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Abstract—We present a micro-architecture based lightweight
framework to enhance dependability and security of software
against code reuse attack. Different from the prior hardware
based approaches for mitigating code reuse attacks, our solution
is based on software diversity and instruction level control flow
randomization. Generally, software based instruction location
randomization (ILR) using binary emulator as a mediation layer
has been shown to be effective for thwarting code reuse attacks
like return oriented programming (ROP). However, our in-depth
studies show that straightforward and naive implementation of
ILR at the micro-architecture level will incur major performance
deficiencies in terms of instruction fetch and cache utilization.
For example, straightforward implementation of ILR increases
the first level instruction cache miss rates on average by more
than 9 times for a set of SPEC CPU2006 benchmarks. To address
these issues, we present a novel micro-architecture design that can
support native execution of control flow randomized software
binary while at the same time preserve the performance of
instruction fetch and efficient use of on-chip caches. The proposed
design is evaluated by extending cycle based x86 architecture
simulator, XIOSim with validated power simulation. Performance
evaluation on SPEC CPU2006 benchmarks shows an average
speedup of 1.63 times compared to the hardware implementation
of ILR. Using the proposed approach, direct execution of ILR
software incurs only 2.1% IPC performance slowdown with a
very small hardware overhead.

Keywords—Instruction  location  randomization,  micro-

architecture, code reuse attack, software security

I.

Code reuse attacks allow the adversary to make malicious
results by exploiting control flow in the existing program with-
out any additional code injection [1], [2], [3]. Return oriented
programming (ROP) attack is an representative example. Using
ROP, the attacker can link small pieces of code which is
known as gadgets, that already exist in the binary image of
a vulnerable application. In fact, the ROP gadgets are short
sequences of code, typically ending with a return or indirect
control transfer instruction. Instead of injecting binary code
into the memory space of an application, the attacker can use
a sequence of gadget in the stack or other memory areas of the
program. Each gadget ends with an indirect control transfer
instruction, which transfers the control to the next gadget
according to the injected gadget sequence. During the attack,
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the adversary can circumvent many defenses such as read-only
memory [4], non-executable memory [5], kernel code integrity
protections [6] since the injected part is only data (rather than
code). In addition, access to ROP exploits is not difficult since
they are provided in the publicly available packs [7].

Most existing defense mechanisms, such as instruction set
randomization [8] or simple address space layout random-
ization (ASLR) cannot prevent code reuse attacks. For this
reason, many solutions have been proposed to mitigate the
risks of code reuse attack [9], [10]. Recently, approaches
at micro-architecture level are also presented for detecting
control flow violations or monitoring control flows at runtime
using hardware support [11], [12], [13]. Among the previously
proposed concept, instruction location randomization (ILR) is
widely used due to the effectiveness of the method [14].

Pappas et al. described an in-place code randomization
approach to mitigate ROP exploits by applying ILR within
basic blocks [10]. The binary transformations include re-
ordering instructions within the basic block boundaries without
changing execution results. On the other hand, Hiser et al. pre-
sented complete ILR [9]. The solution completely randomizes
the location of every instruction in a program. Consequently, it
can thwart an attacker’s ability to re-use the existing program
gadgets (e.g., ROP based exploits, arc-injection attacks). In-
place code randomization and complete ILR are software based
approaches for mitigating gadget based exploits. ILR and other
similar approaches often rely on heavy-weight runtime instru-
mentations or exotic binary emulation frameworks that can in-
cur significant overhead. For minimizing such overheads, most
software based approaches support either partial ILR (e.g.,
randomization within basic block boundary) or randomization
with reduced scope to achieve acceptable performance. As
more variations and less predictable control flow will increase
resilience to remote attacks. In fact, Snow et al. pointed out
that 32 bit address space is hard to provide enough entropy
to protect systems from just-in-time code reuse attack [15]. In
this case, applying a 64 bit address space can be a solution by
increasing the entropy of the randomization [14]. However,
partial randomization approach cannot take full advantage
of increased address space while the complete randomiza-
tion does. Consequently, complete ILR provides higher level
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security benefits by maximizing resilience with completely
randomized control flows.

Besides performance and efficiency reasons, another major
benefit of supporting fine grained instruction layout or control
flow randomization at micro-architecture level is reduced at-
tacking surfaces by removing the binary emulation layer. In
fact, software based approach is less secure because malicious
attackers can target the software emulation or interpretation
layer. Similar to how out-of-order execution is hidden from
the OS and compiler, our micro-architecture based approach
hides the actual instruction space and minimizes the interface
exposed to the hackers (attacking surface).

According to our studies, straightforward implementation
of complete ILR at hardware level has major performance
issues with some of the established design principles of
modern micro-processor. When compared with the baseline
architecture with identical cache organizations, straightforward
implementation of ILR will increase the first level instruction
cache miss rates since the instructions are widely spread among
the memory space. That is, if ILR is to be integrated with
native execution support, one has to come up with a new
approach that can meet both the goals of maximizing ran-
domness of instruction layout and efficient software execution.
Last but not the least, it is a fact that software based approach
suffers from lack of adoption by the end users as many
companies and web services don’t use the most secure software
(sometimes due to cost and lack of knowledge/incentive) or
apply security patches. When attack resilience is built into
the micro-architecture, it can eliminate the adoption barrier by
providing default attack resilience integrated with the hardware
itself. To achieve all these goals and benefits, we propose
micro-architecture based solution for complete ILR in this
paper. Specifically, we make the following contributions:

e Introducing the performance problem of instruction
fetch caused by native support of randomized instruc-
tion layout and the need for new solutions that can
support software diversity with minimal impact on
performance;

e  Presenting the novel architecture design of one such
solution that can support native execution of control
flow randomized software binary and at the same
time preserve the performance of instruction fetch and
efficient use of on-chip caches;

e  Proposing a novel control flow randomization concept
that uses a lightweight mediation layer to create ran-
domized view of instruction space without destroying
instruction locality at memory hierarchy; and

e Demonstrating the effectiveness of the proposed ap-
proach using cycle based architectural model and
SPEC benchmarks.

II. THREAT MODEL OF GADGET BASED EXPLOITS

Our threat model is defined as the following. An attacker
is attempting to subvert a remote system via gadget and ROP!
exploits. Software applications are distributed to the end user
in binary format, and then randomized. The binary application

'In this paper, we decide to use ROP as a representative code reuse attack
method. Details are explained in Section V.
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Fig. 1.  Instruction space and control flow randomization of ILR. The

mechanism provides control flow randomization for reducing the attack surface
of gadget based exploits. Existing software based ILR uses instruction level
emulator to support execution of randomized instructions.

has been tested, but not guaranteed to be vulnerability free.
The program may contain weakness that can be exploited by
ROP based attacks. However, the application is assumed to
be free from back doors or trojans. Furthermore, we assume
that there is no insider attack and the system is managed
by trusted administrators. The attacker does not know/see the
executable version of the binary code after randomization is
applied. As such, the attacker can only launch a kind of
random attack because the attacker can neither see (due to the
lack of privilege) nor run the randomized code (because the
attacker does not have physical access to the system controlled
by the system administrator). Moreover, the attacker cannot
observe the instruction-by-instruction state change from the
operating system. Our threat model mainly focuses on attacks
where applications are subverted by processing malicious data
submitted by the attacker. The data may contain ROP exploits.
The threat model covers a wide range of exploits, such as
attacks to client-server based program, exploits to document
viewers, browsers, network clients, etc. According to the previ-
ous research in the literature, randomization/diversification can
effectively mitigate a wide range of security attacks because
of reduced attack surface. Though this paper focuses more on
the security risks associated with ROP, the proposed micro-
architecture facilitated complete ILR increases a computing
system’s resilience against many exploits beyond ROP.

III. MOTIVATION AND APPROACH OVERVIEW

Native support of fine grained ILR has many advantages
than the existing software based approaches. One main benefit
of integrating ILR with micro-architecture is improved perfor-
mance by maintaining the efficiency of on-chip cache access.

To execute binary programs randomized by ILR such as
the one shown in Figure 12, a special virtual machine that
decodes the randomized instruction sequences at runtime is
required. Figure 2 shows that when ILR is implemented on an

2In this example figure, we assume that all instructions are 32 bit and the
memory address is 16 bit. For the simplicity, we apply same assumption for
the rest of the figures which show instructions and memory space.
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Fig. 2. Performance of implementing instruction level randomization using an
instruction level machine emulator. Y-axis shows the amount of performance
decrease against native execution on bare metal. The execution time increases
by over hundred of times.

instruction level emulator, applications suffer from the hun-
dreds of times slower than native executions on the bare metal
CPU hardware. Although a certain optimization technique can
be applied to improve performance of emulation based ILR
approaches, the emulation layer without hardware support is
bound to incur significant performance penalty. It should be
pointed out that some software based implementation reduces
the overheads by supporting ILR with limited scope. It will
be not fair if one compares more efficient micro-architecture
based approach with these schemes because they don’t support
complete randomization and de-randomization of instruction
space at per instruction execution level. Our apples-to-apples
comparison shows that, since randomized binary cannot be
executed natively, a run-time interpreter that de-randomizes the
instruction space at per instruction level will certainly incur
much higher overhead and significantly reduce instruction
fetch efficiency. For the studied benchmark applications, ILR
can increase instruction L1 cache miss rate by more than five
times on average.

A. Randomization vs. Efficient Instruction Fetch

One possible approach is to integrate the capability for
direct execution of ILR randomized programs with native
micro-architecture support. A simple implementation is to
remove the runtime emulation layer and push its functionality
into the processor. However, our in-depth studies reveal that
such solution has major performance issues with the design
principles of modern micro-processor. When compared with
the baseline architecture with identical cache organizations, a
naive implementation of ILR increases the L1 instruction cache
miss rates on average by 9.4 times for 11 applications from
SPEC CPU2006 benchmark suite, see Figure 3. In addition,
instruction level address space randomization significantly im-
pedes the efficiency of hardware based instruction pre-fetcher
as shown by the results in Figure 3. The pre-fetch miss
rates of L1 instruction cache (IL1) increase by on average
28% for the tested SPEC CPU2006 benchmarks. The reduced
L1 cache efficiency is propagated to the next level cache by
adding workload pressures. As shown in the figure, the unified
L2 cache experience 36% of average increased loads for the
tested SPEC CPU2006 applications; the amount of pressure is
measured by the number of read operation from L1 cache to
L2 cache.

Combining all the effects, the overall CPU performance
decreases dramatically. The average IPC reduces to 61% of
the baseline IPC with identical architecture settings, as shown
in Figure 4. The naive implementation assumes that CPU
can resolve address mapping with zero cost. Therefore, the
performance penalty is entirely due to the randomization of
instruction space.
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Fig. 3. The impact of naive approach on the L1 and L2 cache. In this mode,
a processor directly executes a binary program with randomized layout. The
program is randomized using the complete ILR approach which is described in
Hiser et al.’s work [9]. CPU setting: 32KB IL1 and 512KB L2, XIOSim [16]
and Zesto [17].
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Fig. 4. Performance of straightforward implementation of ILR at micro-

architecture level. Y-axis shows IPC decrease for SPEC CPU2006 applications.
The value of IPC is reduced to 66% of the baseline IPC which has no ILR.

B. Approach Overview

Implementing ILR with hardware support can either re-
move the emulation layer and therefore, can reduce its over-
head significantly. However, a negative consequence is that
a naive and straightforward implementation of ILR at archi-
tectural level destroys instruction fetch locality and renders
many micro-architecture components optimized for efficient
instruction fetch useless. Instruction fetch plays a critical
role for feeding the pipelines of a high performance micro-
architecture with instructions. If ILR is to be integrated with
native execution support, a new design different from the naive
ILR implementation needs to be adopted.

Our solution is to satisfy the seemingly contradicting
requirements of native support for ILR and instruction fetch
locality (maintaining temporal and spatial localities in instruc-
tion fetch). For that purpose, we introduce an address space
randomization/de-randomization interface before the instruc-
tion fetch requests are handled by the on-chip L1 instruction
cache.

Analogous to the difference between physical memory
space and virtual memory space, we separate randomized
instruction space and de-randomized instruction space (the
original virtual memory space for storing instructions). The in-
struction execution pipelines handle instructions in randomized
instruction space and directly execute control flow randomized
binary program. For efficient and high throughput instruction
fetches, on-chip caches and memory hierarchy store instruc-
tions in the original layout. The instruction fetch unit and
memory hierarchy create an illusion to the processor pipeline
that instructions are fetched and program control transfers in
randomized instruction address space. Such a design can meet
both the needs of native support for executing randomized
binary and efficient instruction fetch.

‘We name this approach virtual control flow randomization
(VCFR), which means that the processor executes instructions
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Fig. 5. Comparison of instruction fetches and memory layout in three
settings: no randomization applied, ILR with straightforward architectural
support, and hardware enabled virtual control flow randomization (a control
flow randomization mediation layer creates randomized view of instruction
address space to the processor execution pipeline and the instructions are
stored in the memory hierarchy with preserved locality).

in virtually randomized instruction address space. From the
perspective of randomizing instruction space and control flow,
virtual control flow randomization achieves the same random-
ization effect as the original ILR [9], which uses a software vir-
tual machine and rewrite rules to execute an ILR randomized
binary or a straightforward hardware implementation of ILR. A
main difference between our virtual control flow randomization
(VCFR) and ILR is that in our approach, instruction locality is
preserved. In VCFR, the control flow of a binary executable is
randomized similar to ILR. This randomized view of control
flow is presented to the processor execution pipeline. However,
the binary instructions are still stored in the memory hierarchy
(both on-chip caches and off-chip memory) in the original
layout, which effectively preserves the instruction locality.
A control flow randomization layer is situated between the
processor pipeline and the memory hierarchy. The control flow
randomization layer is light-weight as it is implemented as
lookup tables that convert instruction address in randomized
control flow address space to the original instruction address
space or vice versa.

Figure 5 illustrates instruction space layouts in the mem-
ory hierarchy and instruction fetch sequences (assuming that
instructions are fetched in program order) under three different
scenarios, original unmodified binary executable, ILR trans-
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formed binary with direct hardware execution support, and
our virtual control flow randomization approach. As shown
in the figure, in both ILR and VCFR, control flow of the
binary is randomized. However, in VCFR, instruction layout
is preserved. A virtual instruction space layout (randomized)
is presented to the processor execution pipeline. The processor
pipeline uses randomized control flow for fetching instructions
from the memory hierarchy. Some main differences between
straightforward ILR implementations and VCFR are high-
lighted in Table I. Details of the architecture design will be
presented in the next section.

IV. ARCHITECTURE AND DESIGN
A. Control Flow Randomization

Figure 6 shows the processes and steps performed by
instruction level address space randomization. The randomiza-
tion software, a binary rewriter, takes a third-party program as
input and generates a new binary output that with randomized
instruction layout. The new binary is semantically identical
to the original one but using randomized control flows and
instruction layouts. For ROP based exploits, the consequence
of instruction space and instruction level control flow ran-
domization is that the existing gadgets cannot be found any
more. The large randomization space prevents an attacker from
mounting a gadget based attacks [9].

The first step is to disassemble the binary image and
perform offline static analysis. For such purpose, we use IDA
Pro, a recursive descent disassembler [18]. For complete scan
of disassembled code, we also use objdump. The control flow
randomization software constructs CFG (control flow graph)
from the disassembled program binary. Basic blocks are the
nodes in the CFG. They consist of a sequence of instructions.
Once the code is disassembled, basic blocks are easily detected
with the leader algorithm. Relocation information can also
be obtained. Entry points of basic blocks include all targets

Randomization Software

Iy Processor
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o T Engine > (constant propagation, call return support
E (IDA Pro) analysis, and indirect branch targets) for efficient
g Create basic blocks and edges Linearize execullo'n o
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Internal representation  Control Flow Graph (CFG) instructions

Fig. 6. ILR and architectural support for efficient execution of the randomized
binary executable.



of direct control flow transfers, and all instructions directly
following direct or indirect transfers.

Detecting the edges for the CFG is straightforward. One
can get them directly from the disassembled codes for direct
control flow transfers that encode their targets in the binary
instruction itself. For indirect control transfers, we use a
conservative approach at the beginning and assume that all the
instructions at relocatable addresses can be the targets. This
means to connect all indirect control flow transfer instructions
with all possible (relocatable) targets when CFG is initially
constructed. Then edges are analyzed and pruned using the
established techniques described in [19], [20], [21], which
apply an array of analyses. Fall-through edges are added to
all basic blocks ending with an instruction that does not
unconditionally transfer control.

Indirect control transfer using constant code address can
be analyzed with constant propagation [19], [21]. Constant
code address propagates over the CFG with instructions as
producers of the code addresses (e.g., fetched from constant
data segment) and indirect control transfers as the consumers.
A simple but effective heuristic used in Hiser et al.’s work
is to perform a byte-by-byte scan of the program’s data, and
disassembled code to determine any pointer-sized constant
which could be an indirect branch target [9]. As shown in
their work, this easy to implement approach is often sufficient.
In our approach, we use both the same heuristic and a simple
constant propagation analysis to recover relocation information
for indirect control transfers that use constant code addresses.
The analysis is performed on registers over the CFG. Our
analysis does not modify any instructions that compute code
addresses. The assumption is that the code addresses in the
original program are relocatable. At the stage when the CFG
is re-assembled into a binary image, the relocation information
provides sufficient details on how code address computations
need to be adapted. Analyses from us and others show that
code address computations are rare in real world applications.
To be conservative, we don’t directly modify the code address
computation.

After analyzing all the control transfer instructions, the
ILR software will traverse the instructions and assign differ-
ent addresses in the code space. To ensure that the control
transfer instructions still branch to the correct locations, the
randomization software will modify the direct control transfer
instructions with the new target addresses. Jump tables and
code addresses stored in the data sections are modified accord-
ingly as well based on both reallocation information and results
of indirect control transfer analysis. However, it is not feasible
to completely resolve target addresses of all the indirect control
transfers. Table II shows static number of indirect control
transfers compared with the static number of direct control
transfers in some SPEC CPU2006 benchmark applications.
In this table, indirect control transfers include both control
transfers from registers and computed control transfers. Also,
indirect function calls include calls from registers and calls
using computed function addresses. To provide a failover
solution for indirect control transfer instructions, we use an
approach similar to the work of Hiser et al. [9], which allows
certain indirect control instructions to use the original target
addresses. This means that for safe execution, some indirect
branches may jump to the un-randomized address space. This
can be supported by adding entries to the randomization/de-
randomization table. The tables also contain address mapping
entries to redirect program execution back to the randomized
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TABLE II. STATIC ANALYSIS OF CONTROL FLOW FOR SPEC CPU2006
BENCHMARK APPLICATIONS.

Applications Direct con- Indirect con- Function Indirect

trol transfers trol transfers | calls function
calls

bzip2 27277 654 4474 654

gee 149512 1464 51933 1605

h264ref 38650 884 6986 1409

hmmer 35438 556 7783 751

Ibm 26074 620 4300 622

libquantum 27129 546 4686 636

mcf 25607 512 4214 582

namd 33497 618 5958 906

sjeng 30021 585 5280 709

soplex 49577 1271 15673 2587

xalan 126790 2915 63965 15465

control flow space for continued execution after jumping to
un-randomized addresses. To reduce attacking surfaces and
prevent frequent jumps to the un-randomized addresses, we
mark each safely randomized instruction address with a single
bit tag in the randomization/de-randomization table (named
randomized tag). For an un-randomized address, when its tag
is set, execution control is prohibited from jumping to that
location. As a result, ROP attacks can only be mounted by
exploiting gadgets in the un-randomized addresses.

To randomize call and return instructions, our control
flow randomization approach analyzes the call instructions
in a program to determine if the return address can be
safely randomized. When the randomization approach de-
cides that it is safe to randomize the return address, we
have two options, one software based and one architecture
based. One option is to rewrite the call instruction and
replace it with a sequence of equivalent instructions that push
a randomized return address to the stack. For instance, a
call bar can be converted into two instructions, push
randomized_return_addr; followed by a jump instruc-
tion, jmp bar. This approach expands size of the original
program.

The second approach is to support randomized return
address automatically by implementing at architecture level
the mechanism to push the corresponding randomized re-
turn address to the stack. This option has the advantages
of being fully transparent to the randomized binary program
and at the same time maintaining the constant size for all
the call instructions with randomized return addresses. In
details, assume that a call instruction at address X, call
bar, is executed by the pipeline and the un-randomized return
address is X+4. When the instruction is executed, the processor
core will look up the randomization/de-randomization table
to find out the randomized return address corresponding to
X+4. Then the processor core will push the randomized return
address instead of the original return address into the stack.
When this approach is applied, for each randomized return
address, the randomization/de-randomization table stores an
entry that maps the un-randomized return address to the
randomized return address. It is the randomized return ad-
dress that is pushed to the stack. For both options, when
the function returns to the caller, either randomized or un-
randomized return address will be popped from the stack
and used as the next program counter. If the popped address
is a randomized return address, it represents an instruction
address in the virtual control flow address space. When the
instruction is fetched, the address will be de-randomized first
using the randomization/de-randomization table and then the



de-randomized address will be used for accessing the memory
hierarchy. If the popped address is un-randomized address,
the randomization/de-randomization table contains an entry
indicating that the address is un-randomized by clearing the
randomized tag. In this case, the next instruction after return
will be fetched using un-randomized address.

Similar to what are reported in the prior study, not all return
addresses can be safely randomized; as an example, return
addresses associated with indirect call are not randomized [9].
Furthermore, for x86 based binary, a call instruction is
often used for purpose other than invoking a subroutine. For
example, to support location independent code or data, it is
common to read the value of the instruction pointer (since, by
definition, the relative address is relative to the instruction’s
location). However, there is no instruction to obtain the value
of the instruction pointer on x86, a simple solution is to
execute a call instruction with the next instruction address
as the target location, which causes the target address to be
saved on stack. Then the next instruction can read the pushed
address from the stack by moving it to a register (e.g., ebx).
This can be achieved by using either a pop instruction or
a mov instruction. In this case, randomizing return address
may cause problems for the location independent code or data.
Another example is C++ exception handling [22]. In C++, the
exception handing routines use the return address to find out
the exception handling codes by walking through the stack.
This is because at compile time, the C++ compiler cannot
decide if when a function makes a call to another function,
the callee will throw out an exception or not. As a result, the
compiler will put the exception cleanup code into the caller.
To randomize return address for C++ program with exception
handling, there are two choices. One is to modify the exception
handling tables to match with the control flow randomization.
This is the approach used by Hiser et al. [9]. A second
approach is to modify the processor architecture in such a way
when exception happens, the original un-randomized return
address will be returned to the exception handling routines.
The details can be found in Section IV-C.

After all the instructions are relocated, the randomiza-
tion software will reassemble the instructions into a new
binary image. The new binary contains randomized control
flow at instruction level and the associated randomization/de-
randomization tables. A processor with virtual control flow
randomization support can execute the program using the new
binary image and the associated tables.

B. Micro-architectural Support for Executing Randomized Bi-
nary

There are many advantages of supporting our control flow
randomization approach at micro-architectural level. These in-
clude, (i) eliminating the virtual machine that is often required
for software based ILR and consequently reducing the attack
surfaces; (ii) improved efficiency due to native and direct
execution of the control flow randomized instructions; and (iii)
better performance of memory hierarchy (e.g., cache miss rate,
pre-fetch efficiency) brought by the concept of virtual control
flow randomization (executing a binary program in randomized
control flow instruction space but storing the program in the
memory hierarchy using un-randomized instruction memory
layout).

At micro-architecture level, the processor maintains a
randomization/de-randomization layer that bridges the two
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Fig. 7. Block diagram of instruction fetch in randomized instruction space.
There are two program counters (PCs), one in the randomized space (RPC)
and the other one in un-randomized space (UPC). At architecture level, control
flow follows the PC in the randomized space. Both PCs are used for instruction
fetch. When the original PC is absent, hardware will de-randomize RPC by
looking up the DRC lookup buffer. DRC is a small cache that stores address
pairs for both instruction address randomization and de-randomization. DRC
shares L2 with ILI.

instruction memory spaces (control flow randomized versus
un-randomized). This mediation layer creates a virtual view
to the processor pipeline that the instructions are fetched and
executed in randomized instruction space. Depending on the
contexts, an instruction address may be randomized (e.g.,
retrieve a randomized return address from a call instruc-
tion) or de-randomized (e.g., fetching from level 1 instruction
cache using a randomized address). The system can maintain
mapping tables to store entries for randomization and/or de-
randomization. Similar to page tables, the tables for random-
ization and de-randomization are stored in the kernel as part of
the process context and protected from illegitimate accesses.
They cannot be accessed or modified by the application process
in user space.

At run time, entries of the randomization/de-randomization
tables can be cached on-chip using a DRC lookup buffer
(de-randomization cache). The DRC lookup buffer stores
frequently accessed randomization and/or de-randomization
translation entries, see Figure 7. The DRC lookup buffer can
be implemented as a cache (e.g., directly mapped). It acts as
a mediation layer between processor execution pipeline and
the memory hierarchy. There can be two buffers, one for
randomization and the other one for de-randomization. For
more efficient usage of silicon resources, we use one unified
lookup buffer for storing entries of randomization and de-
randomization. For each entry, there is a single bit tag (derand
tag) indicating what kind of translation entry is stored. If the
tag is set, the entry is used for de-randomizing a randomized
address. Otherwise, it is used for randomization. In addition,
there is a valid bit. When the valid is clear, the entry is not
occupied.

Furthermore, for efficient program execution, the instruc-
tion fetch unit contains two program counters (PCs), one for
the randomized instruction space (RPC) and the other one for
the un-randomized space (UPC). This means that UPC always
stores the de-randomized address of RPC. For un-randomized
address, UPC and RPC are the same. For un-randomized entry,
the DRC lookup buffer contains a tag to indicate that the
address is not randomized. At architecture level, control flow
follows the PC in the control flow randomized space. Both
PCs are used for instruction fetch. When UPC is absent, the
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Fig. 8. DRC cache organization and its usage for translating control flow

addresses between randomized and the original instruction space. Instructions
are stored in on-chip caches using the original layout, which results in
better cache performance than directly storing them in randomized space.
For a randomized PC (RPC), DRC converts the address into the original
location. The figure shows an example program in both randomized and the
original space. DRC stores necessary address translation pairs for executing
the program.

micro-architecture will de-randomize the address in RPC by
looking up the DRC lookup buffer.

Instructions are stored in on-chip caches using the original
layout as shown in Figure 8, which results in better cache per-
formance than storing them in randomized instruction space.
For a randomized PC (RPC), DRC converts the address into
the original address. Figure 8 shows an example program in
both randomized and the un-randomized space. DRC stores
necessary address translation pairs for executing the program.
Note that although the program is stored using the original
layout, the control flow is modified. In addition, UPC cannot
be directly accessed by the instructions. It is automatically
updated by converting RPC or by the fetch unit.

Since DRC lookup buffer is on-chip, it has limited
space. Consequently, not all entries for randomization and de-
randomization can be stored in the DRC lookup buffer. One
option is to include a larger level two DRC lookup buffer.
However, for efficient usage of cache space, DRC can share
its second level cache with the unified L2 of a processor core,
which is our current design. For an address that needs to be
de-randomized or randomized, if the corresponding translation
entry cannot be found in the DRC lookup buffer, the processor
core will search the next level memory hierarchy until the entry
is fetched. Such design eliminates the necessity of trapping
into the kernel when entries of the DRC lookup buffer need
to be updated. However, it requires the tables for storing
randomization and de-randomization address translations to be
stored in paged memory. Dedicated memory pages can be used
to store these tables. We designed DRC as direct mapped cache
with small size to minimize power consumption. If there is a
DRC miss, L2 cache will be searched. The often small size
directly mapped DRC cache consumes very small amount of
energy. The design doesn’t require a fully-associative DRC
since the miss penalty is marginal; we will show the simulation
results in Section VII. In addition, the DRC is hidden from the
user space program with a simple extension to TLB.

To prevent any potential tamper of these tables by instruc-
tions executed under the application’s context, these pages can
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be made invisible to the user space instructions. This means
that during execution of an application, these address transla-
tion tables can only be accessed by the micro-architecture for
the purpose of handling access misses of DRC lookup buffer.
To modify these entries using instructions, the system needs
to switch to the kernel mode. A simple implementation of
this protection is to extend each entry of the TLB (translation
lookaside buffer) with a new page visibility bit. For a page, if
the visibility bit is set, it means that contents stored in the page
can be accessed by the user space instructions. Otherwise, it in-
dicates that the page is invisible to the application instructions.
The randomization and de-randomization translation tables are
stored in such pages invisible to the user space instructions.

According to the design, DRC cache lookup is only needed
when there is a randomized control flow transfer and the
randomized target address requires de-randomization, which
is infrequent because branch prediction is performed using
the original memory space. Additionally, even there is a DRC
miss, majority of them can be found in the L2 cache, which
is large enough for storing the DRC table.

C. Support for Return Address Randomization

As discussed earlier, there are many scenarios that return
addresses cannot be safely randomized. It is not uncommon
that instructions in the callee directly access the return address
stored in the stack. One example is using a call instruction
to find out the current program counter for implementing
location independent code or data. Figure 9 shows for some
SPEC CPU2006 benchmark applications, the number of func-
tions with and without return instructions contained in the
callees. If a randomized return address is pushed to the stack,
and succeeding instructions directly access the randomized
return address and use it for computing address of location
independent code or data, it may lead to faulty execution. A
conservative approach is to apply return address randomization
only when the control flow randomization software is certain
that a caller follows the conventional call return pattern. The
downside of this approach is that it reduces the potential
randomness of the result binary image.

To maximize the chance of return address randomization,
we introduce an micro-architectural enhancement as shown in
Figure 10 that allows randomized return address to be saved to
the stack even when it may be directly accessed for supporting
C++ exception handling or location independent code/data.
When a randomized return address stored in the stack is
directly fetched into a register, the micro-architecture will
automatically de-randomized it by looking up the DRC buffer.
Such design provides compatibility for address calculation
during C++ exception handling and usage of return address

B Funtions with Ret Instructions O Functions without Ret Instruciton

30000
20000
10000

Number of instructions

Application

Fig. 9.  Static analysis of function calls and returns for SPEC CPU2006
benchmark applications. The figure shows, for each benchmark, numbers of
functions with and without return instructions (functions without return
instructions may return to the caller using other x86 instructions such as mov).
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Callee in x86 may access return address store in the stack explicitly without
using the call return instruction. The stack stores randomized return
addresses.

outside the context of function call. A bitmap is used to
track which stack location stores a randomized return address.
For higher performance, the bitmap can be stored in paged
memory. Similar to the randomization/de-randomization tables,
pages containing the bitmap are set to be invisible to the user
space instructions. A small cache can be used to store parts of
the bitmap that are frequently accessed.

D. Remarks

Our approach mainly affects the interface between instruc-
tion fetch and the memory hierarchy for storing instructions.
We carefully design our system so impacts to other micro-
architecture components are minimized. For example, the in-
troduction of two program counters (RPC and UPC) facilitates
normal operations of predictors for both branch directions
and branch targets. Both predictions can be based on the de-
randomized program counter as illustrated in Figure 7. During
instruction execution and fetch, when UPC is absent, the
instruction fetch unit will first de-randomize the randomized
PC and then use the de-randomized PC for branch prediction.
In such a way, branch prediction rates will not be affected by
how instruction layout and control flow are randomized. Since
our approach only randomizes instruction address space, which
contains read-only data, it can be applied to multi-core or
multi-processor based systems with easy. In addition, control
flow randomization can be confined within the same page,
which will further reduce its impact to iTLB. At system level,
the main impact is to extend application context to include the
de-randomization/randomization tables.
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V. SECURITY ANALYSIS

In this section, we show the effectiveness of the proposed
method to enhance software dependability. According to the
definition of Jean-Claude Laprie’s work, “different emphasis
may be put on the different facets of dependability” such
as availability, reliability, safety, confidentiality, integrity, and
maintainability [23]. Therefore, we analyze how secure our
framework is against ROP exploits since the security eventu-
ally includes availability, confidentiality, and integrity.

A. ROP Attacks

In terms of randomizing control flow at instruction level
and thwarting ROP based exploits, our approach is equivalent
with software based ILR [9]. Some main advantages of our
design over the prior art include native support for direct
execution of binary applications with control flow diversifi-
cation, and efficient instruction fetch by preserving spacial
locality when instructions are stored in on-chip and off-chip
memory hierarchy. According to both our security evaluation
and the prior work [9], ILR can effectively mitigate arc-
injection attacks that evade ASLR. In addition to that, it was
demonstrated that ILR can prevent ROP attacks that target
a vulnerable Linux PDF viewer, xpdf [9]. The vulnerability
allows attackers to create a shell by using crafted ROP attack.
Another vulnerability in Adobe PDF viewer (9.3.0) allows
arc-injection and ROP attacks [24]. It was demonstrated that
randomizing control flow at instruction level can thwart attacks
from crafted malicious PDF files that exploit the gadget based
programming [9], [24]. In short, ILR is effective to mitigate
actual ROP attacks that exploit vulnerabilities in real world
applications using return based programming and gadgets.

B. Gadget Analysis

It has been shown that ILR can effectively reduce the
attacking surfaces. Consequently, there is less chance for
attackers to find enough number of gadgets to mount a ROP
attack. To evaluate how effective our approach is to reduce
attacking surfaces, we use an open source gadget tool called
ROPgadget [25]. ROPgadget can scan a binary program to find
specific gadgets within the executable. It has an auto-roper
for build attack payload automatically with the gadgets found
and facilitate the process of ROP exploitation. ROPgadget
contains a database of gadget patterns. We use version 4.0.1 of
ROPgadget. ROPgadget has a gadget compiler that can create
attack payload using matching gadgets found in an executable
binary. The assembled payloads can facilitate development of
actual attacks depending on the vulnerabilities of the binary.
Note that the payloads themselves are not sufficient to mount
a successful attack but they form an important part of ROP
exploits. The payloads can be converted into attacks when
combined with vulnerabilities. If ROPgadget fails to create
attack payloads using gadgets found in a binary executable,
it means that even there is exploitable vulnerability, ROP
attack cannot be mounted using the existing attack payload
template. Typically, ROPgadget requires detection of multiple
gadgets in an executable to assemble a payload. If control flow
randomization significantly reduces the number of gadgets that
can be found in a binary executable, the likelihood an attack
payload can be assembled will become smaller because of the
reduced gadget pool.

To model the environment of virtual control flow ran-
domization faced by attackers, we modified ROPgadget to
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Fig. 11. Percentage of gadgets removed from SPEC CPU2006 benchmark
applications after randomization. The gadets are detected using an open source
gadget tool, ROPGadget [25].

take into account control flow randomization in such a way
that it searches for gadgets using un-randomized instruction
locations. We tested a set of SPEC CPU2006 benchmark ap-
plications using the modified ROPgadget. Without control flow
randomization, for every tested SPEC benchmark application,
ROPgadget is able to assemble attack payloads. After virtual
control flow randomization, for all the benchmark applications,
no attack payloads can be generated. This suggests that ran-
domizing control flow can reduce the likelihood of successfully
mounting a ROP attack. Virtual control flow randomization
can reduce the number of gadgets. As indicated by Figure 11,
on average 98% of gadgets are removed after applying our
control flow randomization. In addition, many published papers
in the literature already show that address space randomization
is effective to resist ROP attacks.

C. Remarks

a) Entropy: As studied previously, ILR can have high
entropy, which defends against attacks that try to evade
the protection by reducing the entropy of a system. Since
randomization is done at instruction granularity, there is a
large randomization space. Although we have used ROP as
a representative attack method of code reuse, return-to-libc
is also powerful attack for systems. However, Shacham et al.
already demonstrated that return-to-libc attack can be protected
using ILR with 64 bit address space [14]. For this reason, we
have used ROP as a threaten of code reuse attack in this paper.

b) Code Injection: Our primary focus of this study
is to mitigate code reuse attacks with hardware support of
ILR. Our solution by itself doesn’t address code injection
attacks [26], [8], [27]. However, our approach can be combined
with solutions that are specifically designed to mitigate code
injection attacks and used in conjunction with these solutions
to thwart both ROP and code injection based exploits.

c) Protection of Address Translations: Similar to all
randomization based approaches, a common practice to prevent
leaking randomization/de-randomization tables to the attackers
is to apply regular re-randomization of the binary images
that will create a new sets of address translation tables and
new randomized images. Even an attacker managed to obtain
the old randomization/de-randomization tables, the information
would be outdated for mounting new attacks. Furthermore,
for online attacks, since the randomization/de-randomization
tables associated with an application instance are invisible to
the instructions executed in the user space, most randomized
return addresses cannot be leaked to the remote attackers. Side
channel exploits such as those described in earlier projects are
not effective to cause randomized control flow addresses to be
leaked to remote attackers [28], [29], [30]. Program counter
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UPC is auto-managed by the execution pipeline. It cannot be
directly accessed by the instructions in the user space.

VI. PERFORMANCE EVALUATION

In order to demonstrate the performance of our system
design, we have conducted several experiments and simu-
lations using detailed architectural models. We studied the
overall performance impacts of our design using 11 SPEC
CPU2006 benchmarks [31]. Along with that, we examined
the overheads to support native execution of ILR transformed
programs by adopting our design such as efficiency of run-
time de-randomization, execution speed of each benchmark
application, and etc. In particular, we extended XIOSim [16]
simulators to meet our need.

A. Implementations

We implemented a static binary rewriter which can random-
ize the instruction space given a third-party binary program.
The output of the static binary rewriter is a binary file with
randomized instruction segments and lookup tables that can
be used to de-randomize the instruction space. Currently, the
rewriter only works for statically linked binary with all the
libraries embedded.

For performance modeling, we use XIOSim [16]. XIOSim
is a highly detailed cycle based micro-architectural simulator
targeted at x86 micro-processors. XIOSim is based on Zesto
simulator [17]. It models Intel x86 pipeline according to
best available public knowledge. Performance reported from
XIOSim’s models stays well within 10% of real hardware
for the entire SPEC CPU2006 suite [16]. XIOSim provides
detailed x86 architecture models for simulating in-order and
out-of-order pipelines. The models include detailed branch
predictors, branch target buffers, return address stack (RAS)
predictors, cache prefetchers, memory controllers, and main
memory/DRAM models. For power modeling, XIOSim inte-
grates a modified version of McPAT [32] to create a power
consumption trace. In terms of average power consumption,
XIOSim’s model has less than 5% deviation when compared
against real measurement. We modified and extended XIOSim
with the proposed architecture. The fetch stage of XIOSim
is modified to use randomized instruction space, and support
two program counters (RPC and UPC). The execution models
of call and return instructions are modified according
to our design. Instruction fetch is extended to support a de-
randomization cache (DRC). The DRC cache connects to a
unified second level cache shared by IL1 and DL1. A power
model for DRC is also integrated with XIOSim.

B. Benchmarks

For performance evaluation, we used the single thread
SPEC CPU2006 benchmark suite [31] that is a set of bench-
mark applications designed to test the CPU performance. We
tested eleven memory intensive benchmarks of the SPEC
CPU2006. In particularly, the benchmarks used are bzip2,
gce, mef, hmmer, sjeng, libquantum, h264ref, lbm, xalan,
nsmd, and soplex. The detailed descriptions of the benchmarks
can be found in the webpage [31]. The simulation started
when the application passed the initialization stage. The cycle
based simulation executed each benchmark application for 500
million instructions or until it finished depending on which one
was longer.



C. Machine Parameters

We modified the XIOSim simulator to simulate support
for runtime instruction space de-randomization. The operation
of our proposed scheme is verified with single issue, in-order
processor. For this reason, the simulation was performed with
a x86 single issue, in-order CPU model running at 1.6GHz.
The overall pipeline is divided into five major components or
blocks, fetch, decode, allocation (alloc), execution (exec) and
commit blocks. Each component may further comprise pipeline
stages, queues, and other structures. The detailed processor
model includes, branch predictor (2-level gshare), BTB (branch
target buffer), RAS, instruction queue, load-store queue, pre-
fetcher, and functional units. The fetch stage includes the
PC generation (i.e., branch prediction). The fetch stage of
the simulator operates on entire lines from the instruction
cache which are placed in the byte queue. A pre-decode
pipeline performs the initial decoding of the variable-length
x86 instructions to individual macro-ops, which are placed into
the instruction queue (IQ) with one macro-op per entry. From
here, the instructions proceed to the decoder pipelines. The
instruction queue size is 18. The I-TLB and D-TLB have 64
fully associative entries. The CPU has a 32-entry load/store
queue. The L1 instruction cache size is two-way 32KB, 64-
byte block size, and has an access latency of 2 cycles. The L1
data cache is a 32KB, 2-way associative, write back cache with
64-byte block size, and also has an access latency of 2 cycles.
The L2 cache is unified, 512KB size, 8-way associativity, 64-
byte block size, and has an 12-cycle access latency.

The simulator integrates DRAMSim2 [33] as the memory
model. DRAMSim is a cycle accurate open source JEDEC
DDRx memory system simulator. It provides a DDR2/3 mem-
ory system model. It uses open page policy, and therefore
attempts to schedule accesses to the same pages together to
maximize row buffer hits. The DRAM model tracks individual
ranks and banks, and accounts for pre-charge latencies, CAS
and RAS latencies, and refresh effects. We experimented with
different de-randomization cache sizes, from 64 translation
entries to 512 translation entries. Each entry supports 32-bit
instruction address translation.

VII.

For the benchmarks, the performance improvements of our
approach with 128-entry DRC lookup buffer over a straight-
forward implementation of ILR are shown in Figure 12, the
average speedup is 1.63 for all the benchmarks. For application
namd, h264ref, mcf, xalancbmk, our approach achieves more
than double speedup. We study the performance overhead
incurred by virtual control flow randomization over the default
baseline of no randomization. We further experiment with
different sizes of DRC lookup buffer, 512 entries, 128 entries,
and 64 entries. Figure 13 shows the results. The results indicate
that increasing the size of DRC lookup buffer can improve the
overall IPC. When the DRC lookup buffer has 512 entries, the
average IPC for all the benchmark applications with virtual
control flow randomization is almost 98.9% of the baseline
condition of no randomization. With a lookup buffer size of
64 entries, on average, the applications still maintain 97.9%
performance in terms of IPC, meaning 2.1% overhead.

RESULTS ANALYSIS

Figure 14 shows miss rates of the DRC lookup buffer.
There are two settings, 512 entries and 64 entries. The average
DRC miss rate under 512-entry lookup buffer is 4.5%. When
the DRC entry size is 64, the average miss rate increases to
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Fig. 12.  Performance speedup using DRC over straightforward implementa-
tion of ILR. Y-axis shows IPC ratio. DRC setting: 128 entries. The average
speedup is 1.63 for all the tested benchmarks.
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Fig. 13. Normalized IPC performance under different DRC sizes. Y-axis

shows normalized IPC over the baseline IPC of no randomization. The average
IPC slowdown is less than 2.1%.

20.6%. The results indicate that Ibm and xalancbmk have the
worst DRC miss rates. Note that sometimes, DRC cache miss
rate is not the only factor that affects performance. When there
is a DRC cache miss, the system will look up the L2 cache,
which is large enough for storing de-randomization table. In
short, our approach of hardware assisted control flow ran-
domization incurs very small overhead over no randomization
for the studied SPEC CPU2006 benchmark applications. The
average overhead is 2.1% IPC decrease under a small 64-entry
DRC lookup buffer.

In terms of power consumption, our approach incurs very
small overhead. Thank to the power modeling framework
already integrated with XIOSim, it is easy to modify the
simulators to take into account the extra power consumed by
the mediation layer that does de-randomization/randomization.
Figure 15 shows the dynamic power overhead under 128-entry
DRC. The average dynamic power overhead for the studied
SPEC benchmarks is 0.18% of the total CPU dynamic power.
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Fig. 14. DRC miss rates under two different settings, DRC with 512 entries
and DRC with 64 entries. Y-axis shows DRC lookup miss rates. The average
miss rate in 512-entry DRC is 4.5% and the average miss rate in 64-entry
DRC is 20.6%.
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Fig. 15. Dynamic power overhead of DRC (128 entries) for SPEC CPU2006
benchmarks. Y-axis shows percentages of DRC dynamic power over CPU
dynamic power. Power modeling is based on XIOSim and integrated McPAT.
The average dynamic power overhead is 0.18% of the CPU dynamic power.

VIII.
A. Software Based Approaches

RELATED WORK

Address Space Layout Randomization (ASLR) is a scheme
which hinders the original location of code and data ob-
jects [34], [35], [36], [37]. Some of these approaches ran-
domize the base addresses of process images, and some of
them randomize even at the basic block level (e.g., the in
place randomization [10]). Some of them use virtual machine
monitor to scramble the instruction addresses [38], and some
of them use binary rewritters to achieve this [39]. Compared
with these software based ASLR methods, our proposed mech-
anism guarantees more efficient randomization for the program
address space with the help of micro-architectural support.

Instruction Set Randomization (ISR) is also widely used
software approach to prevent code injection attack. In ISR, the
underlying system instructions [40], [8] are encrypted by use
of a random key set. The encrypted instructions are decrypted
only before the fetch stage of the processor pipeline. Although
ISR provides effective security solution for code injection
attack, leakage of the encryption key or succeed in guessing
procedure for the key may cause failure in the protection [41].
In addition, ISR is not designed to mitigate ROP attacks.

Randomization can be applied not only for instructions, but
also for the program data. For example, all pointers that are
resides in memory can be encrypted before they are used [42];
decryptions are performed only before the data is needed for
the processors. Recently, XORing the data with random mask
has been proposed to support probabilistic protection to cope
with the memory exploiting [43], [44].

Multi-variant system which is proposed by Cox et al. is
also based on software [45]. In their work, N-variant explores
diversification to enhance the security. The adversary should
subvert all the running variants simultaneously which is hard
to achieve. In this system, different ISAs are employed and
synchronized at system call level while our solution random-
izes the instruction addresses.

B. Hardware Based Approach

While there is a considerate amount of research from
software approaches to achieve diversification, less attention
has paid on the hardware approaches. Orthrus [46] is one of
the examples from hardware perspective. It protects software
integrity by exploiting multi-core architecture by executing
n versions using different processor cores. Kayaalp et al.
describe a hardware based protection mechanism that enforces
simple control flow rules at the function granularity to disallow
arbitrary control flow transfers from one function into the
middle of another function [47], Also, a signature-based
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detection of ROP is proposed, where the attack is detected
by observing the behavior of programs and detecting the
gadget execution patterns [12]. Though not directly targetting
ROP exploits, there are solutions that attempt to use hardware
performance counters to detect malware and verify control flow
integrity [13], [48].

Our work distinguishes from all the prior software based
and hardware based solutions. Our system tries to strengthen
control flow diversity with native hardware support for im-
proved performance and instruction fetch efficiency by pre-
serving the instruction locality, while at the same time maxi-
mizing control flow randomness.

IX. CONCLUSION

We have developed a micro-architectural solution to en-
hance dependability of software defending against code reuse
attack. Different from prior hardware based approaches for
mitigating the attacks, our approach is based on software
diversity and instruction location randomization. To address the
inefficiencies of memory system and instruction fetch caused
by instruction layout randomization, we propose a novel micro-
architecture design that can support native execution of ILR
software while at the same time preserve instruction fetch per-
formance. Using state-of-the-art architecture simulation frame-
work, XIOSim and a set of SPEC CPU2006 applications, we
show that our solution can achieve average speedup of 1.63
times over a straightforward hardware implementation of ILR.
Using our approach, direct execution of randomized binary
incurs only 2.1% IPC performance overhead. Currently, the
proposed idea is limited as single issue, in-order processor
which is widely used in the area of low-power consuming
embedded systems. However, in the near future, we will
explore and extend the idea to the out-of-order superscalar
processor for the contemporary high performance computing
systems.
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