PT-CFI: Transparent Backward-Edge Control Flow Violation
Detection Using Intel Processor Trace

Yufei Gutt, Qingchuan Zhaot, Yingian Zhang*, Zhigiang Lin*
fCloudera Inc, Palo Alto, California
*Department of Computer Science, The University of Texas at Dallas
*Department of Computer Science and Engineering, The Ohio State University
firstname.lasthname@utdallas.edu, yingian@cse.ohio-state.edu

ABSTRACT

This paper presents PT-CFI, a new backward-edge control flow
violation detection system based on a novel use of a recently in-
troduced hardware feature called Intel Processor Trace (PT). De-
signed primarily for offline software debugging and performance
analysis, PT offers the capability of tracing the entire control flow
of a running program. In this paper, we explore the practicality
of using PT for security applications, and propose to build a new
control flow integrity (CFI) model that enforces a backward-edge
CFI policy for native COTS binaries based on the traces from In-
tel PT. By exploring the intrinsic properties of PT with a system
call based synchronization primitive and a deep inspection capa-
bility, we have addressed a number of technical challenges such
as how to make sure the backward edge CFI policy is both sound
and complete, how to make PT enforce our CFI policy, and how to
balance the performance overhead. We have implemented PT-CFI
and evaluated with a number of programs including SPEC2006 and
HTTP daemons. Our experimental results show that PT-CFI can
enforce a perfect backward-edge CFI with only small overhead for
the protected program.

Keywords

Return oriented programming; Control flow integrity; Shadow stack;
Intel PT

1. INTRODUCTION

Control flow hijacking has been one of the most severe cyber
threats for over 40 years. When given an exploitable vulnerabil-
ity such as a buffer overflow in a program that consumes untrusted
input, an attacker can directly compromise the execution of the pro-
gram and perform whatever malicious actions of his or her wishes.
Over the past a few decades, we have witnessed numerous such at-
tacks. Stack smashing [36], return-into-libc [52], return oriented
programming (ROP) [42, 12] (and its variants such as BROP [5]
and JIT-ROP [44]), jump-oriented programming (JOP) [7], and even
call-oriented programming (e.g., COOP [39]) all belong to this cat-
egory. It is likely that these attacks will continue to remain a major
cyber threat for years to come.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CODASPY ’17, March 22-24, 2017, Scottsdale, AZ, USA
© 2017 ACM. ISBN 978-1-4503-4523-1/17/03. .. $15.00
DOI: http://dx.doi.org/10.1145/3029806.3029830

173

Correspondingly, numerous defenses have been proposed to de-
fend against control flow hijacking. Notable examples include stack
canary [16] (which can defeat stack smashing), data execution pre-
vention (DEP) [3] (which can defeat code injection), address space
layout randomization (ASLR) [46] (which can make the hijack ex-
ploit code much harder to construct), and control flow integrity
(CFI) [2] (which aims to ensure the integrity of control flow trans-
fer always following legal program path). Canary, DEP, and ASLR
are all practical defenses and they all have been adopted by indus-
try in mainstream computing devices including even in the mobile
platform. Therefore, simple stack smashing or code injection at-
tack does not work anymore in modern computing platform, and
the mainstream exploits have to use ROP or its variant (e.g., Q [41],
return-to-signal [8], JIT-ROP [44], or BROP [5]). To really defeat
these advanced attacks, it appears that CFI is the most promising
technique since in theory it can fundamentally solve the control
flow hijacking problem because all these attacks including ROP vi-
olate the intended program control flow. However, in practice CFI
has not been widely adopted yet, at least in the case of protecting
commercial-off-the-shelf (COTS) binaries.

CFI essentially is a program path-level access control model. For
any access control mechanism to work, it needs a policy and an
enforcement. The first CFI model by Abadi ez al. [2] uses an inlined
reference monitoring (IRM) [20] in the program code to enforce the
CFI policy. Specifically, at each indirect control flow transfer point
(i.e., indirect call, indirect jmp, and ret), the CFI enforcement
code inlined with the original program will check with a CFI policy
to detect whether there is a violation. The security policy in the CFI
is quite simple: the execution of any control-flow transfer should
not diverge from its legitimate path. To construct the CFI policy, the
traditional form of CFI builds a control-flow graph (CFG) from the
protected program, from which to get all the legal target(s) of each
indirect control transfer. Then at runtime, the inlined enforcement
code will check the control flow target whether or not belongs to a
set of white-listed ones. As such, CFI guarantees that the execution
path of the program strictly follows an edge in its CFG.

Unfortunately, there are two main challenges that hinder the prac-
ticality of CFI. First and foremost, how to make sure the CFI pol-
icy is both sound and complete. Often times, the statically ex-
tracted CFG (either from program source code or binary) is an
over-approximation of the legitimate control flows of the protected
program. This is because precise static extraction of CFG requires
accurate pointer analysis of each indirect call or jump to estimate
its targeted “points-to” set. This type of analysis, however, is chal-
lenging due to the dynamic nature (e.g., computed jmp and call
target) of low-level programming languages like C. Meanwhile, the
same function may have multiple legitimate call sites, correspond-
ing to multiple edges in the CFG. However, at runtime, only one

http://dx.doi.org/10.1145/3029806.3029830

of the edges should be allowed at any state of the execution. This
issue cannot be addressed by CFI that relies on static code analysis
alone; context-sensitive methods (e.g. using a shadow stack [2])
need to be used at runtime.

The second challenge that blocks the practicality of CFI is how
to enforce its policy efficiently. When having program source code,
one can use compilers to automatically insert an IRM at each indi-
rect control flow transfer to enforce the policy. However, it be-
comes much more challenging when only given application bina-
ries. While the first CFI model rewrites the protected binary for
the enforcement, it requires the access of the corresponding debug-
ging symbols. Without those debugging symbols, one has to solve
both the binary disassembling and rewriting challenge. While dy-
namic binary instrumentation (DBI) does not face disassembling
and rewriting issues since it rewrites the binary on-the-fly, it still
faces other challenges such as the high performance overhead (as
DBIs are usually slow).

Prior efforts on binary-level CFI have been striving to address
these challenges. However, most studies fall short in addressing
the first challenge. For instance, BinCFI [58], CCFIR [57] and
BinCC [51] only enforce a coarse-grained CFI policy: indirect
jumps or calls are restricted to a white-list of targets and func-
tion returns are constrained to call-preceded addresses. It has been
shown, however, by follow-up studies that these coarse-grained CFI
implementations can be bypassed by advanced ROP attacks [18].
Specifically the weak backward-edge policy—returning to only call-
preceded targets—can be easily circumvented by ROP attacks with
only call-preceded gadgets [11, 23]. A more recent work, TypeAr-
mor [50], advances the state-of-the-art of the forward-edge policy
for binary-level CFI by statically analyzing binary code to match
callers and callees. But still, no backward-edge policy is provided.
Shadow stacks [2, 19] match return addresses to their call sites,
and hence offer strong backward-edge policy. However, shadow
stacks are difficult to implement correctly when offering reliable
security guarantee [12]. Moreover, existing implementations of
shadow stacks mostly rely on binary rewriting, facing the second
aforementioned challenges.

To overcome the limitations of binary rewriting or instrumen-
tations, recent studies resort to existing CPU hardware features to
assist CFI policy enforcement. For instance, last branch records
(LBR) was exploited by many notable works such as kBouncer [37],
ROPecker [15], CFIGuard [54], and PathArmer [49] to keep track
of a short history (usually only upto 16 LBR entries) of indirect
branches. The main issue of LBR-based solutions is that they are
vulnerable to history-flushing attacks [40, 11], in which the ma-
licious payload intentionally includes dummy branch instructions
to flush LBR entries to hide suspecious indirect branches. Branch
trace store (BTS), which in contrast to LBR records all prior indi-
rect branches, was used by CFIMon [53], but it also comes along
with higher performance overhead. As such, both LBR and BTS
have limitations when used to enforce CFI policies, which there-
fore motivates us to seek alternative, more effective, approaches.

In this paper, we aim to fill this gap and propose PT-CFI, a prac-
tical backward-edge CFI that works for x86 COTS binaries by us-
ing a recent hardware feature, the Intel Processor Trace (PT). While
Intel had offered prior hardware-based tracing features such as LBR
and BTS, PT provides many compelling features. In particular, the
path history recorded by LBR is limited to a few dozen instruc-
tions, and BTS has significant slowdown though it supports unlim-
ited path history. Therefore, Intel recently introduced PT, which
can log execution trace with extremely low performance impact
(less than 5% performance overhead) and provide a complete con-
trol flow tracing with both cycle count and timestamp information.

174

However, PT is not designed for online security protection but
rather for offline software debugging or performance analysis. As
such, there are a number of technical challenges in order to make a
practical backward-edge CFI. These challenges include how to de-
rive the CFI policy based on the PT trace and the monitored binary,
how to enforce the CFI policy, and how to make sure the control
flow monitoring would not introduce large overhead. We have ad-
dressed these challenges by exploring the intrinsic properties inside
PT with a system synchronization primitive and a deep inspection
capability. We have implemented PT-CFI and evaluated with both
the SPEC2006 CPUINT benchmark suite and Nginx HTTP dae-
mon. Experimental results show that PT-CFI only introduces very
small overhead for the protected binaries.

Contribution. The main contribution of this paper can be summa-
rized as follows:

e We make the first attempt of exploring PT for real-time mon-
itoring of control flow violation and propose PT-CFI, a new
practical backward-edge CFI model for x86 COTS binaries.

e We devise a number of enabling techniques including system
call based enforcement and synchronization which enforces
the CFI policy at the entry point of selected system call, and
a deep inspection primitive, which is invoked like exception
handling when a CFI policy is incomplete.

e We have implemented PT-CFI, and applied it to detect ROP
attacks, which overcomes several limitations of prior work
such as Kbouncer and ROPecker. Meanwhile, the perfor-
mance overhead of PT-CFI is quite small (around 20% on
average for a set of tested SPEC2006 benchmarks).

2. BACKGROUND AND RELATED WORK
2.1 Control-Flow Hijacking and ROP

Memory corruptions are one of the most commonly exploited
vulnerabilities in programs written in C/C++. By allowing un-
sanitized input to overwrite data or code in the victim program’s
memory space, these vulnerabilities enable a wide range of attacks,
such as information leakage, arbitrary code execution and privi-
leges escalation [45]. While non-control-data attacks [14, 24, 9,
43, 25] have been demonstrated in previous works (especially in re-
cent years), control-flow hijacking still remains the most commonly
used attack method. In control-flow hijacking attacks, control data
that are used to direct the program’s control flows are corrupted by
the attacker. When these data (e.g., return addresses, indirect jump
targets) are loaded into the program counter the program’s execu-
tion will be diverted from its designed target.

There are several instances of control flow hijacking attacks such
as code injection [36], code-reuse [52], return-oriented program-
ming (ROP) [42, 12], jump-oriented programming (JOP) [7], and
the recently call-oriented programming (COP) [39]. Among them,
ROP attacks are increasingly becoming the mainstream: they are
more advantageous than code injection attacks, because they can
defeat the widely used Data Execution Prevention (DEP) protec-
tion; ROP attacks are also resilient to defense against simple return-
to-libc attacks because they can reuse library code without explicit
function calls [42].

In ROP attacks, short sequences of code, dubbed gadgets, that
already exist in the victim program are chained together and reused
for purposes other than their designed logic. In conventional ROP
attacks, these gadgets all end with ret instruction. Hence attackers
can prepare a sequence of return addresses on the stack to “return”

Table 1: Binary-level control-flow integrity enforcement

backward-edge policy

CFI enforcement

CFI [2] (2005)

DROP [13] (2009)
ROPDefender [19] (2011)
CFIMon [53] (2012)
MoCFI [17] (2012)
CCFIR [57] (2013)
BinCFI [58] (2013)
kBouncer [37] (2013)
ROPecker [15] (2014)
CFIGuard [54] (2015)
PathArmer [49] (2015)
BinCC [51] (2015)
O-CFI [32] (2015)

shadow stack
heuristic

shadow stack
call-proceded targets
shadow stack
whitelist targets
call-proceded targets
heuristic + call-proceded
heuristic

whitelist targets
call/return matching
bounds-check
bounds-check

binary rewriting
dynamic instrumentation
dynamic instrumentation
critical function + async
runtime hooking

binary rewriting
dynamic instrumentation
critical function
non-exec page

PMU interrupts
dynamic instrumentation
static rewriting

static rewriting

TypeArmer [50] (2016) None dynamic instrumentation

to these gadgets in orders that fulfill a specific functionality. Later
work shown that indirect jumps or calls can also be used to con-
struct “return” gadgets without ret instructions [12, 7].

2.2 Control-Flow Integrity

CFl is a widely studied technique to prevent control-flow hijack-
ing attacks. It was first proposed by Abadi et al. [2] in 2005, which
aims to enforce policies on the control-flow transfers of a program
so that the execution of the program does not diverge from the legit-
imate path. The traditional form of CFI first constructs a control-
flow graph (CFG) from a program and then checks the target of
each indirect control flow transfer (e.g., indirect jump, indirect call,
and return) at runtime so that only a set of white-listed targets for
each indirect control transfer is allowed. In this way, CFI guaran-
tees that the execution of the program strictly follows an edge in its
CFG. A CFI implementation can be either fine-grained or coarse-
grained. In a fine-grained CFI, each indirect control transfer has
its own set of target addresses that can be allowed to take at run-
time. This is usually achieved through program analysis because
the sets of targets are program-dependent. In contrast, a coarse-
grained CFI partitions the indirect control transfers and their target
addresses into several equivalence classes [35].

While many efforts have achieved fine-grained CFI via com-
plex source code analysis, such as CFLocking [6], Forward-edge
CFI [48], RockJIT [34], MCFI [33], CPI [27], CCFI [31], wCFI [35],
etc., fine-grained binary-level CFI remains a challenge. Table 1
summarizes prior research on binary-level control-flow integrity.
Particularly, CFIMon [53], BinCFI [58], and kBouncer [37] only
enforce a coarse-grained backward-edge policy: returns are only
allowed to addresses preceded by a call-site. CCFIR [57] and CFI-
Guard [54] enforce slightly finer-grained policy by allowing only
a smaller set of white-listed return targets. BinCC [51] and O-
CFI [32] restrict returns across a specified boundary, greatly re-
ducing the usable gadgets. The strong backward-edge CFI policy
is enforced by shadow stacks (implemented in the original CFI,
ROPDefender [19], MoCFI [17] and PathArmer [49] through static
binary rewriting or dynamic binary instrumentation), which strictly
matches call/return pairs. In contrast to these prior efforts, PT-
CFI aims to enforce a perfect backward-edge CFI policy by using
shadow stacks, without static binary rewriting or dynamic instru-
mentation.

2.3 Hardware-Assisted ROP Detection

Besides our work, there has been a few studies exploring hardware-
assisted approaches for ROP detection. Most notable results among
them include CFIMon [53], kBouncer [37], ROPecker [15] and
CFIGuard [54]. ROPecker, kBouncer and CFIGuard studied the

use of LBR that is available on Intel processors for ROP detec-
tion. Note that LBR provides a hardware mechanism to record the
source address and target address of most recently used branches.
These approaches statically scan the program binary to construct
a database of ROP gadgets. Once the detection is triggered (the
time of ROP check differs in these approaches), the most-recent
branches are compared with the gadget database, and according to
a specific security policy (e.g., number of instructions in a gad-
get, consecutive gadget numbers detected in the LBR), the LBR
data may indicate an ROP attack. Unfortunately, recent studies [40,
11] have shown that these LBR-based approaches are vulnerable to
several attack methods. The most noteworthy attacks among them
are LBR-flushing attacks, in which ROP code intentionally induce
unimportant branches to fill the limited number of entries (usually
less than 16) in LBR.

Most close to our work is CFIMon [53], which exploited Branch
Trace Store (BTS) on Intel processors. Intel BTS is a processor
component that provides program tracing mechanisms to software
layers, which captures all types of control flow information, in-
cluding direct and indirect jump and call, and also function return.
Both the source address and target address are stored in a specific
memory region for batch processing. CFIMon is triggered to detect
control flow violation when the memory buffer is full or sensitive
functions are accessed. CFIMon detects control flow violation by
monitoring if backward CFG edges return to a call-preceded tar-
get, and if indirect calls transfer control flows actually to the first
instruction of a function. Indirect jumps are marked as suspicious
if not seen before. But the policy to treat these suspicious indirect
jumps is not clearly defined, leaving CFIMon potentially vulnera-
ble to carefully crafted ROP attacks [53]

In addition to exploiting existing hardware features in commod-
ity processors, some other works designed new hardware compo-
nents to detect ROP attacks such as the one from Lee et al. [28]
that implemented an FPGA-based ROP detection system for ARM
devices that executes asynchronously with the protected program.
Unlike our work, they do not maintain any synchronization be-
tween the monitoring program and monitored program, and there-
fore, ROP detection cannot effectively prevent the attacks from
damaging the system. Moreover, their approach has a common
issue as all other studies that detect ROP attack by developing new
hardware components: while they all present interesting ideas, nev-
ertheless, because they require additional hardware supports, the
likelihood of real world adoption is low.

2.4 Intel Processor Trace

Intel Processor Trace (PT) is a new hardware feature for software
program debugging and performance profiling, which is available
in Intel Broadwell or later processors. It traces the control flow
of software programs with minimum performance overhead that is
sufficient low for PT to be used in production systems.

More specifically, the control flow information is collected by PT
in data packets in real-time, which are then sent to memory buffers
or other output methods for processing. While several types of PT
packets are defined by Intel and collected at runtime, three types of
packets are particularly useful in control flow tracing: Taken Not-
Taken (TNT) packets, Target IP (TIP) packets, Flow Update Pack-
ets (FUP). The TNT packets collect taken and not-taken indication
for conditional direct branches; the TIP packets collect target ad-
dresses for indirect calls, indirect jumps and returns; asynchronous
events such as exceptions and interrupts will generate FUP pack-
ets together with TIPs. Unconditional direct branches are excluded
from the PT packets. PT also compresses conditional branches and

use only one bit to indicate branch taken or not-taken in TNT pack-
ets.

Intel PT supports filtering packets based on the Current Privilege
Level (CPL) or CR3. Therefore, it is possible to trace all user-space
programs or selectively trace only one program. Context switch can
also be supported so that multiple programs can be traced sequen-
tially. Moreover, the precise timing of each data packet are also
optionally recorded. Therefore, with the knowledge of binary in-
formation, one can reconstruct the entire control flow of the original
software program, together with the precise timing of each branch.

Given the capability of Intel PT in tracing program control flows,
it is tempting to use PT for control-flow violation monitoring and
detect ROP attacks. However, Intel has designed PT particularly
to reduce overhead with the cost of increased decoding overhead,
and unfortunately the decoding of the traces is several orders of
magnitude slower than tracing. A typical use case defined by Intel
is to execute a software program and capture the trace data asyn-
chronously in memory regions that can be processed after the ex-
ecution of the program. Therefore, our design of PT-CFI faces
several technical challenges that we will elaborate in later sections.

Prior to ours, only a few work has explored the use of Intel PT
in practical applications. Balakrishnan er al. [4] and Thalheim
et al. [47] studied the use of Intel PT to implement fine-grained
provenance systems. Kasikci et al. [26] developed a software fail-
ure diagnose system using PT. However, in all these existing work,
PT packets are collected for offline analysis. Therefore, our study
presents the first attempt of online uses of Intel PT technology.

Concurrent and independent to our work, most recently, there
were two other efforts namely FlowGuard [29] and GRIFFIN [22]
that also explored the use of PT for control flow integrity. At a
high level, all of these works share similar insight of leveraging
the PT packet traces for CFI enforcement, but differ at how to
generate and enforce the CFI policy. Specifically, unlike PT-CFI
in which only backward-edge CFI policy is enforced, FlowGuard
and GRIFFIN also enforce a forward-edge CFI whose policy is ac-
quired through either dynamic training or analysis of binary code
as in PathArmer [49].

3. PT-CFI OVERVIEW

In this section, we present an overview of PT-CFI. We first de-
scribe a simplified running example in Section 3.1, which will be
used throughout the paper to discuss various technical challenges
we have to solve in Section 3.2. Then, we present our key insights
of how to solve the challenges in Section 3.3. Next, we discuss our
CFI policy in Section 3.4. Finally, we give an overview of PT-CFI
in Section 3.5.

3.1 A Running Example

Figure 1(a) illustrates the source code of a very simple program,
which accepts command line inputs and then executes one of the
three functions accordingly: foo, bar, and overflow. Among
them, overflow function contains a stack overflow, and an at-
tacker can compromise this program to execute a shell for instance.
We compile this program using gcc without canary protection.
The partial binary code is illustrated in Figure 1(b).

We run this program with four different inputs: The first three
just triggered the three different function pointers but the fourth
one triggered the overf1low along with a ROP payload to execute
/bin/sh. The system call (syscall for short henceforth) traces for
the first two were the same (both have 29 syscalls in total, and they
both trigger a write syscall by function printf), as show in
Figure 1(c). The third one has only 28 syscalls without the write

176

syscall compared to the first two, but the forth one triggered the
unexpected execve syscall.

Note that PT is primarily designed for debugging and perfor-
mance analysis. A typical use case of PT is the following: pro-
grammers compile the target program, and execute it atop a PT
enabled platform. During the execution, the hardware will gener-
ate a large volume of PT packets, which is often stored in a log
file for offline analysis. There are already available tools such as
perf thatis able to parse the PT packets and reconstruct the entire
execution path history of a program based on the trace. While PT
packets have already been compressed, usually it will still gener-
ate up to hundreds of megabytes of trace data per second per core.
As an example, we also illustrate partially decoded PT packets in
Figure 1(d). More specifically, we can notice that there are various
types of PT packets, including:

o Target IP (TIP) packets: if a control flow transition is trig-
gered by an indirect control flow transfer, the hardware will
generate a TIP packet, which is particular useful for build-
ing our CFI model. Usually, a TIP packet contains a virtual
address of the target or just an offset whose base address is
shared by prior TIP packets. An instance of the TIP packet
is TIP 0x4004d0, as illustrated in Figure 1(d), which is
actually an indirect jmp to the starting address of _start.
The next TIP packet TIP 0x4a6 is actually also a jmp tar-
get address, caused by the first instruction in the PLT entry of
_ libc_start_main. Note that direct call does not have
a TIP packet. That is why there is no TIP pointing to the first
instruction in the PLT entry of __1ibc_start_main.

e Taken Not-Taken (TNT) packets: if there is a conditional
control flow transfer (i.e., all of the jcc instructions such as
je/jne), then the hardware will generate a bit in a TNT
packet and this bit represents taken or not-taken for that par-
ticular branch. A TNT packet can at most encode six TNT
bits. There are also several TNT packets in Figure 1(d),
such as TNT TTN (3) and TNT TNTNTN (6). Com-
bined with the original binary code, TNT packets can be used
to capture the exact execution path of a program. Since an
attacker cannot alter the destination address of conditional
branches, TNT packets are out of CFI interest. In addition,
similar to jcc, unconditional direct branches (e.g., direct
jmp/call) are excluded from the PT packets since they
can be also directly recovered with program code.

e Flow Update Packets (FUP): if there is an asynchronous
event such as exceptions and interrupts, the hardware will
generate a FUP packet together with TIPs. As an example,
FUP 0x7£569383ale0 means the control flow will trans-
fer from instruction at 0x7£569383a1e0. Followed, there
is also a TIP.PGD and TIP.PGE, which denotes Packet
Generation Disable (PGD), and Packet Generation Enable
(PGE). These two TIP sequences are usually from the in-
terrupt handler execution. FUP packets are also out of our
current CFI interest.

3.2 Technical Challenges

If we directly analyze the recorded PT packets offline without
any additional effort, we can certainly use PT for control flow diag-
nosis or forensics since we can rebuild the entire control flow trace
and any deviation from normal control flow will be detected. How-
ever, such an offline usage cannot be used for online CFI. There-
fore, we have to solve a number of technical challenges including:

0000000000400490 <printf@plt>:
400490: Jjmpg *0x200b8a (%rip)
400496 pushq $0x1

#include <stdio.h>

void foo(char *str) {
printf ("foo:%s\n", str);

}

void bar (char *str) {

printf ("bar:%s\n", str); 400420:

4004a6:

jmpg *0x200b82 (%rip)

) pushqg $0x2

void overflow(char *str){
char buf[32];
strcpy (buf, str);

00000000004004c0 <atoi@plt>:
4004c0: jmpq *0x200b72 (%$rip)

) 4004c6: pushq $0x4

void main(int argc, char **argv){
void (*fptr) (char *);
int choice;
choice = (atoi(argv([1l]) % 3);
switch (choice) {

0000000000400590 <frame_dummy>:
400590: cmpq

00000000004005bd <foo>:

case 0: 4005bd: push $rbp
casefiFr = foo; break; 00000000004006c0 <__libc_csu_init>:
N)) 4006c0: push %rl5
fptz = bar; break; 4006c2: mov %edi,%rl5d
case 2:
fptr = overflow; 00000000004004d0 <_start>:

}

fptr (argv(2]); 4004do0:

xor %ebp, $ebp

400570: cmpb

0000000000400626 <main>:

00000000004006c0 <__libc_csu_init>:

0000000000400734 <_fini>:

(a) Source Code (b) Partial Disassembly

00000000004004a0 <__libc_start_main@plt>:

$0x0, 0x200888 ($rip)

0000000000400570 <__do_global_dtors_aux>:
$0x0, 0x200ad9 (%rip)

400626: push $rbp

400648: callg 4004c0 <atoi@plt>
40064d: mov %eax, Yecx

4006b3: callg *%rax

4006b5: leaveq

LU AW R

I
o ©

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

gxicge(;‘g ;4§b000 00001£4f: TIP 0x4004d0
tk (0) = Ox: 00001£5a: TIP Ox4aé
access(..) = -1 ENOENT
mmap() = OxTEcaddrec000 00001££€: TIP 0x4006c0
access (..) 3 0000200a: TNT TTN (3)
;Z:Zéi-)) 0 0000200d: TIP 0x590
N 00002011: TNT TNTNTN (6)
mmap(..) = Ox7fcadd£d3000 00002014 TNT NTTN (4)
closeld) = 0 . Enomnr 0000201a: TIP 0x626
2:::js(i'l 3 00002021: TIP Ox4c6
radl) - 832 00002027: TIP 0x7£5693b2ade0
fstat(..) =0
0000208f: TIP 0x40064d
mmap(..) = 0x7fcadda07000 00002095, TNT NNN (3)
mprotect(..) = 0 :
0000209a: TIP 0x5bd
mmap(..) = 0x7fcaddde1000 000020al: TIP 0x496
mmap(..) = Ox7fcaddde7000 000020a7: TIP 0x7£5693b2aded
close(3) =0
mmap (..) = 0x7fcaddfd2000 0000219f: FUP 0x7£569383alel
mmap (..) = 0x7fcaddfd0000 000021aa: TIP.PGD no ip
arch_pretl(..) =0 000021ad: TIP.PGE OxaleO
mprotect(..) = 0
mpr°:e°t(") - o =0 000022£7: TIP 0x4005df
mprotect (..) = . 00002302: TIP 0x6b5
?::S:T(.i)— o = 00002307: TIP 0x7£5693770ecS
) onTEcaddEeb000 00002312: TIP 0x9376e426
.E('i) e x.bﬁi e e 0000231a: TIP 0x93b2adel
write(1, "foo:bb\n", 7) = 00002322: TNT NNNNNT (6
exit_group (7)
0000239a: TIP 0x5340
000023a7: TIP 0x400570
000023b2: TNT NNTTNN (6)
000023b5: TIP 0x734
(c) Output of strace when run foo (d) Partial PT Trace when run foo

Figure 1: A Running Example Used to Illustrate Our PT-CFI Approach.

e How to define the CFI policy. To design a CFI model, we
have to first define the CFI policy and extract them from the
program. However, what we have is merely the PT trace
and also the binary code of the corresponding program we
aim to protect. While we can build a run-time control flow
graph based on PT traces and then compare with the CFG ex-
tracted from the static binary code, we may be able to form
a CFI policy to detect most attacks. However, such an ap-
proach would be too slow. Meanwhile, statically we still do
not know all of the legal target for indirect calls and indirect
jumps, a grand challenge today for static binary code analy-
sis (due to the need of the sophisticated point-to analysis).

e How to enforce the CFI policy. PT packets are directly
generated by the underlying hardware in an asynchronized
manner. However, the policy enforcement and program ex-
ecution should be synchronized. Otherwise, a control flow
hijack attack might have already caused damages before it is
detected. While rewriting the binary code and insert our CFI
enforcement code might work, we would like to avoid using
any binary rewriting especially for x86 COTS binary (due
to the disassembling and instruction relocating challenge),
since we aim for a practical CFL.

e How to minimize the overhead, and support thread-level
tracing. Performance is often a critical factor while design-
ing CFI. For instance, one can easily design a CFI by us-
ing dynamic binary instrumentation (e.g., PIN [30]). How-
ever, such an approach often has high overhead. While PT
packet generation has less than 5% overhead, PT packet con-
sumption as well as our CFI enforcement must be designed
in an efficient way. Meanwhile, Intel PT does not support per
thread tracing in the hardware level, we have to enable such a

177

3.3

feature in the software level, given the increasing popularity
of multi-threading programs.

Key Insights

Having analyzed the internals of various PT packets and under-
stood how software interacts with the PT hardware, we have ob-
tained the following key insights to address the above challenges.

o Using TIP sequence graph for the CFI policy. Ideally, we

should have used the entire PT trace to rebuild a complete
CFG and compared with the statically extracted CFG from
binary code for the policy. While purely static analysis of
the binary code cannot resolve many indirect call and indirect
jump edges, we can use the runtime traces to connect them.
However, this is an expensive approach because parsing each
PT packet to rebuild a dynamic CFG with the original binary
code usually takes a large amount of time.

Fortunately, we notice that we can actually use a lightweight,
TIP sequence graph to detect the anomalies. In particular, all
indirect control flow transfers (call, ret, jmp) will trigger a
corresponding TIP packet. Therefore, we can build a TIP
sequence graph, and compare this graph with the legitimate
TIP graph. As illustrated in Figure 2, the node of this graph is
an indirect control flow transfer point, and the edge captures
the transition between the two points. For instance, consid-
ering the first two sequences shown in Figure 1(d), namely
TIP 0x4004d0and TIP 0x4a6,the TIP sequence graph
of these two nodes shown in Figure 2 captures the transition
from _start tothe PLT entryof __ libc_start_main.

While we cannot build the legitimate TIP graph statically
since we cannot resolve the corresponding destination ad-
dresses without any additional sophisticated point-to anal-
ysis, we can build it from the TIP trace since they exactly

_fini

400734

main

400626

4004c6

__libc_start
_main

Figure 2: A Partial TIP Sequence Graph for Our Running Ex-
ample.

capture the indirect control flow transitions. Then to really
differentiate between legal and illegal control flow transfers
(at least for the backward return edges), we can use a deep
inspection technique discussed below. We will detail how we
extract the CFI policy in Section 4.1.

Using syscall interposition for the enforcement. Once we
have defined the CFI policy, we must check it at runtime to
ensure the software adhering the legitimate control flow path.
The first CFI approach by Abadi et al. uses the binary rewrit-
ing (with debugging symbols) to enforce the policy. How-
ever, without debugging symbols, it is very hard to correctly
rewrite a binary. Therefore, we would like to seek alternative
approaches.

Inspired by ROPecker and kBouncer, where they enforce the
security policy at selected syscall execution point, we can
also adopt such an approach. Specifically, while the PT packet
generation is asynchronized, we can ask PT to stop at se-
lected system call execution point, and the execution can
continue only in the case that there is no violation of our
CFI policy. It is true that an attacker might have already ex-
ecuted a number of gadgets before being detected, but they
must invoke syscalls for any malicious actions. Therefore, it
is a proved viable approach by using syscall interposition as
shown in many of the prior efforts. Then, the rest challenge
becomes how we synchronize the execution at the syscall ex-
ecution point with our CFI policy checking. The detailed
design of how we perform our enforcement is presented in
Section 4.2.

Using deep inspection when needed. If there is no ma-
licious attack, the TIP graph extracted from the PT packet
trace faithfully represents the legitimate control flow path.
Only when an unknown TIP sequence occurs do we invoke
the slow and expensive PT packet parsing to parse the run-
time control flow transfer, and compare with our CFI policy

178

(discussed in Section 3.4) for the detection. At a high level,
such a process works similarly to network packet inspection.
Most of the time, we directly just parse the headers of most
packet, and only when unknown packet arrives do we parse
its content. Therefore, we call this slow PT parsing and CFI
verification process deep inspection.

The purpose of designing this component is to speed up the
performance of our CFI. As discussed earlier, one extreme
case is to parse every PT packet to compute the dynamic
CFG, and then inspect the binary code to check whether it
conforms the legal control flow transfers. But this will ren-
der our system impractical because of its huge overhead.
Our deep inspection solves this problem, and it only gets in-
voked when the CFI policy is incomplete. We will present
in greater details of how we perform deep inspection also in
Section 4.1.

e Capturing context switch to enable thread level tracing.
PT is a hardware level feature tracing the CPU execution, and
does not distinct any software level feature such as thread.
Fortunately, a thread is a CPU scheduling unit, and we can
uniquely associate the PT traces with a thread if we precisely
capture the context switch event. Therefore, we instrument
the schedule function of the OS kernel, and extract the
value of CR3 and kernel stack pointer (esp) to resolve the
thread context and associate it with the PT traces. Note that
CR3 is process specific and PT only uses CR3 to differentiate
the traces. By capturing the kernel e sp under the same CR3,
we resolve the thread context. Such an approach has been
used in other contexts such as virtual machine introspection
(e.g., [21, 56]).

3.4 Our CFI Policy

Nearly all control flow hijacking attack targets indirect control
flow transfers that occur at instruction call, jmp, ret, because
direct control flow transfers are hardened in the read-only binary
code, which typically cannot be altered by attackers. The key idea
of CFI is to build a CFG, and then at runtime verify whether an
indirect control flow transfer follows an edge in the CFG. Based on
the edge direction in the CFG, we can classify them into:

e Backward Edge where a control flow transfers back to a
node in the CFG. Such an edge exists because of the ret
instruction, which transfers control flow back to the next in-
struction right after a call-site. A large amount of modern
exploits (e.g., ROP) target manipulating the backward edge
by controlling the return addresses. The primary goal of PT-
CF1 is to design a perfect policy that captures various back-
ward edge violation attacks.

In PT-CFI, indeed we can have a precise policy to detect
the illegal backward edge thanks to the design of PT as well
as our deep inspection capability. In particular, as acknowl-
edged by many prior works (e.g., [10, 50]), using a shadow
stack can really stop various ROP attacks because fundamen-
tally attackers have to redirect the return address to some
other locations, which will inevitably make the executed re-
turn address mismatching with the legal one. Since PT pro-
vides a complete trace of all indirect control flow transfers,
we are able to build a perfect shadow stack based on the TIP
traces and examine with the original binary code to detect
ROPs. That is why we call PT-CFI backward-edge CFI since
it has a complete protection for all backward edges.

[CFI Policy Extraction
[CFI Policy Enforcement

PT-CFl Monitoring Process

Monitored
Process

Binary Code
L

Deep Inspection [¢+—

Packet Parsing
(libipt)

User

Kernel

PT Packets

CPU with PT |

Figure 3: Architectural Overview of PT-CFI.

e Forward Edge where a control flow transfers to a new tar-
get. There are two types of forward edges: one is caused by
indirect call and the other is caused by indirect jmp. One
of the biggest challenges in any CFI is how to get the legal
forward edges. This is because when an indirect call or jump
occurs, e.g., call eax, statically it is hard to know what
the value of eax should be, since it may requires sophisti-
cated point-to analysis but there is no sound and complete
solution to this problem yet at binary code level. Therefore,
CFI solutions often have to make approximations for forward
edges. Unlike in backward-edge cases where we have a per-
fect CFI policy, we do not have a sound and complete so-
lution to forward-edge yet. Therefore, we leave how to use
PT for forward-edge CFI for future work. However, we also
note that the two most recent works FlowGuard and GRIF-
FIN have attempted to solve this problem via either training
or sophisticated binary analysis.

3.5 Overview

An overview of our system is presented in Figure 3. The goal
of PT-CFI is to detect control flow hijacking by enforcing a light-
weight CFI model. Unlike the traditional CFI where inlined refer-
ence monitoring is used, PT-CFI uses a separate dedicated moni-
toring process to detect any control flow violation of the monitored
process.

There are four components of PT-CFI: When PT packets are
generated for the monitored process, the first component Packet
Parsing will parse each packet and generate the TIP sequences,
which will be fed to our second component, TIP Graph Matching.
If a stream of TIP sequences matches with the TIP graph, execu-
tion continues. Otherwise, it invokes our third component Deep
Inspection to decode the packets and construct the shadow stack. If
the decoded return addresses all are matched in the shadow stack,
the new TIP sequence will be considered legal, and added to our
TIP graph; Otherwise, it will inform the the last component Syscall
Hooking to terminate the execution of the monitored process since
there is a control flow violation.

Scope, Assumptions, and Threat Model. We focus on protect-
ing x86 ELF binaries in Linux platform, and we assume they are
not obfuscated since we need to disassemble the binary code to de-
cide the TIP type. We do not assume perfect disassembling since
our disassembler can leverage the runtime information such as the
exercised code address to disassemble the code.

179

We design PT-CFI to detect various return-based control flow
hijacks, and we assume the OS kernel and the CPU hardware are
not compromised during the attacks. In particular, we primarily
focus on ROP attacks against user-space applications from remote
adversaries who, by manipulating the input to the vulnerable ap-
plications, aim to hijack the control flow of the target applications.
Again, we do not attempt to address attacks that use JOP or COP
since these attacks violate the forward-edge CFI policy whereas
PT-CFI is designed as a backward-edge CFI solution.

4. DETAILED DESIGN

In this section, we present the detailed design of each component
of PT-CFI. Based on how a typical CFI system works, we first
present how we extract the CFI policies by our Packet Parsing and
Deep Inspection in Section 4.1, and then describe how we enforce
the CFI policy by our TIP Graph Matching and Syscall Hooking in
Section 4.2.

4.1 CFI Policy Extraction

4.1.1 Packet Parsing

The goal of packet parsing is to parse various types of PT packet
(e.g., TNT, TIP, PUF), to facilitate the construction of legal TIP
graph (if it has not been created yet or incomplete) and meanwhile
send the parsed TIP packet generated by each indirect call, jump,
or return, to our TIP Graph Matching component.

TIP Graph (TIP-G) Construction. The detection of control flow
violation in our PT-CFI is based on the TIP-G, which is defined
<N, E>, where N denotes the set of nodes, each of which is
indexed by each unique TIP packet, and £ denotes a set of directed
edges. There is an edge from A to B if and only if right after
the execution of an indirect control flow transfer A, it will execute
the indirect control flow transfer B. That is, the edge captures the
sequential execution of two indirect control flow transfers.

N is further divided into three different types based on the three
different types of indirect control flow transfers. Specifically, we
have type N, if the TIP node is corresponding to a ret instruc-
tion, N¢qy if it is an indirect call, and Njy,, if it is an indirect
jmp. There are several ways to build our TIP-G. An intuitive ap-
proach is to statically disassemble the binary code to first build a
CFG, and then only keep those indirect control flow transfer nodes
in the CFG, since statically we cannot resolve the target address but
we can leverage the runtime values to connect the missing edges
and nodes. While we can use this approach, we realize in fact we
do not have to disassemble the code and instead we can directly use
the traced TIP packet on the fly to build our TIP-G.

More specifically, the construction of TIP-G is quite simple, as
illustrated in algorithm 1. Initially, the node of TIP-G will be just
the first TIP packet (po), and the edge will be empty (line 2 and
line 3). Whenever there is a new TIP packet p; generated, we parse
the type of p; by a helper function GetTIPType, and the result could
be Neaits Njmp, and Ny¢; (line 6). Next, we insert p; to the node
of TIP-G if it has not been added yet (note that there will be only
one instance of p; in TIP-G). Meanwhile, we will also insert an
edge <p;—1, pi, t> with label ¢ (which is acquired at line 6) from
pi—1 to p; if this edge has not been added before. The label of
the edge indicates the three different indirect control flow transfers,
which is important for PT-CFI to enforce the backward edges (es-
sentially only the return control flow transfers). We keep iterating
this process until all TIP packets have been processed (from line 5
to line 13). The resulting graph will be the desired TIP-G.

To build a complete TIP-G, we have two complementary ap-

Algorithm 1: TIP-G Construction

Input: TIP Packets: P (p; € P)
Result: The desired TIP Graph G

1 begin

2 G.node <+ po;

3 G.edge + 0;

4 i+ 1;

5 for each p; € P do

6 t < GetTIPType(p;);

7 if p; & G.node then

8 | G.node <~ G.node U py;

9 end

10 if <pi_1,pi,t>¢ G.edge then
1 | G.edge <+ GedgeU <p;_1,p;,t>;
12 end

13 end

14 end

proaches. One is to use training, and the other is to use the deep
inspection discussed below. Training can be viewed as cached data,
and when a cache misses we invoke the deep inspection for remedi-
ation. The reason why training works is because if we are running
the protected software with all benign input, all p; should be le-
gitimate and we do not have to perform any deep inspection. Only
when p; is unknown (a new TIP node) or <p;_1, p;, t> is unknown
(anew edge), namely our CFI policy is incomplete, we invoke deep
inspection to decide whether p; or transition from p; 1 to p; is legal
or not.

It is important to note that there is no policy coverage issues in
PT-CFI even though we use a training approach. This is because
our deep inspection component can always return a policy to deter-
mine whether an indirect control flow transfer is legal or not. We
can run PT-CFI without any training by invoking deep inspection
every time when we observe a p; or a transition from p; 1 to p;
to decide the security policy. However, such an approach will be
extremely slow. Therefore, training is just to improve the perfor-
mance. Meanwhile, training can be performed offline and TIP-G
can be reused across different machines for the same software.

4.1.2 Deep Inspection

When our CFI policy is incomplete, our Deep Inspection compo-
nent will be invoked to disassemble the corresponding binary code
based on the runtime information and determine the type of the
TIP packet and also whether it is legal or not. Specifically, we must
parse the PT packet to determine the type of the TIP packet that
causes the deep inspection; namely, whether it is Ncqi; O Njpyp, OF
Nyet. Since PT trace is a sequence of various PT packets and there
is no information of the type of p;, unless we correlate the virtual
address with the binary code. A rigorous way of deciding the type
of p; needs to disassemble and walk through the code based on the
closest known virtual address in the PT packets. Note that hard-
ware will generate an alignment PT packet that contains the virtual
address of the executed program code. Based on this known vir-
tual address, an offline analysis is able to reconstruct the program
behavior and precisely know the type of the TIP packet.

Since a program often contains loops, an observed TIP sequences
may be observed again. To avoid parsing the same set of sequences
again, we use a caching mechanism to avoid the re-disassembling
and re-walking of the binary code in order to identify the corre-
sponding TIP type. Then, at runtime, only unknown TIP will trig-
ger the deep inspection. According to the specific unknown TIP
packet, we will take different actions. If it is an indirect call or an
indirect jmp, we will add them to our TIP-G because we do not

180

have a perfect policy to precisely determine its legitimate target. If
it is a return, we will build a shadow stack based on the PT traces.
If the return address has matched the one in the shadow stack, this
Nyet node and the corresponding edge will be added into our TIP-
G. Otherwise, it is an attack, and our CFI enforcement will stop the
execution of the monitored process.

4.2 CFI Policy Enforcement

Once a TIP-G is constructed (by the offline training and deep
inspection), we can then use it to detect the control flow viola-
tions. The detection is done by our T/P Graph Matching compo-
nent (which may also call our Deep Inspection discussed above). If
it detects a real violation, it will inform our last component Syscall
Hooking to terminate the execution of the monitored process.

4.2.1 TIP Graph Matching

When given a TIP packet p;, the TIP-G matching becomes quite
straightforward. Assume the CFI policy is complete, then at the
given node n; in TIP-G, there is only a set of allowed transition
node; assume it is nj, if p; belongs to n;, then there is no CFI
violation. Otherwise, p; is not known to TIP-G, and in this case,
we will invoke our Deep Inspection component to decide whether
pj is a legal transfer. If not, an attack is detected. If it is not a CFI
violation, p; will be added to TIP-G.

In particular, to detect whether p; violates CFI during the deep
inspection, we use its type (recall all the edge has a type in our
TIP-G). If it is Ny, for our aimed back-edge CFI enforcement, our
deep inspection will check with the shadow stack built based on the
PT traces. If the returning location is not the legal return address,
it is an attack. Otherwise, this missing legal CFI transition will be
added to TIP-G. If it is Ncai; or Njmp, we do not have a precise
policy and we will allow the execution by adding the missing node
and edge in our TIP-G. That explains why PT-CFI will not detect
any JOP or COP attacks as discussed in Section 3.

4.2.2 Syscall Hooking

Once we have detected there is a control flow violation, we must
terminate the execution of the running process. To make PT-CFI
get an control of the monitored process execution, we take a syscall
interposition approach, which has been widely used by many other
systems such as kBouncer and ROPecker. Basically, we selectively
hook a number of security sensitive syscalls including execve,
write, mprotect, munmap, clone, fork, open, close and
exit_group. We introduce a lock at the entry point of these
system calls. It will be only unlocked by our monitoring process
to continue its execution, when there is no violation of CFI given
the current parsed TIP packets. Otherwise, the monitored process
will be terminated at the execution of these syscalls. Since syscall
hooking is a standard approach, we omit its technical details here.

S. IMPLEMENTATION

We have implemented PT-CFI. We implemented the kernel com-
ponent by using directly kernel code modification and kernel ex-
tensions, and implemented the rest component, especially Packet
Parsing by borrowing a large amount of code from a user level pro-
gram per £, the first and the industry strength tool for Intel PT.

More specifically, we use Syscall Hooking to create a sandboxed
execution environment to the monitored program by hooking only
a set of sensitive syscalls in the syscall table. Upon entering these
syscalls, PT-CFI will consult with the user level component 77P-
G Matching to ensure the backward-edge CFI of the monitored
program. The monitored program will be paused on the sensitive
syscall until there is no attack detected by our TIP-G Matching.

PT Packet Training
Program Name | |N| | |E| | #Syscall | Size (MB) | Time (ms) |
400.perlbench 3486 7294 160 1.27 3408.6
401.bzip2 483 677 77 210.94 1021.4
403.gcc 20233 71545 238 498.06 1115.8
429.mcf 456 642 357 158.5 1373.2
433.milc 1290 1920 6511 584.92 4519
445.gobmk 1361 2740 365 10.22 62.6
456.hmmer 964 1662 88 20.64 1356.4
458.sjeng 960 1911 608 498.05 3009.2
462.libquantum 850 1323 96 9.48 33
464.h264ref 1696 2940 541 443.97 15464.2
470.1bm 640 850 711 54.87 1235.4
482.sphinx3 2823 4231 3168 468.07 1049.2
AVG 2936.84 | 8144.59 1076.67 246.59 2804

Table 2: Experimental Result with SPEC2006 CPUINT benchmark

To control PT execution and parse PT packets at runtime, we ex-
tended per £, which is available since Linux kernel 4.3. Since PT
is a system wide hardware level feature, we need to configure it to
trace only user level program by setting the corresponding MSRs.
To this end, we use the available sys_perf_event_open to
initialize the PT hardware, and this syscall allows us to specify pro-
cess ID and CPU Core number as well as other filtering for Intel PT
hardware. To support thread level tracing, we catch both CR3 and
kernel esp by modifying the kernel schedule function, and as-
sociate the thread context with the PT traces.

Since PT packet parsing is a slow process, we use a thread pool to
handle PT packets in parallel in order to improve the performance
of the whole system. In addition, to better dispatcher threads, we
bind the monitored program and our monitoring program to differ-
ent cores and bind our working threads to the rest cores. For exam-
ple, for an eight core computers, we bind the monitored program to
core 0 and the monitoring program to core one and working threads
from core two to seven. We use function sched_setaffinity
to bind processes to a specific core and function pthread_set
affinity_np to bind threads to cores.

During our Deep Inspection, PT-CFI needs to disassemble the
binary code to determine the type of TIP packet, and check the
shadow stack. To do that, PT-CFI first scans the decoder synchro-
nization packet, usually a PSB at the beginning of the PT buffers,
then it can find a TIP.PGE packet indicating the full starting in-
struction pointer (IP). With the full IP and PT packets, PT-CFI can
follow the execution path to disassemble the binary code and tell
the type of the TIP packet. For the shadow stack, it is incremen-
tally built based on the traces from the beginning of the execution
to the suspicious point. If the TIP packet is of return type, and if
the shadow stack is not matched, then an attack is detected.

6. EVALUATION

In this section, we evaluate the effectiveness of PT-CFI for de-
tecting the ROP attacks, and its efficiency in terms of runtime per-
formance. Our testing platform is a desktop computer with an Intel
17-6700K Skylake 4.00 GHz CPU and 8G memory, running Ubuntu
14.04.1 LTS with Linux kernel 4.3.0.

6.1 Security Evaluation

By design, PT-CFI is able to detect all ROP attacks, thanks
to our deep inspection and the shadow stack constructed from PT
traces. To measure how PT-CFI really works in detecting the con-
trol flow violations, we use both a contrived attack against our run-
ning example in Figure 1 and a real attack against Nginx HTTP
daemon (i.e., Nginx-1.4.0) to evaluate the capability of PT-CFI in

181

Runtime Overhead(%)

Figure 4: SPEC CPU2006 Benchmark Overhead

detecting the control flow violations. Such a security evaluation
methodology has been used in many other ROP defenses such as
ROPecker.

More specifically, to construct our attack payload, we leveraged
a widely used ROP gadget searching and linking tool ROPgadget
to analyze both the executable and linked libraries of these two
programs. To make our gadget construction easier, we disabled the
ASLR protection. We successfully constructed two ROP payloads
and both spawned a shell without the protection from PT-CFI.

Then we applied PT-CFI to protect them. We first trained each
of them: using the three benign inputs for our running example, and
using 1000 requests with varied length generated from ht tperf [1]
for the Nginx daemon, respectively. Then we injected the con-
structed attack payload to these two victim programs. As expected,
both of them triggered our deep inspection, which took a 0.03 sec-
onds for our running example, and 0.05 seconds for Nginx to report
that a ROP attack is detected. The reason of why Nginx took sligtly
more time is because more packets need to be used to disassemble
the code and walk through the binary to build the shadow stack,
which is a slow process. Also note that no false positive or false
negatives occurred in these two security tests.

6.2 Performance Evaluation

To evaluate the performance overhead of our system, we tested
with a set of SPEC2006 benchmark programs and the Nginx HTTP
daemon.

SPEC2006 CPUINT. We used the 12 CPUINT benchmark pro-
grams from SPEC2006 in our evaluation. We compiled them with
the default configuration by using gcc-4.8.4, then we executed and
trained each of them with the default configured input to get their
corresponding TIP-G. The detailed result for our training phase is
presented in Table 2.

Specifically, it took a variety of amount time to train each of
the benchmark, as reported in the last column in Table 2. To train
the program, we run each SPEC CPUINT program with their de-
fault configured input. Some of them (e.g., 464 .h264ref) took
15.46 seconds, and some of them (e.g., 462 . 1ibgquantum) only
costed 0.03 seconds. On average, it took 2.80 seconds to train each
benchmark. During the training phase, we also observed 1076.67
syscalls on average (the 3rd column), and 2936.84 of nodes (2nd
column) and 8144.59 edges (3rd column) in their TIP-G. The PT
packet size is reported in the 4th column, and on average we col-

Normalized Latency(%)

Figure 5: Nginx File Download Latency

lected 246.58 MB traced PT packet during each run of these pro-
grams.

Next, we applied the obtained TIP-G for the CFI enforcement.
We run these benchmarks again with their default input. The pur-
pose of this experiment is to measure how slow our TIP-G matching
is when used in real software. The performance overhead for this
experiment is shown in Figure 4. While some programs such as
gcc have high overhead (up to 65%), most of them has less than
10%. On average, it has 21% for these CPUINT benchmarks. The
reason of why gcc has high overhead is that it has many more
packets to process, and more nodes and edges in the TIP-G for the
matching than that of others.

Network Daemon. While SPEC benchmark can provide an esti-
mation of how slow our PT-CFI is for real software, in practice
we believe PT-CFI will be mostly used to protect the network dae-
mons. To understand the performance impact of our approach for
network daemons, we again measured the latency and throughput
of the HTTP daemon Nginx we tested in our security evaluation.
To train Nginx, we used the same configuration as in our secu-
rity evaluation by generating 1000 client request messages with
httperf. During this training phase, we observed 391 nodes, and
1,213 edges in our TIP-G. To monitor the Nginx, we first get the
PID of the worker process, then we attach PT-CFI to this process.
Any threads spawned by this process will be monitored automati-
cally thanks to our thread-tracing capability.

e Latency. To evaluate the latency of Nginx with PT-CFI, we
use Apache HTTP server benchmarking tool (ab) to send
10, 000 requests to Nginx to download different sizes of file,
from one byte to 10M bytes. The normalized latency com-
pared without PT-CFI protection is reported in Figure 5. We
can see that for small size downloaded packets, the latency
is slight larger than those bigger size ones, though they all
appear to be quite negligible (less than 5%). Note that we
also reported the absolute download time on top of each bar
with unit milliseconds in this figure. For instance, when the
request file is 1 byte, it took 36.77 milliseconds to download
this file.

e Throughput. We also evaluate the file download throughput
of Nginx. We use the tool httperf to generate different
numbers of concurrent requests to access the same 300K-
bytes file, then report the throughput of Nginx without and
with PT-CFI in Figure 6. We can see that with different
numbers of concurrent requests per seconds (x-axis), there

182

18 w/0 PT-CFI00W/ PT-CFI

300 - M

Replies Per Second

50 100 150 200 250 300 350 370 380 390 400
Requests Per Second

Figure 6: Nginx Throughput Impact

is negligible impact in the replies per seconds (y-axis) (al-
most the same height of bar in both cases). When the con-
current number of requests exceeds 380 (which appears to
be the maximum number of requests Nginx can handle si-
multaneous), the throughput goes down as without PT-CFI
protection.

Overall, we can observe for network daemons such as Nginx, our
system does not have noticable performance impact against normal
users (less than 5% latency and negligiable throughput impact).

7. DISCUSSION AND FUTURE WORK

While PT-CFI has made a first step of using Intel PT to build a
practical CFI model, it is still not perfect and has a number of lim-
itations. In this section, we examine these limitations and outline
our future work.

First, PT-CFI has a clear policy for all ret based exploits. Un-
like existing ROP defenses such as ROPecker that uses heuristics,
PT-CFI can precisely detect all ROP instances due to our deep in-
spection. However, we currently do not have policies for all those
forward-edges and we allow the monitored process continue the
execution when encountering these call and jmp TIPs. As such,
JOP or COP attacks are still possible.

Meanwhile, we have to note that there is no perfect solution to
resolve the forward-edges at binary code level because the chal-
lenges from point-to analysis, though there are solutions at source
code level such as the forward-edge CFI [48]. There could ex-
ist some approaches that use value-set analysis to approximate the
possible indirect target, or use some loose security policy such as
allowing the indirect call target always starts from the entry point of
a function as in BinCFI, or use training as in FlowGuard [29], etc.
We plan to investigate how to address these forward edge issues in
one of our future works.

Finally, even though the performance overhead is small, it is
higher than many other CFI implementations (e.g., [38, 55]). There
are also a number of avenues to optimize the performance of PT-
CFI, especially its deep inspection component. For instance, to
differentiate the types of each TIP packet, we have to perform dis-
assembling of the protected binary code whenever we encounter
an unknown TIP. This disassembling process can be optimized by
considering the history of the disassembling process, namely, if we
have already disassembled some code, we do not have to disassem-
ble it again. While we have already explored using the cache to
optimize the re-disassembling, we have not systematically investi-

gated the cache size factor yet. We plan to explore how to optimize
PT-CFI further in our another future work.

8. CONCLUSION

We have presented PT-CFI, a new backward-edge CFI model
based on a recently introduced Intel hardware feature—Processor
Trace. Designed primarily for offline software debugging, PT of-
fers the capability of tracing the entire control flow of a running
program. In this paper, we have presented the design, implemen-
tation, and evaluation of using PT for security with a new practical
CFI model for native COTS binaries based on the trace from PT.
We have addressed a number of technical challenges such as mak-
ing sure the control flow policy is complete, making PT enforce
our CFI policy, and balancing the performance overhead, by ex-
ploring the intrinsic tracing property inside PT with a system syn-
chronization primitive and a deep inspection capability. We have
implemented PT-CFI and tested with both SPEC2006 and a popu-
lar network daemon. Experimental results show that PT-CFI only
introduces small overhead for the monitored program with the ca-
pability of detecting all ROP attacks.

Acknowledgment

We thank the anonymous reviewers for their insightful comments.

This research was supported in part by AFOSR under grant FA9550-
14-1-0119 and FA9550-14-1-0173, NSF award 1453011. Any opin-
ions, findings, conclusions, or recommendations expressed are those
of the authors and not necessarily of the AFOSR and NSF.

9. REFERENCES

(1]
(2]

Hittperf, http://www.labs.hpe.com/research/linux/httperf/.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM Conference on Computer
and Communications Security, CCS ’05, pages 340-353. ACM,
2005.

S. Andersen and V. Abella. Data execution prevention. changes to
functionality in microsoft windows xp service pack 2, part 3:
Memory protection technologies, 2004.

N. Balakrishnan, T. Bytheway, L. Carata, O. R. A. Chick, J. Snee,
S. Akoush, R. Sohan, M. Seltzer, and A. Hopper. Recent advances in
computer architecture: The opportunities and challenges for
provenance. In 7th USENIX Workshop on the Theory and Practice of
Provenance (TaPP 15), Edinburgh, Scotland, July 2015. USENIX
Association.

A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh.
Hacking blind. In Security and Privacy (SP), 2014 IEEE Symposium
on, pages 227-242. IEEE, 2014.

T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks
with control-flow locking. In Proceedings of the 27th Annual
Computer Security Applications Conference, ACSAC ’11, pages
353-362. ACM, 2011.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: a new class of code-reuse attack. In Proceedings of
the 6th ACM Symposium on Information, Computer and
Communications Security, pages 30-40. ACM, 2011.

E. Bosman and H. Bos. Framing signals — return to portable
exploits. (working title, subject to change.). In Security & Privacy
(Oakland), San Jose, CA, USA, May 2014. IEEE.

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-flow bending: On the effectiveness of control-flow integrity.
In 24th USENIX Security Symposium (USENIX Security 15), pages
161-176, Washington, D.C., Aug. 2015. USENIX Association.

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-flow bending: On the effectiveness of control-flow integrity.
In 24th USENIX Security Symposium (USENIX Security 15), pages
161-176, 2015.

N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern
defenses. In Proceedings of the 23rd USENIX Conference on

(3]

[4

=

[5

—

[6

—

[7

—

[9

—

[10]

(11]

183

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Security Symposium, SEC’ 14, pages 385-399, Berkeley, CA, USA,
2014. USENIX Association.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-oriented programming without returns. In
Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, pages 559-572, New York, NY,
USA, 2010. ACM.

P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop:
Detecting return-oriented programming malicious code. In
Proceedings of the 5th International Conference on Information
Systems Security, ICISS *09, pages 163—177, Berlin, Heidelberg,
2009. Springer-Verlag.

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.
Non-control-data attacks are realistic threats. In Proceedings of the
14th Conference on USENIX Security Symposium - Volume 14.
USENIX Association, 2005.

Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A
generic and practical approach for defending against ROP attack. In
Proceedings of the 2014 Network and Distributed System Security
Symposium, NDSSaAZ14, 2014.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In
Usenix Security, volume 98, pages 63—78, 1998.

L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,

S. Niirnberger, and A.-R. Sadeghi. MoCFI: A framework to mitigate
control-flow attacks on smartphones. In /9th Annual Network &
Distributed System Security Symposium (NDSS), Feb. 2012.

L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow
integrity protection. In Proceedings of the 23rd USENIX Conference
on Security Symposium, SEC’ 14, Berkeley, CA, USA, 2014.
USENIX Association.

L. Davi, A.-R. Sadeghi, and M. Winandy. Ropdefender: A detection
tool to defend against return-oriented programming attacks. In
Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’11, pages 40-51. ACM,
2011.

U. Erlingsson. The Inlined Reference Monitor Approach to Security
Policy Enforcement. PhD thesis, Ithaca, NY, USA, 2004.
AAI3114521.

Y. Fu and Z. Lin. Exterior: Using a dual-vm based external shell for
guest-os introspection, configuration, and recovery. In Proceedings
of the Ninth Annual International Conference on Virtual Execution
Environments, Houston, TX, March 2013.

X. Ge, W. Cui, and T. Jaeger. Griffin: Guarding control flows using
intel processor trace. In Proceedings of the 22nd ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Apr. 2017.

E. Goktas, E. Athanasopoulos, M. Polychronakis, H. Bos, and

G. Portokalidis. Size does matter: Why using gadget-chain length to
prevent code-reuse attacks is hard. In 23rd USENIX Security
Symposium, pages 417-432, San Diego, CA, Aug. 2014. USENIX
Association.

H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Automatic
generation of data-oriented exploits. In 24th USENIX Security
Symposium, pages 177-192, Washington, D.C., Aug. 2015. USENIX
Association.

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang.
Data-oriented programming: On the expressiveness of non-control
data attacks. In 2016 IEEE Symposium on Security and Privacy.
IEEE, 2016.

B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea.
Failure sketching: A technique for automated root cause diagnosis of
in-production failures. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, pages 344-360, New
York, NY, USA, 2015. ACM.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and

D. Song. Code-pointer integrity. In /7th USENIX Symposium on
Operating Systems Design and Implementation, pages 147-163,
Broomfield, CO, Oct. 2014. USENIX Association.

[28]

[29]

[30]

[31]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek. Towards a practical
solution to detect code reuse attacks on arm mobile devices. In
Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy, HASP *15. ACM, 2015.

Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan. Transparent
and efficient cfi enforcement with intel processor trace. In The 23rd
IEEE Symposium on High Performance Computer Architecture,
2017.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI *05,
pages 190-200, New York, NY, USA, 2005. ACM.

A.J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazieres. CCFI:
Cryptographically enforced control flow integrity. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 941-951. ACM, 2015.

V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz.
Opaque control-flow integrity. In Proceedings of the 2015 Network
and Distributed System Security Symposium, NDSSAAZ15, 2015.

B. Niu and G. Tan. Modular control-flow integrity. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’ 14, pages 577-587. ACM, 2014.
B. Niu and G. Tan. Rockjit: Securing just-in-time compilation using
modular control-flow integrity. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security,
CCS 14, pages 1317-1328. ACM, 2014.

B. Niu and G. Tan. Per-input control-flow integrity. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 914-926. ACM, 2015.
A. One. Smashing the stack for fun and profit. Phrack magazine,
7(49):14-16, 1996.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent
ROP exploit mitigation using indirect branch tracing. In Proceedings
of the 22Nd USENIX Conference on Security, SEC’13, pages
447-462, Berkeley, CA, USA, 2013. USENIX Association.

M. Payer, A. Barresi, and T. R. Gross. Fine-grained control-flow
integrity through binary hardening. In Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 144—164. Springer,
2015.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz. Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications. In Security and
Privacy (SP), 2015 IEEE Symposium on, pages 745-762. IEEE,
2015.

F. Schuster, T. Tendyck, J. Pewny, A. Maal}, M. Steegmanns,

M. Contag, and T. Holz. Evaluating the effectiveness of current
anti-ROP defenses. In Proceedings of the 17th International
Symposium on Research in Attacks, Intrusions and Defenses.
Springer International Publishing, 2014.

E.J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening
made easy. In USENIX Security Symposium, pages 25—41, 2011.

H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proceedings
of CCS 2007, pages 552-61. ACM Press, Oct. 2007.

X. Shu, D. Yao, and N. Ramakrishnan. Unearthing stealthy program
attacks buried in extremely long execution paths. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and

184

[44]

[45]

[46]
[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

Communications Security, CCS ’15, pages 401-413, New York, NY,
USA, 2015. ACM.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi. Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization. In Security and
Privacy (SP), 2013 IEEE Symposium on, pages 574-588. IEEE,
2013.

L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in
memory. In Proceedings of the 2013 IEEE Symposium on Security
and Privacy, SP ’13, pages 48—62. IEEE Computer Society, 2013.
P. Team. Pax address space layout randomization (aslr). 2003.

J. Thalheim, P. Bhatotia, and C. Fetzer. Inspector: A data provenance
library for multithreaded programs, 2016.
https://arxiv.org/abs/1605.00498.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike. Enforcing forward-edge control-flow
integrity in gcc & llvm. In 23rd USENIX Security Symposium, pages
941-955, San Diego, CA, Aug. 2014. USENIX Association.

V. van der Veen, D. Andriesse, E. Goktas, B. Gras, L. Sambuc,

A. Slowinska, H. Bos, and C. Giuffrida. Practical context-sensitive
CFL In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pages 927-940.
ACM, 2015.

V. van der Veen, E. Goktas, M. Contag, A. Pawlowski, X. Chen,

S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida. A
tough call: Mitigating advanced code-reuse attacks at the binary
level. In Proceedings of the 37th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, USA, May 2016. IEEE.

M. Wang, H. Yin, A. V. Bhaskar, P. Su, and D. Feng. Binary code
continent: Finer-grained control flow integrity for stripped binaries.
In Proceedings of the 31st Annual Computer Security Applications
Conference, ACSAC 2015, pages 331-340. ACM, 2015.

R. Wojtczuk. The advanced return-into-lib (c) exploits: Pax case
study. Phrack Magazine, Volume 0xO0b, Issue Ox3a, Phile# 0x04 of
0x0e, 2001.

Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting violation
of control flow integrity using performance counters. In Proceedings
of the 42nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’12, Washington, DC,
USA, 2012. IEEE Computer Society.

P. Yuan, Q. Zeng, and X. Ding. Hardware-assisted fine-grained
code-reuse attack detection. In Proceedings of 18th International
Symposium on Research in Attacks, Intrusions, and Defenses,
RAID’15. Springer International Publishing, 2015.

B. Zeng, G. Tan, and U. Erlingsson. Strato: A retargetable
framework for low-level inlined-reference monitors. In Presented as
part of the 22nd USENIX Security Symposium (USENIX Security
13), pages 369-382, Washington, D.C., 2013. USENIX.

J. Zeng, Y. Fu, and Z. Lin. Automatic uncovering of tap points from
kernel executions. In Proceedings of the 19th International
Symposium on Research in Attacks, Intrusions and Defenses
(RAID’16), Paris, France, September 2016.

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,

D. Song, and W. Zou. Practical control flow integrity and
randomization for binary executables. In 2013 IEEE Symposium on
Security and Privacy, pages 559-573, May 2013.

M. Zhang and R. Sekar. Control flow integrity for cots binaries. In
Proceedings of the 22nd USENIX Security Symposium, pages
337-352. USENIX, 2013.

https://arxiv.org/abs/1605.00498

	Introduction
	Background and Related Work
	Control-Flow Hijacking and ROP
	Control-Flow Integrity
	Hardware-Assisted ROP Detection
	Intel Processor Trace

	PT-CFI Overview
	A Running Example
	Technical Challenges
	Key Insights
	Our CFI Policy
	Overview

	Detailed Design
	CFI Policy Extraction
	Packet Parsing
	Deep Inspection

	CFI Policy Enforcement
	TIP Graph Matching
	Syscall Hooking

	Implementation
	Evaluation
	Security Evaluation
	Performance Evaluation

	Discussion and Future Work
	Conclusion
	References

