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Abstract—Semantic values in kernel data structures are crit-
ical to many security applications, such as virtual machine
introspection, malware analysis, and memory forensics. However,
malware, or more specifically a kernel rootkit, can often directly
tamper with the raw kernel data structures, known as DKOM
(Direct Kernel Object Manipulation) attacks, thereby significantly
thwarting security analysis. In addition to manipulating pointer
fields to hide certain kernel objects, DKOM attacks may also
mutate semantic values, which are data values with important
semantic meanings. Prior research efforts have been made to
defeat pointer manipulation attacks and thus identify hidden
kernel objects. However, the space and severity of Semantic
Value Manipulation (SVM) attacks have not received sufficient
understanding. In this paper, we take a first step to systematically
assess this attack space. To this end, we devise a new fuzz
testing technique, namely - duplicate-value directed semantic field
fuzzing, and implement a prototype called MOSS. Using MOSS,
we evaluate two widely used operating systems: Windows XP and
Ubuntu 10.04. Our experimental results show that the space of
SVM attacks is vast for both OSes. Our proof-of-concept kernel
rootkit further demonstrates that it can successfully evade all
the security tools tested in our experiments, including recently
proposed robust signature schemes. Moreover, our duplicate value
analysis implies the challenges in defeating SVM attacks, such as
an intuitive cross checking approach on duplicate values can only
provide marginal detection improvement. Our study motivates
revisiting of existing security solutions and calls for more effective
defense against kernel threats.

[. INTRODUCTION

Operating system (OS) manages the hardware resources
and provides a higher-level abstraction to the user-level appli-
cations. This higher-level abstraction can be described using
the OS-level semantic knowledge, such as what processes
are active in the system, which process is currently run-
ning, what modules are loaded into a specific process, which
files are opened by a process, which network connections
have been opened, and so on. This knowledge is crucial
for many computer security applications, including virtual
machine introspection (VMI), malware detection and analysis,
and memory forensics. The functionality and trustworthiness of
these security applications critically depend on the correctness
of the obtained OS-level semantic knowledge.

However, OS kernel can be compromised. Particularly, a
family of attacks, called Direct Kernel Object Manipulation
(DKOM) can directly tamper with values (including both
pointers and data values) in important kernel data structures, in
order to hide malicious activities and confuse security tools.
For instance, the FU rootkit [1] has capabilities of hiding a
process, escalating the privilege of a process, hiding a network
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connection, etc. Consequently, a great deal of work has been
designed to detect the hidden objects [2]-[5], based on the
notion that DKOM rootkits often manipulate kernel pointers
to hide their presence. For instance, KOP [3] and MAS [5]
can generate nearly complete traversal template to discover
nearly all kernel objects. Two robust signature schemes (value-
based [3] and pointer-based [4]) are used to scan the memory
dump and can identify hidden objects more reliably.

Unfortunately, in addition to manipulating pointers to hide
specific kernel objects, attackers may also manipulate data
values in kernel data structures to mislead security tools. To
distinguish from pointer manipulation based DKOM attacks,
we call such attacks as Semantic Value Manipulation (SVM)
attacks. It is still unclear how large the attack space of
SVM is and how severe SVM attacks can be on OS kernels,
specially on closed-source operating systems (like Windows).
On one hand, with the highest privilege, an attacker can modify
arbitrary memory locations; on the other hand, she does not
want these modifications to introduce noticeable differences in
system behavior (e.g., crashes, instability, and malfunction).

Therefore in this paper, we conduct the first systematic
study to assess the attack space of SVM attacks on both
Windows and Linux, the two most widely used operating
systems. In order to conduct this study, we propose a new
fuzz testing technique to automatically mutate data structure
fields of interest. There are two unique features in our system:
(1) It is semantic-field oriented, namely it can cooperate with
the test program and automatically locate the data structure
fields that hold specified OS semantic information and mutate
their values; and (2) it is duplicate-value directed, because
semantic values are often duplicated in various data structures.
Test coverage is increased by fuzzing these duplicates both
individually and simultaneously.

Value duplicates might lead to a more robust defense
against such attacks. For instance, as a hypothetical defense,
a security tool may conduct consistency checking across these
duplicate values to detect any mutation attempts. Therefore,
during the monitoring of the binary execution of the OS kernel,
we would like to automatically locate the data structure fields
of interest exercised by our test program as well as their
duplicates in other data structures. By fuzzing these values
individually, we can identify which copy is subject to mutation.
By fuzzing values simultaneously, we can determine whether
this entire value duplicate set is subject to mutation. This
helps us determine if the security tools can indeed perform
consistency checking on the set.



To automatically identify duplicate values from the binary
execution of the OS kernel, we devise dynamic duplicate
value analysis algorithm, a new dynamic dataflow analysis
algorithm. This algorithm monitors the execution of each
instruction and maintains a duplicate value set for each variable
(i.e., memory location and register). Since our analysis directly
works on the binary execution of an operating system, it is
general enough to evaluate any operating system (including
the closed-source OSes, such as Windows).

We have implemented this new fuzz testing technique into
a prototype system, named MOSS (short for “Mutating OS
Semantics”). Using MOSS, we conduct experimental analysis
on Windows XP and Ubuntu 10.04.

To further demonstrate the attack impact, we implemented
a proof-of-concept kernel rootkit, based on FUTo [1] (a well-
known DKOM rootkit for Windows). Specifically, we installed
a real-world bot, TDSS [6] in a controlled Windows XP
guest OS and using the rootkit, we performed simultaneous
mutations to all vulnerable semantic fields identified by MOSS.
The mutations were targeted at hiding and/or misleading the
state-of-the-art security tools without leading to system crash.

Paper Contribution. In summary, this paper makes the fol-
lowing contributions:

e We conduct the first systematic study to assess the
attack space and severity of SVM attacks. Specifically,
we propose duplicate-value directed semantic field
fuzzing technique, and devise dynamic duplicate value
analysis technique to automatically identify duplicate
fields. We have implemented these techniques in our
prototype MOSS.

e  We perform an empirical evaluation on both Windows
and Linux OSes using fuzzing based tests, and show
that many semantic values can be manipulated without
any adverse effects on system stability and program
functionality, implying that the space of SVM attacks
is vast for both Windows and Linux.

e We implement a proof-of-concept SVM rootkit that
confirms the findings from our fuzz testing. Protected
by our rootkit, a realworld bot program can success-
fully mislead or worse, hide from all the security
tools we tested, including recently proposed robust
signature schemes.

e Our study also assesses the difficulty of defeating
SVM attacks. We show that consistency checking on
duplicate values is effective on some semantic fields,
but not all.

II. BACKGROUND & PROBLEM STATEMENT
A. Semantic Value Manipulation Attacks

The OS manages hardware resources and provides services
such as system calls to user level programs. The semantic ab-
straction of OS, the focus of this paper, consists of a variety of
entities, including processes, threads, files, directories, network
connections, kernel modules, etc. Each entity is associated with
a set of attributes, such as ID, name, status, etc.

These attributes are stored in the data fields of various
kernel data structures. We refer to such data fields that hold OS
semantic information as semantic fields (for example, in flavors
of Windows OS, “UniqueProcessld” and “ImageFileName” in
EPROCESS hold the pid and the process name, respectively).
Sometimes, one semantic value may be replicated in multiple
kernel data structures. For instance, in Windows, the program
name is stored in EPROCESS as the name of the process and
the main module name as one of the loaded modules.

It is common for security analysis tools to refer to such
attributes to retrieve sensitive information from the kernel.
While there are numerous techniques to ensure kernel code in-
tegrity [7]-[9], as well as control flow integrity (e.g., [2], [10]-
[12]), there is no reliable data integrity protection techniques
yet. As such, to evade all the existing defense mechanisms,
adversaries are motivated to launch data-only attacks, particu-
larly DKOM attacks wherein, adversaries directly modify the
pointer fields and data fields of certain kernel objects to hide
and manipulate certain OS semantic fields [1].

While unlinking a kernel object by manipulating pointers is
an effective hiding technique, defeating such a technique using
data structure traversal [2], [5] and scanning [3], [4] based
approaches is relatively easy. What is more interesting is the
direct modification on semantic values. For example, can an
attacker directly modify the process name in the process object
and the name of an opened file to deceive security analysis
tools? What other semantic values can be freely mutated
by attackers? Although we are aware of specific DKOM or
SVM attacks, these questions in general have not been well
understood.

B. Problem Statement

In this paper we aim to conduct a systematic study to assess
the space and severity of SVM attacks. In particular, we aim
to answer the following two questions:

(1) Which semantic fields are subject to direct mutation
attacks? Attackers have incentives to manipulate values in the
semantic fields, but cannot make arbitrary changes. Some of
these changes will lead to system crash or malfunction, which
attackers will try to avoid because their goal is to maintain
stealth. A semantic field is not sensitive to mutation if, after a
change to it, the OS continues to function normally. However,
security tools can depend on a semantic value if it is sensitive
to mutation, i.e., changing it will impact system or program
stability.

The answer to this question may also heavily depend on
each individual OS version, due to the different data structure
models and different ways to operate on these values. From a
security standpoint, a semantic value is untrustworthy if several
common mutations cause no adverse effects on the system
or the program. However, it is difficult to conclude that a
semantic value is completely trustworthy. A failed mutation
attempt on a semantic field under certain system states does
not mean that this semantic value is not mutable at all. Under
other circumstances and with multiple mutations, it might be
possible to safely change the semantic value. We do not intend
to completely explore the attack space, because it is impossible
to iterate through all circumstances and combinations. To
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Fig. 1. Architecture of Dupcliate-Value directed Fuzzing

be more realistic, we aim to evaluate single value mutation
attacks, in which each semantic field is mutated individually.
This evaluation at least serves as a lower bound of the actual
attack space.

(2) Can consistency checking help detect SVM attacks?
An OS often manages its semantic information in a redun-
dant fashion. We know that this is true at least for some
semantic information such as PID and process name. From
the perspective of defenders, we may be able to leverage the
information redundancies in the semantic values to detect SVM
attacks. If we know several semantic values are always the
same and one semantic value tends to be less mutable than the
others, we should check this field instead of the other fields.
Alternatively, we may perform a consistency checking on the
set of semantic values. To evade such consistency checking,
attackers would have to change these semantic values in the
entire set, increasing the chances of system instability.

III. OUR TECHNIQUES

In order to answer the above two questions, we propose
a new fuzz testing technique called duplicate-value directed
semantic value fuzzing. The target of this fuzz testing is an
OS kernel (such as Windows or Linux), and the data to be
mutated are the important semantic values along with their
duplicates.

A. System Overview

Figure 1 illustrates an overview of our fuzz testing system.
We run the OS of interest within TEMU [13], [14], a whole-
system binary analysis platform. Such a virtualized testing
environment facilitates fuzz testing for several reasons. First,
it is simple to modify arbitrary memory values. Second, it
can easily revert the virtual machine to the previously saved
state to conduct fuzz testing in the next round. Last and most
importantly, it can dynamically switch between emulation and
virtualization mode for during testing. In the emulation mode,
we can perform fine-grained binary analysis to locate duplicate
semantic values, and then we can switch to the virtualization
mode to fuzz these duplicate values for better testing efficiency.

More specifically, inside the virtual machine, we run a test
program to activate the kernel side execution. Note that we

are mutating the semantic values that are related to malicious
activities. That is, the attacker attempts to manipulate semantic
values about her own behavior, such as the name of the
malicious process, the file that has been accessed, and so
on. These malicious activities are often stealthy and have
infrequent interactions with the victim system. To mimic these
malicious activities, our test program does not need to achieve
the high test coverage of the OS kernel code. Instead, our
test program just need conduct some common tests to exercise
different OS subsystems, such as task management, file system,
network stack, etc. Therefore, if all the mutation attempts on
a semantic value do not cause adverse effect in these test
cases, we can conclude that this semantic value is mutable.
Otherwise, if a semantic value is sensitive enough to all
the mutation attempts on it, we have confidence that this
semantic value is immutable and thus tend to be trustworthy.
The situation for some semantic values is in between: some
mutations cause system instability while some others do not.
These semantic values are partially mutable.

On top of TEMU, we develop three components: seman-
tics extractor, fuzz engine, and duplicate value analyzer. The
semantics extractor, which will be discussed in Section III-B,
locates the semantic values from the memory snapshot of the
guest system. The duplicate value analyzer monitors the kernel
execution and perform dynamic duplicate value analysis, which
will be detailed in Section III-C. At a high level, it clusters
the memory locations into sets, each of which holds the same
semantic value. The fuzz engine coordinates with the other two
components to conduct automated fuzz testing, which will be
discussed in Section III-D.

B. Locating Semantic Values

At certain execution point, we need to locate the semantic
values to be mutated. Semantic values for mutation are selected
in cooperation with the test program inside the virtual machine.
A test point has been defined within the test program, dictating
which semantic value or which set of values need to be
mutated. More details will be discussed in Section III-D. Then
the semantic extractor needs to locate the selected semantic
value in the guest kernel memory space.

We leveraged Volatility memory forensics framework [15]
and we implemented a plug-in to locate the semantic values



of interests. More specifically, at the test point, the virtual
machine is paused, and a memory snapshot is taken. Then
our Volatility plug-in will parse the kernel data structures in
the memory snapshot and identify both virtual and physical
address for the selected value. The virtual address will then
be used as input to find duplicate value sets, which will then
be mutated individually and simultaneously in the subsequent
fuzz testing.

C. Dynamic Duplicate Value Analysis

Many memory locations share the same value at a given
moment, either coincidentally, or because of program logic.
Our interest is the latter case since such duplicates hold values
which have the same semantic meaning. We call these variables
to be fruly duplicate. To identify true duplicate values, we
devise a dynamic binary analysis algorithm that classifies
variables (memory locations or registers) into clusters. Vari-
ables belonging to the same cluster hold the same semantic
value because of the program logic in this particular program
execution.

To better explain the idea of dynamic duplicate value anal-
ysis, consider the example code in Table I. After executing the
6 statements under “Statement” column of Table I, variables
a, ¢, e, and f should have the same value, so these variables
should belong to the same cluster. b belongs to this cluster till
line 5, where b is assigned to a different value. Suppose that
e is identified to have a semantic meaning such as pid of a
process, we can conclude that the other variables (a, ¢, and f)
in the same cluster should also hold the pid of that process.
Therefore, we need to perform dataflow analysis to compute
these clusters.

Yet, the existing forward dataflow analysis (i.e., taint
analysis [16]) and backward dataflow analysis (i.e., backward
slicing [17]) cannot solve this problem. For taint analysis, the
taint source needs to be known in advance. However, in our
case, semantic values can only be identified at a later stage.
Backward slicing is not a solution either. Starting from line
4 and walking backward the code snippet, backward slicing
can identify e is directly copied from a and b, but ¢ and f are
missing. Moreover, b should not be a redundant value, because
b is later assigned to a different value at line 5. To solve this
problem, we devise a new dynamic dataflow analysis algorithm
called dynamic duplicate value analysis to compute the clusters
at runtime. The basic algorithm is shown in Algorithm 1.

The basic idea of this algorithm is as follows. At memory
byte granularity, we treat each memory byte as a variable 7
and a redundancy cluster S, is associated with each variable
r. Based on each instruction’s semantics from the execution
traces, we perform data flow analysis. More specifically,

e Direct Assignment For each instruction 4 in the
execution trace, we check if 7 is an assignment op-
eration. In x86, assignment operations include mov,
push, pop, movs, movzx, movsx, etc. As a variable
represents a memory byte, we break an assignment
into one or more per-byte assignments, and for each
source and destination byte pair (u,v), we update the
duplicate sets accordingly (as shown in DoAssign).

Algorithm 1 Basic Algorithm for Dynamic Duplicate Value
Analysis
procedure DYNVALUEANALYSIS(Trace )
for all instruction i € ¢ do
if i.type is assignment operation then
for each src & dst byte pair(u, v) do
DoAssign(u,v)
end for
else
for each byte v in the dst operand do
DoRemove(v)
end for
end if
end for
end procedure

procedure DOASSIGN(u, v)
for all variable r € S, do

Sy« S — {v}

end for

for all variable r € S,, do
Sy < Sy + {v}

end for

Sy — Sy

end procedure

procedure DOREMOVE(v)
for all variable r € S, do
Sy« S —{v}
end for
end procedure

First of all, the destination v is no longer equivalent
to the other variables r in its old duplicate set .S,,, and
thus v needs to be removed from S,.. Then, as now v
is equivalent to u, v also needs to be added into the
duplicate set S, where r € S,,. Lastly, the duplicate
set of v will be updated to that of u. In general,
a membership change of a variable in its duplicate
set needs to spread around to maintain consistent
membership information. SSE and MMX instructions
may also serve as data transfer operations. We do not
consider these instructions because we found in our
experiments that these instructions rarely appear in the
kernel execution.

e  Other Operations For the rest of the instructions,
while the duplicate sets for the source operands remain
the same, the duplicate set for the destination operand
needs to be reset. Therefore, for each byte v of the
destination operand, DoRemove notifies all variables
in v’s duplicate set that v is no longer a duplicate
value to them.

Table I gives a step-by-step demonstration of how the
algorithm executes on the above code snippet.

Extension for String Conversions. However, the basic al-
gorithm only handles literal value equivalence. For strings,
the operating system kernel often makes conversions, such
as from ANSI to UNICODE or vice versa, or from upper



TABLE L

ALGORITHM EXECUTION ON THE SAMPLE CODE

case to lower case or vice versa. Semantically, a converted
string is equivalent to the original string. Therefore, we have to
extend the basic algorithm to maintain the equivalence relation
between the converted and original strings. We hook the string
handling functions in Windows and directly call DoAssign
to make the duplicate value association between the input and
the output.

Discussion. This algorithm captures how normal program exe-
cution operates on duplicate values, through direct assignments
and restricted string conversions. Thus, it is able to correctly
identify duplicate values in regular programs. However, a
program may be obfuscated to evade our analysis. As an
example, a direct assignment can be replaced by a sequence
of arithmetic or logic operations. As we apply this algorithm
to benign kernel code analysis, this limitation does not apply.

Moreover, as a dynamic analysis technique, the identified
duplicates depend on the program execution. In our setting, we
trace the kernel execution from the start of the test program
to a designated test point, so the creation and propagation of
the semantic values associated with the test program should
be completely captured and analyzed.

D. Testing Procedure

Testing Cycle. As depicted in Figure 2, a testing cycle
proceeds as follows:

1)  In the virtualization mode, start the virtual machine
and boot up the guest system.

2)  Switch to emulation mode, run the test program and
start to trace kernel execution for duplicate value
analysis.

3) At a predetermined test point, pause the virtual ma-
chine and save the current VM state; in the meantime
consult the semantics extractor to locate important se-
mantic values and query the duplicate value analyzer
to compute duplicate value sets; and switch to the
virtualization mode.

4)  Choose to mutate a single value or a set of duplicate
values, and resume the virtual machine;

5)  The test program finishes normally or prematurely or
system crashes; revert to the saved VM state and go
the step 4 to fuzz another semantic value or another
duplicate value set.

The testing cycle shown above is done for one test point.
In reality, we define multiple test points to mutate different
sets of semantic values. Therefore, this testing cycle will be
conducted multiple times, one for each test point.

| Statement S. Sh S, Se Sy
1: a =">b {a, b} {a, b}
2: ¢ = a {a, b, c} {a, b, c} {a, b, c}
3: d=5b {a, b, ¢} {a, b, ¢} {a, b, c}
4: e = a {a,b,c,e} | {a,b,c,e} | {a,b, c, e} {a, b, c, e}
5: b =2 {a, c, e} {a, c, e} {b, d, e}
6: £ =c¢ {a, ¢, e, f} {a, ¢, e, f} {a,c, e, f} | {a, c, e f}
TABLE Il TEST CASES AND TEST POINTS

[ No | Test Case

1 Start test program
Test Point 1: mutate process&thread related values
Run other test cases

2 Load a user DLL

Test Point 2: mutate DLL related values
Call a function in the DLL repeatedly
Unload the DLL

3 Load a kernel module

Test Point 3: mutate kernel module values
Send IO requests to the kernel module
Unload the kernel module

4 Open two files for read and write

Test Point 4: mutate file values

Read and write these two files repeatedly
close these files

5 Open a TCP connection

Test Point 5: mutate values related to this connection
Send and receive data through this connection

Close this connection

6 Open a registry key (Windows only)

Test Point 6: Mutate registry key related values
Read and write this registry key repeatedly
Close this key

Test Program. We design our test program to exercise basic
and common operations that are commonly performed by
programs and that are typically exhibited by malware. More
specifically, our test program includes the following test cases
and identify appropriate test points, as shown in Table II.
We can see that this test program exercises process and
thread management, DLL load and unload, kernel module
management, file operations, network operations, and registry
key accesses (for Windows only). Totally six test points are
defined at precise moments, when the virtual machine will be
paused and selected semantic values will be mutated. These
test points capture the moment when certain kind of values
have been created and will be used for later operations. For
example, for file related semantic values, the test point is
defined after the files are open and before read and write
operations are performed on these files.

As a preliminary step to conducting the network related
tests, we launch a light weight HTTP server on the guest OS.
This is important because our fuzz testing repeatedly reverts
back to a previous VM state. If the server program is on a
different host, the connection states for the client and the server
will become out-of-sync once the VM is reverted back to an
earlier state.
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TABLE Ill.  VALUE MUTATION RULES
[ Type | Mutation Rules \

ID 0, copy from another ID, increment or
decrement by a small constant

Size/Offset | 0, increment or decrement by a small con-
stant

String “?, copy from another string, mutate one
character

The identified test points are tested individually. For in-
stance, when we conduct fuzzing on the first test point, the
other test points are simply skipped. Here, though the test
points are skipped the test program continues to perform all
the operations listed in Table II during all the tests. This
is important since a change in a test point could have an
implication in multiple functionalities. For instance, a change
to a thread related semantic values might result in dropping
of the connection that thread has made. Also, the order of the
test cases listed in Table II does not reflect the actual order
of our fuzz testing. Suppose that we are conducting test case
5 for the network connection. We actually move this test case
earlier, immediately after the test program starts, such that we
can observe if the mutation of network-related semantic values
will affect the execution of the other test cases.

Mutation Rules. To avoid system instability due to mutation,
the changes have to satisfy the type constraint of the original
value. In other words, the mutation rules depend on the type of
the semantic value to be mutated. In contrast, other fuzz testing
projects (such as in [3], [18]) aim to randomly fuzz certain
data values to identify their value constraints or to explore the
program space.

We list the mutation rules in Table III. For example, for
an ID (e.g., pid, tid), we consider O as an input, because 0 is
often reserved for system process and thread. Similarly, for a
string, we use an empty string as an input since the OS may
have special handling for empty strings, such as ignoring and
skipping an object if its name is empty. Attacker may exploit
this feature to hide certain objects.

IV. EMPIRICAL STUDY

We perform our empirical study on two popular operating
systems, which are Windows XP with service pack 3 (XPSP3)
and Ubuntu 10.04 with Linux kernel version 2.6.32-25 (Linux).

We conducted our experiments on a Pentium Core i7 with
3GHz and 4GB RAM. The host operating system is 32-bit
Ubuntu 10.04 with kernel version 2.6.32-38. We analyzed both
operating systems individually as a virtual machine running
inside QEMU. 512MB RAM was allocated for the virtual
machine.

We compiled two lists of semantic fields, one for Windows
XP (Table IV) and the other for Linux (Table V). Forensic tools
(such as Volatility [15], a comprehensive memory forensic
framework) query these semantic fields to extract semantic
information from a memory dump. Although these lists are
not nearly complete, we believe that they provide a fairly good
coverage on important semantic fields.

Using the value mutation rules listed in Table III, we
designed 3 mutation tests (including 1 whole-set mutation)
for each field in Table IV and Table V resulting in a total
of 258 test cases. The test cases were distributed across 12
test points (6 test points in each of the 2 OSs), with average
trace gathering time of approximately 15 minutes per test
point. Depending on the test point in question and the size
of trace, redundancy identification and semantic value location
took between 7 min (best case) to 32 min (worst case) with 92
percent of the time consumed during redundancy identification.
Each test case execution involving VM restoration and fuzzing
25 to 60 seconds. After fuzzing, the execution continued for
3 minutes as a part of behavior assessment. Additionally, we
wrote a rootkit to examine the effects of semantic mutations
on the OS information retrieval tools. In one shot, we mutated
the primitives listed in Table VIII and observed the impact on
the system.

Furthermore, within the guest OS, we run administration
tools (such as netstat for both Windows and Linux, Task
Manager and process explorer [19] for Windows, and ps,
pmap, top, etc. for Linux, and so on), to observe the effects
of these mutation tests within the guest OS.

The key component of MOSS is Duplicate Semantic Value
Analysis, which in theory is independent of the OS. Therefore,
with the kernel data structure information for the key kernel
data structures, careful identification of test points and a
corresponding test program one can perform single-field and
duplicate-field mutations on any guest OS to identify the
semantic fields susceptible to mutation. In this paper, as a
proof-of-concept, we consider Windows XP SP3 and Linux
2.6.32-25 to perform the empirical study. However, it is often



TABLE IV. SEMANTIC FIELDS SELECTED FOR WINDOWS XP SP3 AND

THEIR MUTABILITY

TABLE V. SEMANTIC FIELDS SELECTED FOR LINUX AND THEIR

MUTABILITY

[ Category[| Semantic Field

Mutability |

[ Category [ Semantic Field

Mutability|

Process EPROCESS.UniqueProcessld
EPROCESS.InheritedFromUniqueProcessId
EPROCESS.ImageFileName
EPROCESS.CreateTime
EPROCESS.ExitStatus
EPROCESS.ActiveThreads
EPROCESS.GrantedAccess
EPROCESS.Token
EPROCESS.ObjectTable.HandleCount
EPROCESS.Flags
EPROCESS.ObjectHeader.ObjectType
EPROCESS.PoolHeader.PoolTag
EPROCESS.PoolHeader.BlockSize
ETHREAD.PoolHeader.PoolTag
ETHREAD.PoolHeader.BlockSize
ETHREAD.ObjectHeader.ObjectType
ETHREAD.Cid.UniqueProcess
ETHREAD.Cid.UniqueThread
ETHREAD.StartAddress
_LDR_DATA_TABLE_ENTRY.DIIBase
_LDR_DATA_TABLE_ENTRY.EntryPoint
_LDR_DATA_TABLE_ENTRY.FullDIIName
_LDR_DATA_TABLE_ENTRY.BaseDIIName
_LDR_DATA_TABLE_ENTRY.Flags
_LDR_DATA_TABLE_ENTRY.LoadCount
_LDR_DATA_TABLE_ENTRY.PatchInfo
Registry || CM_KEY_NODE.Name

Key CM_KEY_NODE.NameLength
CM_KEY_NODE.LastWriteTime
CM_KEY_NODE.SubkeyCounts
CM_KEY_NODE Flags
CM_KEY_NODE.Signature
CM_KEY_NODE.Parent
CM_KEY_NODE.Security
TCPT_OBJECT.RemotelpAddress
TCPT_OBJECT.RemotePort
TCPT_OBIJECT.LocallpAddress
TCPT_OBJECT.LocalPort
TCPT_OBIJECT.Pid
TCP_LISTENER.AddressFamily
TCP_LISTENER.Owner
TCP_LISTENER.CreateTime
TCP_ENDPOINT.State

Memory || POOL_HEADER.PoolTag

Pool POOL_HEADER .BlockSize

Thread

DLL &
Kernel
Module

Network
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the case that a new version of an OS retains a significant
part of the previous version. Therefore, it is possible that
the mutability results tabulated in Table IV and Table V are
applicable to other versions of Windows and Linux OSes,
respectively.

A. Single Field Mutation

We consider a semantic field to be immutable only if all of
the mutation attempts on it cause system or program instability.
If some of the mutations do not cause critical failures, then
attackers may potentially make similar modifications and thus
mislead the security tools. Based on this standard, we have
listed the results in the last column of Table IV and Table V.
A ’"p’ in the mutability column indicates that the semantic
field showed no system or program instabilities for certain
mutations, while it did for some others.

From the mutability column in Table IV and Table V, we
can see that most of the semantic fields, including process

Task task_struct.state
task_struct.flags
task_struct.pid
task_struct.fds
task_struct.comm
task_struct.start_time
task_struct.stime
task_struct.exit_code

File task_struct.files.fd[i].f_owner
task_struct.files.fd[i].f_mode
task_struct.files.fd[i].f_pos
dentry.d_name
dentry.d_iname
dentry.d_flags
dentry.d_time

inode.i_uid

inode.i_gid

inode.i_size

inode.i_atime
inode.i_ctime
inode.i_mtime
module.name
module.num_syms
module.state
module.core_size
module.core_text_size
module.num_kp
vm_area_start.vm_start
vm_area_start.vm_end
vm_area_start.vm_flags
inet_sock.saddr
inet_sock.daddr
inet_sock.sport
inet_sock.dport
sock_common.skc_family
sock_common.skc_refcount
sock_common.skc_state
sock.sk_protocol
sock.sk_flags
sock.sk_type

sock.sk_err

Module

Network
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name, file name, module name and many others can be
changed by an attacker without adverse effects on the system
or a program. This observation immediately raises a question
about the trust issue for all the security applications (such
as memory forensics and virtual machine introspection) that
critically rely on the correctness of these semantic fields.

For both operating systems, network related semantic fields
tend to be reliable. Mutations to source and destination IP
addresses and port numbers immediately cause failures to
subsequent operations on the network connection. This is good
news, which means network security tools that make security
decisions based on the network connections can be trusted, as
long as these connection objects can be reliably located.

For Windows XP, the UniqueProcessId in ETHREAD
tends to be reliable. A mutation will either crash the entire
system or the test program. The Pid in the TCP connec-
tion object (TCPT_OBJECT) can also be relied upon. A
mutation on it will immediately drop this connection. It



is worth noting that security tools usually read Pid from
EPROCESS.UniqueProcessId, which turns out to be
not reliable at all, because none of the mutations on it
causes severe failures. This finding suggests to retrieve the
UniqueProcessId in the ETHREAD objects or Pid in the
TCPT_OBJECT objects (if available) instead.

Interestingly, strings are completely mutable (that is, all
occurrences of the string can be mutated without adverse
effect on the system) for both the operating systems we tested.
OS kernels usually rely on pointers and integers (such as
handles and IDs) for operations as opposed to strings. String
mappings for resources (e.g., file handle to file name) are often
maintained in instances that involve interpretation by a human.
This observation is particularly worrisome since strings like
process name, file name, registry key name, etc., have severe
security relevance and are fully mutable.

Similarly, it turns out that all the time related information
(such as, process creation time, exit time, etc.) are also fully
mutable and therefore not reliable. This observation has far
reaching impacts. For instance, time information is crucial in
a memory forensic context. One may need to use the time
stamps of certain malicious activites as crime evidence. With
DKOM as a possibility, such time stamps cannot be assumed
correct.

B. Duplicate Field Mutation

In addition to mutating the selected semantic fields individ-
ually, we also identified their duplicate fields and mutated these
duplicates both separately and simultaneously. We present
these results in Table VI and Table VII for Windows XP
and Linux, respectively. For each primary semantic field that
has at least one duplicate, we list the number of duplicates
(including the primary) identified through MOSS, the types
of these duplicates, the immutable duplicates if any, and
whether the entire duplicate set is mutable. Due to the dynamic
nature of our analysis, the number of duplicates depends
on the start execution point, the end execution point, and
the particular execution path. In our experiment, duplicate
values were identified by dynamic duplicate value analysis
from the start of the test program to a predetermined test
point. Therefore, these duplicates may not always hold true
for different test cases. For each duplicate value, we further
identify in which data structure and which field the value
is located whenever possible. Again, we use Volatility for
locating kernel data structures. Due to the limited coverage
of Volatility, we may not always be able to recognize the
corresponding data structures. In such cases, we list only the
virtual addresses in the third column.

The immutable duplicates, if any, indicate which duplicate
fields (other than the primary) may be reliable. The knowledge
about immutable duplicates is valuable, because it means that
security tools could examine these alternative fields instead of
the primary ones to obtain more reliable OS semantics.

The last column indicates if the entire duplicate set is
simultaneously mutable. If not, security tools may be able to
perform a consistency check on the entire set to obtain more
reliable outputs. Of course, the underlying assumption is that
the security tool is smart enough to locate all the duplicate

fields, which in practice may be difficult, especially for closed-
source operating systems like Windows.

From the results in Table VI and Table VII, we can see
that information redundancy does exist for some important
OS semantics. This is the case for both operating systems. For
example, in Windows, EPROCESS.UniqueProcessId
appears as the UniqueProcess in all the ETHREAD
objects belonging to that process, and also appears in the
HANDLE_TABLE. For a process which has established at
least one TCP connection, the pid should also appear
in the TCPT_OBJECT.pid [19], which MOSS could
not identify at test point 1. This is because the network
operations happened after test point 1 in our experiment
and the corresponding TCPT_OBJECT was not created
at that point. In fact, at test point 5, we confirmed that
TCPT_OBJECT.pid indeed is one of the duplicates. For the
process name EPROCESS . ImageFileName, we also found
duplicates in OBJECT_NAME_INFORMATION.Name and
RTL_USER_PROCESS_PARAMETERS.ImagePathName.
As the main module, the process name also appears in the
base module name BaseD1llName and full module name
FullDllName in LDR_DATA_TABLE_ENTRY. These
results are also consistent with publicly available Windows
documentation [19].

For Linux, we found that the pid of the test program
replicates in the group id task_struct.t_gid, and also
the light-weight process (Iwp)’s group id, which specifies the
pid of the hosting process of a thread in Linux. Similarly, the
process name in task_struct.comm also share the same
value with its light-wight processes. vma.vm_start has a
duplicate in vma.vm_end of the preceding vma structure,
and vma . vm_end has a duplicate in vma .vm_start of the
subsequent vma structure. We also found that the source IP
address and the destination IP address are duplicate to each
other. This is because in our test, both the server and the
client programs are running in the localhost, so both source
and destination IP addresses are 127.0.0.1. These findings are
in agreement with the source code of the OS kernel.

Unfortunately, our results show that most of these du-
plicate are mutable both individually and simultaneously.
In very limited cases, the information redundancy can help
improve the integrity of semantic information. As discussed
earlier, though UniqueProcessId in EPROCESS is mu-
table, its duplicate, UniqueProcess in ETHREAD is im-
mutable. ETHREAD.StartAddress in Windows is an-
other such case. The primary ETHREAD.StartAddress
can be manipulated, but its duplicate StartingVa in
_SECTION_OBJECT is more sensitive to mutations.

Table VI and Table VII also show that the result of mutating
the entire duplicate set is the same as mutating the individual
duplicate fields. This indicates that the operating systems
process these semantic fields separately, and perform no cross
checking on these duplicates. From the defender’s perspective,
if one can reliably locate one immutable field (either the
primary or a duplicate), checking the entire duplicate set is
not necessary.



TABLE VL

DUPLICATE FIELDS FOR WINDOWS XP AND THEIR MUTABILITY

Primary Field # of | Type of Immutable Set
‘ Dups | Duplicates Duplicates Mutability ‘
_EPROCESS.UniqueProcessId 36 _ETHREAD.Cid.UniqueProcess, _ETHREAD.Cid.UniqueProcess X
_HANDLE_TABLE.UniqueProcessId,
_CM_KEY_BODY.Processld,
_EPROCESS.InheritedFromUniqueProcessld,
_ETIMER.Lock, _TEB.Clientld,
_TEB.RealClientld, 0x9b57b6d0, 0x9ccdaef0,
0x9cce697c...
_EPROCESS.ImageFileName 4 _OBJECT_NAME_INFORMATION.Name, None v
_RTL_USER_PROC_PARAMS.ImagePathName,
_SE_AUDIT_PROCESS_INFO.ImageFileName
_EPROCESS.CreateTime 2 _ETHREAD.CreateTime None v
_EPROCESS.ActiveThreads 2 _EPROCESS.ActiveThreadsHighWatermark None v
_HANDLE_TABLE.HandleCount 2 _HANDLE_TABLE.HandleCountHighWatermark| None v
_FILE_OBJECT.FileName (Data file) 7 0x003a948e, 0x822df33a, 0x822df35c, ... None v
_LDR_DATA_TABLE_ENTRY.FullDIIName 3 _LDR_DATA_TABLE_ENTRY.BaseDIIName, None v
_FILE_OBIJECT.FileName
_LDR_DATA_TABLE_ENTRY.BaseDIIName 3 _LDR_DATA_TABLE_ENTRY.FullDIlIName, None v
_FILE_OBJECT.FileName
_CM_KEY_NODE.LastWriteTime 2 0x9b43ea60 None v
_CM_KEY_NODE.Parent 4 0x94d20a20, 0x9adc7940, 0x9adc7948 None NV
_CM_KEY_NODE.Security 2 0x822c7880 _CM_KEY_NODE.Security X
_ETHREAD.StartAddress 2 _SECTION_OBJECT.Starting Va _SECTION_OBJECT.Starting Va X
TABLE VII. DUPLICATE FIELDS FOR LINUX AND THEIR MUTABILITY
Primary Field # of | Type of Immutable Set
‘ Dups | Duplicates Duplicates Mutability ‘
task_struct.pid 4 task_struct.t_gid, task_struct.t_gid(Iwp), 0xf63916dc None v
task_struct.comm 2 task_struct.comm(lwp) None v
task_struct.static_prio 3 task.parent.static_prio, task.static_prio (Iwp) None v
task_struct.exit_code 3 task.parent.exit_code, task.exit_code (Iwp) None v
task_struct.fds 3 0x£7179080, Oxfo1bae84 0x£7179080, task.fds X
module.name 2 0xd93c524c¢ None v
module.num_syms 12 module.num_kp, 0xe086c15¢, 0xe086¢170... None v
vma.vm_start 2 vma.vm_end vma.vm_start X
vma.vm_end 2 vma.vm_start vma.vm_end X
dentry.d_name 2 0xf583f0d8 None v
inet_sock.saddr 24 inet_sock.rcv_saddr inet_sock.daddr 0xde49147¢ | inet_sock.rcv_saddr X
0xded49148c ... inet_sock.daddr 0xded49147¢
0xde49148c¢ ...
inet_sock.daddr 24 inet_sock.rcv_saddr inet_sock.saddr 0xde49147¢ | inet_sock.rcv_saddr X
0xde49148c ... inet_sock.daddr 0xde49147¢
0xde49148c ...

C. Interesting Observations

In these mutation tests, we also observed some interesting
behaviors, of which attackers may take advantage. In Windows
XP, changing the test program’s pid to 0 will effectively hide
the test program from the process list in the Task Manager.
Attackers can use this technique to effectively hide a process.

Another interesting observation was when the file name
in the file object was changed to an empty string. In both
operating systems we experimented on, the file name shows
up as empty. If all the duplicate file names are also changed
to empty, then this file becomes completely inaccessible. The
file cannot be opened using either the original file name or the
empty string. This is another technique an attacker might use to
hide certain files. Also, once the file name and its duplicates are
set to empty string, an administrator (or an anti-virus software)
would not be able to delete the file, which is very concerning.

Furthermore, in Windows when the EPROCESS.Flags
value is changed to OxFFFFFFFEF, the system perceives
the process as being a system process. Upon attempting to

terminate the process, a dialog pops up and says that the
process is a system process and terminating it would result
in a restart. Force quitting it abruptly restarts the OS. We feel
that this behavior is not only abnormal, but it has dangerous
security implications. For example, an attacker may use this
trick to prevent her malicious process from being killed.

D. Impact on Security Tools

To further confirm the results from fuzz testing based find-
ings in Table VII and Table VI, we implemented a proof-of-
concept SVM rootkit for Windows. Given a specific malware
process, this SVM rootkit manipulates all the mutable semantic
fields associated with this process, and their duplicates that
can be identified. The SVM rootkit changes the integer values
to 0 and string values to empty string. The rootkit changes
the pool tags to "None” to indicate that the object is asso-
ciated with the default pool. To demonstrate the power of
this rootkit, we ran a bot named TDSS [6] in Windows XP
SP3 in a controlled environment. We evaluated a variety of
security tools, including Process Explorer [19], Task Manager,



TABLE VIIL

IMPACT OF SVM ROOTKIT ON SECURITY TOOLS

Category

‘ Primary Fields Mutated ‘ Task

Mgr

|

Proc
Exp

Volatility
(scan)

Volatility ‘

Sig
(traversal)

Robust
Graph

VMI
Sign

Process EPROCESS.UniqueProcessld H
EPROCESS .InheritedFromUniqueProcessld | -
EPROCESS.POOL_HEADER .PoolTag -
EPROCESS.POOL_HEADER.BlockSize -
EPROCESS.CreateTime -
EPROCESS ExitTime -
EPROCESS.ImageFileName H
EPROCESS .ExitStatus -
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Thread ETHREAD.CreateTime -
ETHREAD.ExitTime -
ETHREAD.Cid.UniqueThread -
ETHREAD.StartAddress -
ETHREAD.POOL_HEADER .PoolTag -

ETHREAD.POOL_HEADER.ObjectSize -

Kernel
Module &
User DLL

LDR_DATA_TABLE_ENTRY.DIIBase -
LDR_DATA_TABLE_ENTRY.EntryPoint -
LDR_DATA_TABLE_ENTRY.SizeOflmage | -
LDR_DATA_TABLE_ENTRY.FullDIlIName | -
LDR_DATA_TABLE_ENTRY.BaseDIIName | -
LDR_DATA_TABLE_ENTRY.Flags -
LDR_DATA_TABLE_ENTRY.PatchInformation
LDR_DATA_TABLE_ENTRY.LoadCount -
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Volatility memory forensic tools (including both traversal and
scan versions), Sig-Graph [4]' and Robust-Signature [3]. To
further complete the list of security tools, we also included
an in-house VMI tool that we implemented for inspecting
guest execution from QEMU. This VMI tool retrieves semantic
information from a guest operating system by first locating
the global data structures in the guest memory and traversing
them. Specifically, it can retrieve process, thread and module
information from the guest operating system. We kept TDSS
running for over 3 hours before recording the outputs of
various security tools, to ensure that neither the system nor
the program crashed because of the SVM rootkit.

Table VIII lists the impact of the SVM rootkit on the
selected security tools. It presents what primary semantic fields
are manipulated and the mutation impacts on the security tools.
We can see that there are mainly two kinds of symptoms:
either the OS entities become hidden (H), or the misleading
new values are fetched and displayed (N). Volatility traversal
tools (i.e., pslist, threads, modules) are misled to show
meaningless values. For scan tools, whereas the process and
thread information is hidden from psscan and thrdscan,
modscan can still identify the module information, which
unfortunately has been manipulated and thus has become
meaningless. The reason why process and thread objects are
hidden is because their pool tags have been manipulated and
psscan and thrdscan rely on these pool tags to identify
these objects. The two robust signature schemes are also misled
or evaded. The graph signature [4] for EPROCESS is reliable
enough to find malware’s process, but the obtained process
information is all invalid. The value-invariant signature [3] is
even worse. It failed to identify the malware process because
the ExitTime of the malware process has been manipulated
and the signature checks this value to remove noisy and dead
process objects. The result of our VMI tool is similar to
that of the Volatility traversal tools. Although the information
about the malware execution can be extracted, it is incorrect.

'We implemented SigGraph as a plugin to Volatility and created a signature
for EPROCESS

Consequently, we cannot leverage the knowledge obtained
from this VMI tool to perform analysis on the malware
execution.

V. DISCUSSION

SVM attack space is vast. Our experiments show that several
OS semantic fields can be mutated without hurting the system
stability. Once the kernel has been infiltrated, an attacker
can arbitrarily manipulate any semantic value in general to
accomplish her malicious goals. In our experiments, we have
limited our changes to single value mutations and duplicate
set mutations, but an attacker is not restricted to making these
changes.

In general, we did not attempt to test multiple mutations,
since it leads to a very large number of combinations, which
are infeasible to test. However, our current testing infras-
tructure does support multi-mutation based tests and can be
extended in future. The key focus of our tests are to highlight
the seriousness of single value and duplicate set mutations,
which we believe is a large attack space in itself.

Memory forensics may fail. Memory forensic involves obtain-
ing digital evidence from the live system. Our study shows that
the digital evidence (particularly the OS semantics) obtained
from a memory snapshot cannot be assumed correct, given the
possibility of SVM attacks. Recent effort in robust signature
schemes [3], [4] can help detect hidden kernel objects, but
the extracted semantic information can still be completely
misleading.

We need more trustworthy VMI techniques. The current
VMI techniques [20]-[23] more or less rely on memory
analysis, and can therefore be incorrect. Triggered by certain
events (e.g., system calls) or demanded by the administrator,
the current VMI techniques traverse important kernel data
structures of the guest system, and then extract the operating
system semantics. Virtuoso [22], VMST [23], and Exterior [24]



have greatly narrowed the semantic gap and improved the
usability of VMI, but these new approaches do not change the
fact that they directly read from the virtual machine memory,
disregard of other runtime events. Once the guest kernel is
compromised by DKOM attacks, the current VMI techniques
will fail, just like the memory forensics.

VI. RELATED WORK

Fuzz Testing. Plenty of research (such as SAGE [18],
KLEE [25], and S2E [26]) has gone into performing fuzz
testing to explore program execution space and discover bugs
and security vulnerabilities. The purpose of our fuzz testing
is different. Our fuzz testing targets the OS semantic fields.
By mutating the values in these semantic fields as wells their
duplicates, we aim to evaluate the mutability of OS semantic
fields. Dolan-Gavitt et al. proposed a fuzz testing technique to
detect value invariants in the kernel data structures, and use
these invariants to construct more robust signatures for kernel
objects [3]. Although our fuzz testing is also targeting at the
kernel data structures, it is different in several ways: 1) our
focus is OS semantic fields, so our system can automatically
identify not only the semantic fields but also their duplicates
and then perform fuzzing on these fields; and 2) our test cases
and mutation rules are also designed differently as our goal is
not to crash the system but to explore the potential attacks.

Dynamic Dataflow Analysis. In this paper, we devise a new
dynamic dataflow analysis algorithm to track duplicate values.
At some level, this algorithm is related to the abstract variable
binding technique for automatically reverse engineering mal-
ware emulators [27], in which two kinds of dataflow algorithms
(i.e., forward binding and backward binding) are proposed.

This algorithm also shares some similarity with dynamic
type inference [28] and data structure reverse engineering [29],
[30]. In these systems, the identified type for one variable is
propagated to the other variables, whereas in MOSS we need
to update the membership information to all the variables in
the duplicate value set.

Virtual Machine Introspection. Introspecting a virtual ma-
chine often requires interpreting the low level bits and bytes
of guest OS kernel to high level semantic state. This is a non-
trivial task, because of the semantic-gap [31]. Early approaches
(e.g., [8], [21], [32], [33]) have been using manual efforts to
locate the kernel objects by traversing from the exported kernel
symbols or searching for invariant numbers. Recent advances
show that we can largely automate this process [22]-[24]. Our
work sheds some light on the VMI techniques. We show that
most of the semantic knowledge extracted by VMI cannot be
trusted, and we call for more trustworthy VMI techniques.

VII. LIMITATIONS AND FUTURE WORK

In this paper, we attempt to identify the semantic fields
susceptible to mutation by an attacker. Though we identify
several fields that are mutable both in Windows and Linux
OSes, the list of such mutable semantics is not close to being
complete. A thorough and complete analysis of all the semantic
fields and their mutability is needed. Moreover, while most
semantic fields have a direct correlation with the kernel data

structures, it is not always the case. It is possible that a
semantic field is derived as a result of one or more operations
on multiple data structures. We intend to address such cases in
future work. Furthermore, we have considered freely and easily
available security tools in our experiments to detect the impacts
of DKOM. However, a more complete result will include the
impact on anti-virus software. We intend to include some AV
software in our future experiments.

Trustworthy VMI needs to be dynamic in nature and
be more involved with the guest kernel execution. Instead
of querying semantic values that are statically available in
memory, a more trustworthy VMI should capture the moment
when semantic values are created, modified, and deleted, and
make sure these operations on these semantic values are not
from attackers. We aim to explore this direction as our future
work.

Certain attacks on kernel code modify the interpretation of
different kernel data structures. Such modifications will alter
the mapping between the semantic meaning and the kernel data
structures. MOSS does not address such attacks.

VIII. CONCLUSION

In this paper, we conducted a systematic assessment on
Semantic Value Manipulation attacks in two widely-used oper-
ating systems, Windows XP and Ubuntu Linux. In a prototype
system MOSS, we implemented a new fuzz testing technique
- duplicate-value directed semantic field fuzzing to explore
space of SVM attacks. We evaluated 45 semantic fields for
Windows and 41 fields for Ubuntu Linux and conducted a
total of 258 tests. Our results demonstrate that most of the
security sensitive semantic fields can be freely mutated for
both operating systems. Furthermore we found that consistency
checking for duplicate values only help in some cases but not
all. We also implemented a proof-of-concept SVM rootkit,
which manipulated all mutable semantic values regarding a
realworld bot sample TDSS. The selected security tools have
been misled or worse - completely bypassed.

Our study implies that memory forensics and the current
VMI techniques will completely fail if attackers fully exploit
the power of SVM attacks. We call for revisiting of the
existing security solutions and motivate serious research study
for effective SVM attack mitigation.
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