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Abstract

Protection of data privacy and prevention of unwarranted information disclosure
is an enduring challenge in cloud computing when data analytics is performed on
an untrusted third-party resource. Recent advances in trusted processor technol-
ogy, such as Intel SGX, have rejuvenated the efforts of performing data analytics
on a shared platform where data security and trustworthiness of computations
are ensured by the hardware. However, a powerful adversary may still be able to
infer private information in this setting from side channels such as cache access,
CPU usage and other timing channels, thereby threatening data and user pri-
vacy. Though studies have proposed techniques to hide such information leaks
through carefully designed data-independent access paths, such techniques can
be prohibitively slow on models with large number of parameters, especially
when employed in a real-time analytics application. In this paper, we introduce
a defense strategy that can achieve higher computational efficiency with a small
trade-off in privacy protection. In particular, we study a strategy that adds noise
to traces of memory access observed by an adversary, with the use of dummy
data instances. We quantitatively measure privacy guarantee, and empirically
demonstrate the effectiveness and limitation of this randomization strategy, us-
ing classification and clustering algorithms. Our results show significant reduc-
tion in execution time overhead on real-world data sets, when compared to a
defense strategy using only data-oblivious mechanisms.
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1 Introduction

When computation involving data with sensitive information is outsourced to
an untrusted third-party resource, data privacy and security is a matter of grave
concern to the data-owner. For example, third-party services offering state-of-
the-art predictive analytics platform may be used on data containing private
information such as health-care records. An adversary in this environment may
control the third-party resource for obtaining records of a specific user, or iden-
tifying sensitive patterns in data. Typically, data is protected from such external



adversaries using cryptographically secure encryption schemes. However, direct
computation on encrypted data, using techniques such as fully-homomorphic
encryption schemes [13], can be inefficient for many practical purposes [21], in-
cluding data analytics - the focus of this paper.

Recent advances in hardware-based technology such as Intel SGX offers cryp-
tographically secure execution environment, called an FEnclave, that isolates code
and data from untrusted regions within a device. It is natural to leverage the
confidentiality and trustworthiness provided by this mechanism, supported by
an untrusted third-party server, to efficiently perform large-scale analytics over
sensitive data which is decrypted within a secure region. An adversary control-
ling this server will neither have access to decrypted data, nor will be able to
modify computation involving it.

Unfortunately, studies have discovered presence of side-channels that may
leak undesirable information from within an enclave. By observing resource ac-
cess and timing, an adversary can design an attack to derive sensitive informa-
tion from computation at runtime [14,34]. Nevertheless, mechanisms to eliminate
such information leak typically relies on the software developer to hide access
patterns with other non-essential or dummy resource accesses. These include
balanced execution [31] and data-oblivious execution [26]. From the adversar-
ial point of view, these mechanisms add noise to patterns emerging from es-
sential computation of a naive implementation. Although using such defenses
curb information leak from an SGX enclave and guarantee data privacy, they
add significant computational overhead on certain applications in data analyt-
ics; in settings involving a large number of parameters, and requiring real-time
response [23].

In this paper, we discuss a novel defense mechanism that can achieve lower
computational overhead with a trade-off on privacy guarantee, when performing
data analytics within an SGX enclave running on a third-party server. In partic-
ular, we focus on two classical problems in data analytics, i.e., data classification
and clustering. Here, a statistical model is used to predict class labels of given
data instances (in classification) or associate them to clusters (in clustering).
We generate new dummy data instances and interleave them with wuser-given
data instances before evaluation. Our proposed defense strategy leverages equiv-
alence in resource access patterns observed by an adversary during evaluation of
user-given and dummy data instances. This introduces uncertainty in observed
side-channel information in a stochastic manner.

In short, we make the following contributions in this paper.

— We present a defense strategy against side-channel attacks on Intel SGX
by randomizing information revealed to the attacker, and asymptotically
guaranteeing data privacy.

— We illustrate its application on popular data analytics including decision tree
and Naive Bayes classification, and k-means clustering techniques.

— We study the effect of privacy in terms of proportion of dummy data in-
stances employed with respect to user-given data instances, and empirically
demonstrate the effectiveness of our defense strategy.



The rest of the paper is organized as follows. We first provide relevant back-
ground on Intel SGX and data analytics in §2. We detail the threat model and
our defense strategy in §3, and describe relevant implementation techniques in
§4. We quantify privacy guarantee of the proposed strategy with respect to the
number of dummy data instances in §5, and then present empirical estimates
of computational overhead using real-world datasets. We finally discuss related
studies in §6, and conclude in §7.

2 Background

2.1 Intel SGX

Intel Software Guard Extensions (SGX) [2] is a set of additional processor in-
structions to the x86 family, with hardware support to create secure memory
regions within existing address space. Such an isolated container is called an
Enclave, while rest of the address space is untrusted. Data within these memory
regions can only be accessed by code running within the enclave. This access con-
trol is enforced by the hardware, using attestation and cryptographically secure
keys [11] with a trusted processor. The new SGX instructions are used to load
and initialize an enclave, as well as enter and exit the protected region. From a
developer’s perspective, an enclave is entered by calling trusted ecalls (enclave
calls) from the untrusted application space. The enclave can invoke untrusted
code in its host application by calling ocalls (outside calls) to exit the enclave.
Data from the enclave is always encrypted when it is in memory, but there are
cases in which the content should be securely saved outside the enclave. The pro-
cess of exporting the secrets from an enclave is known as Sealing. The encrypted
sealed data can only be decrypted by the enclave. Every SGX-enabled processor
contains a secret hardware key from which other platform keys are derived. A
remote party can verify that a specific enclave is running on SGX hardware by
having the enclave perform remote attestation.

Attacks While performing computations within the enclave, an adversary con-
trolling the host OS may infer sensitive and confidential information from side-
channels [27]. Assuming the application executed within an enclave is benign, i.e.,
it does not actively leak information, the attacker may observe input-dependent
patterns in data access and execution timing for inferring sensitive information.
This is called as cache-timing attack [14]. Since OS is allowed to have full control
over the page table of an SGX enclave execution, the attacker controlling the
OS may know page access patterns. This eliminates noise in side-channels, and
is called as Controlled-channel attack [34].

Defenses The burden of ensuring efficiency, data privacy and confidentiality
lies with the application developer who verifies platform authenticity, and per-
forms guarded memory and I/O access. Therefore, studies have proposed vari-
ous mechanisms including balanced execution [31] and data-oblivious computa-



tions [26]. In balanced execution, each branch of a conditional statement is force-
fully executed by creating dummy operations of data and resource access [27].
Whereas a data-oblivious solution has its control-flow independent of its input
data. As mentioned in [26], efficient ORAM techniques [33] cannot be employed
for data analytics since it does not hide input-dependent access paths, and is
not ideal for applications making large number of memory accesses. However,
data-independent access techniques can be used to defend against page-level
and cache-level attacks. In our paper, we discuss a solution that significantly
reduces sensitive information in side-channels by creating and utilizing dummy
data along with the original user-given data during computation.

2.2 Machine Learning

Machine learning is a set of algorithms used to learn and predict patterns in
data. With applications such as image recognition, video analytics [3] and text
comprehension [15], this growing field in computer science has attracted large
attention from both industry and academia. In general, a data instance is a
d-dimensional vector whose elements represent characteristic features. A set of
such data instances is called a dataset. The goal of learning is to identify char-
acteristic patterns in a dataset by training a statistical model, which is later
used to evaluate data instances in the future by generalization [9]. In our study,
we apply the proposed defense strategy on classification models including deci-
sion tree and Naive Bayes, where the problem is to predict class label of a given
data instance. The classifier parameters are learned using a disjoint dataset with
known class labels. Furthermore, we also demonstrate the defense strategy over
k-means clustering algorithm, where the problem is to group similar instances
in the dataset. In both these problems, the attacker is interested not only in ob-
taining input-dependent patterns from side-channel information, but also model
parameters and structure that are confidential.

3 Secure Data Analytics

3.1 Threat Model

Analytics on data containing sensitive information is performed on a third-party
untrusted server with Intel SGX support. While data-owners have no control
over this server, they may establish a cryptographically secure connection to
an enclave in the server. Similar to [19], we assume that an attacker controls
the untrusted server, and has the ability to interrupt the enclave as desired, by
modifying the OS and SGX SDK, to obtain side-channel information from page
or cache accesses, page faults, and log files. Nonetheless, code and data within
the enclave cannot be modified, except by the data-owner.

The primary goal in an attack is to obtain sensitive information leaked
through side-channels from a benign machine learning application running within
the SGX enclave. Sensitive information may include model parameters, feature



Symbols|Description Parameters

d # Features Model Poblic Confdential

g ﬁagaf;?:iis Decision Tree|n,d, C' x,y, Tree

y Class Label Naive Bayes |n,d,C z,y, P(y|x), P(y)

n Dataset Size K-Means n,d,C.k, Iz, y,T

k # Clusters Table 2: List of public and confidential

T Set of Clusters parameters. Here, Tree indicates model

L # Dummy Data structure, and P indicates probability
Table 1: List of symbols. function.

values of input data, and data distribution statistics. For example, structure
of a decision tree (denoted by Tree) may be revealed if nodes in the tree are
present on different pages, while the attacker tracks the order of execution during
evaluation. Similarly, proportion of each cluster (denoted by T') in the k-means
clustering algorithm may reveal sensitive data patterns. We term this set of sensi-
tive attributes as confidential. A defense mechanism aims to prevent the attacker
from inferring confidential attributes through side-channel information. Never-
theless, each learning algorithm has parameters which are data invariant. For
example, height of a decision tree (H), number of features in each data instance
(d), domain and range of feature values (f), number of class labels (C), number
of clusters in k-means clustering (k), and number of iterations for learning (I),
remains constant for a given dataset. These parameters can be easily inferred
from analyzing algorithmic execution. We assume that the code for each algo-
rithm is publicly available, along with its data invariant parameters. Table 2 lists
the associated confidential and public parameters for each algorithm considered,
with Table 1 listing the frequently used symbols in this paper.

3.2 Overview

Figure 1 illustrates the overall defense methodology proposed in this paper. An
user provides cryptographically secure encrypted data (containing sensitive in-
formation) to a third-party untrusted server, along with a pre-trained model. An
enclave is established, and the pre-trained model initialized. By requesting a set
of data instances into the enclave from application memory through an ocall, we
decrypt these instances and empirically evaluate the domain and range statis-
tics of each feature. Since we desire that computation involving dummy data
instances produce access patterns similar to that of user-given data instances,
we generate d feature values uniformly at random within its empirical range to
create a dummy instance. After generating L such instances, we shuffle them
with user-given data instances in a data-oblivious manner and evaluate each
instance in the shuffled dataset sequentially using the pre-trained model that is
fully encapsulated within the enclave. By obliviously ignoring results associated
with dummy data instances, we obtain the results for user-given data instances.
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We then encrypt these results in a cryptographically secure manner, and save it
in the untrusted application memory via an ocall. Here, data-oblivious shuffling
of dummy and user-given instances is crucial since it introduces uncertainty in
access patterns observed from side-channels by the attacker.

Crux of the above solution is in the way we generate dummy data instances,
and use data-oblivious mechanisms for shuffling and ignoring results of compu-
tation associated with dummy data instances. If we only employ the shuffled
(contaminated) dataset for evaluation in a naive implementation of a data ana-
lytics algorithm, i.e., by ignoring results from dummy instances, it may not be
possible to conceal all sensitive model parameters and data patterns. Each learn-
ing algorithm has an inductive bias, different from one another, which prevents
universal application of a naive strategy by itself. For example, the inductive
bias of a decision tree is that data can be divided in the form of a tree struc-
ture. Whereas, the bias in k-means clustering assumes that instances having
similar properties are closer to each other than those with dissimilar properties.
In both these cases, the structural representation of data is different, and is
input-dependent. We address this challenge by utilizing dummy data instances
to conceal model structure and parameters as well. This indicates that computa-
tion involving dummy data instances need to be tracked, but in a data-oblivious
manner so that uncertainty in resource access trace observed by the attacker is
preserved. We first introduce the primitives of our defense strategy, i.e., dummy
data generation and data-oblivious comparison, in §3.3, and describe data ana-
lytics algorithms that utilize them for defense, in §3.4.

3.3 Primitives

Dummy Data Generation. Algorithm 1 illustrates our dummy data gener-
ation process. Using public parameters of user-given dataset D, we choose a
random number uniformly within the range of each feature (i.e., values between
MIN and MAX) in D. This choice limits the bias of dummy data instances, and
prevents them from having distinguishing characteristics compared to user-given
data instances. If not, an attacker may be able to identify such characteristics
and discard access traces associated with dummy data instances, thereby defeat-



Algorithm 1: A primitive for generating dummy data instances.

Input: D: Dataset, n: Dataset Size, d: No. Features
. Result: D: Shuffled Data Instances

begin
MAX, MIN = get_range(D, n, d)
D=D

while |D| < (n+ L) do
v = array(d) // Initialization
for i € {0,d} do
L v[i] = random(MAX;, MIN;)

D+

return oblivious_shuffle(D)

int max(int x, int y) {
int max(int x, int y) { int d;
if(x > y) { ifx > y) {
return x; d=1;
} else { } else {
return y; d=0;
3} }
3 return (x*d + y*(1-d));
}
a) Non-oblivious max b) Oblivious max

Fig. 2: Hlustration of data-oblivious comparison.

ing our defense mechanism. We generate L dummy data instances and initially
append them to the set of user-given data instances, forming D. We then shuffle
D in an oblivious manner, and sequentially process each data instance from the
shuffled dataset during evaluation. One corner case is when MIN = MAX. With the
goal of increasing variance of each feature in D, we add an appropriate margin
to MAX such that MIN < MAX is always true. In §4, we present the implementation
details of oblivious data shuffling.

Data-Oblivious Comparison. We use a data-oblivious comparison primitive
for checking whether a data instance is dummy or not. Typically, we first com-
pute using a data instance, and then decide whether to ignore or retain the
result of such computation depending on the type of data instance involved. We
only desire to ignore results involving dummy data instances in a data-oblivious
fashion. This ensures that the attacker observes resource access traces from both
user-given and dummy data instances, which are indistinguishable.

Figure 2 illustrates the difference between non-oblivious and oblivious max
function as an example of comparison primitive. Figure 2b is oblivious at the
element-level since both conditional branch statements access the same set of
variables. Whereas, Figure 2a is non-oblivious since either x or y is accessed
when the max function returns depending on the conditional statement executed.
In the case of an array, we access all elements in the array sequentially to remain
data-oblivious. The mechanism proposed in [26] uses a more efficient compiler-
based approach to perform oblivious comparison and array access at cache-level



Fig.3: Creating an obfuscated decision tree. Shaded nodes are formed
using dummy data while others are formed using user-given data. Labels
(denoted by {1,2,3}) of the original tree’s leaf node is replicated in its
descendant leaf nodes of the obfuscated tree.

granularity instead of element-level granularity. We leave its adaptation to our
proposed approach for future work.

3.4 Learning Algorithms

Decision Tree Classifier. It is a tree-based model that uses a information-
theoretic measures for data classification. In training a popular variant called
ID3 [9], a feature with the largest information gain, with respect to the class
label, is selected for partitioning the dataset into disjoint subsets. By iteratively
performing this data partitioning on each residual data subset, a tree structure is
created. Each feature value used for partitioning (or rule) then becomes either the
root or an internal node of this tree. A leaf is formed when further partitioning
is discontinued or unnecessary, i.e., when either all features are used along a
path from the root, all data instances within the residual data subset has the
same class label, or a user-defined maximum tree height is achieved. The last
stopping condition is typically used to reduce overfitting [9]. During evaluation,
class label of a test data instance is predicted as the majority label at a leaf that
is encountered by following tree branches, starting from the root, according to
its feature value consistent with the associated rule of intermediate tree nodes.

When a naive implementation of the above algorithm is employed within an
SGX enclave, the attacker may track data-dependent tree node accesses during
evaluation. This reveals the tree structure as well as the path of each test data
instance. A typical strategy to defend against this side-channel inference-based
attack is to balance the tree by adding dummy nodes, and access all nodes
during evaluation of each test instance. As mentioned in [26], such a strategy
has a runtime complexity of O(na) during evaluation, where « is the number
of tree nodes. However, the complexity in a naive implementation is O(nlog ).
Clearly, data-obliviousness is achieved at the cost of computational efficiency,
especially when « is large.

Instead, we utilize the dummy data generation primitive to obtain a con-
taminated dataset, and use the naive evaluation algorithm for class label pre-
diction. During training, we learn a decision tree using user-given training data



instances (with known class labels), and create a balanced tree using dummy
data instances, offline. Figure 3 illustrates an example of a balanced decision
tree. Here, a tree (we term as original) resulting from user-given training data
instances is obfuscated with nodes created from dummy data instances to obtain
a balanced tree. Leaf nodes in the obfuscated tree reflect the class label of its an-
cestor node that form a leaf in the original tree. Clearly, the predicted class label
of a test data instance on the obfuscated tree is the same as the original decision
tree. Since dummy data instances are obliviously shuffled with user-given test
data instances, access traces obtained by the attacker for dummy data instances
are indistinguishable from that of user-given test instances. Therefore, the true
data access path is hidden in the overall noisy access path obtained by the at-
tacker. With L dummy data instances in the contaminated dataset, the time
complexity of evaluating n user-given test data instances is O((n + L) log ).

Naive Bayes Classifier. It is a Bayesian model trained with an assumption of
feature independence, given class labels [9]. Similar to the decision tree model, we
train a Naive Bayes classifier offline with a user-given training dataset and eval-
uate test data instances online, i.e., within an SGX enclave. During evaluation,
the predicted label of a test data instance is a class with the largest conditional
probability, given its feature values. Such a classifier is typically used in the
field of text classification that has large number of discrete valued features. The
product of class conditional probability is computed for each feature value of
user-given test data instance. Naively, one can pre-compute conditional proba-
bility for each feature value during training and access appropriate values during
evaluation. In this case, an attacker may infer class and feature proportions of
a given test dataset by tracking access sequence of pre-computed values. In a
purely data-oblivious defense strategy, every element in the pre-computed array
is accessed for evaluating each test data instance. If each of the d features have a
discrete range of size f, computational time overhead for evaluation is n x d x f,
whereas that of the original naive evaluation is n x d. Clearly, this is a bottleneck
in execution time when the range f is large. Instead, we utilize our dummy data
generation primitive during evaluation by employing the naive method for ac-
cessing pre-computed array elements, inducing access patterns that are alike for
both user-given and dummy data instances. The overhead in computational time
for our modified version of Naive Bayes is (n + L) x d. If L < f, our proposed
defense is more efficient than the pure data-oblivious solution.

K-Means Clustering. The goal of k-means clustering is to group data in-
stances into k disjoint clusters, where each cluster has a d-dimensional cen-
troid whose value is the mean of all data instances associated with that clus-
ter. Clusters are built in an iterative fashion. We follow a streaming version of
Lloyd’s method [9] for constructing clusters and evaluating user-given test data
instances, since they are suitable for handling large datasets. During training, k
cluster centroids are created by iteratively evaluating its value with least mean
squared Euclidean distance, and re-evaluating cluster association of user-given



data instances using the computed centroid. Evaluation is performed online, i.e.,
within an SGX enclave. The user provides learned centroid and a set of test
data instances. While cluster association of each data instance is evaluated by
computing the minimum Euclidean distance to centroids, we re-compute the
centroid of its associated cluster using the test data instances.

In a naive implementation of k-means clustering, the attacker can infer sensi-
tive information, such as cluster associated of each data instance by tracking the
centroid being accessed during assignment, and cluster proportions during cen-
troid re-computation. The pure data-oblivious solution addresses this problem
by performing dummy access to each centroid. On the contrary, we utilize the
dummy data generation primitive to perform cluster assignment of both dummy
and user-given data instances in an oblivious manner, and use the unmodified
naive cluster re-computation method. This adds noise to cluster proportions in-
ferred by the attacker. Since the number of clusters is fixed and is typically small,
the time complexity remains the same as the original algorithm [26].

4 Implementation

One possible attack on the proposed defense strategy is to collect access traces
of identical test data instances during evaluation, and use a statistical method
to identify execution pattern of user-given test data instances in them. The main
idea is that though these traces will be poisoned with execution involving ran-
dom dummy data instances, execution of identical test data instances remain
same. An attacker may produce such identical test instances by capturing an
encrypted user-given instance at the application side, and providing identical
copies of this data as input to the enclave application. We use a simple tech-
nique for discouraging this replay-based statistical attack by associating each
data instance with a unique ID (called nonce), whose value is generated from a
sequential counter. When data instances are passed to the enclave in response to
an ocall, we check for data freshness within the enclave by comparing the inter-
nal nonce state to the nonce of each input. We proceed with evaluation if each
new nonce value is greater than the previous one, else we halt execution. Since
an attacker cannot change the nonce value of an encrypted data instance, this
can detect stale instances used for a replay attack. We are aware that there exists
superior methods for generating dummy data instances to thwart replay-based
attacks in related domains [20], and leave its exploration for future work.

An important technique for reducing the effectiveness of inferring sensitive
information from side-channels is the random shuffling of dummy data with
user-given data instances in a data-oblivious manner. For simplicity, we assume
that domain of each feature in the dataset is either discrete or continuous real-
valued numbers. Nominal features are converted into binary vector using one-hot
encoding [24]. Data shuffling is performed as follows. For brevity, we call the ar-
ray containing data instances within the enclave as data-array. We associate a
random number to each element of the data-array. Initially, dummy data in-
stances are appended to the data-array as soon as they are created. We utilize



sgx_read_rand for random number generation. We then shuffle this array using
an oblivious sorting mechanism over these random numbers. Similar to [26], we
implement the Batcher’s odd-even sorting network [5] for data-oblivious sorting,
utilizing data-oblivious comparison during data swap when necessary. The run-
time of this sorting method is O((n+ L)(log(n+ L))?). There are other shuffling
algorithms with more efficient runtime complexity. We leave its applicability for
future work. Meanwhile, we use a Boolean array, of size equal to the data-array,
where value of each element indicates whether the corresponding instance in
data-array is dummy or otherwise. Using oblivious comparison primitive, we
identify and ignore computational results involving dummy data instances while
sequentially evaluating the shuffled dataset.

5 Evaluation

Next, we analyze privacy guarantee of our proposed method and empirically
evaluate computational overhead on various datasets.

5.1 Quantification of Privacy Guarantee

In our attack model, the attacker obtains execution traces in terms of sequential
resource access while performing data analytics with user-given data instances.
An attack on data privacy is successful when the attacker infers sensitive informa-
tion from these traces by identifying distinguishing characteristics. However, the
attack is unsuccessful if such distinguishing characteristics are either eliminated
or significantly reduced via a defense mechanism. Such defenses are effective
when they can provide quantifiable guarantees on data privacy. The primary
question is how to measure privacy? Authors in [26] measure data privacy in
terms of indistinguishability of a trace against a randomly simulated one. Since
our defense mechanism primarily consists of performing non-essential or fake
resource accesses, we define this indistinguishability in terms of trace-variants
that is possible in a data analytics model. A trace-variant can be viewed as a
sequence of page (or cache line) access when evaluating a test data instance. If
N is the total number of trace-variants observed by an attacker from the model,
we compute Privacy-Guarantee (denoted by ) as the ratio of fake trace-variants
to the total number of observed trace-variants. The value of N may depend on
the variance in data and model. From a defense strategy perspective, every new
data instance can provide a different access sequence at best. In this case, N = n
where n is the user-given dataset size. The following analysis assumes this case
for simplicity, including the defense against replay attack mentioned in §4.

In a purely data-oblivious solution [26], there are N — 1 fake trace-variants
during evaluation since all possible cache-lines are accessed so that access pattern
is the same for all data instances. For example, all nodes in a decision tree is
accessed for evaluating the class label of each data instance. Here, each node may
reside on a different cache-line or page. Therefore, v = % Note that v ~ 1
with large INV; privacy is guaranteed on large N when this defense mechanism
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Fig. 4: Measuring privacy guarantee of SGX defense mechanisms.

is applied. On the other end of the privacy-guarantee spectrum, v = 0 when
no defense is applied, i.e., no fake trace-variants are possible. At this extreme,
no privacy is guaranteed to the user’s data. Figure 4 illustrates this privacy-
guarantee spectrum.

Our proposed solution provides asymptotic privacy guarantee in terms of
number of dummy data instances used. Since L dummy data instances are gener-
ated, there are at most L fake trace-variants with N 4+ L observed trace-variants.
Therefore, the associated privacy-guarantee is v = ﬁ Clearly, a larger value
of L provides greater privacy guarantee; it tends towards the + value of purely
data-oblivious solution (i.e., v ~ 1) for large L. If L < N, then an attacker
can simply guess each trace to be true and infer sensitive information with a
higher probability than random. Therefore, we choose L > N to limit proba-
bility of a correct guess by the adversary to % at best (as shown in Figure 4),
similar to [26]. We now empirically demonstrate our proposed technique, and
showcase the trade-off between privacy guarantee and computational efficiency
with different choices of L.

5.2 Datasets

We measure execution time overhead of the proposed defense strategy using
3 publicly available real-world datasets [28] and a synthetic dataset. Table 3
lists these popular datasets with corresponding data statistics. The Arrhyth-
mia dataset consists of medical patient records with confidential attributes and
ECG measures. The problem is to predict the ECG class of a given patient
record. The Defaulter dataset consists of financial records containing sensitive
information regarding clients of a risk management company. The problem is to
predict whether a client (i.e., a data instance) will default or not. Next, we use
a benchmark dataset called ForestCover. Here, multiple cartographic attributes
of a remotely sensed forest data are given. The problem is to predict forest type
of a given data instance. Finally, we create the Synthetic dataset from a popular
software for data stream mining called MOA [8].

These datasets may contain continuous and discrete valued features. For
simplicity of implementation, we evaluate the decision tree and Naive Bayes
classifiers using a quantized version of each dataset. We divide each feature range



Statistics Time Overhead

Dataset Size |Features|Classes| Decision Tree | Naive Bayes K-Means
(n) (d) (©) SGX | SGX | SGX | SGX | SGX | SGX
+Obliv|+Rand|4Obliv|+Rand|+Obliv|+Rand
Arrhythmia (A)| 452 280 13| 52.49| 9.37| 319.15] 6.11| 4.16| 6.36

Defaulter (D) {30,000 24 2 4.13] 1.11 1.56| 1.10{ 1.07 1.17
ForestCover (F)|50,000 55 7 2.72| 1.09 3.13| 1.08| 1.05 1.07
Synthetic (S) |50,000 71 7 2.53| 1.09 3.47 1.07 1.22| 1.09

Table 3: Dataset statistics and empirical time overhead with L = n.

into discrete bins of equal width. For decision tree, we use f = 10 bins. However,
for Naive Bayes, we use f = 1000 bins to reflect the dimensionality mentioned
in §3.4. Nevertheless, we use the original form of each dataset to evaluate the
k-means clustering algorithm.

5.3 Results and Discussion

The goal of empirical evaluation is to study and demonstrate applicability of our
defense strategy in various settings. We implement a pure data-oblivious strat-
egy, similar to [26], using data-oblivious comparison and array access over naive
implementation of each data analytics algorithm. This baseline defense strategy
is denoted by Obliv, whereas our proposed implementation is denoted by Rand.
For each modified data analytics algorithm (i.e., Obliv and Rand), the compu-
tational time overhead is measured as the ratio of time taken by the modified
algorithm executed within an SGX enclave to that of a naive implementation
executed without SGX support. We perform all experiments on an SGX-enabled
8-core i7-6700 (Skylake) processor operating at 3.4GHz, running Ubuntu 14.04
system with a 64GB RAM.

Table 3 lists the time overhead measured on each dataset for decision tree
and Naive Bayes classifiers, as well as k-means clustering, averaged over 5 inde-
pendent runs. Note that we denote the defense strategies with SGX+x, where
x = {Obliv, Rand}, to emphasize that they are executed within an SGX enclave.
Since SGX currently supports limited enclave memory, we evaluate in a stream-
ing fashion by dividing the dataset into small disjoint sets or chunks. Evaluation
is performed over each chunk of size 64, over the given pre-trained model.

From the table, Rand clearly performs significantly better than Obliv in the
case of decision tree and Naive Bayes classifiers. For example, Rand has only
11% overhead when class labels are evaluated using a decision tree in 16.76s,
compared to Obliv that takes 62.02s, on the Defaulter dataset. When executing
without any defense within the SGX enclave, it took 16.13s. This shows that
overhead due to enclave operations is small, as expected [17]. A higher overhead
is observed in the Arrhythmia dataset due to smaller dataset size. For example,
the naive implementation of decision tree on this dataset takes 0.01s, compared
to 0.79s in Obliv, and 0.14s in Rand. Also, it took 0.08s on the implementation
within SGX enclave, but without employing any defense strategy. Clearly, the



cost of dummy data operations in Rand can be observed in the larger execution
time compared to the naive implementation, yet it is much lower than Obliv.

Limitations. For both decision tree and Naive Bayes classifiers, the number
of fake resource access in Obliv is greater than that of Rand. Evaluating every
test data instances in Obliv accesses each branch in a decision tree, and each
of the d x 1000 elements in the pre-computed probability array of Naive Bayes.
Meanwhile, corresponding resource access in Rand is significantly small. How-
ever, when resource access patterns in both Obliv and Rand is similar during
evaluation, the compromise on privacy with little or no trade-off in computa-
tional time of Rand is not very enticing. Time overhead shown in Table 3 for
k-means clustering algorithm indicates one such example. Here, every cluster
has to be accessed when searching for the nearest centroid to a given test data
instance. While in Obliv, centroid re-computation of cluster assignment may
be performed for each cluster, the time taken for oblivious shuffling of n + L
elements in Rand seem to surpass this re-computation time overhead. Except
for the Synthetic dataset, Obliv outperforms Rand in all other datasets. In this
situation, it is better to use Obliv defense strategy that guarantee better data
privacy than the Rand strategy which provides a sub-optimal privacy guarantee.

Cost of More Privacy. The above results for Rand uses equal number of
dummy and user-given data instances, i.e. L = n. If L is increased to provide
better privacy according to §5.1, the cost of oblivious data shuffling, in terms of
execution time, increases since n + L data instances are to be shuffled. Figure 5a
illustrates this increase in time overhead when using a decision tree classifier with
Rand defense on various datasets as an example. This indicates that the value of
L can be chosen appropriately by a programmer with desirable trade-off between
computational overhead and data privacy. For example, a larger value of L for
higher v may be appropriate when the model has larger search space, similar to
the Naive Bayes classifier discussed in this paper. In such cases, higher value of
~ reduces the likelihood of dummy data instances producing unique patterns,
with respect to user-given data instances.

5.4 Security Evaluation

The goal of our security evaluation is to empirically address the two main ques-
tions regarding Rand’s data privacy guarantee; 1) Are access traces observed by
the attacker randomized?, and 2) Are traces obtained from evaluating user-given
and dummy data instances indistinguishable? Using Pin Tool [22], we generate
memory access traces (sequence of read and write) of each classifier implemen-
tation when executing it in the SGX simulation mode. Here, we create 5 disjoint
sets of 16 randomly chosen data instances for each dataset.

To answer the first question, we obtain traces by independently evaluating
the 5 sets of data instance on a classifier, for each dataset. We perform different
experiments on classifier implemented with no defenses (naive), Obliv, and Rand,
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Fig.5: (a) shows time overhead with increasing L (in proportion of n) on
decision tree classifier with Rand, on - - D, —#— F and -~ - S datasets.
(b) shows similarity scores between access traces across different sets of
instances when evaluated on the same classifier. Here, comparison between
different defenses are shown, i.e., 10 Rand, 0 Obliv, and no defense (U1).
Finally, (c) shows similarity between traces of user-given and dummy data
instances within a set of instances evaluated on 00 Rand.

for comparison. We then compute Levenshtein similarity [25], as a surrogate to
measure noise addition, between traces from the 5 sets on each dataset. Here,
more similarity implies less randomization (i.e., added noise). Figure 5b shows an
example result on trace comparisons obtained by evaluating a decision tree with
corresponding defenses. In the figure, we can observe that traces from Obliv
are more similar to each other (across the 5 sets) than those from the naive
implementation, as mentioned in [26]. For example, in the Arrhythmia dataset,
we obtain a similarity measure of 0.89 for Obliv compared to 0.81 for naive.
However, traces from Rand are more dissimilar to each other compared to Obliv
and naive approaches, indicating more data variance and randomization. On the
contrary, we address the second question by comparing traces within a single
set of 16 data instances. Concretely, we compute Levenshtein similarity between
traces obtained by evaluating user-given data instances only, and those of dummy
data instances only, in each set. Figure 5c illustrates an example on decision tree
classifier with Rand. The high similarity scores between traces corresponding to
the two types of data instances indicate indistinguishability.

6 Related Works

Studies on applications using Intel SGX have focused on an untrusted cloud
computing environment. The first study in this direction [7] executed a complete
application binary within an enclave. However, using this method on applica-
tions requiring large memory caused excessive page-faults that revealed critical
information [32], thereby violating data privacy. To address this challenge, a
recent study [29] used Hadoop as an application to split its interacting compo-
nents between SGX trusted and untrusted regions. The main idea was to reduce
TCB memory usage within the enclave for decreasing page faults. Challenges



in executing data analytics within an SGX enclave was first recently described
by Ohrimenko et al. [26]. They propose a pure data-oblivious solution to guar-
antee privacy at cache-line granularity. We have compared our approach with a
similar defense strategy. Alternative to algorithmic solutions, studies have pro-
posed mechanisms to detect and prevent page faults attacks via malicious OS
verification [12] and transactional synchronization [30].

A large group of studies in privacy preserving mechanisms deal with designing
algorithms to preserve data privacy before data is shared with an untrusted en-
vironment [1]. Particularly, these studies focus on problems where identification
of individual records are undesirable. Typically, the data is modified by addition
of noise to features, regularization conditions, use of anonymization [10], and
randomization [18] techniques. Instead, we focus on using a trusted hardware
environment to protect privacy by using cryptographic methods to maintain
confidentiality and trustworthiness [6]. We randomize side-channel information
rather than user data for preserving privacy.

Use of dataset contamination to defend against adversaries is not new in ma-
chine learning settings. Studies on anomaly detection and intrusion detection [16)
have discussed various types of attacks and defenses with regard to poisoning
a user-given dataset with random data [4]. Particularly, a process called Disin-
formation is used to alter data seen by an adversary as a form of defense. This
corrupts the parameters of a learner by altering decision boundaries in data clas-
sification. The process of randomization is used to change model parameters to
prevent an adversary from inferring the real parameter values. These methodolo-
gies, however, limit the influence of user-given data in the learning process and
may affect model performance on prediction with future unseen data instances.
In all these cases, the adversary does not have control over the execution envi-
ronment, and is weak. We instead leverage the effect of randomization to defend
against side-channel attacks from a powerful adversary while performing data
analytics on an Intel SGX enabled processor.

7 Conclusion

In this paper, we introduce a method to randomize side-channel information
observed by a powerful adversary when performing data analytics over a SGX-
enabled untrusted third-party server. With the help of dummy data instances
and oblivious mechanisms, we study the trade-off between computational effi-
ciency and data privacy guarantee in setting with large parameters. Our em-
pirical evaluation demonstrates significant improvement in execution time com-
pared to state-of-the-art defense strategy on data classification and clustering
algorithms, with a small trade-off in privacy.
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