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Abstract—Disassembling stripped binaries is a prominent
challenge for binary analysis, due to the interleaving of code
segments and data, and the difficulties of resolving control
transfer targets of indirect calls and jumps. As a result, most
existing disassemblers have both false positives (FP) and false
negatives (FN). We observe that uncertainty is inevitable in
disassembly due to the information loss during compilation and
code generation. Therefore, we propose to model such uncertainty
using probabilities and propose a novel disassembly technique,
which computes a probability for each address in the code space,
indicating its likelihood of being a true positive instruction.
The probability is computed from a set of features that are
reachable to an address, including control flow and data flow
features. Our experiments with more than two thousands binaries
show that our technique does not have any FN and has only
3.7% FP. In comparison, a state-of-the-art superset disassembly
technique has 85% FP. A rewriter built on our disassembly
can generate binaries that are only half of the size of those
by superset disassembly and run 3% faster. While many widely-
used disassemblers such as IDA and BAP suffer from missing
function entries, our experiment also shows that even without any
function entry information, our disassembler can still achieve 0
FN and 6.8% FP.

I. INTRODUCTION

Analyzing and transforming commercial-off-the-shelf and
legacy software have many applications [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], such as bug finding, security hardening,
reverse engineering, code clone detection and refactoring.
However, they are highly challenging due to the lack of source
code. The first fundamental problem is to precisely disassem-
ble the software. The seemingly simple task is indeed highly
challenging due to the diversity and complexity of compilation
and optimizations. There are two popular kinds of disassembly
techniques. The first one disassembles instructions following
the address order, called linear sweep disassemblers, and
the other disassembles instructions by following control flow
edges (e.g., jumps and calls), called traversal disassemblers.
Both have well known limitations. In particular, code and data
can interleave, causing a large number of false positives and
even false negatives in linear sweep disassemblers; traversal
disassemblers suffer indirect control flow caused by function
pointers, virtual tables, and switch-case statements, which
make recognizing control transfer targets highly difficult. Even
the state-of-the-art disassemblers such as those in BAP [22],
IDA-Pro [23], OllyDbg [24], Jakstab [25], SecondWrite [26],
and Dyninst [27] have difficulty fully disassembling complex
binaries [28]. Some may miss up to 30% of the code [28].
There are machine learning based methods [29] that aim

to recognize function entries by instruction patterns (e.g.,
starting with “push ebp”). However, such methods have
inevitable false positives and false negatives (e.g., the entries
of many library functions do not follow specific patterns).
Recently, superset disassembly [30] was proposed to address
these limitations. It disassembles at each address to produce a
superset of instructions. A rewriter is built on the disassembler
to instrument all superset instructions. While it has a critical
guarantee of no false negatives that other binary rewriting tools
cannot provide, the rewritten binaries have substantial code
size blow-up and nontrivial runtime overhead (e.g., 763% size
overhead and 3% runtime overhead on SPEC programs).

We argue that the capabilities of reasoning about uncertainty
is critical for binary analysis, since it is inherent due to the
lack of symbolic information. Our overarching idea is hence
to use probabilities to model uncertainty and then perform
probabilistic inference to determine the appropriate way of
disassembling subject binaries. In particular, our disassembler
computes a posterior probability for each address in the code
section to indicate the likelihood of the address denoting a
true positive instruction (i.e., an instruction generated by the
compiler). Specifically, our technique disassembles the binary
at each address just like superset disassembly. We call the
result the superset instructions or valid instructions, which
may or may not be true positives. We then identify correlations
between these superset instructions such as one being the
transfer target of another; and one defining a register that
is later accessed by another. These relations denote semantic
features that only the real code body would likely demonstrate.
We call them hints. They are uncertain because instructions
decoded from random bytes may by chance possess such
features. For each kind of hint, we perform apriori probability
analysis to determine their prior probabilities. We develop
an algorithm to aggregate these hints and compute the poste-
rior probabilities. The resulting disassembler has probabilistic
guarantees of no false negatives (e.g., the likelihood of missing
a true positive instruction is lower than 1

1000 ). In our empirical
study with 2, 064 binaries, it never misses any true positive
instruction with an appropriate setting. It also has a much
smaller number of false positives and much lower overhead
in rewriting, compared with superset disassembly.

Our contributions are summarized as follows.
• We propose an innovative idea of probabilistic disas-

sembling. The capabilities of reasoning about uncertainty
provides unique benefits compared to existing techniques.

• We identify a set of features for use as disassembly hints



Disassembler False Negative False Positive
Linear sweep Some Substantial
Traversal [23] Substantial None
Superset [30] None Bloated
Our method None∗ Some∗
∗: with probabilistic guarantees

TABLE I: Comparison of Different Kinds of Disassemblers

and perform static probability analysis to determine their
likelihood (§III-B).

• We develop a novel inference algorithm that leverages a
number of key characteristics of x86 instruction design
(§IV) to aggregate uncertain hints.

• Our experiments on 2, 064 binaries demonstrate that our
technique does not have any false negatives, and the false
positive rate is 3.7%, meaning that it disassembles 3.7%
additional instructions that are not true positives. It does
not miss any instructions even when function entries
are not available, with 6.8% FP. Our evaluation on
SPEC Windows PE binaries shows that objdump misses
3095 instructions due to code and data interleavings,
whereas our tool misses none with 8.12% FP. We also
use our disassembler in supporting binary writing. When
compared with the state-of-the-art superset rewriting
technique [30], our technique reduces the size of
rewritten binary by about 47% and improves the runtime
speed of the rewritten binary by 3%.

II. BACKGROUND AND MOTIVATION

In this section, we use a real world example to explain
binary code disassembly, the limitations of existing work
(§II-A), and how we advance the state of the art (§II-B).

A. Binary Code Disassembly

Figure 1(a) presents a snippet from libUbuntuCompo-
nents.so in Ubuntu 16.04. In this piece of code, data is
inserted in between the code bodies of two functions. In (a),
the bytes from 0xbbf72 to 0xbbf8f (in blue) denote data.
Address 0xbbf90 denotes the entry of a function. Another
function (omitted from the figure) precedes the data bytes.
While the binary is stripped, we acquire the ground truth
through debug symbols from a separate unstripped instance.

Linear Sweep Disassembly. Linear sweep disassemblers
disassemble the next instruction from the bytes right after
the current instruction. Here, we use objdump. Without
symbolic information, objdump cannot recognize the data
bytes. As a result, after it disassembles the body of the
preceding function, it proceeds to disassemble the data bytes
to instructions 0xbbf72, 0xbbf8b, and so on as in Fig-
ure 1(b). Specifically, in the shaded area, it considers the
three bytes starting at 0xbbf8f an instruction. Consequently,
it misses the true function entry 0xbbf90. Note that the
instruction sequences in Figure 1 are horizontally aligned
by their addresses. In addition, objdump disassembles the
wrong instruction at 0xbbf92. This illustrates that linear
disassemblers cannot properly handle inter-leavings of data
and instructions. Note that embedding data such as constant

values and jump tables in between code segments is a common
practice in compilers [28], [31]. As presented in Table I, linear
sweep disassemblers have some false negatives (i.e., missing
instructions) and a lot of false positives (i.e., incorrectly
disassembling data bytes as instructions). False negatives are
particularly problematic for binary rewriting as missing even
a single instruction could have catastrophic consequences.
False positives can cause unnecessary overhead in rewriting,
ambiguity in type reverse engineering and so on.

Traversal based Disassembly. Some other diassemblers such
as IDA [23] and BAP [22] disassemble by following control
flow edges, starting from function entries. A prominent chal-
lenge is to recognize function entries. Missing an entry means
the entire function body may not be properly disassembled.
The presence of indirect calls makes function entry identi-
fication difficult as the precise call targets are only known
at runtime. In our example, there is no direct invocation to
the function entry 0xbbf90 in libUbuntuComponent
and the function is not exported either. As a result, IDA
misses the entire function body. Furthermore, the first instruc-
tion of the function entry is a rarely used instruction “MOV
0x19b978(rip), rax”. As such, ML based techniques
(e.g., [32], [29], [33]) likely miss it. There are also non-
learning techniques to recognize functions in binaries [34],
[35], [36]. They are based on heuristics such as the matching
of push and pop operations at the entry and exit of a function.
However, a systematic way to handle the inherent uncertainty
in such heuristics is still in need.

As illustrated by Table I, traversal disassemblers have no
false positives but potentially substantial false negatives. In
fact, Bao et al. [29] show that traversal disassemblers such as
IDA may miss 68.19% function entries.

Superset Disassembly. A state-of-the-art technique (partic-
ularly for rewriting/instrumentation) is called superset dis-
assembly [30]. The idea is to consider that every address
starts an instruction, called superset instruction. As such,
consecutive superset instructions may share common bytes.
Rewriting is performed on all superset instructions. It can
be easily inferred that the superset disassembler has no
false negatives but must have a bloated code body due to
the large number of superset instructions that are not true
positives (Table I). Figure 1(c) presents the results for superset
disassembly. Observe that a superset instruction is generated
by disassembling the bytes starting at each address. Hence,
we have instructions at 0xbbf72, 0xbbf73, ..., 0xbbf91,
0xbbf92, and so on. Observe that consecutive instructions
share common byte values (e.g., the body of 0xbbf91 “8b
05 71 b9 19 00” is the suffix of 0xbbf90). Also observe
that all the true positive instructions, i.e., those in Figure 1(a),
are part of the superset. As such, the rewritten binary can
properly execute as all possible jump/call targets must be
instructions in the superset and hence instrumented. Note
that the bloated instructions cause not only substantial size
overhead, but also runtime slowdown because executing each
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bbf72: 66 ... 00 NOP  cs:(rax, rax)

bbf73:  66 ... 1f   NOP  cs:(rax+...) 

bbf74:  66 ... 84  NOP  cs:(rax+...)

…                        

bbf8b: 00 00 ADD al, (rax)

bbf8c: 00 00 ADD al, (rax)

bbf8d: 00 00 ADD al, (rax)

bbf8e: 00 00 ADD al, (rax)

bbf8f: 00 48 8b ADD cl, -117(rax)

bbf90: 48 … 00 MOV 0x19b978(rip), rax

bbf91:  8b … 00  MOV 0x19b978(rip), eax

bbf92: 05 … 00 ADD 0x1685873, eax

bbf93  71 b9        JNO    bbf5f

bbf94  b9 … 56   MOV 0x56410019, ecx

… 

bbf97: 41 56 PUSH r14

bbf98:  56            PUSH   rsi

… 

bbfb0: 48 89 17 MOV rdx, (rdi)

bbfb1:  89 17        MOV   edx, (rdi)

...

bbfba: 48 85 ff    TEST   rdi, rdi

...  

bbfd7:   75 ef JNZ   bbfc4

bbf72: 66 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 90  (data)

bbf81:  0f 1f 84 00 00 00 00 00 00 00 00 00 00 00 00  (data)

bbf90: 48 8b 05 71 b9 19 00 MOV 0x19b978(rip), rax

bbf97: 41 56 PUSH r14

…

bbfa2: 48 8d 50 10 LEA 16(rax), rdx

bbfa6: 48 05 90 00 00 00 ADD 144, rax

bbfac: 48 89 47 10 MOV rax, 16(rdi)

bbfb0: 48 89 17 MOV rdx, (rdi)

bbfba: 48 85 ff TEST rdi, rdi

bbfbd: 74 05 JE bbfc4

…

bbfd7:   75 ef JNZ   bbfc4

bbf72: 66 ... 00 NOP  cs:(rax, rax)

...

bbf8b: 00 00 ADD al, (rax)

bbf8d: 00 00 ADD al, (rax)

bbf8f: 00 48 8b ADD cl, -117(rax)

bbf92: 05 … 00 ADD 1685873, eax

bbf97: 41 56 PUSH r14

bbfa2: 48 ... 10   LEA 16(rax), rdx

bbfa6: 48 ... 00 ADD 144, rax

bbfac: 48 ... 10 MOV rax, 16(rdi)

bbfb0: 48 ... 17 MOV rdx, (rdi)

… 

0.04

0.04

0.04

…

0.04

0.695

0.04
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0.04
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0.04
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(a) Ground truth (b) Linear sweep (c) Superset disassembly (c) Ours

Fig. 1: Example from libUbuntuComponent.so. Instructions are horizontally aligned by their addresses. The code is slightly
modified for demonstration purposes. In instructions with two operands, the first one is source and the second one is destination.

superset instruction requires a table lookup to determine the
location of the instrumented version.

B. Our Technique

We aim to inherit the advantages of superset disassembly
(i.e., no false negatives) while substantially reducing the false
positives and achieving much lower overhead. The idea is
that true positives have lots of hints indicating that they
are true instructions. For example, they often have a lot of
definition and use (def-use) relations caused by registers and
memory, that is, a register/memory-location is defined at an
earlier instruction and then used in a later one. In Figure 1(a),
hint 1© indicates a def-use relation caused by register rax
between instructions 0xbbf90 and 0xbbfa2; 2© by rdx;
3© indicates a def-use by the flag bit. Note that false positive

instructions are less likely to induce def-use relations due to
their random nature. For example, instructions at 0xbbf8b-
0xbbf8f (Figure 1(c)) define some memory indexed by rax,
but there are no corresponding uses. Furthermore, two jumps
to the same target are likely true positives (e.g., hint 4©) as
the chance that random jumps have the same target is small.
More hints are discussed in §III-B.

However, hints are uncertain, meaning that false positives
instructions have a (small) chance of exhibiting such features.
For example, according to §III-B, false positive instructions
may have 1

16 chance to have def-use relation caused by some
register. Hence, the essence of our technique is to associate
these hints with prior probabilities that are derived from
apriori probability analysis, and then perform probabilistic
inference to fuse these evidences to form strong confidence
about true positives. Intuitively, the inference procedure that
aggregates prior probabilities is based on the following reason-
ing: if a superset instruction is likely to be a true positive, its

control flow descendants are likely to be true positives, and the
different superset instructions that share common bytes with
it are unlikely true positives. Note that we aim to disassemble
binaries generated by regular compilers so that instructions
do not have overlapping bodies. For example, the instructions
involved in hints 1©- 4© have reachability along control flow
(e.g., those in 1© can reach 4©), allowing their probabilities to
be progagated and aggregated. Intuitively, while individually
1©- 4© have certain probability (e.g., 1

16 ) to be random, the
chance of all of them randomly happening together is very
low. After inference, the posterior probabilities indicate the
likelihood of superset instructions being true positives. Fig-
ure 1(d) shows the probabilities computed by our technique
for each superset instruction. Observe that the true positives
(highlighted ones) have large probabilities (some of them are
almost certain such as 0xbbfb0 and 0xbbfba), whereas
false positives have (very) small probabilities.

Fig. 2: Occlusion does not cascade

III. PROBABILISTIC CHARACTERISTICS OF X86
A. Observing Instruction Occlusion

In x86, part of a valid instruction may be another valid
instruction and two valid instructions may have overlapping
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bodies. We call them occluded instructions. We say a few
bytes form a valid instruction if they can be decoded to an
instruction. A valid instruction may not be a true positive
instruction. Therefore, if the starting point (e.g., function entry)
is not properly recognized, we may have an occluded instruc-
tion sequence that differs from the true positive sequence.

Consider an example in Figure 2. Column one shows the
continuous addresses; column two shows the byte values; and
the remaining columns show different instructions sequences
when disassembling starts at different addresses. Note that
each instruction (box) aligns horizontally with its addresses
and byte values in the first two columns. Column three
shows the ground truth instruction sequence, in which the
first four bytes (from 0x400597 to 0x40059a) form a MOV
instruction whereas the following five bytes form another MOV
instruction, followed by a CALL instruction. However, if we
start disassembling in the middle of the first instruction, we
could acquire sequences of valid instructions that occlude with
the ground truth, as shown in the remaining columns (i.e.,
occluded instructions are in grey). Observe that in columns
four and five, part of the MOV instruction is decoded to a
different MOV instruction and a conditional jump instruction,
respectively. In the last column, the last byte 0xe0 of the MOV
instruction even groups with the first byte 0xbf of the next
(ground truth) instruction to form a valid LOOPNE instruction.

A concern about occlusion is that it may be cascading,
meaning that when we start at a wrong place, a large number
of following instructions are consequently occluded. However,
researchers have the following observation [37].

(Occlusion Rule): Cascading occlusion is highly un-
likely: occluded sequences tend to quickly agree on a
common suffix of instructions.

If one of the sequences is the true positive sequence,
occluded sequences quickly converge with the true positive.
Consider the example in Figure 2. The three occluded se-
quences all converge to the ground truth sequence after one
or two instructions. Intuitively, cascading occlusion is unlikely
because: two occluded instructions have a good chance to
agree on their rears. In other words, the suffix of an instruction
is likely to be another instruction. Consider Figure 2. The
occluded instructions in columns 3 and 4 are the suffices of
the ground truth MOV instruction. The only exception is that
when an occluded instruction i0 (e.g., the LOOPNE instruction
in Figure 2 last column) starts at the very end of a valid
instruction j0 (e.g., the first MOV in the 3rd column), i0 may go
beyond j0 and cause occlusion in the instruction following j0,
say j1 (e.g., the second MOV in the 3rd column). In this case,
i0 likely ends in the middle of j1. As such, the instruction(s)
following i0 (e.g., the SUB and ADD instructions in the last
column) agree with j1 at the their rear ends. We did a study
on 2064 ELF binaries and found that 99.992% occluded in-
struction sequences converge within four instructions. We have
also conducted a formal probability proof from the encodings
of x86 instructions. Our proof shows that for instructions i0,
..., ik with n0, ..., nk bytes, respectively. The probability of

1

2

3

Fig. 3: Control flow convergence

an occluded sequence starting inside i0 and not agreeing with
the rear of ik is at most 1

(n0−2)...(nk−2) . With a sequence of
7 instructions, each having 5 bytes, the probability that an
occluded sequence does not converge at all is 1

37 = 1
6561 .

Intuitively, it is analogous to that if two parties cannot settle
on a dispute with a small probability p in one round of
negotiation. The probability that they cannot resolve within
n rounds is pn. The details are elided.

B. Observing Probabilistic Hints for Disassembling

Without knowing the appropriate entries of code segments,
we could disassemble at each address and acquire a set of
all valid instructions (or, superset instructions [30]) with only
some being true positives. Next we discuss a number of
correlations between valid instructions that indicate that the
corresponding bytes are not data bytes with high probabilities.
We call them probabilistic hints. The occlusion rule and the
probabilistic hints are the two corner stones of our technique.

Hint I: Control Flow Convergence. As shown in the middle
of Figure 3 (b), if there are three potential instructions instr1,
instr2 and instr3 with instr3 being the transfer target of
both instr1 and instr2, there is a good chance that they
are not data bytes (but rather instruction bytes). Figure 3(a)
shows an example. The bytes starting at 0x804a634 and
at 0x804a646 are disassembled to two conditional jumps
A© and B©, respectively, whose target is a same valid in-
struction C©. Intuitively, since it is highly unlikely data bytes
can form two control transfer instructions and both by chance
point to the same target, they are likely instruction bytes. This
control flow relation is often induced by high level language
structures such as conditional statements (e.g., Figure 3(c)).

Probability Analysis. Assume data byte values have uniform
distribution. Given two valid control transfer instructions
instr1 and instr2, let instr1’s transfer target be t, which has
the range of [-27+1, 27-1], [−215+1, 215−1], and [−231+1,
231 − 1] for relative, near, and long jumps, respectively. The
likelihood that instr2 has the same transfer target is hence 1

255 ,
1

216−1 , and 1
232−1 . In other words, when we see two control

transfer instructions having the same target, the likelihood that
they are data bytes is (very) low.

Hint II: Control Flow Crossing. As shown in the middle
of Figure 4 (b), if there are three valid instructions instr1,
instr2 and instr3, with instr2 and instr3 next to each other;
instr3 being the transfer target of instr1, and instr2 having
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Fig. 4: Control Flow Crossing

a control transfer target different from instr3 (and hence
crossing control flow edges), there is a good chance that they
are not data bytes (but rather instruction bytes). Figure 4 (a)
shows an example. Since it is highly unlikely data bytes can
form two control transfer instructions with one jumping to
right after the other, they are likely instructions. This control
flow relation is often induced by loopy language structures
(e.g., Figure 4 (c) with instr1 the loop head, instr2 the
last instruction of the loop body and instr3 the loop exit).
The probability analysis is similar to that of control flow
convergence and hence elided.

There are also other control flow related hints. For example,
if a valid control transfer instruction i (e.g., a jump) has a
target that does not occlude with the sequence starting from
i, the chance of i denoting data bytes is 1

n , with n the
average instruction length. This is because a false positive
jump (disassembled from random data bytes) may likely jump
to the middle of an instruction. Although this hint is not as
strong as the convergence and crossing hints, a large number
of such hints can be aggregated to form strong indication,
through an algorithm described in §IV.

Hint III: Register Define-use Relation. We say a pair of
instructions instr1 and instr2 have a register define-use (def-
use) relation, if instr1 defines the value of a register (or some
flag bit) and instr2 uses the register (or the flag bit). In
Figure 5(c), there are two def-use relations denoted by the
arrows, one induced by register rdx and the other by eax.
Another example is that a flag bit is set by a comparison
instruction, and then used by a following conditional jump
instruction. Given two valid instructions, if they have def-use
relation, they are unlikely data bytes.

Note that false positive instructions often do not have regis-
ter def-use although they may demonstrate (bogus) memory
def-use relations. Figure 5(a) presents a snippet of jump
table disassembled to a sequence of instructions. Observe
that the first instruction adds al to the memory location
indicated by rax whereas the second instruction adds cl to
the same location. There is a memory def-use between the
two instructions as the second instruction first reads the value
stored in the location and then performs the addition. However,
as we will show in later probability analysis, register def-
use is hardly random, but rather caused by register allocation
(by compiler). Figure 5(b) presents a snippet of string. It is
disassembled to a sequence of valid instructions too. Observe
that there are no register def-use relations.

Probability Analysis. Assume data byte values have uniform
distribution. To simplify our discussion, we further assume

an arbitrary valid instruction has 1
2 chance to write to some

register or some flag bit (and the other 1
2 chance writing only

to memory). In contrast, an arbitrary valid instruction reading
some register is much more likely. Note that even a read from
memory often entails reading from register. For example, the
instruction at 0x4005ce in Figure 5(c) performs a memory
read which entails reading rbp. Hence, we make an approx-
imation (just for the sake of demonstrating our probability
analysis), assuming the likelihood that an instruction reads
some register is 0.99. Each instruction has three bits to indicate
which register is being read/written-to according to the x86
instruction reference. As such, given two valid instructions
instr1 and instr2, they have register def-use with the chance
of 1

2 ×
1
23 = 1

16 . In other words, when we observe def-use
between two valid instructions, the chance that they denote
data bytes is 1

16 .
We need to point out these hints only indicate the corre-

sponding bytes are not data bytes, they do not suggest the
valid instructions are indeed true positives. In other words,
they may be occluded instructions that are part of some ground
truth instructions. This is because occluded instructions often
share similar features such as the same register operand(s).
For instance, bytes “89 c2”, which is the suffix of the first
instruction in Figure 5 (c), is disassembled to MOV eax,
edx, which also has a register def-use with the second
instruction. However, observing these hints strongly suggests
that the corresponding bytes are instruction bytes. Fortunately,
the aforementioned occlusion rule dictates that even there
is occlusion, it will soon be automatically corrected. Our
disassembly technique is hence built on this observation.

Besides the register def-use hint, we have other hints that
denote data flow related program semantics. For example, an
instruction saving a register to a memory location followed
by another instruction that defines the register corresponds
to register spilling [38], which can hardly be random. We
also consider memory def-use between instructions of different
opcodes. Details are elided.

IV. PROBABILISTIC DISASSEMBLING ALGORITHM

As discussed in the previous section, when a probabilistic
hint is observed, we have certain confidence that the cor-
responding bytes are not data bytes but rather instruction
bytes, although we are still uncertain if they are true positive
instructions as their occluded peers may have similar proper-
ties as well. The occlusion rule dictates that a sequence that
starts with some occluded instruction can quickly correct itself
and converge on true positive instructions. Therefore in our
method, we consider an instruction is likely a true positive if
multiple sequences with a large number of hints converge on
the instruction. Here, a sequence starting from an instruction
i is acquired by following the control flow (e.g., if i is a
unconditional jump, the next instruction in the sequence would
be the target of the jump). We say multiple sequences converge
on an instruction if it occurs in all of them.

Specifically, let a hint h have a prior probability p being data
byte, with p computed by the analysis in the previous section.
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Fig. 5: Register Definition-use Relation

Fig. 6: Example for the algorithm; the code snippet in foo() corresponds to a statement “for (i=0;i<11;i++) ...”

Since the following instructions are acquired strictly following
the control flow semantics, they inherit the probability p.
Intuitively, if j is the next instruction of h along control flow,
j’s probability of being some data byte is equal to or smaller
than p. When the sequences starting with multiple hints h1,
h2, ... hn converge on an instruction i, the probability of
i representing data byte is D[i] = p1 × p2 × ... × pn. As
such, when a large number of hints converge on i, i is highly
unlikely a data byte.

However, a small D[i] does not necessarily denote that i
is a true positive instruction. We then leverage the exclusion
property of a true positive instruction, that is, if i is a true
positive instruction, all the other valid instructions occluding
with i must not be true positive instructions1.Therefore, we
compute the likelihood of i being a true positive instruction
by conducting normalization with all the instructions occluded
with i. Intuitively, if i is the only one that has a very small D[i]
compared to all the occluded instructions, i is highly likely true
positive. If there are occluded instructions whose D values
are comparable to D[i], we cannot be certain that i is true
positive. In this case, we keep all these instructions just like
superset disassembly. However, the key point is that due to the
occlusion rule, sequences quickly converge on true positives
such that the occluded peers of the converged true positives are
not reachable by any sequences and hence receive no hints. As
such, the true positives stand out in most cases, the exception
being very short and featureless code segments. According to
our experiments (see §V), our technique never misses any true

1This property may not hold in manually crafted binaries in which the
developer purposely introduces occlusion between true positive instructions.
However, we focus on binaries generated by compilers in this paper.

positive and has as low as 3.7% false positives. In comparison,
the false positive rate of superset disassembly is 85%.

Algorithm Details. Algorithm 1 takes as input a binary B
which is an array of bytes indexed by address; a list of hints H
with H[i] = p meaning that i is a hint with a prior probability
p (of being data bytes). It produces posterior probabilities P
with P [i] the likelihood that i being a true positive instruction.
Within the algorithm, we use D[i] to denote the probability i
being a data byte and RH[i] to denote the set of hints that
reach i, each hint represented by its address.

In lines 1-6, the algorithm initializes all the D values and
all the RH values. If the bytes starting at i denote invalid
instruction, D[i] is set to 1.0, otherwise ⊥ to denote that we
do not have any knowledge. Note that some byte sequences
cannot be disassembled to any valid instruction.

Due to the loopy structures in binary, the algorithm is overall
iterative, and terminates when a fix point is reached. The
iterative analysis is in lines 8-30 with variable fixed point
used to determine termination. The analysis consists of three
steps: forward propagation of hints (lines 10-21), local prop-
agation within occlusion space (lines 22-24), and backward
propagation of invalidity (lines 25-30). The first step traverses
from the beginning of B to the end, propagating/collecting
hints and computing the aggregated probabilities. It leverages
the following forward inference: (1) the control flow successor
of a (likely) instruction is also a (likely) instruction. Otherwise,
the program is invalid because its execution would lead to
exception (caused by the invalid instruction) following the
control flow. The second step is to propagate the computed
probability for each instruction i to its occlusion space con-
sisting of all the other addresses that can be decoded into
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Algorithm 1 Probabilistic Disassembling
Input: B - binary indexed by address

H - probabilistic hints, denoted by a mapping from
an address to a prior probability

Output: P [i] - posterior probability of an address i denoting
a true positive instruction

Variable: D[i] - probability of address i being data byte
RH[i] - the set of hints, denoted by a set of addresses,
that reach an address i

1: for each address i in B do
2: if invalidInstr(i) then
3: D[i] ← 1.0
4: else
5: D[i] ← ⊥
6: RH[i] ← {}
7: fixed point ← false
8: while !fixed point do
9: fixed point ← true

. Forward propagation of hints (Step I)
10: for each address i from start of B to end do
11: if D[i] ≡ 1.0 then
12: continue
13: if H[i] 6= ⊥ and i 6∈ RH[i] then
14: RH[i] ← RH[i] ∪ {i}
15: D[i]← Πh∈RH[i]H[h]

16: for each n, the next instruction of i along control flow do
17: if RH[i]−RH[n] 6= {} then
18: RH[n] ← RH[n] ∪RH[i]
19: D[n]← Πh∈RH[n]H[h]
20: if n < i then
21: fixed point ← false

. Propagation to occlusion space (Step II)
22: for each address i from start of B to end do
23: if D[i] ≡ ⊥ and ∃j occluding with i, s.t. D[j] 6= ⊥ then
24: D[i] ← 1-minj occludes with i(D[j])

. Backward propagation of invalidity (Step III)
25: for each address i from end of B to start do
26: for each p, the preceding instruction of i along control flow do
27: if D[p] ≡ ⊥ or D[p] < D[i] then
28: D[p] ← D[i]
29: if p > i then
30: fixed point ← false

. Compute posterior probabilities by normalization
31: for each address i from start of B to end do
32: if D[i] ≡ 1.0 then
33: P [i] ← 0
34: continue
35: s ← 1

D[i]
36: for each address j, representing an instruction occluded with i do
37: s ← s + 1

D[j]

38: P [i] ← 1/D[i]
s

instructions occluding with i. It is to leverage the following
local inference: (2) an instruction being likely renders all the
other instructions in its occlusion space unlikely. The third
step traverses each address from the end to the beginning and
propagates invalidity of instructions. It leverages the following
backward inference: (3) when an instruction i is unlikely, all
the instructions that reach i through control flow are unlikely.
Intuitively, it is the logical contrapositive of the forward
inference rule (1). The first step can be considered to identify
instruction bytes, whereas the second and third steps are to
identify data bytes.

Step I. In lines 13-15, if i denotes a hint and i has not been
added to RH[i], it is added to RH[i] and D[i] is updated to

the product of the prior probabilities of all the hints in RH[i]
(line 15). In lines 16-21, the algorithm propagates the hints in
RH[i] to i’s control flow successor(s). Particularly, if RH[i]
has some hint that the successor n does not have (line 17), the
hints of i are propagated to RH[n] by a union operation (line
18), and D[n] is updated. In lines 20-21, if the successor n has
a smaller address so that it has been traversed in the current
round, the analysis needs another round to further propagate
the newly identified hint(s).

Step II. In lines 22-24, the algorithm traverses all the addresses
and performs local propagation of probabilities within occlu-
sion space of individual instructions. Particularly, for each
address i, it finds its occluded peer j that has the minimal
probability (i.e., the most likely instruction). The likelihood
of i being data is hence computed as 1−D[j] (line 24).

Step III. Lines 25-30 traverse from the end to the beginning.
For each address i, if its control flow predecessor p does not
have any computed probability or has a smaller probability
(line 27), which intuitively means that we have more evidence
that i is data (instead of instruction), then we set p to have
the same level of confidence of denoting data bytes (line 28).
In the extremal case, if D[i] ≡ 1.0, D[p] must be 1.0 too.
If p has a larger address than i and hence p must have been
traversed, variable fixed point is reset and the analysis will
be conducted for another round (lines 29-30).

Note that the control flow successors and predecessors are
implicitly computed along the analysis. Our analysis does not
require correctly recognizing indirect jump and call targets,
which is a very difficult challenge. In other words, even though
such control flow relations are missing, our technique can
still collect enough hints from (disconnected) code blocks to
disassemble correctly. In §V-D, we show that our technique
can disassemble without any function entry information with
0 false negatives and only 6.8% false positives.

After the iterative process, lines 31-38 compute the posterior
probabilities for true positive instructions by normalization. If
an instruction starting at i is invalid, P [i] is set to 0 (lines
32-33). Otherwise, it sums up the inverse of probability D for
all the instructions occluded with i, including i itself, to s;
then P [i] is computed as the ratio between 1

D[i] and s.

Example. Consider an example in Figure 6. It is much simpler
than the one in §II and allows easy explanation. The large box
on the left shows a code snippet denoting the beginning of a
function foo() (from 0x40058c to 0x400594) and part
of the function body (from 0x4005c0 to 0x4005e1) corre-
sponding to a simple loop “for (i=0;i<11;i++)...”.
The code snippet is preceded by data bytes that stand for
constant strings (from 0x40057b to 0x40058b). The strings
are disassembled to valid instructions. Note that symbolic
information is not available, we mark the function entry
and strings just for explanation purpose. Boxes A©- F© on
the right stand for sequences starting from some occluded
instructions. The instructions in the grey background denote
occlusions whereas instructions without background denote
the converged ones, which are horizontally aligned with the
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corresponding instructions in the leftmost box. For example,
in box A©, disassembling at 0x40057c causes occlusion up
to 0x400583. In the following, we show how our algorithm
computes the probabilities for true positives.

During preprocessing, our technique collects the hints and
their prior probabilities. Each circled number denotes such a
hint (only part of the hints are shown). For example, 1© is a
register-def-use hint (hint III in §III-B) due to rdi. According
to §III-B, the prior probability is 1

16 (being a data byte). Note
that this hint actually occurs in the data bytes. In addition,
2© and 3© stand for the register-spilling (i.e., backup and then

update) hint due to rbp and rsp, respectively; 4© stands for
register-def-use; 5© stands for control-flow-crossing (hint II
in §III-B); and 6© stands for memory-def-use. None of the
occluded sequences provide any additional hints.

Initially, D[0x400583] = D[0x40057e] = 1.0 and all
other D values are ⊥. In step I, hints are collected and
probabilities are computed in a forward fashion. Hint 1©
cannot be propagated to address 0x400584 due to the bad
instruction at 0x400583 and the sequences in A© and D© do
not provide any hint, hence D[0x400584] = ⊥. Its occluded
peers in 0x400585-0x400588 have the same D value.

In contrast, D[0x40058c] = 1
16 due to the hint 2©. Similarly,

D[0x40058d] = ( 1
16 )

3 due to the three hints it is involved in.
As shown in boxes B©, its occluded peer 0x40058e cannot
be reached from 0x40058c. As a result, it gets no hint and
D[0x40058e] = ⊥. Similarly D[0x40058f ] = ⊥. Let us skip
a few instructions and consider 0x4005db. Due to the loop
(with the backedge 0x4005df→0x4005c2), hints 2©- 6©
all reach 0x4005db. As such, D[0x4005db] is a tiny value
smaller than 1

232 . In contrast, as shown in C© and F©, no hints
can reach its occluded peers 0x4005dc and 0x4005dd and
their D values remain ⊥. Through step II of local propagation
in occlusion space, D[0x40058f ] = D[0x40058e] = 1 − 1

163

and D[0x4005dc] = D[0x4005dd] ' 1.
In step III, the invalidity information is propagated back-

ward. That is, if an address has a larger D value than its
predecessor, the predecessor inherits that D value. Specifi-
cally, 0x400583 being invalid invalidates all its control flow
predecessors including 0x400582, 0x400581, 0x40057f,
and 0x40057b. That is, their D values equal to 1.0.

In contrast, 0x40058d has two possible predecessors,
“0x40058b: 4c 55 rex.WR PUSH rbp” (not shown
in the code snippet) and “0x40058c: 55 PUSH rbp”
(shown in the code snippet). The former has the prefix
“rex” that is only used in the long mode [39] and hence
does not form any hint with other instructions. Furthermore,
it occludes with 0x40058c. As a result, D[0x40058b] =
1 − D[0x40058c] = 15

16 after steps I and II. However, since
D[0x40058d] = 1

163 , which is smaller than D[0x40058b],
there is no backward propagation. Although D[0x40058e] =
1 − 1

163 is a large value, it does not have any control flow
predecessor, that is, it cannot be reached by disassembling at
any preceding addresses.

After the iterative process, the D values are
normalized to compute the posterior probabilities.

For example, since 0x40058c only occludes with
0x40058b and D[0x40058b] = 15

16 , D[0x40058c] = 1
16 .

P [0x40058c] = 16
16+16/15 = 0.94 and P [0x40058b] = 0.058.

The other true positive instructions have higher than 0.99
probabilities. For instance, P [0x40058d] ' 0.9987 and
P [0x40058e] = P [0x40058f ] ' 0.0006. P [0x4005db] ' 1.0
and P [0x4005dc], P [0x4005dd] are negligible.

V. IMPLEMENTATION AND EVALUATION

We have implemented a prototype on top of BAP [22] using
OCaml. Our implementation has 5, 546 LOC. To evaluate
our technique, we use two sets of benchmarks. The first set
contains 2, 064 x86 ELF binaries collected from the BAP
corpora [22]. The size of these binaries ranges from 100KB to
3MB. They come with symbolic information, from which we
derive the ground truth. We stripped the binaries before ap-
plying our disassembler. The second set is the SPEC2006INT
programs. We used SPEC for the comparison with super set
disassembly [30]. All the experiments were run on a machine
with Intel i7 CPU and 16 GB RAM. Our evaluation addresses
the following research questions (RQ).

• RQ1: Can our technique disassemble binaries with accu-
racy, completeness, and efficiency (§V-A)?

• RQ2: How does our technique compare with a state of
the art super set disassembly (§V-B)?

• RQ3: How does our technique perform when data and
code are interleaved, in comparison with linear sweep
disassembly (§V-C)?

• RQ4: How does our technique perform when no function
entry information is available (e.g., for indirect functions
that are one of the most difficult challenges for traversal
disassemblers in IDA [23] and BAP [22]) (§V-D)?

A. RQ1: Effectiveness and Efficiency

To answer RQ1, we perform four experiments: (1) measure
false negatives (missing true positive instructions) and false
positives (bogus instructions) on the 2, 064 binaries; (2) mea-
sure the disassembling time; (3) analyze the contributions of
each individual kind of hints; (4) study the effect of different
probability threshold settings.

FP and FN. We report the results with the probability threshold
of P >= 0.01, meaning that we are very conservative and
hence keep all the valid instructions with more than 0.01 com-
puted posterior probability. In this setting, our technique does
not have any false negatives. Figure 7 shows the correlations
between binary size and the FP rate. Observe that most cases
cluster at bottom-left. Most medium to large binaries have
lower than 5% false positives. The a few largest (on the right)
are even lower than 2%. The ones with larger FP rates tend
to be small binaries, which have fewer hints. The average FP
rate is only 3.7%. This strongly suggests the effectiveness of
our technique.

Disassembling Time. Figure 8 shows the distribution of time.
Observe that it has a close-to-linear relation with the binary
size. The largest ones take about 10 minutes to disassemble.
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The medium ones take 4-8 minutes. Our algorithm is not as
fast as other disassemblers because it is an iterative algorithm
based on probabilistic inference. Also, we have not optimized
implementation. We argue that since disassembling is one-time
effort, the cost is justifiable.

Contributions of Different Kinds of Hints. Figure 9 shows the
results for three settings: using only the control flow hints;
only the data flow hints (e.g., def-use and register-spilling);
and using all hints. The x axis denotes intervals of the FP rate
and the y axis represents the number of binaries that fall into
an interval. For example, with only control flow hints, about
300 binaries have less than 1% FPs; with only data flow hints,
about 70 binaries have less than 1% FPs; with all hints, the
number is 510. In other words, both types of hints are critical
for getting the best results.

Effects of Different Probability Thresholds. As mentioned
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Fig. 10: Tradeoffs of Threshold Setting

earlier, we retain instructions whose computed probability
P >= α. Figure 10 shows how the FP, FN rates (on the right
y axis) and the percentage of precisely disassembled functions
(on the left y axis) change with α (the x axis). For example,
at the starting point on the left is α = 0.67% (i.e., we keep
instructions with P >= 0.0067), FP is about 4% and FN is
0, and 53.23% of the 607,758 functions in the corpora are
precisely disassembled. With the growth of α, FP drops, FN
and the rate of precisely disassembled functions rise. At the
other end on the right is α = 20%, FP is 0.6% whereas FN is
6.7%. Almost 73% of functions are precise.

B. RQ2: Comparison with Superset Disassembly

Linear sweep and traversal disassemblers suffer false nega-
tives, which may cause serious problems in binary rewriting.
Superset disassembler [30] is a state-of-the-art that does not
have false negatives. However, it introduces lots of false
positives, leading to size blowup in rewriting and unnecessary
runtime overhead. Table II shows the comparison with superset
disassembly. To compare the effects on binary rewriting, we
integrate our disassembler with their rewriter. We use the same
SPEC programs in [30] (column one). Columns 2-4 present
the FP rate, the code size blowup after rewriting, and the
execution time variation after rewriting, respectively. Here, we
do not add any instructions during rewriting. Columns 5-7
present the same information for our technique. Observe that
we reduce the size blowup from 763% to 404% and improve
the execution time by 3%. Note that it is normal that rewritten
binaries may execute faster than the original code [30] due to
the cache behavior changes caused by rewriting. Note that
although our technique still has 404% size inflation, it is
because the rewriter uses a huge lookup table to translate each
address in the code space. While all the entries are necessary
in superset rewriting, majority of these entries are not needed
in our rewriter, and therefore empty. We plan to remove the
empty table entries and replace it with a cost-effective hash
table in the future. The FP rate differences (columns 2 and 5)
indicate the large number of these redundant entries.

C. RQ3: Handling Data and Code Interleavings

A prominent challenge in disassembly is to handle data
and code interleavings (i.e., the presence of read-only data
in between code segments), which could cause false negatives
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Superset Disassembly Probabilistic Disassembly
Program FP Size (rewritten/orig) Exec. time (rewritten/orig) FP Size (rewritten/orig) Exec. time (rewritten/orig)

400.perlbench 85.32% 780% 116.71% 11.29% 427% 117.74%
401.bzip2 84.65% 779% 105.49% 6.57% 400% 97.30%
403.gcc 88.03% 751% 104.60% 11.33% 409% 101.71%
429.mcf 84.72% 749% 104.02% 4.60% 399% 104.74%

445.gobmk 90.27% 727% 103.43% 6.20% 372% 97.30%
456.hmmer 82.71% 779% 99.14% 6.64% 411% 94.12%
458.sjeng 87.08% 756% 98.83% 7.61% 407% 92.76%

462.libquantum 80.96% 758% 100.42% 4.04% 400% 96.94%
464.h264ref 82.36% 781% 100.39% 2.41% 395% 94.57%
471.omnetpp 85.02% 768% 105.24% 9.82% 420% 108.4%

473.astar 81.46% 761% 94.28% 3.90% 402% 93.24%
Avg 84.8% 763% 103.0% 6.8% 404% 99.9%

TABLE II: Superset Disassembly vs Probabilistic Disassembly
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Fig. 11: FP Rates In the Absence of Function Entries

in linear sweep disassembly. In this experiment,, we compile
SPECint 2000 benchmark by Visual Studio 2017 with different
optimization levels to generate a set of binaries. We extract
ground truth from pdb files. We use both objdump, a linear
sweep disassembler, and our disassembler to disassemble the
stripped binaries. The comparison between the disassembled
results and the ground truth shows that objdump misses 3095
instructions in total, whereas our tool misses none. The average
FP rate of our tool is 8.12% (5.95%, 8.84%, 5.76%, and 8.98%
for optimization levels O1, O2, Od, and Ox, respectively).
The FP rate is higher than ELF binaries as data and code
interleavings are more common in PE binaries.

D. RQ4: Handling Missing Function Entries

Another prominent challenge, especially for traversal dis-
assembly, is missing function entries due to indirect calls. To
simulate such challenges, we eliminate all the function related
hints, such as call edges that have the same target (part of the
hint I). In other words, we only leverage the intra-procedural
hints to disassemble. Figure 11 presents the results, with x
axis the FP interval and y axis the number of binaries. The
average FP rate is 6.8%, slightly higher than that of using both
inter- and intra-procedural hints. FN is still 0. This indicates
that in the cases where traversal disassemblers such as IDA
and BAP have troubles due to missing function entries, our
technique has substantial advantages.

VI. RELATED WORK

We have discussed existing disassembly techniques in §II.
In this section, we discuss other related works. Probabilis-
tic inference has been used in program analysis, such as
locating software faults [40], inferring explicit information
flow [41], and recognizing memory objects [42]. But to our
best knowledge, we are the first one to use it in binary

disassembly. Machine learning has been used for binary
analysis. For instance, Wartell et. al. [43] used a statistical
compression technique to differentiate code and data. Shingled
Graph Disassembly [44] leverages graph model based learning
on a large corpus of binaries to recognize data bytes. Our
technique does not require training. Its formalization of using
a random variable to represent each address, the introduction
of hints and the fusion of these hints are unique. Dynamic
disassembly (e.g., [45], [46], [27], [1], [47]) disassembles
during execution. These approaches impose extra runtime
overhead. In addition, they can hardly serve downstream static
analysis such as dependence analysis. Disassembly has many
applications, such as binary hardening [6], [48], [49], [50],
[5], deobfuscation [51], [52], reassemble disassembling [53],
[54], [55], reverse engineering [56], and exploitation [57]. Our
work is particularly suited in rewriting and hardening.

VII. THREATS TO VALIDITY

Although we used the corpus from BAP and SPEC in our
experiments, the benchmarks may not represent all features
of real-world binaries. We will test our technique on more
binaries. We focus on binaries generated by compilers. It is
unclear how our technique will perform on obfuscated code
although we believe semantic hints still exist in such code.

VIII. CONCLUSION

We propose a novel probabilistic disassembling technique
that can properly model the uncertainty in binary analysis. It
computes a probability for each address in the code space,
indicating the likelihood of the address representing a true
positive instruction. The probability is computed by fusing
a set of uncertain features that can reach the address. The
results show that our technique produce no false negatives
and as low as 3.7% false positives; and it substantially
outperforms a state-of-the-art superset disassembly technique.
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