, it is less complicated to locate
the relocation-based patched code. For function tracing patching,
we also need to parse the offset stored in the corresponding spe-
cial data sections, which tends to be complicated. Therefore, we
eventually decide to only look into how to use the relocation entries
that can be directly acquired by tools such as readelf for our
derandomization.

According to the standard ELF format specification [1], a relo-
cation entry in a 32-bit ELF file is defined as a record consisting
of two fields: the offset field and the info field, where the
offset field gives the location at which the patching needs to be
applied. Therefore, one insight we have is we can use the offset
information stored in .rel.text for each relocation entry to
probe and locate them in the kernel memory. The other insight is the
data that needs to be patched are static memory address. Compared
with static memory address that are in the disk file, all the patched
memory address should be shifted by a constant value, which is the
randomized offset we aim to get.

In fact, relocation entry had recently been used by CodeIndenti-
fier [6] to fingerprint the Windows binary code. An example that
illustrates this approach is presented in Fig. 5. Basically, it iterates

Algorithm 2: Relocation Entry Based, Patched Code Signature
Matching Approach.

Data: Vb: the base address of the kernel in the disk; n: the
number of the randomization bits; PhyKernAlign: the
kernel address alignment for the randomized kernel,
which is usually at page level granularity.

Input: Kernel memory snapshot: M ; Kernel code in disk D;
Result: The base address of the randomized kernel code

1 begin
2 for i ∈ {0..2n} do
3 ProbBaseAddr← 0xc0000000 + i ∗ PhyKernAlign;
4 matched← false;
5 for each relocation offset Oj ∈ {rel.text} and with

type R_386_32 do
6 if (M[ProbBaseAddr+ Oj - Vb] - D[Oj - Vb]) !=

M[ProbBaseAddr+ Oj+1 - Vb] - D[Oj+1 - Vb])
then

7 matched← false;
8 break;

9 else
10 matched← true;

11 if (matched) then
12 return ProbBaseAddr;

13 return 0;

each relocation entry defined in the .rel.text in Windows PE
files, acquires its in-disk value Vd at offset oi, then computes a
signature value S using the difference between Vd and the base
address of the code Vb in disk, namely Vd - Vb. This signature value
shall remain a constant for this particular relocation entry. Then it
searches the memory to locate the code by probing the value Vm and
checking whether its distance to the randomized kernel base address
Vx (we aim to find) is S. For instance, as shown in Fig. 5, the S
value of Vm − Vx for the first relocation entry is 0x7015d8, and
the forth relocation entry is 0x7ca780. Only when all the relocation
entries match the S values, does it mean successfully identifying
the fingerprints of the code.

With respect to ELF binary, we can notice that not all the reloca-
tion entry can be used by CodeIdentifier. Specifically, for the 2nd
and 3rd relocation entry, it has the type of R_386_PC32, which
means the loader/linker shall places the PC-relative 32-bit address
of the symbol into the specified memory location. However, when
loading them into memory, they have already been updated with
the relative addresses and there is no need to patch them. Also,
interesting, the code snippet shown in Fig. 5 contains a function
tracing disabling patching where instruction “call c0683c80”
gets patched to NOP “xchg %ax, %ax”.

Therefore, if we can remove the 2nd and 3rd relocation entry and
use the first and forth ones (with type R_386_32, which means
linker/loader will place an absolute 32-bit address of the symbol
into the specified memory location) to compute the signature, we
should be able to locate the corresponding kernel code. As such,
we use a different approach to compute the signature compared to
CodeIdentifier. In particular, instead of computing different signature
value for each relocation entry, we compute it using the difference
of the value in the memory snapshot Vm and the value in the disk Vd

(i.e., Vm − Vd). In this way, we will always get a constant value for
all the relocation entries, which is the in fact the randomized offset.

Code in Disk Image Base Address: 0xc0100000

c0100450: c7 04 24 d8 15 80 c0 movl $0xc08015d8,(%esp)

c0100457: 89 44 24 0c mov %eax,0xc(%esp)

c010045b: e8 20 31 04 00 call c0143580

0100460 9 3 ff ff ff j 01003 1

Offset Type Name

1: c0100453 R_386_32 .rodata

2: c010045c R_386_PC32 warn_slowpath_fmt

3 0100474 R 386 PC32 t

Relocation Entries

c0100460: e9 3c ff ff ff jmp c01003a1

c0100465: 8d 74 26 00 lea 0x0(%esi,%eiz,1),%esi

c0100469: 8d bc 27 00 00 00 00 lea 0x0(%edi,%eiz,1),%edi

c0100470: 55 push %ebp

c0100471: 89 e5 mov %esp,%ebp

c0100473: e8 08 38 58 00 call c0683c80

c0100478: a3 80 a7 8c c0 mov %eax,0xc08ca780
V – V = S

CodeIdentifier Approach

3: c0100474 R_386_PC32 mcount

4: c0100479 R_386_32 .data

,

1: 0xc08015d8 – 0xc0100000 = 0x7015d8

1: 0xcc9015d8 – 0xcc200000 = 0x7015d8

4: 0xc08ca780 – 0xc0100000 = 0x7ca780

4: 0xcc9ca780 – 0xcc200000 = 0x7ca780

V
d
– V

b
= S

V
m
– V

x
= S

c0100450 c7 04 24 d8 15 80 c0 89 44 24 0c e8 20 31 04 00

c0100460 e9 3c ff ff ff 8d 74 26 00 8d bc 27 00 00 00 00

c0100470 55 89 e5 e8 08 38 58 00 a3 80 a7 8c c0 e8 1e 77

Code in Memory Snapshot

cc200450: c7 04 24 d8 15 90 cc movl $0xcc9015d8,(%esp)

cc200457: 89 44 24 0c mov %eax,0xc(%esp)

cc20045b: e8 20 31 04 00 call cc243580

cc200460: e9 3c ff ff ff jmp cc2003a1

cc200465: 8d 74 26 00 lea 0x0(%esi,%eiz,1),%esi

Base Address: 0xcc200000

1: 0xcc9015d8 – 0xc08015d8 = 0x0c100000

4: 0xcc9ca780 – 0xc08ca780 = 0x0c100000

V
m
– V

d
= RandomizeOffset

Our approach

cc200450 c7 04 24 d8 15 90 cc 89 44 24 0c e8 20 31 04 00

cc200469: 8d bc 27 00 00 00 00 lea 0x0(%edi,%eiz,1),%edi

cc200470: 55 push %ebp

cc200471: 89 e5 mov %esp,%ebp

cc200473: 66 66 66 66 90 xchg %ax,%ax

cc200478: a3 80 a7 9c cc mov %eax,0xcc9ca780

cc200450 c7 04 24 d8 15 90 cc 89 44 24 0c e8 20 31 04 00

cc200460 e9 3c ff ff ff 8d 74 26 00 8d bc 27 00 00 00 00

cc200470 55 89 e5 66 66 66 66 90 a3 80 a7 9c cc e8 1e 77

Figure 5: Using Relocation Entry to Generate Code Signatures

For instance, as illustrated in Fig. 5, for the first and forth relocation
entries, we will get the same value of 0xc100000.

We also present a rigorous algorithm in Algorithm 2 to illustrate
the detailed matching process. Specifically, we probe each possible
base address (the maximum is controlled by the n bits entropy
used in the randomization) starting from the kernel base address
(line 3), if the distance of all the relocation entry point between
the randomized kernel and the static disk image (namely Vm − Vd)
remains a constant value (line 5 - line 10), then we identify and
return the randomized base address Vx which is the probed base
address (line 12); otherwise, we keep iterating and probing other
possible base addresses.

4.3 Unpatched Code Based Approach
Having generated the signatures from patched code for the de-

randomization, next we would like to investigate the approaches
to generate the signatures from unpatched code. As discussed in
§3.2, there are many cases that certain pieces of kernel code can be
patched. It is quite challenging to identify the instructions that will
not be patched. Meanwhile, we can also notice that we actually do
not have to identify all the unpatched code, as long as we can identify
the ones that will not be patched and use them as the signatures. That
is, we can aim for soundness instead of completeness for unpatched
code identification.

Though kernel has complicated cases for load time or run time
patching, we realize that all the patching currently only operates
individually and there is no dependence between two patched points.
For instance, kernel only patches one point at a time based on the
information stored in the binary code (e.g., the relocation entry).
Therefore, an insight we have is that the instructions that (implicitly
or explicitly) increase or decrease stack pointers will not be patched;
otherwise, the kernel must patch them simultaneously. For instance,
if there is a push instructions, there must be a pop or equivalent
instructions. Otherwise, the stack cannot be kept balanced. This
property of stack related instructions keeps themselves from being

Algorithm 3: Unpatched Code Signature Generation
Input: Kernel code C in disk;
Result: A set S which contains all tuples({offset, instruction})

of each unpatched code
1 begin
2 S ← ∅ ;
3 for each instruction i ∈ C do
4 if ChangeStackPointer (i) then
5 Oi ← GetOffset (i);
6 Ci ← GetInstrCode (i);
7 S ← S ∪ {<Oi, Ci>}

8 return S;

patched. As a result, they can be served as the candidates for our
unpatched code signatures.

An algorithm of how we generate the unpatched code signature
based on the stack operations is presented in Algorithm 3. Basically,
we first disassemble the kernel code. Then we collect the instructions
that will modify the stack pointers (line 4 - line 7). We consider two
categories of instructions in ChangeStackPointer function
(line 4): one is those implicit stack pointer changing instructions
including push, pop and leave that will change the stack size
without explicitly modifying the esp value; the other ways is the
explicit instructions that directly changes the value of esp, e.g.
“sub %esp, 0x68”. Our signatures consist of these identified
instructions as well as their offsets (line 7, 8).

Then to match the signatures with the memory snapshot, we just
probe whether all the instruction at offsetOi+R in memory contains
the same instruction Ci as the one in disk Oi. If so, we output R as
the randomized offset. The detailed matching algorithms is elided
since this is quite simple.

App
roa

ch

Tota
l

Sign
atu

re
Gen

era
tio

n

Sign
atu

re
M

atc
hin

g

C++
Pyth

on

Brute Force 669 0 32 649 20
Patched Code 807 0 110 759 48
Unpatched Code 817 41 107 756 61
Readonly Pointer 822 0 124 773 49

Table 2: Implementation Complexity (Units: LOC).

5. DERIVING SIGNATURES FROM READ-
ONLY KERNEL DATA

Data in general can be classified into writable data and read-only
data. As discussed earlier, for writable data, when there are pointers
involved, the shape of the points-to graph might be able to serve
as a signature [18] to derandomize the kernel. We consider this
approach is too complicated and instead we focus on read-only
kernel data. Meanwhile, for read-only data, strings should be one
intuitive candidate for the signatures. However, strings can often
be mutated without crashing the kernel. As discussed earlier, while
similar to robust signatures approach proposed by Dolan-Gravitt
et al. [11], we could use fuzzing to identify those non crashable
strings as the signature. Again, we believe this approach is also
too sophisticated and leave it for future work. In the following,
we discuss a new approach we developed based on the read-only
pointers in the .rodata section.

5.1 Read-only Pointer Based Approach
Program including OS kernel contains static code pointers, for

instance, the system call tables, the indirect jump tables, etc. These
static code pointers when compiled are actually stored in the .rodata
section. Changing the value of these static code pointers will change
the semantics of the program code, and it might also lead to the
kernel crashes.

Similar to the relocation entries in .rel.text that contains
those to be patched memory address inside kernel code, there are also
relocation entries in .rel.rodata that contains the offset in the
.rodata to inform loader to patch the memory addresses (basically
they are pointers) stored in this .rodata section. Therefore, we
can use them to build read-only data signatures.

The approach is also surprisingly simple. Similar to Algorithm 2,
we iterative each relocation entry in .rel.rodata (instead of
.rel.text), and then compare the values between disk version
and the memory version. If all entry has the same shifted offset, we
return this randomized offset. Detailed algorithm is also elided for
simplicity.

6. EVALUATION
We have implemented the four approaches presented in §4 and §5,

and these implementation code can be found at github.com/utds3lab/
derandomization/. Basically, we implemented each approach with
a mixture of C++ and Python. The python code is called by C++
and is used to parse the output from objdump and readelf. The
implementation complexity in terms of lines of code (LOC) for
each of approach is presented in Table 2. In particular, we use
python to parse the address and offset from the rel.text and
rel.rodata sections produced by readelf of the kernel binary
code. Meanwhile, we use Python to parse the disassembled code
produced by objdump and get the offset and instruction of the
stack pointer change related instructions as the signatures.

OS Brute Patched Unpatched Readonly
Kernels Force Code Data Pointer
Linux-3.14.8 95.45% 100.00% 100.00% 100.00%
Linux-3.14.11 95.45% 100.00% 100.00% 100.00%
Linux-3.14.30 95.46% 100.00% 100.00% 100.00%
Linux-3.15 95.39% 100.00% 100.00% 100.00%
Linux-3.15.2 95.39% 100.00% 100.00% 100.00%
Linux-3.15.4 95.39% 100.00% 100.00% 100.00%
Linux-3.16 95.40% 100.00% 100.00% 100.00%
Linux-3.16.2 95.40% 100.00% 100.00% 100.00%
Linux-3.16.6 95.40% 100.00% 100.00% 100.00%
Linux-3.17 95.39% 100.00% 100.00% 100.00%
Linux-3.17.2 95.39% 100.00% 100.00% 100.00%
Linux-3.17.6 95.39% 100.00% 100.00% 100.00%
Linux-3.18 95.40% 100.00% 100.00% 100.00%
Linux-3.18.2 95.40% 100.00% 100.00% 100.00%
Linux-3.18.4 95.40% 100.00% 100.00% 100.00%
Linux-3.18.6 95.40% 100.00% 100.00% 100.00%
Linux-3.19 95.40% 100.00% 100.00% 100.00%
Linux-3.19.2 95.41% 100.00% 100.00% 100.00%
Linux-3.19.4 95.41% 100.00% 100.00% 100.00%
Linux-4.0 95.41% 100.00% 100.00% 100.00%
mean 95.41% 100.00% 100.00% 100.00%

Table 4: Match Ratio.

In this section, we present our experimental result. We took 20
Linux kernels from version 3.14 to 4.0 for the evaluation. We first
tested the effectiveness of each approach with respect to the testing
Linux kernels in §6.1, and then we report the performance overhead
of each approach in §6.2.

To obtain the physical memory dumps, we run each of the tested
Linux kernels in a VMware Workstation configured with 512M
bytes RAM (131,072 pages with 4K bytes each) for the guest OS.
After the guest OS has booted up, we took a memory snapshot and
used it for the testing. Our host machine has an Intel Xeon CPU with
48G memory, installing a Red Hat Enterprise Linux Workstation 6.5
with Linux kernel 2.6.32.

6.1 Effectiveness

Robustness. To evaluate the robustness of each approach, we use
the size of the signatures as the metric, though there could be
other metrics to measure the robustness of the signature. Again, the
intuition is the longer the signature, the more robust the approach
is, because an adversary needs to spend more efforts to cheat the
system with longer signatures. The “Total Bytes” column in Table 3
shows the signature size of each approach.

We can notice that brute-force approach has the strongest robust-
ness. On average it contains close to 5.88 Mega-bytes data. It will be
extremely difficult to forge such signatures except that an adversary
could load multiple copies of the code into kernel memory and cheat
this approach. The next strongest signature is the read only pointer
based approach. On average it contains 342 Kilo-bytes data. If an
adversary wants to cheat this approach, it has to simultaneously
patch more than 80 Kilo-bytes pointers. For patched code approach,
its signature size is 283 Kilo-bytes. Regarding the unpatched code
approach, its signature has only 230 Kilo-bytes on average, and
eventually it only keeps on average 3.91% of kernel code in the
signatures.

We also reported how many signature bytes per page for each
approach in Bytes/Page column in Table 3. Note that these data
can provide the statistics with respect to the performance of each
approach. Basically, more bytes comparison in a page, the slower
the approach will be as we show in Fig. 7. We can notice unpatched
code has the least data to compare in a page, whereas brute force
approach has an entire page to compare.

github.com/utds3lab/derandomization/
github.com/utds3lab/derandomization/

Brute Force Patched code Unpatched code Readonly pointer
OS-kernels

Total Bytes Bytes/Page Total Bytes Bytes/Page Total Bytes Bytes/Page Total Bytes Bytes/Page
Linux-3.14.8 5,787,280 4,096 278,156 196 225,632 159 331,956 656
Linux-3.14.11 5,788,560 4,096 278,192 196 225,647 159 332,084 656
Linux-3.14.30 5,802,328 4,096 278,900 196 225,933 159 332,416 656
Linux-3.15 5,793,980 4,096 280,476 198 227,514 160 336,204 659
Linux-3.15.2 5,794,108 4,096 280,480 198 227,514 160 336,208 659
Linux-3.15.4 5,794,940 4,096 280,504 198 227,518 160 336,212 659
Linux-3.16 5,844,284 4,096 281,812 197 229,065 160 340,964 658
Linux-3.16.2 5,846,844 4,096 281,840 197 229,084 160 340,956 658
Linux-3.16.6 5,850,044 4,096 281,916 197 229,213 160 341,068 658
Linux-3.17 5,889,452 4,096 284,832 198 230,785 160 344,240 660
Linux-3.17.2 5,889,324 4,096 284,880 198 230,794 160 344,252 660
Linux-3.17.6 5,894,696 4,096 285,416 198 230,886 160 344,396 661
Linux-3.18 5,929,000 4,096 286,508 198 232,155 160 346,384 662
Linux-3.18.2 5,929,704 4,096 286,516 198 232,159 160 346,448 662
Linux-3.18.4 5,930,280 4,096 286,608 198 232,167 160 346,448 662
Linux-3.18.6 5,931,816 4,096 286,612 197 232,242 160 346,480 662
Linux-3.19 5,977,424 4,096 288,156 197 233,339 159 348,064 662
Linux-3.19.2 5,980,280 4,096 288,216 197 233,466 159 348,104 663
Linux-3.19.4 5,982,136 4,096 288,268 197 233,503 159 348,172 663
Linux-4.0 6,015,102 4,096 289,532 197 235,018 160 351,676 656
mean 5,882,580 4,096 283,891 198 230,182 160 342,137 660

Table 3: Signature Size.

OS-kernels Brute Force Patched code Unpatched Data Readonly pointer
Linux-3.14.8 95.45% 100.00% 100.00% 100.00%
Linux-3.14.11 95.45% 100.00% 100.00% 100.00%
Linux-3.14.30 95.46% 100.00% 100.00% 100.00%
Linux-3.15 95.39% 100.00% 100.00% 100.00%
Linux-3.15.2 95.39% 100.00% 100.00% 100.00%
Linux-3.15.4 95.39% 100.00% 100.00% 100.00%
Linux-3.16 95.40% 100.00% 100.00% 100.00%
Linux-3.16.2 95.40% 100.00% 100.00% 100.00%
Linux-3.16.6 95.40% 100.00% 100.00% 100.00%
Linux-3.17 95.39% 100.00% 100.00% 100.00%
Linux-3.17.2 95.39% 100.00% 100.00% 100.00%
Linux-3.17.6 95.39% 100.00% 100.00% 100.00%
Linux-3.18 95.40% 100.00% 100.00% 100.00%
Linux-3.18.2 95.40% 100.00% 100.00% 100.00%
Linux-3.18.4 95.40% 100.00% 100.00% 100.00%
Linux-3.18.6 95.40% 100.00% 100.00% 100.00%
Linux-3.19 95.40% 100.00% 100.00% 100.00%
Linux-3.19.2 95.41% 100.00% 100.00% 100.00%
Linux-3.19.4 95.41% 100.00% 100.00% 100.00%
Linux-4.0 95.41% 100.00% 100.00% 100.00%
mean 95.41% 100.00% 100.00% 100.00%

Table 4. Match Ratio

Linux-3.14.8

Linux-3.14.11

Linux-3.14.30

Linux-3.15

Linux-3.15.2

Linux-3.15.4

Linux-3.16

Linux-3.16.2

Linux-3.16.6

Linux-3.17

Linux-3.17.2

Linux-3.17.6

Linux-3.18

Linux-3.18.2

Linux-3.18.4

Linux-3.18.6

Linux-3.19

Linux-3.19.2

Linux-3.19.4

Linux-4.0
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

G
en

er
at

io
n

Ti
m

e(
s)

Fig. 6. Signature Generation Performance

17

Figure 6: Signature Generation Performance.

Precision. Next, we tested the precision of each approach with be-
nign kernels. Regarding the non-cooperative kernels, it is discussed
in §7. The match ratio for each approach is presented in Table 4. We
can see that the peak match ratio for brute-force approach is 95.41%
(which means usually 4.59% of code has been patched) on average
for all these kernels. For all other approaches, it has a perfect 100%
match ratio.

6.2 Performance
We also measured the performance of each approach. The faster

the performance, the more likely to be used in practice. As men-
tioned above, we tested 20 latest Linux kernels. The size of the
memory snapshot is set to 512M bytes.To load the memory snapshot
as well as the kernel code, it took on average 0.677 seconds. For a fair
comparison among all these approaches, we exclude the snapshot
loading time. Also, only the unpatched code approach requires the
preprocessing of the kernel code to generate the signatures, and this
performance is presented in Fig. 6 for all these kernels. We can
see that on average it took 6.9 seconds for the signature generation.

Linux-3.14.8

Linux-3.14.11

Linux-3.14.30

Linux-3.15

Linux-3.15.2

Linux-3.15.4

Linux-3.16

Linux-3.16.2

Linux-3.16.6

Linux-3.17

Linux-3.17.2

Linux-3.17.6

Linux-3.18

Linux-3.18.2

Linux-3.18.4

Linux-3.18.6

Linux-3.19

Linux-3.19.2

Linux-3.19.4

Linux-4.0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
at

ch
in

g
Ti

m
e(

s)

Brute Force
Patched Code

Unpatched Code
Readonly Pointer

Fig. 7. Signature Matching Performance

18

Figure 7: Signature Matching Performance.

Note that this pre-processing runs with pure python environment,
which explains why it took such a larger amount of time than even
brute-force matching.

Regarding using the signature for the matching and derandom-
ization, this performance is presented in Fig. 7. We can see that
brute-force approach has the worst performance. It took on average
1.6 seconds to derandomize a Linux kernel. The next worst one
is the read only pointer based approach, since it needs to check
over 85 thousands of pointers and perform the distance subtraction
computation for each pointer. The unpatched code is the fastest,
and it only requires about 0.2 seconds on average to derandomize a
kernel.

7. DISCUSSIONS AND FUTURE WORK
In this study, we aim to systematically examine the possible

optimal approaches from both kernel code and kernel data to deran-
domize kernel ASLR. We have presented four approaches from the
perspective of basic brute-force code, to patched code, unpatched
code, and read only pointers. However, we have not compared with

a few other possible approaches such as from writable-data, or other
read only data to generate the signatures. We leave these to future
works.

In our evaluation, we tested our approaches with only benign
Linux kernels, and we did not evaluate the memory snapshot running
by adversaries such as uncooperative cloud users. The fundamental
reason is due to the fact that there is a large attack surface, and it
is hard to enumerate all of them. Fortunately, what an adversary
they can only play with in the attack is to generate bogus data to
mislead the signature matching, because the signatures we used
are either code or pointer related, changing them will change the
semantics or even crashing the kernel. Therefore, we can analyze
the consequences of these non-cooperative attacks.

Specifically, for brute-force code scanning approach, it could fail
to derandomize a kernel when directly using the Algorithm 1. For
instance, when an adversary simply loads a copy of the kernel code
into the kernel memory (by writing a simple kernel module to do
so), this approach can get a 100% peak match ratio for this code
copy instead of the 95% we tested with the benign kernel. Therefore,
even though it has the strongest robustness in terms of signature
size, it will have false positive (not providing the correct address)
and false negative (missing the correct address) when facing bogus
data cheating attack. One possible mitigation would be to relax
the peak value to make it more conservative. For instance, through
empirical evaluation we can acquire a threshold of the peak value for
the benign kernel, and then use it to derandomize the kernel. In this
way, it will not have false negatives but it will have false positives
since the bogus data will be included.

For all other approaches, while an adversary can also create bogus
data, we will not have false negatives since the match ratio is 100%.
In other words, the only consequence is that we will not be able to
quickly pinpoint the derandomization address but the candidates are
among the final results. With additional pruning or a combination
with other approaches, it is very likely to produce the correct result.
In fact, without too many efforts, we have designed four simple
approaches (with just about three thousands lines of code in total),
and we believe these four approaches can be combined to prune the
false positives (i.e., the bogus data generated by attackers). We leave
the investigation for more robust signatures under the presence of
strong adversary in another avenue of our future work.

8. CONCLUSION
Many modern OS kernels today have started to randomize their

kernel address space. Consequently, when performing introspection
or forensic analysis of the kernel memory, we must derandomize
and use the correct addresses. In this paper, we present the first
systematic study of how to derandomize a kernel when given a
memory snapshot of a running kernel instance. Unlike the derandom-
ization approaches used in developing memory exploits in which
only remote access is available, with introspection and forensics
applications, we can use all of the information available in kernel
memory to generate signatures and derandomize the kernel address
space layout. We have explored a number of typical approaches to
generate strong signatures from both kernel code and data based on
the insight of how kernel code and data is updated, and compare
them from efficiency and robustness perspective. In particular, we
have designed four approaches from brute-force code scanning, to
robust signature generation from patched code and unpatched code,
as well as from read-only kernel data, respectively. We show that
brute-force approach is simple, but it is slow and may have false
positives and false negatives to bogus data misleading attack. For
all other approaches, they run faster and they will not have false
negatives, but there might be false positives when facing strong

adversaries. However, these false positives could be pruned when
combining with multiple strong signatures for instance.

Acknowledgement
We would like to thank the anonymous reviewers for their help-
ful comments. This research was partially supported by AFOSR
Award FA9550-14-1-0119, NSA Award H98230-15-1-0271, and
NSF Award 1453011. Any opinions, findings, conclusions, or rec-
ommendations expressed do not necessarily reflect the views of the
sponsors.

9. REFERENCES
[1] Elf file format.

http://www.skyfree.org/linux/references/ELF_Format.pdf.
[2] Microsoft security intelligence report.

http://www.microsoft.com/security/sir/strategy/default.
aspx#!section_3_3.

[3] Smp alternatives. http://lwn.net/Articles/164121/.
[4] Os x mountain lion core technologies overview.

http://movies.apple.com/media/us/osx/2012/docs
/OSX_MountainLion_Core_Technologies_Overview.pdf, June
2012.

[5] Linux 3.14. http://kernelnewbies.org/Linux_3.14, Mar 2014.
[6] I. Ahmed, V. Roussev, and A. A. Gombe. Robust

fingerprinting for relocatable code. In Proceedings of the 5th
ACM Conference on Data and Application Security and
Privacy, CODASPY 2015, San Antonio, TX, USA, March 2-4,
2015, pages 219–229, 2015.

[7] H. Y. Aravind Prakash, Eknath Venkataramani and Z. Lin.
Manipulating semantic values in kernel data structures: Attack
assessments and implications. In Proceedings of the 43rd
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks(DSN-PDS 2013), Budapest, Hungary,
June 2013.

[8] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and
D. Boneh. Hacking blind. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy, SP ’14, pages 227–242.
IEEE Computer Society, 2014.

[9] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
good instructions go bad: generalizing return-oriented
programming to risc. In Proc. 15th ACM Conf. Computer and
communications security (CCS’08), pages 27–38, Alexandria,
Virginia, USA, 2008. ACM.

[10] S. Designer. “return-to-libc" attack. Bugtraq, August 1997.
[11] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin.

Robust signatures for kernel data structures. In Proceedings of
the ACM Conference on Computer and Communications
Security (CCS), November 2009.

[12] Y. Fu, Z. Lin, and D. Brumley. Automatically deriving pointer
reference expressions from executions for memory dump
analysis. In Proceedings of the 2015 ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (FSE’15), Bergamo, Italy, September 2015.

[13] Y. Fu, Z. Lin, and K. Hamlen. Subverting systems
authentication with context-aware, reactive virtual machine
introspection. In Proceedings of the 29th Annual Computer
Security Applications Conference (ACSAC’13), New Orleans,
Louisiana, December 2013.

[14] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In

Proc. Network and Distributed Systems Security Sym.
(NDSS’03), February 2003.

[15] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin. Os-sommelier:
Memory-only operating system fingerprinting in the cloud. In
Proceedings of the 3rd ACM Symposium on Cloud Computing
(SOCC’12), San Jose, CA, October 2012.

[16] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin. Multi-aspect,
robust, and memory exclusive guest os fingerprinting. IEEE
Transactions on Cloud Computing, 2014.

[17] T. Kittel, S. Vogl, T. K. Lengyel, J. Pfoh, and C. Eckert. Code
validation for modern os kernels. In Malware Memory
Forensics Workshop (MMF), December 2014.

[18] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. Siggraph:
Brute force scanning of kernel data structure instances using
graph-based signatures. In Proc. 18th Annual Network and
Distributed System Security Sym. (NDSS’11), San Diego, CA,
February 2011.

[19] Nergal. The advanced return-into-lib(c) exploits: Pax case
study. Phrack, 10(58), 2001.

[20] N. A. Quynh. Operating system fingerprinting for virtual
machines, 2010. In DEFCON 18.

[21] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi.
Surgically returning to randomized lib(c). In Proceedings of
the 25th Annual Computer Security Applications Conference
(ACSAC), pages 60–69. IEEE Computer Society, Dec. 2009.
Honolulu, Hawaii, USA.

[22] V. Roussev. Data fingerprinting with similarity digests. In
Advances in digital forensics vi, pages 207–226. Springer,
2010.

[23] V. Roussev, I. Ahmed, and T. Sires. Image-based kernel
fingerprinting. Digit. Investig., 11:S13–S21, Aug. 2014.

[24] H. Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In Proc.
14th ACM Conf. Computer and communications security
(CCS’07), pages 552–561, Alexandria, Virginia, USA, 2007.
ACM.

[25] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM Conference
on Computer and Communications Security, CCS ’04, pages
298–307, New York, NY, USA, 2004. ACM.

[26] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi. Just-in-time code reuse: On the
effectiveness of fine-grained address space layout
randomization. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 574–588. IEEE, 2013.

[27] P. Team. Pax address space layout randomization (aslr).
http://pax.grsecurity.net/docs/aslr.txt.

[28] D. Urbina, Y. Gu, J. Caballero, and Z. Lin. SigPath: A
Memory Graph Based Approach for Program Data
Introspection and Modification. In Proceedings of the 19th
European Symposium on Research in Computer Security,
Wroclaw, Poland, September 2014.

[29] A. Walters. The volatility framework: Volatile memory artifact
extraction utility framework.
https://www.volatilesystems.com/default/volatility.

[30] J. Zeng and Z. Lin. Towards automatic inference of kernel
object semantics from binary code. In Proceedings of the 18th
International Symposium on Research in Attacks, Intrusions
and Defenses (RAID’15), Kyoto, Japan, November 2015.

	1 Introduction
	2 Background and Related Work
	3 Overview
	3.1 Problem Statement
	3.2 Challenges
	3.2.1 Kernel Code is Non Static
	3.2.2 Kernel Data is Huge

	3.3 Study Overview

	4 Deriving Signatures from Kernel Code
	4.1 Brute-force Code Matching Approach
	4.2 Patched Code Based Approach
	4.3 Unpatched Code Based Approach

	5 Deriving Signatures from Read-Only Kernel Data
	5.1 Read-only Pointer Based Approach

	6 Evaluation
	6.1 Effectiveness
	6.2 Performance

	7 Discussions and Future Work
	8 Conclusion
	9 References

