
Transparent Run-Time Prevention of Format-String
Attacks Via Dynamic Taint and Flexible Validation

Zhiqiang Lin, Nai Xia, Guole Li, Bing Mao, and Li Xie

State Key Laboratory for Novel Software Technology
Nanjing University, 210093, Nanjing, China

{linzq, xianai}@dislab.nju.edu.cn

Abstract. Format-string attack is one of the few truly threats to software secu-
rity. Many previous methods for addressing this problem rely on program source
code analysis or special recompilation, and hence exhibit limitations when ap-
plied to protect the source code unavailable software. In this paper, we present
a transparent run-time approach to the defense against format-string attacks via
dynamic taint and flexible validation. By leveraging library interposition and ELF
binary analysis, we taint all the untrusted user-supplied data as well as their prop-
agations during program execution, and add a security validation layer to the
printf-family functions in C Standard Library in order to enforce a flexible
policy to detect the format string attack on the basis of whether the format string
has been tainted and contains dangerous format specifiers. Compared with other
existing methods, our approach offers several benefits. It does not require the
knowledge of the application or any modification to the program source code,
and can therefore also be used with legacy applications. Moreover, as shown in
our experiment, it is highly effective against the most types of format-string at-
tacks and incurs low performance overhead.

1 Introduction

Because of some innate features of C programming language such as lack of memory
safety and function argument checking, ever since it became the mainstream program-
ming languages of choice, there have been problems with the programs produced using
it. Format string vulnerability, discovered about six years ago [1], is a case of such prob-
lems. It applies to all format-string functions in C Standard Library and still exists in
many software (e.g., a recent last-3-months search in the NIST National Vulnerability
Database had returned 28 matching records of this vulnerability [2]).

Due to the ability to write anything anywhere [3,4], attacks exploiting format-string
vulnerabilities are extremely dangerous: they can lead to the program denial of service
(e.g., to crash the program by using multiple instances of %s-directive), or can read sen-
sitive data from nearly any readable location in the process memory (e.g., information
leakage attack by using some %x-directives), or can write arbitrary integers to the area
the attacker desires to with carefully crafting the format-string (e.g., the most dangerous
%n-directive attack). Like buffer overflows, format string attacks are well-recognized
as one of the few severe and truly threats to software security [5,15].

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 17–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 Z. Lin et al.

Many defensive methods against format-string attacks have been investigated in the
past several years, including static checking (e.g., [22]), compiler extensions and run-
time guarding (e.g., [15,16]), safe library functions (e.g., [13,14]), execution monitoring
(e.g., [31]), and so forth. As discussed in Section 6 in details, these approaches are all
valuable and they can catch real attacks. However, some of them such as FormatGuard
[16], TypeQualifiers [17] and White-listing [15], require access to program source code
for special analysis or recompilation, and hence exhibit limitations when applied to
protect the source code unavailable software; and some of them although do not rely
on program source code and appear almost transparent, they either tend to restrict code
for the protection (e.g., preventing %n-directive in non-static format string [13]), or
just provide small scope checking (e.g., only detecting malicious write of %n-directive
associated with the return address or frame pointer [14]).

In this paper, we present an improved dynamic and transparent approach to the de-
tection and prevention of format-string attacks. Specifically, we employ library interpo-
sition technique to intercept the printf-family functions in C Standard Library, i.e.,
glibc (we consider Linux platform in this paper), to do a security validation against
the format string; intercept the I/O as well as string related functions to taint all the un-
trusted data originating from untrusted sources and their propagations during program
execution. In order to get a good tradeoff between false positive and false negative, we
provide two security policies, a default policy and a fine-grained policy. In our default
policy, we validate the format string on the basis of whether it has been tainted and
contains dangerous format specifiers. If so, a format-string attack is detected and we ei-
ther signal an input/output error or kill the program to prevent it. With our fine-grained
policy, we validate not only the tainted format string but also the untainted non-static
one. For these untainted non-static, we check the %n corresponding argument whether
or not points to those security critical areas such as return address, GOT (Global Offset
Table) and DTORs (Destructor function table) [18]. We have developed a practical tool,
FASTV (FormAt String Taint and Validation), to demonstrate this idea.

Compared with other existing methods, our approach offers several advantages:

– Practical in application. Our approach operates on a normally compiled binary pro-
gram, and appears transparent to the protected software. This makes it practical
to be used for a wide variety of programs, including proprietary and commodity
programs whose source code is unavailable.

– Effective against “real-world” attacks. We collected 6 notable format-string at-
tacks published at securityfocus.com [1,7,8,9,10,11]. Our approach successfully
prevented all of them.

– Easy to use. For protections, users only need to set the environment variable and
restart the program. Moreover, it can be simply set for the protection of either spe-
cific program or all processes on the machine.

– Low run-time overheads. As the experiment indicated, our approach only imposes
about 10% run-time overhead on the protected software.

Our work makes the following contributions. We propose a novel dynamical taint and
flexible validation approach to the detection and prevention of format-string attacks.
In general, it is a practical and efficient solution in defending against these attacks.

Transparent Run-Time Prevention of Format-String Attacks 19

Besides, we have implemented the prototype, and made an empirical evaluation show-
ing the feasibility of our approach. In addition, perhaps more importantly, we believe
our approach is also applicable for the prevention of other attacks such as SQL
injection [6].

The rest of this paper is organized as follows. Section 2 presents a technical descrip-
tion of our approach. Section 3 describes the design and implementation of our proto-
type. Section 4 provides the experimental results on the effectiveness and performance
evaluation. The security analysis and limitations are discussed in Section 5, followed
by the related work in Section 6. Finally, Section 7 concludes the paper and outlines
future work.

2 Approach Description

Since the root cause of format-string vulnerability lies in the format string, which is an
argument to the printf-family functions, trusting the user-supplied input
[3,4,14,15,16,17], the format-string argument (essentially, it is a string pointer) be-
comes our focus. If we can ensure the format-string argument is trustworthy or con-
tains no dangerous format specifier when it is untrustworthy, we could hence prevent
the format-string attacks. This is the key idea of our approach.

Upon the observation, we find out that the format-string argument passed to
printf-family functions often falls into three categories:

I. Format-string argument pointing to a static string.
II. Format-string argument pointing to a program dynamically generated string.

III. Format-string argument pointing to a user-supplied input string.

For the static string to act as a format-string argument, since it is constant and attack-
ers cannot modify such strings (we do not cover static binary patching attack before
program running in this paper), it is trustworthy and secure. We can distinguish it by
ELF [18] binary analysis from the other two kinds, because static string resides in the
program read-only data area and its address space is different from other program vari-
ables.

The second kind of format-string argument is internally maintained by the program
itself, and in most cases is trustworthy. However, if attackers can influence the dynami-
cally generated string (e.g., by buffer overflow attacks) or programmers carelessly deal
with these data (e.g., forgetting to pass the corresponding argument), then it can also
become untrustworthy. Therefore, we need to validate the format-string argument if
tough checking required. Yet, we should mark this kind of format-string argument as
trustworthy if no buffer overflow like attack occurs, because the bugs caused by care-
lessness should be eliminated before code ships.

The last kind of format-string argument is the common form of format-string vul-
nerability and undoubtedly the most dangerous. Our security validation mainly aims to
find out this kind of format-string argument, which comes from user-supplied input and
contains dangerous %n-directive (we currently focus on this specifier). It is an impor-
tant part in our approach of how to identify and taint the untrusted user supplied data.

20 Z. Lin et al.

Here, suppose we have tainted all the untrusted data (its detail explanation is provided
in the next section).

To detect the format-string attacks, we add a security validation layer to those
printf-family functions in glibc. The security validation firstly determines whether
the format string is static, since static format string is much more frequently used than
that of other two kinds. (1) If the format string is static, we believe it trustworthy, and
the function continues its original functionality (either to call the original function or
execute code that is functionally equivalent). (2) Otherwise, the format string would be
either dynamic generated or user-supplied (i.e., the tainted), and next we distinguish
them based on whether it is tainted. (2.1) If the format string is tainted, then it is un-
trustworthy and we parse it to check whether it contains dangerous format specifiers.
If it does, we report the format-string attack detected, and set the running printf-
family function error; otherwise the function also continues its original functionality.
(2.2) If the format string is untainted (this is the case for dynamically generated string),
as stated it may be untrustworthy, and then if tough checking required we need to check
it too. This is why we provide flexible policy. The default policy does not check it. In
our fine-grained policy, the checking operation is to determine whether the %n corre-
sponding argument points to return address, frame pointer, GOT (containing addresses
of shared library functions) and DTORS (containing address of special destructor func-
tions), because these areas are easily exploited as the attack target [4].

We employ ELF binary analysis and library interposition technique to achieve our
goals. ELF binary analysis is used to identify the read-only static string and those at-
tacker’s target address, such as GOT and DTORS. Library interposition enables us to
intercept those I/O and string propagation related functions in C Standard Library, so as
to taint the user-supplied input. Another reason for using library interposition is that this
technique does not require access to program source code, which makes our approach
a more wider application.

3 Design and Implementation

We have developed a prototype, FASTV, to demonstrate our approach. The internal
architecture of FASTV is illustrated in Figure 1. As shown in this figure, its core com-
ponents are the dynamic taint of user-supplied input and flexible validation of format-
string argument. We describe in detail these two parts design and implementation in this
section, and additionally present the reactions when detected the format-string attacks.
We provide the techniques to taint the user-supplied input in Section 3.1, and discuss
how to validate the format-string argument according to different security policy in
Section 3.2. The security reaction is provided in Section 3.3.

3.1 Dynamic Tainting Untrusted Data

Previous work [31] has suggested the use of taint analysis to track the input data that
may lead to malicious attacks. However, their approach makes program run in an em-
ulation environment and adds instrumentation to every data movement or arithmetic
instruction, thereby imposing significant runtime overheads. In contrast, based on the

Transparent Run-Time Prevention of Format-String Attacks 21

Library interception

User application
Function in S1 Called

Tainted

buffer address
fmt tainted?

Parse fmt to find %n

default policy?

Found? Detected & Prevent

Call original function

N

Y

Y

Y

N

Parse fmt to find %n Found?
Determine the target %n

pointing to

N

Malicious?

Y

N

Y

N

Init (Environment Var.)

Taint user supplied data

and their propagation

Function in S2 Called

Data flow

Control flow

Static string?

N

Y Call original function

S1={printf family functions in glibc}

S2={Input & string related functions in glibc}

Dynamic

Taint

Flexible

Validation

Fig. 1. Internal architecture of FASTV

observation that format string attack is usually caused by user-supplied input and these
data are often string related, we could hence just intercept those I/O and string related
functions in glibc instead of using hardware or software emulation based approach to
track and taint the untrusted data.

Run-Time Representation of Tainted Data. In our approach, the taint operation is
just to track the starting address and size information of those untrusted data in memory.
We use a red-black tree [19] to store the tainted address and size in order to promote
the performance. By associating taint operation with the starting address and size rather
than other information, we can make our approach space cost little, and ensure the
correctness of tainting in the presence of pointer aliasing. Why we do not store the
content of every tainted data, the reason is when parsing the string content, we can get
it from the tainted address.

Tainting Original Untrusted Data. For these directly user-supplied data, whenever
the I/O related glibc functions are called, we intercept them and taint these input by
inserting their buffer’s starting address and size into our red-black tree. Here we should
ensure that only one copy of a given buffer address exists in the tree. Thus, if the buffer
has been tainted (by first searching the red-black to determine), we would not taint it
again.

Note for the environment variable (e.g., user-supplied command-line data such as
argv), we also need to taint them by inserting their associated address and size into the
tree if tough checking required, because these data are also untrustworthy. In our current
implementation, we have tainted these environment variables when loading FASTV by
using the external variable environ to locate their address.

22 Z. Lin et al.

Tainting the Propagation of Original Untrusted Data. In our approach, tainting the
propagation of original untrusted data is achieved by intercepting those string related
glibc functions. Once these functions are called, we check firstly whether their cor-
responding original string (source string) is tainted. We determine this string is tainted
on the basis of whether it exists in the red-black tree (its address equals to the node’s
address) or it belongs to the scope of certain node (we use the node’s size to determine),
for example, if address p is tainted and its length is 10, then “p + 5” is also implicitly
tainted since it lies in the scope of p.

After that, (1) if we find the source string has been tainted, then we taint the desti-
nation string. For the destination string, they may have been tainted previously, so we
need to search the tree to determine whether it has been tainted. If it has not, we insert
the destination starting address and size into our tree, and next the function continues.
(2) If the source string is untainted, then we also need to ensure the consistency of the
destination string untainted, and subsequently if it has been tainted before this time we
need to delete it from or update the node’s size in our red-black tree. We believe this
consistency operation is reasonable since every string related operation is been guarded,
and the most recent string to format functions would be the corresponding most recent
modified.

3.2 Format-String Validation

The format-string validation is used to detect the format-string attacks. As described
in Section 2, not every format-string argument is necessary for the validation, only
those tainted data or when tough checking needed the dynamically generated string is
included for. Thus, we provide a default policy and a fine-grained policy to handle the
validation flexibly.

Default Policy. Our default policy is primarily to catch those user-supplied format
string, which contains dangerous format specifiers. Specifically, if the tainted data con-
tains %n-directive and is used as a format-string argument, then the format-string attack
is detected.

The other remained two kinds of format string are not addressed in our default policy,
and we regard them as trustworthy (this is reasonable as we have stated in Section 2).
However, it might lead to false negatives if attackers gain control over the dynamically
generated string. So in order to complement the default policy, we provide the other
policy, fine-grained policy, to handle the dynamically generated format-string argument
(no need to static string since it is secure).

Fine-grained Policy. The fine-grained policy aims to determine wether the
%n-directive corresponding argument is secure when the format string dynamically
generated. If this argument points to a program return address, frame pointer, entry of
GOT or DTORS, then it is insecure and the attack is detected. Otherwise, the function
continues.

We construct a reference table, which contains the base address and whole size infor-
mation of program GOT and DTORS, when loading FASTV. We achieve ELF binary
analysis to find out these security critical address as well as their associated size to cre-
ate this table. As for the return address and frame pointer, these data are dynamically

Transparent Run-Time Prevention of Format-String Attacks 23

changed and we cannot determine them by ELF binary analysis. Fortunately, Tsai et al.
have proposed a solution to address this problem in Libsafe [14], and we adapt their
approach here to locate the return address and frame pointer.

3.3 Reaction to Format-String Attacks

Many approaches when detected format-string attacks usually kill the running process.
However, when attacks occur repeatedly, which is a common scenario with automated
attacks, these protection mechanisms would lead to repeated restarts of the victim ap-
plication and render its service unavailable. Thus, unlike their approaches we present a
flexible mechanism for the preventions.

In our scheme, (1) if the format-string attacks are detected during the validation, then
we report the format-string attack detected to syslogd, and set the glibc global
variable errno=EIO to indicate this is an input/ourput error and let the program itself
handle this problem. We believe for many server applications, they will take appropriate
steps to deal with this input/output error. (2) If the output error is fatal (e.g., an interme-
diate output for after calculation) and the program itself ignores that, then here we also
abort the running process in such a way as other approaches currently. We are planning
to look for some alternative approaches (e.g., attack repair technique [20]) to remedy
this (our aim is not to abort the running process).

4 Evaluation

We conducted a serials of experiments to evaluate the effectiveness and performance of
our approach. In order to compare our results with others, we chose Libsafe in that we
both adapt library interposition, and White-listing, which is the most recent work, to do
the evaluation. All the experiments were carried out on two 2.4G Pentium processors
with 1G RAM running Linux kernel 2.6.3. The tested programs were compiled by gcc
3.2.3 with default option, and linked with glibc 2.3.2.

4.1 Vulnerability Prevention

In our evaluation, we focused on real-world format-string attacks and selected six of
such programs. The vulnerability of these programs and our security test against them
are described below.

– wu-ftpd. The wu-ftpd 2.6.0 and earlier is vulnerable to a serious remote attack
in the “SITE EXEC” implementation, in which user-supplied data can be used as a
format-string argument [1]. For the security test of this program, we exploited the
return address as the %n target.

– rpc.statd. The rpc.statd program (for the version of nfs-utils before
0.1.9.1), passes user-supplied data to the syslog function as a format string.
Thus, attackers can inject malicious code to be executed with the privileges of the
rpc.statd process [7]. In our test, we tried to overwrite GOT entries as the %n
corresponding pointer.

24 Z. Lin et al.

– splitvt. The splitvt before 1.6.5 program exists a vulnerability in the com-
mand line with -rcfile, which is not properly handled as a format-string argu-
ment [8]. Our attack test was targeted return address.

– rwhoisd. The rwhoisd 1.5 server contains a remotely exploitable format-string
vulnerability, which allows attackers to execute arbitrary code on affected hosts by
supplying malicious format specifiers as the argument to the -soa directive [9].
Again, our attack test was to patch the return address.

– pfinger. A format-string vulnerability exists in pfinger 0.7.5 through 0.7.7,
which allows remote attackers to execute arbitrary command via format-string
specifiers in a .plan file [10]. For this program test, we also tried to overwrite the
return address.

– tcpflow. The tcpflow 0.2.0 program contains an exploitable format-string vul-
nerability during the opening of a device with the command-line argument. Thus,
local users can gain an unauthorized root shell by this vulnerability [11]. We made
our security attack target on GOT entries to test this program.

The results of our effectiveness evaluation are presented in Table 1. As shown in this
table, our approach, not only the default policy (DP) but also the fine-grained policy
(FP), successfully prevented all the format-string attacks listed above. This is expected
because all the security test was used the user-supplied data which comes from local or
network to launch the format-string attack.

For the White-listing approach, though it also reliably fixed all the vulnerabilities, it
may lead to denial of service attack for some cases (though in our protectionspfinger
and tcp-flow aborted the running process, we should note this is the behaivor of
program itself). The Libsafe approach, also as expected, missed the attack which does
not target return address or frame pointer, and only caught 4 out of the 6 attacks.

Table 1. Results of effectiveness evaluation

CVE# Program Libsafe White-listing FASTV(DP) FASTV(FP)

CVE-2000-0573 wu-ftpd D & A D & A P & C P & C
CVE-2000-0666 rpc.statd M D & A P & C P & C
CVE-2001-0111 splitvt D & A D & A P & C P & C
CVE-2001-0913 rwhoisd D & A D & A P & C P & C
CVE-2001-1215 pfinger D & A D & A P & A P & A
CAN-2003-0671 tcp-flow M D & A P & A P & A

D: Detected, A: Aborted, P: Prevented, C: Continued, M: Missed

4.2 Performance Overhead

In order to test the performance overhead of our approach, we first did the micro-
benchmark test to measure the overhead at the function call level, and then measured
the overall performance at the application level by running a typical printf-intensive

Transparent Run-Time Prevention of Format-String Attacks 25

application man2html (to test the overhead of print and string related functions), and
a network program tcpdump (to test the overhead of input related functions, such as
read, recv). All the tested programs were run multiple times with the highest priority
in single-user-mode except for tcpdump which run in the network-mode due to its
network requirement.

Micro Benchmarks. To determine the overhead of per printf-style function, we ran
a serial of simple programs consisting of a single loop containing one single sprintf
call, with a varied number of format string length. We choose sprintf in that we
can use this function to test the performance of both format-string validation (parse
and check the format string) and related string taint (taint the relevant destination string
if the corresponding printed string is tainted), and its performance is greater than that
of other printf-family functions. In addition, we choose strcpy to test the micro-
benchmark of string related functions since in our approach we also wrapper
them.

With static format string which contains no format specifiers, our approach as well
as Libsafe added almost no performance overhead (the performance added rate is zero).
As for White-listing, it had a different performance added rate, which is greater than
ours and Libsafe’s. To be more specific, when the format-string length is not too long
in our test, e.g., less than 100, White-listing only incurred little performance overhead;
and when format-string length is added, e.g., to 1k, it added the performance overhead
of 3μs (about 75%).

For dynamically generated string which contains two %n directives, our approach
with DP did not add any overhead, which is similar to Libsafe. This is expected, because
our default policy does not check these program dynamically generated string. As for FP
of our approach, which will check all the dynamically generated string, the performance
added rate was less than White-listing’s; and in the worst case of our test, it added 2.4μs
(about 60%), and White-listing added 3.5μs (about 90%).

With user-supplied different length format string (it is just a performance test here,
though it appears insecure) which contains no format specifier, our overhead for both
DP and FP was similar to the result of dynamically generated string with FP: the per-
formance added rate was less than White-listing’s.

We also tested vsprintf by replacing the printing loop with vsprintf, and cor-
respondingly modifying its relevant argument, to test the performance of per vprintf-
style function call. We observed a similar performance overhead to sprintf function
for the above three test cases, respectively.

For the micro-benchmark of strcpy function, in our test, except for Libsafe which
improves the performance by replacing strcpy with memcpy [14] (this is based on
the fact that copying with memcpy is 6 to 8 times faster than that of strcpy for large
buffers [21]), our approach as well as White-listing almost did not add any performance
overhead.

All the results for our micro benchmarks are depicted in Figures from 2(a) to 2(d).
Some of these overheads may seem relatively high, but we stress that these are micro
benchmarks and not realistic programs. And as we show below for real-world applica-
tions, our approach only incurs a little performance overhead.

26 Z. Lin et al.

(a) Sprintf micro-benchmark with static for-
mat string containing no specifiers

(b) Sprintf micro-benchmark with dynami-
cally generated format string containing 2 %n
directives

(c) Sprintf micro-benchmark with user-
supplied format string

(d) Strcpy micro-benchmark with user-
supplied string

(e) Man2html macro-benchmark (f) Tcpdump macro-benchmark

Fig. 2. Results of benchmark test

Macro Benchmarks. We used man2html program to evaluate the macro-benchmark.
Our test was to batch translate 1k man pages which is 129.6k bytes each, via
man2html-1.6. The result for the macro benchmark of this program is presented in

Transparent Run-Time Prevention of Format-String Attacks 27

Figure 2(e). As shown in the Figure, our approach incurred the performance overheadof
10.36% with DP and 10.84% with FP, which is a little less than that of White-listing
with the overhead of 10.94%. For the Libsafe, the performance overhead was 5.83%.

We also tested our approach against a network program tcpdump-3.9.4. We ran
this program by capturing 1k network packets in a high-speed transferring LAN. Our
approach added the overhead of 4.04% with DP and 4.72% with FP. Libsafe added 3.28%,
and White-listing added 1.75%. Figure 2(f) summarizes the result of this program.

5 Discussion

In this section, we discuss the false positive and false negative of our approach with
different security policy, and its limitations when applied to the software protections.

False Positive and False Negative. As stated, our default policy guards all the dan-
gerous tainted data partly or completely acting as the format string, there would be
few false negatives (false negatives may exist in the un-caught string propagation if
the application does not use the string related glibc functions) in this policy when
handling user-supplied data. From theoretic analysis, we could find our default policy
may have false positives, but from practice we could say almost no false positive. We
have examined a large number of real-world applications and found none of them needs
user-supplied %n-directive except for attacks. We believe this case, i.e., requiring users
to input the %n-directive, does not exist in normal released software. So we believe it
is not a common case and does not deserve our attention.

While our default policy is adequate for the format-string attack prevention in most
circumstances, those untainted dynamically generated string might cause false nega-
tives since we ignore the validation of these untainted data. As a result, we provide the
fine-grained policy to complement our default policy. In our fine-grained policy, there
are very few false positives since we used the mis-use detection approach (each %n
corresponding argument is validated whether or not pointing to our guarded area). But
there are false negatives in this policy, which is caused by the limitations described
below.

Limitations. One of the limitations of our approach is in the fine-grained policy, we
only guard the most common attacked areas: return address, frame pointer, GOT and
DTORS. If an attack makes use of a program legal function-pointer for the %n corre-
sponding written address, we would not be able to detect it. Because there is no useful
information (e.g., type to tell us this is a function pointer) in the normal binary file to let
us identify program legal function-pointers from other variables. As for the GOT and
DTORS, due to a different memory region they reside in, we can find out their address
via ELF binary analysis.

There is another limitation. Our approach requires the program being dynamically
linked (this is because library interposition technique only intercepts the function refer-
ences to dynamic library). However, the statically linked applications are not too much
used if we consider Xiao’s study that 99.78% applications in Unix platform are dy-
namically linked [12]. In addition, if the program invokes its own functions instead of
glibc for I/O and string manipulation, our approach also would not work.

28 Z. Lin et al.

6 Related Work

A considerable amount of approaches have been developed for the defense against
format-string attacks. Those related to ours could be divided into three categories:
compile-time analysis, run-time techniques, and combined compile-time/run-time
techniques.

Compile-Time Analysis. This technique typically analyzes and/or instruments pro-
gram source code to detect possible format-string attacks. PScan [22] is such a kind of
simple and notable tool for discovering format-string vulnerabilities. It works by look-
ing for the common case of the printf-style function in which the last parameter is
the format string and none-static. Similar to the functionality of PScan, gcc itself also
provides a compiler flag, “-Wformat=2”, to cause gcc to complain about the non-static
format string [23]. Both PScan and the “-Wformat” enhancement operate on the lexi-
cal level, and they offer the advantage of fixing bugs before software release. However,
these two approaches are less complete, and usually subject to both missing format-
string vulnerabilities and issuing warnings about safe code.

Compile-time analysis with taint technique is useful to find out bugs or identify po-
tentially sensitive data. Perl’s taint mode [24] is the first proposed solution showing this
idea, which taints all the input to applications, and enforces a runtime checking to see
whether the untrusted data is used in a security-sensitive way. Inspired by Perl’s taint
analysis, many approaches then have been proposed (e.g., [25,26,27,28]). One of them
for particularly detecting format-string attacks is TypeQualifier presented by Shankar
et al. [17]. In their approach, if the potentially tainted data is used as the format string,
then an error is issued. From this point, it seems very similar to ours. However, these
two approaches are based on different mechanism to implement (static analysis for this
technique, run-time tracking in ours). Besides, this technique requires programmers’
efforts to specify which object is tainted, and consequently presents an additional bur-
den on developers. In contrast, our approach appears almost transparent. In addition,
this approach is more conservative than necessary because static analysis is inherently
limited and much supposedly tainted data is actually perfectly safe, whereas our ap-
proach is not so conservative since we only prevent those tainted data which contains
dangerous format specifier and is used as a format string.

Run-Time Techniques. In contrast to compile-time analysis, run-time techniques
present a low burden on developers and uniformly improve the security assurance of ap-
plications. Libformat [13] (a preloaded shared library) is a case of such examples, which
aborts any processes if they call printf-family functions with a format string that is
writable and contains %n-directive. This technique is effective in defending against real
format-string attacks, but in most cases both writable format strings and %n-directives
associated destination are legal, and consequently it generates many false alarms. De-
spite the similarity of both our approach and Libformat guard the writable and %n-
directive contained in format-string argument, ours is not so much conservative as this
technique, and we provide more flexibility.

Another notable run-time approach is referred as Libsafe [14], which implements
a safe subset of format functions that will abort the running process if the inspected

Transparent Run-Time Prevention of Format-String Attacks 29

corresponding pointer of %n directive points to a return address or frame pointer. This
approach also looks very close to ours. However, we should note the major difference
is Libsafe provides every format string (despite static or not) checking on limited scope
(i.e., return address and frame pointer), whereas we only check apparently-tainted areas
to identify the root-cause (untrusted data) of format string attacks. Thus, as shown in
our experiment, Libsafe would sometimes lead to false negatives, while our approach
could catch almost all of them.

The idea of using dynamic taint analysis for detecting security attacks was attracted a
lot of attention. Suh et al. [29] proposed a dynamic information flow tracking scheme to
protect programs against malicious attacks. Chen et al. [30] developed a pointer taint-
edness detection architecture to defeat the most memory corruption attacks. These two
approaches were demonstrated useful and efficient, but both of them require processor
modifications to support taint-tracking. Unlike these two hardware solutions, Newsome
et al. proposed a software approach, TaintCheck [31], to monitor and control the pro-
gram execution at a fine-grained level. While this approach is very promising and can
defend against a large number of security attacks with fewer false positives, the main
drawback is that it incurs significant performance overhead by a factor of 10 or more
because of its emulator-based implementation. Our approach follows their way in dy-
namic taint but differs in the granularity and interception.

Combined Compile-Time/Run-Time Approaches. FormatGuard [16] is an extension
to glibc that provides argument number checking for printf-like functions with
the support of GNU C Preprocessor. Programs need to be recompiled but without any
modifications for its protection. Although FormatGuard can protect the printf-like
functions efficiently, it cannot protect the format functions which use vararg such as
vprintf (in this case it is not possible to count the actual number of parameters at
compile time). Besides, FormatGuard may result in false negatives when another format
specifier is replaced with %n-directive.

White-listing [15] is another approach which tries to achieve the benefits of both
static and run-time techniques. By cleverly using a source code transformation, this
approach automatically inserts the code that maintains and checks against the white-
listing containing safe %n-writable address ranges via the knowledge gleaned from
static analysis. White-listing gains high precision with very few false negatives and few
false positives, and imposes little performance overhead. However, one limitation of
this approach is that applications which are only re-compiled using White-listing can
benefit from its protection.

7 Conclusion and Future Work

In this paper, we have proposed a practical and transparent approach to the detection and
prevention of format-string attacks. We exploit the dynamic taint analysis and library
interpositions technique, which allow us to protect the software without any recompi-
lation, to achieve our goals. Through the thorough analysis and empirical evaluation,
we show that our approach has very few false negatives and false positives, and just
imposes a little performance overhead on the protected software.

30 Z. Lin et al.

Due to the similarity to format-string attacks, SQL injection is another dangerous
attack caused by unvalidated input. We feel our approach is also applicable for the
prevention of this attack, for instance, we can taint the input data and check against
SQL syntax to see if these data represent an invalid user input. One of our future work
will apply our approach to deal with this attack. Other future work includes to port our
approach to other platforms (e.g., Windows), to investigate attack repair approaches and
so on.

Acknowledgements

We thank Michael F. Ringenburg, Erwang Guo, Yi Wang, Yi Ge and anonymous review-
ers for their support during this work. This research was supported in part by Chinese
National Science Foundation under grant 60373064 and Chinese National 863 High-
Tech Program under grant 2003AA144010.

References

1. “tf8”. Wu-Ftpd Remote Format String Stack Overwrite Vulnerability. At http://
www.securityfocus.com/bid/1387. (2000)

2. NIST National Vunerability Database. At http://nvd.nist.gov. (2006)
3. Scut, team teso:Exploiting Format String Vulnerabilities. At http://www.team-

teso.net/releases/formatstring-1.2.tar.gz. (2001)
4. Riq and Gera. Advances in format string exploitation. Phrack Magazine, 59(7). At

http://www.phrack.org/phrack/59/p59-0x07. (2002)
5. Lhee, K. and Chapin, S.:Buffer overflow and format string overflow vulnerabilities. Software-

Practice & Experience. Vol 33(5). Pages: 423-460. (2003)
6. Anley, C.:Advanced SQL Injection In SQL Server Applications. Technical Report, NGSSoft-

ware Insight Security Research. (2002)
7. Jacobowitz, D.:Multiple Linux Vendor rpc.statd Remote Format String Vulnerability. At

http://www.securityfocus.com/bid/1480. (2000)
8. Kaempf, M.:Splitvt Format String Vulnerability. At http://www.securityfocus.com/bid/2210/.

(2001)
9. NSI Rwhoisd Remote Format String Vulnerability. At http://www.securityfocus.com/

bid/3474. (2001)
10. Pelat, G.:PFinger Format String Vulnerability. At http://www.securityfocus.com/bid/3725.

(2001)
11. Goldsmith, D.:TCPflow Format String Vulnerability. At ttp://www.securityfocus.

com/bid/8366 . (2003)
12. Xiao, Z.:An Automated Approach to Software Reliability and Security. Invited Talk, Depart-

ment of Computer Science, University of California at Berkeley. (2003)
13. Robbins, T.:Libformat. At http://www.wiretapped.net/∼fyre/software/libformat.html. (2001)
14. Tsai, T. and Singh, N.:Libsafe 2.0: Detection of Format String Vulnerability Exploits. At

http://www.research.avayalabs.com/project/libsafe/doc/ whitepaper-20.pdf. (2001)
15. Ringenburg, M. and Grossman, D.:Preventing Format-String Attacks via Automatic and Ef-

ficient Dynamic Checking. In Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS’05), Alexandria, Virginia. (2005)

http://www.securityfocus.com/bid/3474
http://www.securityfocus.com/bid/3474
protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/it/9 {OT1/ptm/m/n/9 }OT1/ptm/m/it/9 size@update enc@update ignorespaces
elax protect
elax protect edef n{it}protect xdef OT1/ptm/m/it/9 {OT1/ptm/m/n/9 }OT1/ptm/m/it/9 size@update enc@update ttp://www.securityfocus.com/bid/8366
protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/it/9 {OT1/ptm/m/n/9 }OT1/ptm/m/it/9 size@update enc@update ignorespaces
elax protect
elax protect edef n{it}protect xdef OT1/ptm/m/it/9 {OT1/ptm/m/n/9 }OT1/ptm/m/it/9 size@update enc@update ttp://www.securityfocus.com/bid/8366

Transparent Run-Time Prevention of Format-String Attacks 31

16. Cowan, C., Barringer, M., Beattie, S. and Kroah-Hartman, G.:FormatGuard: Automatic pro-
tection from printf format string vulnerabilities. In Proceedings of the 10th USENIX Security
Symposium (Security’01), Washington DC. (2001)

17. Shankar, U., Talwar, K., Foster, J. S., and Wagner, D.:Detecting format string vulnerabilities
with type qualifiers. In Proceedings of the 10th USENIX Security Symposium (Security’01),
Washington DC. (2001)

18. TIS. Executable and Linkable Format Version 1.1. At ftp://download.intel.com/
perftool/tis/elf11g.zip

19. Cormen, T., Stein, C., Rivest, R. and Leiserson, C.:Introduction to Algorithms. MIT Press,
second edition. (2002)

20. Smirnov, A. and Chiueh, T.:DIRA: Automatic Detection, Identification and Repair of
Control-Hijacking Attacks. In Proceedings of the 12th Annual Network and Distributed Sys-
tem Security Symposium (NDSS’05), San Jose, CA. (2005)

21. Avijit, K., Gupta, P., and Gupta, D.:TIED, LibsafePlus: Tools for Runtime Buffer Overflow
Protection. In Proceedings of the 13th USENIX Security Symposium (Security’04). (2004)

22. DeKok, A.:PScan: A limited problem scanner for C source files. At http://www.striker.
ottawa.on.ca/∼aland/pscan/. (2000)

23. The GNU Compiler Collection. Free Software Foundation. At http://gnu.gcc.org/
24. Perl security manual page. At http://www.perldoc.com.
25. Zhang, X., Edwards, A. and Jaeger, T.:Using CQual for static analysis of authorization hook

placement. In Proceedings of the 11th USENIX Security Symposium (Security’02). (2002)
26. Foster, J., Fahndrich, M. and Aiken, A.:A theory of type qualifiers. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’99). (1999)

27. Evans, D. and Larochelle, D.:Improving Security Using Extensible Lightweight Static Anal-
ysis. In IEEE Software, January/February. (2002)

28. Tuong, A.N., Guarnieri, S., Greene, D., Shirley, J. and Evans, D.:Automatically hardening
web applications using precise tainting. In Proceedings of the 20th IFIP International Infor-
mation Security Conference (SEC’05). (2005)

29. Suh, G., Lee, J., Zhang, D. and Devadas, S.:Secure program execution via dynamic informa-
tion flow tracking. In Proceedings of International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’04), Boston, MA. (2004)

30. Chen, S., Xu, J., Nakka, N., Kalbarczyk, Z. and Iyer, R. K.:Defeating memory corruption
attacks via pointer taintedness detection. In Proceedings of IEEE International Conference
on Dependable Systems and Networks (DSN’05). (2005)

31. Newsome, J. and Song, D. :Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software. In Proceedings of the 12th Annual
Network and Distributed System Security Symposium (NDSS’05), San Jose, CA. (2005)

protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef n{it}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update ftp://download.intel.com/perftool/tis/elf11g.zip
protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/it/9 {OT1/ptm/m/n/9 }OT1/ptm/m/it/9 size@update enc@update ignorespaces
elax protect
elax protect edef n{it}protect xdef OT1/ptm/m/it/9 {OT1/ptm/m/n/9 }OT1/ptm/m/it/9 size@update enc@update ftp://download.intel.com/perftool/tis/elf11g.zip
protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/sl/9 {OT1/ptm/m/n/9 }OT1/ptm/m/sl/9 size@update enc@update ignorespaces
elax protect
elax protect edef n{it}protect xdef OT1/ptm/m/sl/9 {OT1/ptm/m/n/9 }OT1/ptm/m/sl/9 size@update enc@update http://www.striker.ottawa.on.ca/$sim $aland/pscan/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/it/9 {OT1/ptm/m/n/9 }OT1/ptm/m/it/9 size@update enc@update ignorespaces
elax protect
elax protect edef n{it}protect xdef OT1/ptm/m/it/9 {OT1/ptm/m/n/9 }OT1/ptm/m/it/9 size@update enc@update http://www.striker.ottawa.on.ca/$sim $aland/pscan/

	Introduction
	Approach Description
	Design and Implementation
	Dynamic Tainting Untrusted Data
	Format-String Validation
	Reaction to Format-String Attacks

	Evaluation
	Vulnerability Prevention
	Performance Overhead

	Discussion
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

