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Abstract

Software vulnerabilities are the root cause of a wide
range of attacks. Existing vulnerability scanning tools are
able to produce a set of suspects. However, they often suffer
from a high false positive rate. Convicting a suspect and
vindicating false positives are mostly a highly demanding
manual process, requiring a certain level of understanding
of the software. This limitation significantly thwarts the ap-
plication of these tools by system administrators or regular
users who are concerned about security but lack of under-
standing of, or even access to, the source code. It is often the
case that even developers are reluctant to inspect/fix these
numerous suspects unless they are convicted by evidence.
In this paper, we propose a lightweight dynamic approach
which generates evidence for various security vulnerabili-
ties in software, with the goal of relieving the manual pro-
cedure. It is based on data lineage tracing, a technique
that associates each execution point precisely with a set of
relevant input values. These input values can be mutated
by an offline analysis to generate exploits. We overcome
the efficiency challenge by using Binary Decision Diagrams
(BDD). Our tool successfully generates exploits for all the
known vulnerabilities we studied. We also use it to uncover
a number of new vulnerabilities, proved by evidence.

1 Introduction

Vulnerabilities in software, especially those that are re-
mote exploitable, are the root cause of wave after wave
of security attacks, such as botnet, zero-day worms, non-
control data corruptions, and even server-break-ins. Thus,
analyzing and exposing software vulnerabilities has become
one of the most active research areas today.

In the past, software vulnerability detection/exposing ap-
proaches could be divided into two categories: dynamic
and static. Dynamic approaches monitor program execution
and detect attempts of attacking a software system. Many
promising approaches have been proposed in this category,

such as TaintCheck [15], Control Flow Integrity [16], and
Data Flow Integrity [17]. However, most of these tech-
niques are often active during program execution, thereby
incurring non-trivial runtime overhead. Moreover, they aim
to detect attacks, and thus vulnerabilities that are not under
attack are invisible.

The second type of approaches are static analysis, and
notable examples include BOON [18], Splint [19], and
Archer [21]. Static analysis is not bound to execution and
thus often capable of identifying potential vulnerabilities
in a program, and also it imposes no overhead at runtime.
Thus, these techniques are more desirable compared with
dynamic approaches if they can live to their promise. Un-
fortunately, most static techniques suffer from a high false-
positive rate and generate a large volume of warnings. For
example, the static analysis tool Splint has nearly 50% false
positive [20], and tools like Flawfinder [1] and RATS [2]
often produce hundreds of warnings, in which only a few
of them are the real defects. The procedure of convict-
ing real defects and vindicating false positives remains a
highly demanding manual effort, requiring understanding
of the source code. With respect to system administrators
and regular software users who are concerned about secu-
rity, the lack of the understanding of (even the access to)
source code significantly diminishes their enthusiasm about
these techniques. With respect to developers, a long list of
suspects with only some being true rapidly wears out their
patience. Therefore, it becomes a pressing need to develop
new techniques to automatically or semiautomatically gen-
erate evidence to convict real vulnerabilities.

Random test generation (e.g., fuzz testing [7, 8]) that ran-
domly mutates benign inputs has been used to construct
exploits. However, it is known that random test genera-
tion is not effective in many cases, e.g. it might take 232
tries to satisfy a simple predicate as “P1:if (x==c)”
because z is a 32 bit random value. Thus, recently, there
has been significant advance in combining static software
verification principles with symbolic execution in test gen-
eration to identify software errors including vulnerabilities



[9, 11, 10, 12, 13, 14]. These techniques aim to explore all
feasible program paths to expose potential defects. Such an
ambitious goal with symbolic execution incurs scalability
issues. For instance, using symbolic execution an execution
taking the true branch of P1 is modeled by the constraint
of Cl:xz==c. The technique tries to mutate a benign ex-
ecution through negating constraints and resolve them by
a solver, e.g., solving the negated constraint =C1 provides
a new input value satisfying ! =c, which drives the exe-
cution to take the false branch of P1. The state of the art
[13] is capable of handling hundreds of millions of instruc-
tions, which only accounts for a few seconds of execution.
Furthermore, it often requires the user to annotate symbolic
variables (e.g., EXE [9]), which implies understanding of
program semantics.

In this paper, we propose a practical dynamic approach
that is intended to use in combination with other static tools.
We observe that although the suspect pool produced by ex-
isting static tools has a high false positive rate, it is nonethe-
less much smaller than the whole population. Therefore, we
use existing static tools as the frontend to generate a set of
suspects. Our technique then tries to generate exploits for
these suspects. A suspect is convicted only when an exploit
can be acquired as the evidence. Such exploits significantly
assist regular users and administrators to evaluate the ro-
bustness of their software and convince vendors to debug
and patch. The key idea is to use data lineage tracing to
identify a set of input values relevant to the execution of
a vulnerable code location. Exploit-specific mutations are
applied to the relevant input values in order to trigger an at-
tack, for example, changing an integer value to MAXUINT
to induce an integer overflow. Since these inputs are usually
a very small subset of the whole input sequence, mutating
the whole input, like in random test generation, is avoided.
Our technique does not rely on symbolic execution and con-
straint solving and thus can easily handle long execution.
In case an execution that covers a vulnerable code location
cannot be found, our tool also allows user interactions to
mutate an input so that the execution driven by the mutated
input covers the vulnerable code location.

Our technique addresses a wide range of vulnerabilities
including buffer overflow, integer overflow, format string,
etc. Our dynamic analysis works at binary level, which
greatly facilitates users who do not have the source code ac-
cess but are concerned about software vulnerabilities. Note
that a static analysis used as a frontend may or may not re-
quire source code access. Using our system, we are able
to reproduce exploits of all the known vulnerabilities we
studied. We also successfully identify a set of new vulnera-
bilities and prove them by evidence. They were all promptly
confirmed by the developers.

The contributions of our paper are highlighted as fol-
lows.

e We propose a novel dynamic technique which gener-
ates evidence to convict a wide range of real vulnera-
bilities. Compared with the state of the art of test gen-
eration techniques [9, 10, 11], it is less expensive. The
output of our tool is a runnable program input to the
whole software system instead of a module, and such
an input can be easily turned into an exploit.

e The technique is built upon a dynamic program anal-
ysis called data lineage tracing. It traces the set of
input that is relevant to a particular execution point.
The lineage information is used to guide our evidence
generation procedure. The challenge of efficiency is
overcome by using reduced ordered Binary Decision
Diagrams (roBDDs).

e Data lineage on its own is not sufficient in producing
evidence. We design a search algorithm that makes
use of lineage information and looks for a mutation
of a benign program input that triggers a suspicious
vulnerability.

e We apply our technique on a set of real software ap-
plications and our results show that we are able to re-
produce all the known vulnerabilities that we collected
for our experiment. Our case study also presents the
effectiveness of our tool by convicting suspects which
have not been brought to “justice” before.

e Our performance evaluation indicates that our tech-
nique has reasonable overhead.

2 Overview

Data Lineage
Tracer

benign inputs

input,
data lineage

Static suspects

Frontend

program

n |
binary

Input Mutator | utated

Runtime
% Detector

Figure 1. System Overview.
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The overview of our system is presented in Figure 1. It
consists of four components with the shaded ones being our
contributions. The system relies on static analysis to pro-
duce a set of suspects, which are potential vulnerable code,
represented in the forms of instruction addresses at binary
level or source code locations. Benign program inputs are
needed to begin with, which may come from a random test
case generator or from the test suite shipped with the soft-
ware. Provided with a program input and a suspect, the
data lineage tracing component computes lineage for the
execution. This information is consumed by the input muta-
tion component that searches for a way to mutate the previ-
ous program input such that the vulnerability is manifested



through a crash. We call such a mutated input an exploit
in the paper. Note that how to add payload to the crash-
inducing input to gain control of the host program is be-
yond the scope of this paper. The runtime detector is to
check if the vulnerability is triggered. If so, the suspect is
convicted. Otherwise, the suspect is considered innocent.
Since the runtime detector is not our focus, we simply use a
segmentation fault detector. More advanced detectors such
as TaintCheck [15] can be adopted for higher accuracy.

Our technique does not rely on a specific static analysis
tool, which provides flexibility to the system. More specif-
ically, it can be easily shaped into a system handling buffer
overflow, format string, integer overflow, or other attacks,
depending on the frontend analysis. Although the static and
runtime detectors may need source code, our lineage tracing
and input mutation components only require binary. The
precision of the static analysis is not a major concern as
well. For example, the user may choose to subject all buffer
accesses to the conviction procedure.

offset= 6 7 8 9
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Figure 2. An lllustrative Example.
Next we use a real example to demonstrate the working

of our system. Figure 2 shows one of the integer overflow
vulnerabilities in CVE-2004-0994. By providing a mali-
cious gif file header, remote attackers can exploit the inte-
ger overflow at line 494 and eventually launch a heap over-
flow attack.

In our system, suppose static analysis tools are able to
point out that there is an overflow suspect at line 494. Note
that many static tools can generate such warnings. Now
given a benign test input (in this case, any gif file input
touches line 494), a normal gif image with the size of
256 x 128, our system traces the lineage of the execution
of line 494 and identifies that the value of width comes
from “Ox00 0x01”, and the value of height comes
from “0x80 0x007”, as shown in the figure. Our mutation
algorithm eventually finds that replacing these input values
with large numbers triggers this integer overflow vulnera-
bility. Such a mutated input is provided as the evidence for
the conviction.

In order to realize the idea, we have to overcome several
technical challenges such as scalable lineage tracing, input
mutation, and test generation to cover suspects. In the next

two sections, we will present our solutions to these issues.

3 Data Lineage Tracing

The first problem that confronts us is to identify the set of
input values that are relevant to a particular execution point.
Although one can say that all the inputs are related to each
point of execution in general, we observe that given a par-
ticular execution point, part of the inputs are much more
closely related than others. A more formal definition of
“closely related” will be given in later discussion, but in-
tuitive examples can be found in Figure 2. As we can see
from this figure, the binary strings in the rectangles have
one-one mappings to the values at line 494. The code ex-
cerpt clearly explains how the input values are propagated
to line 494!,

Next, let us formalize our definition of data lineage. The
definition is based on the concept of data dependence in the
field of program slicing [23]. Given a program execution
FE, s; denotes the ith execution instance of a statement s.
Note that a statement can be executed multiple times in one
execution.

Definition 1 A statement execution instance s; data de-
pends on another statement execution instance t; if and
only if a variable is defined at t; and then used at s;.

For example in Figure 2, assuming all the statements ex-
ecute only once, 4944, the first instance of statement 494,
data depends on 245; and 246, .

Definition 2 The data lineage of a variable v at an execu-
tion point of s;, denoted as DL(vQs;), is the set of input
bytes that are directly or indirectly involved in computation
of the value of v at s; through data dependence.

In some places of this paper, we also use DL(s;) to de-
note the data lineage of the statement instance s;. For exam-
ple, DL(width@494,) = {6, 7}, with the numbers denot-
ing the values’ indices in the input sequence®. DL(494;) =
{6,7,8,9}. One may raise the question whether control
dependence [22] needs to be considered. Our experience
shows that simply including control dependence in lineage
computation often leads to undesirably oversized lineage
sets. Therefore we consider control dependence in the
search procedure for mutation (Section 4) instead of in lin-
eage computation. In practice, our strategy is sufficient for
the cases we studied.

Given the definition, we develop a run-time algorithm to
compute data lineage. The basic rule is that the set of input
elements relevant to a statement instance s; is the union of
the relevant input sets of all the statement instances which

Note that although we present the example in its source code form for
readability, our analysis works directly on binary.

2We store the input sequence into a global buffer so that input values
can be indexed and accessed.



s; data depends on. In other words, all the input values that
are relevant to some operand of s; are considered as relevant
to s; as well.

For the simplicity of explanation, let

s; : def = f(useg,usey,...,usey,)

be an executed statement instance, in which s; defines vari-
able def by using the variables of useg,useq, ..., and

usey,.

For example, the statement instance 245, can be repre-
sented as

245, : width = f(imagehed.wide_lo, imagehed.wide_hi)

Let DEF(x) be the latest statement instance that defines
variable . The computation of data lineage can be repre-
sented by the following equations:
DL(s;) = DL(def@s;)
get-new_id()

if def is an input value;

(U DL(use,@s;)
YV
= ( J DL(use,QDEF (usey))
Va.DEF (useq)#d
otherwise.

DL(def@s;) =

@

As shown by the equations, the lineage of s; is equiva-
lent to the lineage of the variable de f defined at s;. If def
is considered as an input, function get_new_id() is called
to assign a unique id for the input instance. If def does
not represent an input value, its lineage is computed as the
union of the lineage sets of use,s. If a variable use, was
previously defined,

DL(use,@s;) = DL(use,QDEF(use;)).
Otherwise, it is treated as having an empty lineage set, cor-
responding to statically initialized variables.

Identifying Input Values. It is non-trivial to label input
values. In EXE [9], users are required to annotate input vari-
ables. We had considered such a strategy. However, since
we are working at binary level and we handle whole system
inputs such as those read from files or network packets, we
found that it was hard to adopt. We took a different path
by intercepting input relevant system calls such as system
reads and assign unique ids to each input value. More pre-
cisely, after each system read, we scan the input buffer, and
assign unique ids to each byte in the input buffer. Such an
id serves as the lineage for that input byte. The fseek-like
operations for local file read were challenges for us because
a single byte may be read multiple times due to this kind
of operations and we have to avoid generating multiple ids
for the same byte. Our solution is to intercept other sys-
tem calls besides reads such as 1seek to synchronize the
state of cursors between input files and our id labeling. For
network packet, it does not have such issues since every sin-
gle byte are sequentially received/processed upon entering

the system. We should note there exist some special cases
of user-input which cannot be caught via system calls, e.g.,
the command line option inputs (i.e., argv), for which we
label all data from the bottom of stack to the frame just be-
fore main with ids upon entering function main.

An Example Of Lineage Tracing. We use the example
in Figure 2 to illustrate lineage computation. The procedure
is presented in Table 1. The first column presents the con-
trol flow trace. To disclose the complete computation, we
extend the excerpt in Figure 2 to include some code in li-
brary, labeled with pc1 and pc2. Inside the function call
fread, system call READ is first issued to load in the gif
file to buf with the input length of size. The values in
buf is then copied to the structure imagehed.

In Table 1, the column labeled def indicates the vari-
ables that are defined at the statement instance. Columns
use, and DEF (use, ) represent the variables used and the
previous statement instances that define these variables, re-
spectively. The last column shows the data lineage. Accord-
ing to Equation 1, after the system call READ, each byte
is assigned a unique id at pcl;. Then, at pc27 59 10, the
lineages of corresponding bytes are propagated to variables
wide_hi, wide_lo, high_hi, high_lo. Note that
*p points to these variables at the various instances of
pc2. At 2451, wide_hi and wide_lo are used to define
width, according to the equation, the lineage of width
at 245; is the union of the lineages of wide_hi and
wide_lo. Eventually, at 494,, we acquire the exact lin-
eage as demonstrated earlier in Figure 2.

Efficient Lineage Representation. Compared with exist-
ing techniques with similar functions such as TaintCheck
[15], in which one bit is required for one byte, we are fac-
ing a much harder space problem because we are computing
a set for each byte, which potentially has the same cardi-
nality of the entire input set. Moreover, set operations are
performed at each step of execution. Therefore, an efficient
set representation is critical to the system performance. A
naive link-list based implementation may be devastating.
For example, sets with thousands of elements may have to
be traversed for the execution of a single instruction. Fortu-
nately, recent research on dynamic slicing [24] reveals that
reduced ordered Binary Decision Diagram (roBDD) [4] can
be used to achieve both space and time efficiency in repre-
senting sets, especially when these sets have the character-
istics of overlapping, clustering, and reappearing. Data lin-
eage possesses exactly these characteristics. For example,
the execution of statement “y=x+1" gives rise to reappear-
ing lineages because both x and y have the same lineage.
A statement like “z=y+x” introduces significantly amount
of overlap between the lineages of x, vy and z, due to the
union operation. The detailed study of these properties is
not the focus of this paper.



Table 1. Computation of Data Lineage

Si def ‘ useq ‘ DEF ‘ usey ‘ DEF ‘ DL(def@s;)/DL(s;)
(useq) (useq)

2311 fread(...)

pell READ (buf size,...) V0 < i < size buffi] V0 < i < size DL(buf[i]@Qpcly) = get_new_id()*™™

pc22” *p = buf[i] wide_lo buf[6] pcly DL(xp@pc27) = DL(buf[6]Qpcl,) = {6}

pc2s *p = buf[i] wide_hi buff7] pcly DL(xp@Qpc2g) = DL(buf[7]Qpcly) = {7}

pc2g *p = buf[i] high_lo buf[8] pcly DL(xp@Qpc29) = DL(buf[8]Qpcly) = {8}

pc21o *p = buf[i] high_hi buf[9] pcly DL(xpQpc219) = DL(buf[9]@Qpcly) = {9}

2451 width=... width wide_hi | pc2g widelo | pc27 D L(width@245,) = DL(wide_hiQpc2g)
UDL(wide_loQpc27) = {6, 7}

246, height=... height high-hi | pe21g highllo | pc2g DL(height@246,) = DL(high_-hiQpc219)
UDL(high_lo@pc29) = {8,9}

4944 ..widthxheight... width 2454 height 2461 DL(4941) = DL(width@2451) U DL(height@246+)
= {6,7,8,9)

* pcl, pc2 are statements in libc functions.

** the input byte with offset 7, with the value “0x007, is loaded to buf[6] by the 6th instance of pc2
4% gince the input sequence starts with buf[0] and the id assignment starts at 0, D L(bu f[i]@pcly) = .

As roBDD is capable of efficiently representing the

power set domain of a universal set (here the universal set
is the set of input values), it benefits us in the following re-
spects. First, each unique lineage set is indexed by a unique
integer in roBDD. In other words, two sets are represented
by the same integer number if and only if they are identi-
cal. This is critical to our system, because instead of storing
a set for each byte in memory to represent its lineage, we
only need to store an integer. Furthermore, performing the
equivalence test on two sets can be achieved in O(1) time
by comparing the corresponding integers. Second, roBDD
also promises time efficiency because set operations can be
translated into roBDD operations. For instance, binary op-
erations (e.g., union) of two sets whose roBDD representa-
tions contain n and m roBDD nodes can be performed in
time O(n x m) [5]. Note that the number of roBDD nodes
is often much smaller than the number of elements in the
represented set.
Binary Instrumentation. In order to trace lineage, we
have to instrument the binary of the program such that lin-
eage information is updated during program execution. Ac-
cording to Equation 1, we need to update the DL set of the
left hand side variable at every step of the execution and
store it somewhere. In our system, we use shadow space to
store lineage sets. Specifically, if the variable is stored at a
specific stack/heap location, a corresponding shadow mem-
ory (SM) is allocated and used to store the set associated
with the variable. Similarly, we use the shadow register
file (SRF) to store the sets for variables in registers. Both
shadow memory and shadow registers are implemented by
software.

4 Input Mutation

The lineage tracing component collects runtime informa-
tion about the random generated input (benign input). This
information is used to direct the other key component of
our system, the input mutator, to generate an exploit. In
this paper, an exploit refers to an input that leads to unsafe

Algorithm 1 Input Mutation

1: Driver (s, T, SC D) /* s:suspect, T:benign input, SC D: static control depen-
dence*/

2

3 T.=T;

4 if (s is not executed with input 77)

5: T, = DirectedTGen (s, T, SC D);
61 if(Tw){

7: s; = the last execution instance of s;
8 return Search(s,s;,T,SC D);

9

10: return NULL;

11: }

12: DirectedTGen (s, T,SC D)

13:

14: DL = TraceDL(T); /* TraceDL () is the lineage tracing procedure*/
15: if (s is not executed with input 7°) {

16: wl = {s}; #wl is a worklist*/

17: while (t = wl.removeNext()) {

18: foreach p € SC'D(t), p is executed with T') {
19: T' = MMutate(p1,t, T, DL);

20: if (T and Ty =DirectedTGen(s,T’,SC D))
21: return T ;

22: }

23: wl.add(SCD(t));

24:

25: } else return T7;

26: return NULL;

27:

28: Search (s, t;, T, SC D) /*s:suspect, t;:the execution point to start search*/

30: DL = TraceDL(T);

31: if (DL(t;) # ¢)

32: if (T'=Mutate (s, DL(t;), T))

33: return 7”;

34: /* Facilitated by SCD*/

35: p; = a predicate instance that controls the definition of ¢;;
36: if (T"=Search (s, pj, T.SC D)) returnT’;

37: return NULL;

38:

39: Mutate (s, DL, T)/* s:suspect, D L:the lineage relevant to the suspect */

41: /*Heuristic One: change input values*/
42: for v in {MAXINT, ’%n’, 0, ...}{
43: T'=replace DL partin T with v;
44 if (AttackDetected (s, T")) return T ;
45:

46: /*Heuristic Two: change input lengths*/
47: X = DL; Threshold = 0;

48: while ( Threshold++ < 16) {

49: X=X X

50: T’=replace the DL partin T" with X;
51: if (AttackDetected(s, T")) return T";
52: }

53: /*More heuristics*/

54: }




memory writes; gaining control of the host program through
these unsafe writes is beyond the scope of this paper.

The overall procedure is illustrated by the algorithms
presented in Algorithm 1. Method Driver (line 1-11)
serves as the driver. It checks if the program execution
with the benign input 7" covers the suspect s. SC'D con-
tains the static control dependence information, which is
precomputed from the binary. Readers who are interested
in computing static control dependence are referred to [22].
The implementation of our SCD component is discussed in
Section 5. If s is not covered by the benign execution, the
driver calls the method DirectedTGen (line 2-27), which
is a directed input generation procedure that produces a T,
to cover s. More details about the Di rectedTGen proce-
dure will be disclosed at the end of this section.

Now, let us focus on the Search (line 28-38) method
and the Mutate (line 39-54) method. These two methods
aim to mutate the benign input that covers the suspect s to
generate an exploit. If they fail to produce one, our system
considers s innocent.

Given the suspect s and its last execution instance s; in
the benign execution with input T, the Search method is
called in the Driver function to look for the lineage that
is relevant to s; and then automatically mutate it to gen-
erate an exploit. The Search method first checks if the
current search point ¢; has a non-empty lineage. If so, it
calls Mutate to change the DL(t;) part of input 7. If not,
or the mutation is not successful, meaning the suspicious
vulnerability is not triggered, the search procedure looks
for the predicate instance p; that controls the definition of
t;’s value. Line 35 makes use of SCD information and
looks for the control dependence of the definition of ¢;. Es-
sentially, the search algorithm takes into account the effect
of control dependence without incurring oversized lineage
sets.

The Mutate method takes the benign test input 7" and
the lineage DL that is found by the Search method, and
tries to mutate 7" by replacing the DL with something else.
The mutation method applies several heuristics in changing
T, as shown in line 41-53, the first heuristic is to change
the integer values in DL to the maximum unsigned integer
(MAXUINT, i.e., Oxf£f£f££f), several other boundary
values such as 0, —10, —100, —1000, 1, 10, 1000, and *%n’,
etc. Changing to a boundary integer is to exploit integer
overflow or integer value related vulnerabilities; changing
to *%n’ is to trigger format-string vulnerability. The sec-
ond heuristic is to change the size of input, with the goal
of triggering buffer overflows. This is done by duplicating
DL in T after each iteration till a threshold is hit (we set
the threshold as 16 since we seldom find the buffer length is
greater than 2'9). In other words, this heuristic replaces DL
inT with DL - DL, DL - DL -DL - DL, and so on. Users
also have the freedom to insert their own heuristics. We ob-

serve that simple heuristics turn out to be highly effective in
producing exploits.

Directed Input Generation. If the benign input 7’
does not cover the suspect s, the Driver function calls
DirectedTGen to generate a new program input to cover
s. Starting from s, the input generation procedure transi-
tively searches along s’s static control dependencies until
it sees a direct/indirect control dependence p that has been
executed with input 7', then it tries to mutate the lineage
of the first execution instance p; such that program execu-
tion with the new input takes the edge p — ¢, which leads
to s. In other words, the new execution is one step closer
to s. The procedure repeats until s gets covered. Com-
pared with the state of the art of test generation techniques,
our input generation is more directed, meaning that we only
try to cover a specific program point instead of all feasible
program paths. Another difference is that our technique is
facilitated by data lineage.
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Figure 3. Correlations )
Currently, this procedure involves user interactions,

namely, the function MMut ate requires the user to inspect
predicate conditions to construct a replacement of the rele-
vant lineage. Compared with the automated Mutate, the
possible mutations in MMutate (line 19) are not bounded
by the types of considered vunerabilities. While source
code access would be beneficial to MMutate, our experi-
ence shows that the desired mutation can also be inferred
from the binary predicate instruction and its lineage, as
demonstrated by the evaluation case in Section 5.1.3.
Correlated Inputs. So far, we have presented our tech-
nique on trying to mutate a test case by replacing one
lineage. However, if the inputs have correlations, multi-
ple lineages may have to be mutated in order to success-
fully trigger a vulnerability. Consider the example in Fig-
ure 3(a). The suspect is at statement 9. Since variable
packettype is set to 0 according to the lineage, variable
iis set to MAX_SIZE-1. If our system only tries to mutate
DL(packettype) to generate the exploit, it would fail
because the lineage of fgetc (in), as shown inside the
second rectangle, needs to change simultaneously in order
to trigger the attack. This is due to input correlation. To han-
dle such correlated input mutations, a potential solution is
to mutate the input in multiple rounds, namely, recursively

-
-



search for mutations of mutated inputs.

Also sometimes, suspicious input correlations turned out
to be spurious. Consider the example in Figure 3(b), which
presents a packetparser function. Since the size of the
packet body, delimited by the second rectangle, is decided
by a value in the packet header, delimited by the first rectan-
gle. Although our system fails to generate an exploit by mu-
tating the lineage of buf [1++], it successfully generates
an exploit by solely changing the lineage of size because
it results in some bytes that were tailing the buf are now
treated as part of the buf. We call this type of correlation
spurious correlation.

Discussion About Completeness. Our technique is not
complete, meaning we have false negatives. The reason is
multi-faceted. For instance, our directed input generation
may fail to generate an input to cover a suspect. There may
exist real input correlations which fail our test mutation pro-
cedure. Our mutation procedure Mut ate is heuristic-based
rather than exhaustive. As a result, we cannot conclude a
suspect for which our system cannot generate an exploit to
be surely innocent. However, we argue that the benefit of
convicting some real vulnerabilities with evidence pays off
the loss of completeness.

S Implementation and Evaluation

We have implemented the whole system in Linux. The
data lineage tracer module is built on top of Valgrind-2.2
[6] with roBDD [4] support. We instrument data movement
(e.g., LOAD, STORE, MOV), arithmetic operation, and logic
operation instructions (e.g., ADD, SUB, AND) to keep track
of data dependence and generate lineage information. We
implement the SCD computation module on top of Diablo-
0.3 [3], a retargetable link-time binary rewriting framework
which has the capability of constructing the control flow
graph of an x86 binary. To be more precise, we implement
an post-dominance analysis which facilitates computation
of static control dependence for a given function.

To verify the effectiveness and efficiency of our system,
we have conducted a number of experiments. The types
of vulnerability we studied include a wide range of pos-
sible exploitable ones, i.e., stack overflow, heap overflow,
format string, and integer overflow. The benchmark pro-
grams and their related vulnerabilities are described in Table
2. All the experiments were performed on a machine with
two 2.13Ghz Pentium processors and 2G RAM running
the Linux kernel 2.6.15, and the vulnerable programs were
compiled with gcc 3.2.2 (because of some compatibility is-
sues when compiling some old programs), and linked with
glibc 2.2.

5.1 Effectiveness

Since our major contribution is on the dynamic analysis,
the static frontend is not the focus of the evaluation. Thus,

Table 2. Description of the Benchmarks

‘ CVE# | Program [ #LOC [ Vul. Description [ Convicted? |
CVE-2001-1413 | ncompress-4.2.4 1.9K Stack overflow v/
CVE-2001-1228 | gzip-1.2.4 8.2K Stack overflow v/
CVE-2002-1549 | bftpd-1.0.11 1.IK Stack overflow v/
CVE-2002-1496 nullhttpd-0.5.0 2.5K Heap overflow V4
CVE-2000-0573 | wu-ftpd-2.6.0 23.7K Format string v/
CVE-2001-0609 | cfingerd-1.4.3 5.1K Format string v/
CVE-2005-0226 | ngircd-0.8.2 16.4K Format string v
CVE-2004-0904 | zgv-5.8 254K Integer overflow Vi
CVE-2006-3082 | gnuPG-1.4.3 79.3K Integer overflow v/

in this subsection, we take on a perfect frontend by using
the real vulnerabilities reported by CVE and generate ex-
ploits for them. Our experience on generating evidence for
new (never-reported) vulnerabilities are reported in a later
subsection.

In our experimentation, we have successfully generated
exploits to trigger all the vulnerabilities shown in Table 2.
Indeed we have tried a number of other reported vulnerabil-
ities as well and the result was consistent. Due to the space
limit, we are not going to present all the results we have.

5.1.1 Buffer Overflow

Ncompress is a utility handling compression and de-
compression of Lempel-Ziv archives. The code in func-
tion comprexx of ncompress-4.2.4 does not prop-
erly check bounds on user-supplied input, and thus con-
tains a stack buffer overflow vulnerability. For this bench-
mark, we started with a benign input (a command line op-
tion) with a filename of 4 bytes; our mutator found the lin-
eage is not empty at the buffer access in function strcpy
which is at line 893 in file compress42.c; then it dou-
bled the inputs in every re-execution, and after repeating
this process for 10 times, the program was successfully
crashed because the buffer size of 1024 was exceeded.
The vulnerabilities of gzip and bftpd are very simi-
lar to ncompress, and it took our mutator 10 and 4 re-
executions, respectively, to generate the exploit. The vul-
nerability of nullhttpd-0.5.0, a multi-threaded web
server, is a heap overflow. Three re-executions were re-
quired.

Here, we did not encounter any path coverage issue for
these 4 buffer overflow tests since all the vulnerable state-
ments are on some common program path. Our experi-
ence with other buffer overflow vulnerabilities also certify
this observation. This could be due to the nature of buffer
overflow vulnerabilities. Another explanation is that attack-
ers/testers rely on existing test cases to study vulnerabilities,
just like us, so that only those covered by the provided test
cases are reported.

5.1.2 Format String

The root cause of format-string vulnerability lies in the
format string, which is an argument to a function in the



printf family, (partly) comes from user input. The muta-
tion heuristics are to change values in the lineage set of the
format string to $n (%s also works), which typically leads
to a segmentation fault as $n/%s entails a memory write to
a random memory location specified by the corresponding
parameter (a random value here); if a crash does not occur,
we double the length of the $n input subsequence, even-
tually resulting in an observable segmentation fault if the
format string vulnerability is real.

We have applied the above format string evidence
generation scheme to three real world applications,
ie., cfingerd-1.4.3, wu-ftpd-2.6.0, and
ngircd-0.8.2. Due to the limited space, we only
describe how we caught the format string vulnerability in
cfingerd-1.4.3. The vulnerable code is at line 245 of
file main.c, where syslog directly uses syslog.str
as the format string argument, and part of the argument is
user-supplied input (e.g., username). In our experiment,
we started with a benign username (6 bytes long), and
our mutator found syslog called by main contains a
non-empty lineage. Then it directly changed all these
6 characters to %n, and consequently, a segmentation
fault occurred in syslog. For this benchmark, we only
re-executed the program once and successfully generated
the exploit. For wu-ftpd and ngircd, our mutator also
only used one re-execution based on the benign input.

5.1.3 Integer Bugs

There are four types of integer bugs: overflow, underflow,
signedness error, and truncation. Here we focus on in-
teger overflow, meaning the result of an integer expres-
sion exceeds the maximum value regarding its type. The
other 3 types are similar. The benchmark we used is
gnupg-1.0.5, which contains an integer overflow and
eventually will cause a heap out-of-bound access. The vul-
nerable code is shown in Figure 4.

397 switch( pkttype ) {

422 case PKT_USER_ID: /* PKT_USER_ID = 13 %/
423 rc = parse_user_id(inp, pkttype, pktlen, pkt );

1580 static int

1581 parse_user_id( IOBUF inp, int pkttype,
unsigned long pktlen, PACKET spacket )

1582

1583 byte *p;

1584

1585 packet->pkt.user_id = m_alloc

(sizeof spacket->pkt.user_id + pktlen);

1595 p = packet->pkt.user_id->name;

1596 for( ; pktlen; pktlen-—, p++ )

1597 *p = iobuf_get_noeof (inp);

1598 sp = 0;

1599

Figure 4. Parse-packet.c of Gnupg-1.0.5
The integer overflow suspect is the expression of
m_alloc. We started with a benign input. Unfor-
tunately, the benign input did not lead to execution of
parse_user_id, we have to first mutate the benign in-
put such that the desired path is covered. In this case,

our diablo based SCD module is called, and it disas-
sembles the binary code of gnupg, and generates an inter-
procedural static control flow graphThe total time of such
a procedure is 238 seconds in our experiment. We dis-
play part of the graph in Figure 5. A box node represents
a basic block and the instructions of this basic block are
displayed inside the box. For better illustration, we an-
notate the graph with the corresponding source code. As
we can see, the initial input drives program execution along
the path from 0x805d1de to 0x805d1e5 while the de-
sired program point is at line 1597. According to our
SCD computation, line 1597 is transitively statically con-
trol dependent on the call site to function parse_user_id
(0x805d386), which in turn is statically control depen-
dent on the switch statement at line 397 (0x805d1de).
This point was executed by our initial input. The lineage of
pkttype ($ecx) at this point contains the input value of
6. We manually inspected the path condition and concluded
that changing the lineage value to 13 leads to the suspect.

With the mutated benign input that drives the execu-
tion to 1597, the mutator found the lineage at 1597 is not
empty due to the data dependences between 1597 and 1585,
whose lineage contains an input value at pktlen. The
value was changed to MAXUINT by our mutator. It caused
m_alloc to allocate a buffer with 35 bytes (sizeof
xpacket->pkt.user_id =36). The number of assign-
ments at 1597, decided by pktlen, exceeded the buffer
and resulted in a crash.

Our another integer overflow case study was on zgv-5.8.
This case has been explained earlier in Section 2 and will
not be repeated here.

5.2 Experience With New Vulnerabilities

So far we have assumed a perfect frontend that only
points us to suspects that are guilty. Next we present our ex-
perience of connecting our system to a real static vulnerabil-
ity detection tool called RATS [2], which can detect buffer
overflow and even integer overflow with user extensions.

We applied our system to a few most-recent software ver-
sions. The first one we tried was ipgrab-0.9.9. RATS
reported 106 buffer overflow suspects. We tried to convict
these suspects one by one using our system. We found that
the 48th suspect is a real one. The vulnerability, which is
presented in Figure 6, lies at line 357 in file.c. Itis
a buffer overflow caused by an integer overflow. To be-
gin with, we used a random generated benign input. The
input was not hard to acquire because any input packet
will touch the suspect. The mutator altered the lineage of
header.inc_lento MAXUINT, and it caused a segmen-
tation fault at line 357 because the parameter to malloc
is 0 while fread tries to read MAXUINT bytes. Thus,
through one round of mutation, we proved the existence of
this vulnerability. Using the same methodology, we have
found and proved another two new integer overflows caus-



Table 3. Performance and Space Overhead of Lineage Tracing

Performance (seconds)

Space (bytes)

Program Metrics | Normal [[ W/OLog [ Ratio [ WithLog | Ratio [[ Link-list [ Bdd [ Ratio |
ncompress-4.2.4 | Time to compress a 4.3k bytes file 0.001 1.740 1740 1.960 1960 4296576 460700 9.33
gzip-1.2.4 Time to compress a 15.7k bytes file 0.004 2.700 675 9.645 2411 3163228 1086220 291
bftpd-1.0.11 Response time of an automated user authentication 0.014 0.302 21 0.318 23 6808 4160 1.63
nullhttpd-0.5.0 Response time of processing a 512 bytes post packet 0.007 0.452 65 0.463 66 120736 21980 5.49
wu-ftpd-2.6.0 Response time of an automated user authentication 0.018 0.486 27 0.526 29 11496 6340 1.81
cfingerd-1.4.3 Response time of a normal lookup request 0.015 0.517 34 0.543 36 39508 10820 3.65
ngircd-0.8.2 Response time of an automated 5 sequence irc commands 0.021 0.342 16 0.378 18 33032 16060 2.07
7gv-5.8 Time to display a 1.4k bytes malicious gif file 0.011 20.909 1901 21.965 1997 971328 14000 69.38
gnuPG-1.4.3 Time to verify a 1.2k bytes signature file 0.012 29.298 2441 86.926 7243 2898128 279160 10.38
e G ) With respect to performance, we measure three scenarios,
%805 dlc8: mov  Oxfffffed(%oebp),%oecx . . . . . . .
0xB0Sdlch: mov  $0x2,%¢bx without lineage tracing, with lineage tracing but without
0x805d1d0: mov  0xc(%ebp),Yoeax . . . . .
0X805 d1 d3: cmpv\< Tineage of ecx is the firs logging, and with both lineage tracing and logging. For the
0x805d1d6: mov  %oecx, (Yoeax) byte of input d . d tl th . f
oxsosdlds: ja 8050424 aemon programs, we indirectly measure their performance
7 by measuring their response time, and for the utility appli-
¥ \
ADDE: 0x805 124 (F: 0xb771294) 307 switch(pkttypey  Cations, we directly measure the running times. The setup
Oxfsdizd mov  3eck,(ee) \ and the result are presented in Table 3.

0x805d430: mov  OxfHfffe0 (Yoebp),%oedx
0x805d433: mov  Oxfiffffed (Yoebp),Yoecx
0x805d436: mov  %oedx,0x8 (Yoesp)
0x805d43a: mov  %ecx,0x4(%oesp)

ADDR: 0x ‘.\dlde - 0xb774294
0x805 dlde: ji X8116154(,%eecx.4

0x805cM3e: call 805D350 pkttype=13 \ ¥
desired pat| [ ~
- P | \ N
= [ 5
ADDR: 0x805d36e (F: 0xb771a94) ] | \
0x805 d36e: mov  %edi, (Yoesp) pkttype=6 | \ Other_parse_function
0x805d371: mov  0xc(%oebp),%edx Y

0x805d374: mov  Oxfiffffe0(%0ebp),%0ecx ADDR: 0x805dle5 (F,\Oxb‘f 71a94)
0x805c377: mov  Oxfiffffed(%6ebp),%eax 0x805dles: movl SOx‘&(%esp)
0x805d37a: mov  %eedx,0xc(%oesp) 0x805dlec: call 80 a85g0
0x805d37e: mov  %oecx,0x8(%oesp) I A
0x805d382: mov  %oeax,0x4(%oesp) H \
0x805d386: call 80602c0 v

T parse_key\

I
¥ parse_user_id
ADDR: 0x80602¢0 (F: 0xb761fad)
0x80602¢0: push %ebp
0x80602¢1: mov  %6esp,%oebp
0x80602¢3: push %edi
0x80602¢c4: push %oesi
0x80602¢5: push %ebx
0x80602¢6: sub  $0xc,%esp
0x80602¢9: mov  0x10(%ebp).%esi
0x80602¢cc: mov  0x8(%oebp) Yoedk
0x80602cf: lea 0x24(%boesi),Yoeax
0x80602d2: mov ~ Yeeax, (Yoesp)
0x80602d5: call 80a8500

-]

Our ben‘lgn input first
goes here

1585 packet->pkt.user_id = m_alloc
(sizeof *packet->pkt.user_id + pktlen);

Figure 5. Part of the CFG of gnupg.

ing buffer overflow vulnerabilities in dcraw-7. 94, and
epstool-3.3. We have reported these vulnerabilities
with evidence to their developers. They replied promptly,
admitting the existence of these defects.

334 while(1)
335 {

336 /* Read the header */

337 ret = fread((void ) &header,

338 sizeof (snoop_packet_header_t), 1, fp);
355 /* Get the actual packet x/

356 packet = my_malloc (header.inc_len+l);

357 ret = fread((void «)packet,header.inc_len, 1, fp);

358

Figure 6. File.c of Ipgrab-0.9.9
5.3 Performance and Space Overhead
We also used the above 9 benchmark programs to mea-
sure performance and space overhead of the lineage tracing
module, which is the performance dominator in our system.

Without logging, the performance slow down factor
varies from 16 to 2441. If logging is enabled, its perfor-
mance overhead varies from 23 to 7243 times. The large
overhead factors for utility programs are mainly due to the
fact that the total running times of these programs include
the starting and ending times of the Valgrind engine,
which is significant compared with the real execution time.
The numbers for daemon programs, ranging from 16 to 66,
are closer to the real slowdown since we excluded the time
spent on Valgrind by inserting performance monitors to
the programs. Note that network latency is not an issue
here because we were using the local network interface. We
believe the performance has greatly benefited from using
roBDD. One can easily imagine the overhead of perform-
ing set operations on up to a few thousands elements during
each step of execution. Another observation is that if the ap-
plication is data-intensive (e.g., gnuPG), the log file is very
large (nearly 10M in this case), causing a lot of runtime
overhead. Due to some historical reason, we used an old
version of Valgrind, which incurs ten times slowdown
even without any instrumentation. Furthermore, we have
not strived to optimize the system because performance is
not yet a critical factor for us.

For the space overhead, as illustrated in Table 3, we
can see that a link-list based approach will cost much more
space than our roBDD based approach, especially for data-
intensive applications.

6 Related Work

In recent years, there have been significant advance in
automated code based test generation [9, 10, 11, 13]. The-
oretically, these techniques can be applied to our problem
of automated evidence generation. However in practice,
they have inherent limitations that constrain their applica-
tion. First, most these techniques are tuned to unit testing



due to the scalability issue. Second, these techniques work
by combining concrete execution with constraint solving to
explore all potential program paths. Third, solving sym-
bolic constraints requires the user to specify symbolic vari-
ables in the source code, demanding not only the access to
the source code but also a certain level of understanding.

In contrast, our technique is a light-weight whole pro-
gram technique that explore a subset of program paths. It
does not require source code access and it does not require
understanding the program in most cases.

TaintCheck [15] represents another type of dynamic
techniques that are relevant. Our technique can be con-
sidered as a generalization of TaintCheck. More specifi-
cally, TaintCheck uses one bit to color program execution
as input-relevant or input-irrelevant. By contrast, we “taint”
each program execution point with a set of relevant input
values. Our scenario is more challenging because sets may
have various numbers of elements, with the upper bound of
the universal set of inputs. Furthermore, TaintCheck is pro-
posed as an online technique to detect attacks on the fly. Re-
ducing runtime overhead is its major concern. This is also
true for other dynamic techniques such as control flow in-
tegrity checking [16] and data flow integrity checking [17].
Our technique aims to generate evidence off-line.

7 Conclusions

In this paper, we propose a data lineage tracing based
dynamic approach to generate evidence for remote ex-
ploitable vulnerabilities in software. More specifically, it
associates an execution point suspect with a set of input
bytes, whose values are then mutated offline to generate an
exploit (evidence). Our approach delivers both efficiency
and effectiveness. Using our system, we are able to
reproduce exploits for all the known vulnerabilities we
studied. We also successfully identified and convicted a
number of new vulnerabilities, which were all promptly
confirmed by the developers. Our evaluation also shows
that the system has reasonable overhead for the scenario of
offline diagnosis.
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