
CPU Transparent Protection of OS Kernel and Hypervisor
Integrity with Programmable DRAM

Ziyi Liu1, JongHyuk Lee2, Junyuan Zeng3, Yuanfeng Wen1, Zhiqiang Lin3, and Weidong Shi1
1Dept. of Computer Science, University of Houston, 4800 Calhoun RD, Houston, TX 77004, USA

2Samsung Electronics, 416 Maetandong, Suwon-si, Gyeonggi-do 443-742, Korea
3Dept. of Computer Science, University of Texas at Dallas, 800 W. Campbell RD, Dallas, TX 75080, USA

{ziyiliu, wyf,larryshi}@cs.uh.edu, jonghyuk.lee@daum.net,
{jzeng,zhiqiang.lin}@utdallas.edu

ABSTRACT
Increasingly, cyber attacks (e.g., kernel rootkits) target the inner
rings of a computer system, and they have seriously undermined
the integrity of the entire computer systems. To eliminate these
threats, it is imperative to develop innovative solutions running be-
low the attack surface. This paper presents MGUARD, a new most
inner ring solution for inspecting the system integrity that is directly
integrated with the DRAM DIMM devices. More specifically, we
design a programmable guard that is integrated with the advanced
memory buffer of FB-DIMM to continuously monitor all the mem-
ory traffic and detect the system integrity violations. Unlike the
existing approaches that are either snapshot-based or lack compati-
bility and flexibility, MGUARD continuouslymonitors the integrity
of all the outer rings including both OS kernel and hypervisor of
interest, with a greater extendibility enabled by a programmable
interface. It offers a hardware drop-in solution transparent to the
host CPU and memory controller. Moreover, MGUARD is isolated
from the host software and hardware, leading to strong security for
remote attackers. Our simulation-based experimental results show
that MGUARD introduces no speed overhead, and is able to detect
nearly all the OS-kernel and hypervisor control data related rootkits
we tested.

Categories and Subject Descriptors
B.3.m [Memory Structures]: Miscellaneous; D.4.6 [Operating
Systems]: Security and Protection

General Terms
Security

Keywords
Programmable DRAM, Hardware-based Hypervisor and Kernel In-
tegrity Monitor

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06... $ 15.00.

To gain more control over the system and make the attack stealthy,
increasingly cyber attacks target the inner rings from OS kernel,
virtualization, to even the hardware. Kernel rootkits (e.g., [7]), vir-
tualization rootkits (e.g., Blue Pill [36] and SubVert [26]), and PCI
rootkits [18] all represent such trend, and they all tend to compro-
mise the inner rings (e.g., OS kernels, virtualizations, and hardware
interfaces) of a computer system, stealthily facilitate and conceal
other add-on attacks.

As these inner ring threats seriously undermine the integrity of
the entire computer system, numerous techniques have been pro-
posed to defend against these low level attacks, such as using a
specification or data structure guided approach (e.g., [32, 9, 21]),
signatures (e.g., using structure field invariants [3, 10], or graph-
invariants [27]). While these techniques are certainly promising,
the practical issue is where we should deploy the security mecha-
nism. Obviously, we should not deploy them above or within the
same ring; otherwise they will be directly tampered by the rootkits
running with the same privilege level.

With the recent advances in virtualization, more solutions have
been pushed down to the inner rings. In particular, since hypervi-
sor controls the outer computer systems, a number of techniques
use virtual machine introspection (VMI) [16] to detect the kernel
rootkits (e.g., [24, 14, 15]). Their assumption is that hypervisor is
secure and can be trusted (e.g., [16]). Unfortunately, like any other
software layer, a hypervisor can have vulnerabilities and is prone to
attacks or unexpected failures. For instance, in the past few years,
we have witnessed a number of successful hypervisor subversions,
such as Bluepill [36], SubVert [26] and SubXen [43].

Since the hypervisior approach is still vulnerable, hardware-assisted
approaches have been naturally proposed. More specifically, a num-
ber of recent studies have explored the possibility of leveraging the
existing x86 features, namely system management mode (SMM),
to acquire the necessary memory contents for monitoring the hyper-
visor (e.g., HyperSentry [2] and HyperCheck [39]) without any ex-
tra hardware. Unfortunately, the security of SMM cannot be taken
for granted [11]. It was demonstrated that SMM handler can be
tampered and modified by SMM rootkits [13].

It is thus imperative to designflexibleanddrop-inhardware based
solutions compatible with the exiting computer platforms for mon-
itoring the kernel integrity. Copilot [33] is such an example and
it uses a dedicated PCI device to monitor the kernel memory in-
tegrity. Unfortunately, there are attacks [35] that can prevent PCI
based RAM acquisition devices from correctly accessing the phys-
ical memory. This is because PCI devices are located far from
the CPU and physical memory, requests for accessing the physical
memory have to go through multiple hardware components situat-
ing in the I/O controller hub, memory controller hub, or the CPU

with integrated memory controller hub. These components can be
modified and configured by rootkits such that the PCI device could
be presented with a different view of the physical memory than
what is seen by the CPU, and as such those tampered physical
memory areas will be hidden from the analysis [35].

Moreover, similar to HyperSentry and HyperCheck, Copilot uses
a memory snapshot-based approach and it cannot detect the tran-
sient attacks [42] that happen in between the snapshots. Recently,
Vigilare [31] also recognized the issues in snapshot-based approach
and demonstrated a low speed bus snooping technique that snoops
the bus traffic between an embedded processor and memory con-
troller. Furthermore, all these existing hardware-assisted approaches
including Vigilare only support limited security policies, and can-
not perform other defensive functions such as runtime response.

Therefore, in this paper we present a new approach from the most
inner ring, to enableprogrammable, high speed, continuousmon-
itoring and response of system integrity of interest. Similar to the
network firewalls that inspect all the traffic pass-through, our sys-
tem is called MGUARD, and it is a memory firewall that monitors
the communication between the CPU and the physical memory. As
such, compared with all the other systems, the distinctive feature
of MGUARD is that it cancontinuouslymonitor all the abnormal
memory data passing through with a veryhigh speed. Moreover,
unlike the PCI-based approaches, MGUARD is integrated with the
physical memory itself by extending the advanced memory buffer
(AMB), and there is no other attack surface other than physical at-
tacks by design.

Our objective is to design an off-CPU and stand-alone solution
for monitoring physical memory states of interested kernel spaces,
which is as close to the physical memory itself as possible (pre-
venting tampering from the chipset rootkits) and compatible with
the existing computer hardware (requiring no change from the ex-
isting micro-processors and chipsets). To realize MGUARD, we are
facing a number of new challenges. Since it is common that mod-
ern commercial processors have integrated memory controller hub,
it is critical that the solution should be transparent to and compat-
ible with the existing systems. We use fully-buffered DRAM as
our design target because it is designed in a point-to-point favor
which is an adopted topology in the next generation DDR4 stan-
dard. While in this paper we demonstrate our technique by ex-
tending the AMB of fully buffered DIMM (FB-DIMM) [23, 22],
the principle and concept behind can actually be applied to other
DRAM techniques and standards. For example, our solution can
be used to the emerging DDR4 by integrating our new components
with the DDR4 switch fabric, a topic of future research. For fully-
buffered DRAM, it is crucial that we have to make sure that there is
no performance penalty with the inspection of the memory traffic
because such overhead will likely violate DRAM time constraint
and render the solution useless.

To this end, we have designed a programmable hardware guard
that is integrated with the AMB of FB-DIMM to continuously mon-
itor all the memory traffic and detect kernel integrity violations.
Because of such design, MGUARD provides a programmable inter-
face and allows customized security policies to check the integrity
and invariant violation of all the outer rings including both OS ker-
nel and hypervisor of interest. On top of MGUARD, we design a
number of system integrity checkers, and our experimental results
show that MGUARD introduces no performance overhead (because
it does not introduce any additional latency on the critical path),
and is able to detect all the outer ring control data related rootkits
including SMM, hypervisor and OS-kernel we tested. In short, this
paper makes the following contributions:

• We present a new off-CPU and stand-alone solution, MGUARD,

to check the system integrity of interest. Unlike the existing
solutions that provide limited capability, our system is fully
programmableand allows both detection and response;

• We have implemented MGUARD by leveraging the existing
open source IP blocks. We evaluate the MGUARD perfor-
mance based on cycle based architectural and FB DRAM
simulators;

• On top of MGUARD, we design a number of kernel control
data integrity checkers, which continuously check the mem-
ory traffic to system call table (SCT), interrupt handler table
(IDT), SMM handler, etc; and

• Our empirical evaluation results show that MGUARD has less
than extra 3.5% power consumption and almost no perfor-
mance overhead. It can detect a wide range of tested rootkits
include 11 kernel rootkits, 3 hypervisior rootkits and 3 SMM
rootkits.

2. BACKGROUND AND OVERVIEW

2.1 Threat Model
As an extended hardware in AMB, MGUARD is effective for

attackers who have gained the administrator’s privilege on the host
system through such as remote exploits. Particularly, when the OS
has already been compromised by the attackers, MGUARD is able
to find out suspicious modifications. In addition, the attackers are
unable to access MGUARD, because the design is transparent to
both OS and users. However, mitigating physical attacks by an
insider who has direct full control to machine hardware is not the
objective of our scheme.

System rootkits including kernel and hypervisor rootkits, which
run with the most inner rings, are the primary threats prevented by
MGUARD. Detecting system rootkits is one of the grand challenges
because software only approaches often fail for reasons mentioned
in §1. We assume that all the software layer has been compromised
by attackers, and attackers leave such as backdoors by modifying
the kernel and hypervisor. For example, the attackers can install
kernel and hypervisor rootkits that place hooks on critical system
calls. The details of threat detection will be covered in §6.

2.2 Kernel Inspection from Physical RAM Im-
age

To analyze intrusions and rootkits, it is a common practice to
dump physical RAM image from a live system and extract criti-
cal kernel information from the dumped physical image. To this
end, comprehensive set of software tools were developed to exam-
ine dumped physical RAM contents. Special hardware can be used
to take a snapshot of physical DRAM to ensure a truthful kernel
image is obtained. For continuous and real-time kernel inspection,
previous schemes have experimented with PCI based [33] and bus
snoop based approaches [31]. Our approach is one step further that
integrates such capabilities directly into the DRAM DIMM devices
for a drop-in solution with no performance overhead and transpar-
ent to the host hardware.

2.3 Background on FB-DIMM
In modern computer systems, higher memory bandwidth is often

required to meet the need of higher CPU speeds. As a memory
technology that can be used to increase scalability, reliability and
density of the memory systems, FB-DIMM [23, 22] was designed
for the server market. For instance, Intel recently has adopted FB-
DIMM technology for their Xeon 5000/5100 series and beyond.

AMB AMB AMB AMB

CPU

Memory

Controller

Clock

Source

SB SB SB SB

NB NB NB NB

Figure 1: Architecture Overview of FB-DIMM

Rather than using the traditional memory devices that communicate
through parallel bus (e.g., multi-drop buses), the DRAM devices
are buffered behind one or more Advanced Memory Buffer (AMB)
devices. The system memory controller connects to the AMB using
high speed serial communication links.

As shown in Fig.1, the memory controller in CPU communicates
with the AMBs through serial interface. The daisy-chained topol-
ogy provides an extension from a single DIMM per channel to up to
8 DIMMs per channel. The channel interconnection actually con-
sists of two unidirectional links: one in the southbound direction
and the other in the northbound direction. The memory controller
sends data to the first DIMM via southbound link. Whenever the
DIMM receives the data, it will forward the data to the next DIMM
until the last DIMM receives the data. Similarly, the DIMM sends
back the data to the next DIMM via northbound link until mem-
ory controller is reached. The AMBs can be considered as dumb
forwarding devices.

2.4 Goals and Challenges
The objective of MGUARD is to design a new off-CPU technique

for capturing memory states with the capability of, (i) obtaining
volatile memory states in a reliable and timely manner using so-
lutions as closer to the physical RAM as possible, (ii) providing a
standalone and drop-in solution that is compatible with the existing
hardware platforms and standards without modifying the proces-
sor or chipsets, and (iii) capturing volatile memory states without
causing any performance overhead of the entire computer system.

Our solution is to leverage the potentials provided by the FB-
DIMM to integrate new hardware components into the AMB chip
so that the extended AMB can provide secure, reliable, and timely
capture of the physical memory states. Because AMB is the clos-
est logic device to the DRAM modules, our solution can ensure
truthful views of the physical memory. Furthermore, our approach
offers a drop-in solution to the existing FB-DIMM based platform
because it does not require any changes of the existing chipsets or
processors that are already deployed. More importantly, our ap-
proach has the advantage that it does not require a modified mem-
ory controller because it is unrealistic to change the commercial
processors that already have integrated with memory controllers.

However, many great challenges must be addressed in order to
achieve the above aggressive goals. In particular, in FB-DIMM ar-
chitecture, AMB is treated as a passive synchronous device. It acts
like a pass-through switch, directly forwarding the requests that
it receives from the memory controller to successive DIMMs and
forwarding frames returned from southern DIMMs to the memory
controller. Frame scheduling is performed exclusively by the mem-
ory controller. The AMB only converts the serial protocol to DDRx
based commands without implementing any scheduling functional-
ity. This means that the AMB has no slack time or freedom to add
extra processing steps necessary for logging memory states, other-
wise it will violate the timing as specified by the memory controller.

2.5 MGUARD Overview

Our solution to these challenges is to move all the new compo-
nents off the critical paths of AMB, in contrast to Vigilare [31] that
snoops the bus and is bounded with the bus speed. Consequently,
our solution is as close to the physical memory as one can possibly
get by integrating programmable detection modules directly with
the DRAM DIMM devices. Our solution is compatible with the
FB-DIMM standards [23, 22] and fully programmable by using
a general purpose RISC core. It incurs virtually no latency over-
head because it does not introduce any additional latency on the
critical path; otherwise the overhead would likely violate DRAM
command timing enforced by the host memory controller.

A high level view of the design is presented in Fig.2. We extend
the AMB with the following new components: a programmable
RISC core, a DRAM controller connecting to a private DRAM
(hidden from the host CPU but accessible by the programmable
RISC core), a set of components that capture incoming/outgoing
DRAM frames and preserve interested DRAM pages (e.g., those
storing kernel data and codes) to the private DRAM, and a set
of components for issuing DRAM read commands into the south
bound frame stream under control of the RISC core. The extended
AMB supports two modes of operations: intercept mode and prob-
ing mode. More specifically:

• In intercept mode, both NB and SB DRAM frames are cap-
tured and analyzed according to the policies stored in a dual-
ported SRAM. If they fall into the ranges of interested DRAM
pages, the DRAM data contained in the DRAM frames will
be copied and saved to the private DRAM for later analy-
sis by the RISC core. Both write update from the host and
data in response to the read request from the host are in-
tercepted. In the intercept mode, the private DRAM will
provide the most recent view of the important kernel mem-
ory states. We expect that the intercept mode is sufficient
because it provides continuous captures of all the DRAM
changes made to the interested kernel space. However, in
cases where one wants to support on-demand read accesses
to the DRAM modules from the programmable RISC core,
our solution provides a probing mode.

• In probing mode, the RISC core can issue DRAM read re-
quests to the probe request interface (see Fig.2). The re-
quests will be converted into DRAM commands, sent to ei-
ther the local DRAM modules or merged with the SB frames
opportunistically. The data returned from the local DRAM
modules or the NB frames received from the southerly DIMMs
will be forwarded to the probe request interface and trans-
mitted to the private DRAM using a DMA engine. Probing
mode requires no SB commands from the memory controller,
otherwise it will cause conflict because the host memory con-
troller is not aware of the DRAM commands issued from the
probe request interface. In probing mode, it is preferred that
the memory controller does not send DRAM commands to
the AMB. This can be achieved by putting the host CPU in
an idle state (discussed in §3.3). When SB DRAM com-
mands are received, and there is an outstanding read request
from the RISC core with already issued DRAM commands,
the result is a collision. The extended AMB contains logics
for detecting such collisions and responding to them when
they occur.

The extended AMB does not add any extra delays to the critical
paths of NB and SB frame transmission (marked as dashed lines
in Fig.2). Our solution only requires the split of NB and SB frames
into FIFOs where they will be analyzed and preserved according to

In
p

u
t In

te
rfa

c
e

DRAM

Controller

Dual Port

SRAM

Probe Request Interface

& DMA Engine
FIFO

Memory

Controller

command out

DRAM Interface

data in data out

Spliter

Passthrough &

Merge Logic

De#Serializer &

Decoder

In
p

u
t In

te
rfa

c
e

SB SB

NB
NB

data out

data in
data out

data in

Merge &

Passthrough

Logic

Lightweight RISC Core

Spliter

Collision Detection

& Response

RAM Chip
RAM Chip

RAM Chip
DRAMs

RAM Chip
RAM Chip

RAM Chip
DRAMs

Intercept Controller

Serializer

probe mode

data DRAM

commands

Interconnect Fabric

AMB with Extended

Components

Local DRAM

Modules

Flash

(Boot Image)

High Speed Serial

Bus Interface

Serial Bus

Controller

Private DRAM

Administrative Machine

Report

Update

(merge and correlate reports from

multiple servers; the administrative

machine is isolated from the monitored

server network.)

Figure 2: AMB with Extended Components

SRAM

Intercept

Controller

rank #

FIFO

DRAM

Controller

bank # row # read? updated? log?
private DRAM

address

0 1 32 1 0 1 0x10000

0 1 64 1 1 1 0x11000

Tracked DRAM

page

Tracked DRAM

page

Tracked DRAM

page

Tracked DRAM

page

Tracked DRAM

page

bus

2 3

1

3

2

Filter out not interested frames

Lookup and update dram page lookup table (DPT)

For data of dram page x, when DPT[x].log? is true, DMA

the data to the private DRAM

DRAM Page Lookup Table (DPT)

NB

frames

Valid

1

1

Private

DRAM

Bus

Master

DMA

Engine

De4Serializer

RISC

Core

filter

SB

frames

filter1

Figure 3: Frame Interception Datapath

the policies set by the programmable RISC core. The split action
involves only forwarding a copy of the incoming/outgoing frames
thus incurs no additional latency. For each AMB, it can have upto
4GB DRAM modules connected locally. The size of the private
DRAM is much smaller (e.g., 256MB). Furthermore, only the first
FB-DIMM connecting to the memory controller needs the extended
AMB. The rest southerly DIMMs can use the regular AMB.

The RISC core boots from a system image stored in the private
flash memory attached to the AMB. The system image contains a
lightweight OS together with the necessary detection software and
data. The entire system is fully transparent to the host processor.
To the host, the AMB appears as a regular fully-buffered DIMM.
The solution is completely standalone. No hardware or software
modification is required to an existing host.

3. DETAILED DESIGN

3.1 Frame Interception

The detailed design of our frame interception is presented in Fig.3.
The FB-DIMM system uses a high-speed serial packet-based proto-
col to communicate between the memory controller and the DIMMs.
Frames may contain data and/or commands. Commands include
DRAM commands such as row activate (RAS), column read (CAS),
precharge command and so on, as well as channel commands such
as commands for initialization and synchronization. The commands
are transmitted over SouthBound (SB) channel that supports a frame
rate at the DRAM clock frequency (frame period equal to the DRAM
clock interval). Depending on the row buffer management policy
and state of the DRAM memory system, the memory controller
translates each memory transaction into one or more DRAM com-
mands such as RAS, CAS and precharge. For example, in an open
page memory system, a memory transaction could be translated
into: a single column access command if the row is already open; a
precharge command, a row access command and a column access
command if there is a bank conflict; or a row access command and
a column access command if the bank is currently idle.

The SB frame contains bits for identifying the command type,
rank number, and bank number. If the command is a row activation,
it must include the row address; and if it is a read or a write com-
mand, it must include the column address. If the command contains
write data, each frame can have 72 bits of write data. Data returned
from the DIMM is sent back to the memory controller through the
NorthBound channel with a frame rate also at the DRAM clock
frequency. An NB data frame can contain two 72 bit data chunks.
Other NB frames are idle, alert, or status frames.

In our extended AMB, copies of NB and SB frames are for-
warded to a FIFO where they will be analyzed. Before getting ad-
mitted into the FIFO, uninterested frames such as channel frames,
idle frames, NOP frames are filtered out. This reduces the num-
ber of frames to be analyzed. A frame intercept controller reads
frames from the FIFO and matches them against a SRAM lookup
table, called DRAM page lookup table. The lookup table is orga-
nized into multiple rows. Each row contains a tag field comprising
a valid bit, a rank number, a bank number, and a row address, and
a data field (see Fig.3). The lookup table rows can be programmed
and configured by the RISC core. The SRAM is dual-ported. It
allows access from both the RISC core (through a SoC bus) and the
intercept controller.

The intercept controller also monitors the flow of the captured
DRAM commands. It will check if the DRAM commands oper-

ate on data of interested DRAM pages according to the DRAM
page lookup table. If a row with matching tag field is found and
the valid bit is set, the intercept controller may update the row’s
data field and save the DRAM data to the private DRAM according
to the settings in the data field. For each row, the data field con-
tains both dynamic data modifiable by the intercept controller and
static data. The dynamic data includes, a bit for tracking whether a
DRAM page is modified (updated?), and a bit for tracking whether
a DRAM page is read (read?). There is a bit (requireLog?) indi-
cating whether the captured data of a DRAM page should be saved
to the private DRAM. The static data contains a private DRAM
physical address that points to the location where captured data of
a DRAM page should be stored. If requireLog? is set, the inter-
cept controller will transfer the captured data to the private DRAM
using a DMA engine that also connects to the shared SoC bus.
Since the private DRAM has smaller size, only DRAM pages of
important kernel states should be kept in the private DRAM. How-
ever, the DRAM page lookup table can monitor states of a much
larger memory space and track access history of its DRAM pages
using the read? and updated? bits. For example, the lookup table
may have 16K rows that can be used for tracking states of 16,384
DRAM pages.

In our approach, frames are captured and analyzed without adding
extra latency overhead to the critical paths, dashed lines in Fig.2.
This means that the extended AMB does not increase latency of
DRAM accesses.

3.2 Address Mapping
In general, MGUARD could get the virtual addresses of inter-

cepted frames by two steps. The physical addresses of intercepted
data will be first obtained based on the frame of commands which
include the information of row activate(RAS), column read (CAS)
and so on. At high-level, the memory controller will generate the
channel ID, rank ID, bank ID, row ID and column ID from the
physical address based on different mapping scheme and send them
as command packets. The mapping scheme is also related to the
memory row buffer management policy, which can be either im-
plemented in open page mode or close page mode. In the open
page mode, by getting benefits from temporal and spatial local-
ity of the address request stream, adjacent cacheline addresses can
be mapped into the same row across different channels. Similarly,
the consecutive cacheline addresses are mapped to different chan-
nels to minimize the chances of bank conflict in the latter mode.
The parametric variables are defined in Table1. In the baseline
open-page address mapping scheme, the memory system can be
denoted asr:l:b:n:k:z where the lower case letter is the binary log-
arithm of the upper case letter. The baseline close-page address
mapping scheme is denoted asr:n:l:b:k:z. When MGUARD inter-
cepts a southbound command frame, the information of row ID,
column ID, channel ID and etc could be extracted. With such in-
formation, MGUARD could calculate the physical address of the
data based on certain mapping scheme.

Next, these physical addresses will be translated into virtual ad-
dresses by checking the mapping information from "system.map"
file. For instance, in a 32-bit system, the Linux kernel usually
locates in the top 1 GB of the 4GB virtual address space. De-
pending on the platform’s memory map, this will be mapped to
a physical address in the physical memory. To find out where these
symbols are loaded in the main memory, subtract PAGE_OFFSET,
0xC00000000 in our example, from the symbol address to get the
offset and add this offset to the starting physical address of the ker-
nel in the physical memory as determined from the system memory

Description Description
K Number of channels in system C Number of columns per row
L Number of ranks per channel V Number of bytes per column
B Number of banks per rank Z Number of bytes per cacheline
R Number of rows per bank N Number of cachelines per row

Table 1: Definition of Memory System Address Variables

DRAM commands

C
o

m
m

a
n

d
s

to
 th

e
 n

e
x
t A

M
B

return from the local DRAMs DRAM commands

NB frames

probe mode?

Merger &

Passthrough Logic

DRAM

data

De�Serializer

& Decoder

SB frames

RISC Core

Collision

Response

Collision

Detection

Probe mode

control

Merge &

Passthrough Logic

bus

Alert

Serializer

DRAM Request Controller &

DMA Engine

De�Serializer

& Decoder
Filter

(probe mode?)

Serializer

Yes No

DRAM commands

Figure 4: Active DRAM Probing

map. Vice versa, one can always tell whether a physical address is
in kernel space or not.

Each distribution of OS kernel has its own "system.map". MGUARD

can detect which OS is used by a host (e.g., through a memory-only
based OS fingerprinting [17]) and choose the corresponding kernel
map. It can update and configure the DRAM page lookup table
accordingly. MGUARD stores kernel information for different OS
kernels in the private flash memory. For a new OS distribution, its
kernel map and associated data can be downloaded to a MGUARD

system through the serial bus interface.

3.3 Active Probing
MGUARD supports continuous capture of write data to the in-

terested DRAM pages and read data fetched from the interested
DRAM pages. When the RISC core decides that copy of a new
DRAM page should be made, it can do so by reconfiguring the cor-
responding row of the DRAM page lookup table. Whenever the
corresponding DRAM page is updated or read by the host CPU,
a copy of the data will be stored to the private DRAM, accessible
by the programmable RISC core. This is the common and recom-
mended way for capturing the physical memory states. A

However, our solution does support a probing mode where the
RISC core can send a read request to a DRAM page directly. As
shown in Fig.4, there is a probing request interface that can take
read request from the RISC core. The probing request interface can
issue DRAM commands to the local DRAM interface for reading
a DRAM page or merge the DRAM commands with the SB frame
traffic forwarded to the southerly DIMMs. Data returned from the
local DRAM modules or from the NB frames will be forwarded to
a collision detection unit. If no collision is detected, the data will
be returned to the probing request interface. The probing request
interface can transfer the returned data to a location at the private
DRAM using a DMA engine. The private DRAM location is spec-
ified by the RISC core when it issues the read request. Probing
mode requires special care because the issued DRAM commands

from the probing request interface may collide with the SB com-
mands from the memory controller. In the ideal case, when the host
memory controller does not access the DRAM for enough period of
time, the probing request interface can issue DRAM commands op-
portunistically. If the host memory controller gives sufficient slack
time, everything would be fine. Otherwise, there could be colli-
sions. The collision detection logic monitors outstanding DRAM
command from the probing request interface and SB frames from
the host memory controller for detecting any possible collision be-
tween them.

To ensure that there is enough time for completing DRAM com-
mands from the probing request interface, the RISC core can tem-
porarily put the host CPU into idle state. This can be achieved,
for instance, through the system management interrupt (SMI). The
system management interrupt causes the CPU to enter into the sys-
tem management mode. Write-back caches will be flushed to en-
ter the SMM. The SMI handler can be programmed to drain com-
mands to the FB-DIMMs and hold the memory controller for suf-
ficient amount of time before the probing request interface com-
pletes needed read accesses to the DRAM modules. SMM cannot
be masked or overridden which means that an OS has no way of
avoiding being interrupted by the SMI. AMB connects to one of
the GPIO pins and uses it for raising a system management inter-
rupt.

The extended AMB contains collision response logic for han-
dling collisions whenever they are detected. For doing so, it lever-
ages the existing fault handling mechanism of the FB-DIMM stan-
dards [23, 22]. The FB-DIMM standards support recovery from a
transient failure or corrupted commands on the SB channel through
alert frames sent back to the host memory controller on the NB
channel. The extended AMB takes advantage of this feature and
sends back alert frames when a collision is detected. To the host
memory controller, the collision appears as a transient failure in
the SB transmission or a corrupted SB command. In response, the
host will issue a soft channel reset command to acknowledge the re-
ceipt of the alert frames and reset the command state of the AMB.
The AMB receives the soft channel reset command and resets its
internal command state. After the soft channel reset command, the
host may issue a sequence of commands to clear all the DRAM de-
vices such as issuing a precharge all command to all the ranks. Af-
ter that, the host memory controller can issue new SB commands.
This means that a read request from the RISC core could fail if it
collides with the SB DRAM commands from the host CPU and the
collision causes a soft channel reset.

Furthermore, the same data path can be used for correcting ker-
nel memory states if the RISC core is allowed to issue DRAM
updates. Such operations are feasible under the current solution
framework. In a read-only mode, the RISC core only sends DRAM
read requests. In a second free mode, the RISC core is allowed
to correct kernel data structures using the same request interface.
However, great care must be taken to avoid memory state corrup-
tion. When updates are issued, the host is put into an idle state
through SMM interrupt.

3.4 Kernel State Monitoring
Integrity checking consists of detecting unauthorized changes

to kernel components and data structures in the volatile DRAM
memory. The rationale is that kernel control data (such as system
call table) tends to be static once a kernel is compiled and loaded
into memory. Any dynamic modification to the kernel control data
is deemed malicious. Many hypervisor or hardware-based kernel
rootkit detections are based on this observation [33, 2, 39, 15].

In MGUARD, the RISC core can run programs for checking in-

tegrity of the kernel space by examining the captured DRAM page
states and the copied data of DRAM pages. In addition, the ex-
tended AMB includes a serial interface that can transmit the cap-
tured data to a centralized place where the captured data can be
further analyzed in details for detecting rootkits or malware, see
Fig.2. The serial link also allows administrators to upload new pro-
grams or data to the RISC core so that the monitoring and checking
software executed by the RISC core can be customized according to
the installed system, threat contexts, and knowledge of the attacks
and risks. This is one of the unique benefits of our MGUARD.

The RISC core is in idle state most of the time when DRAM
data is captured. It wakes up from the low power idle state in re-
sponse to the external connection (via serial link) or periodically
to run pre-installed software that performs routine integrity check
of the captured system memory image. Since the SRAM DRAM
page lookup table contains status history for the DRAM pages of
interested kernel space, the RISC core can first check the tracked
states of the DRAM pages storing the important kernel data struc-
ture (e.g., IDT, syscall table, interrupt handlers’ code). This can
be done by reading the dual-ported SRAM. If nothing is suspi-
cious, the RISC core can go back to the low power idle state and
wake up later to repeat the same routine procedure. If something
is wrong, the RISC core will further examine the captured DRAM
page data stored in the private DRAM. The RISC core maintains a
list of hash codes (e.g., md5) for the important kernel texts and han-
dlers (e.g., interrupt, syscall, and SMI). The sizes of the handlers
are pre-determined for a distribution of operating system based on
dis-assembled handler codes. For each handler, its integrity can
be verified by comparing the stored hash code with the computed
hash code using the captured handler data. Note that the total size
of the pre-computed hash values is very small because only ker-
nel texts and handlers are checked. The pre-computed hash values
are stored in the private DRAM and the exact size depends on the
kernel version. The pre-computed hash values can be downloaded
to the MGuard DIMM using serial connection. The threat model
excludes insider attacks, and there is no attack surface for outsider
attackers.

Different from the snapshot based approaches, accesses to the
physical DRAM is monitored continuously from the very begin-
ning when the system boots. This allows the extended AMB and
the integrated RISC core to create a baseline database of the ker-
nel components and structures. Different from the periodic based
approach, every bit stored to the critical data components of the ker-
nel space can be monitored and captured. The extended AMB can
record the kernel data structures when they are written first time
to the DRAMs. Any modifications to the kernel by the rootkits
later can be detected. Furthermore, since the inspection capabil-
ity is transparent to the system and integrated with the AMB that
is the closest logic device connecting to the DRAM modules, it
is ensured that the view of physical memory wouldn’t be affected
by firmware rootkis or controller rootkits. The specific space layout
information for each system can be downloaded to MGuard DIMM
via the serial connection. It is a significant advantage over the prior
solutions.

Meanwhile, the solution can be applied for capturing SMM rootk-
its [11, 13], one of the most elusive types of rootkits to catch be-
cause they are stored in SMRAM (system management RAM). In
SMM, SMI handlers are stored in SMRAM that is out of the reach
of the host OS after they are configured. However, the SMI han-
dlers are stored in the physical RAM, any modification to the han-
dlers can be tracked by the extended AMB and detected by the
integrated RISC core.

Finally, thanks to the programmable feature of our FB-DIMM,

MGUARD also supports more complicated rootkit detection and
recovery. For instance, the captured DRAM data can be also ap-
plied for cross-view based rootkit/malware detection. The idea be-
hind the cross-view based detection is that if a host system is in-
fected with rootkits, it is probably hiding things and presenting a
false image of the kernel data components. The view of kernel
physical memory captured by the extended AMB can be compared
with a common view of the system memory recorded using con-
ventional approach. Any difference between these two views can
be detected and used for revealing the rootkits hidden in the sys-
tem. Our solution provides such opportunities for experimenting
new rootkit/malware detection solutions. In addition, MGUARD

also performs certain data recovery. For instance, if a rootkit con-
taminates a system call table entries, we can even recover the con-
taminated values with the predetermined one.

3.5 An Example
To illustrate our technique, we use an example to describe how

MGUARD protects the integrity of the system. When we power
up the system, the introspection code runs in the extended RISC
core in AMB. For example, when the host CPU writes back to
the DRAM, the command and data will be packed and sent by
the memory controller. This packet will first go through the AMB
prior to the DRAM modules. As described in §3.1, MGUARD is
able to intercept the frame whenever data is transferred between the
host CPU and the DRAM. The physical address will be extracted
at this stage. As an extended hardware outside CPU, MGUARD

has no access to the paging files that manage the mapping between
the virtual address space and physical memory address. However,
the page global directory (PGD) has strong signatures [27] and we
can actually search for PGDs in the physical memory as demon-
strated in [17]. As such, guided by the virtual address of specified
in “/boot/System.map" (for Linux kernel) file, which is a look-up
table between symbol names and their addresses in memory, with
the identified PGDs, MGUARD can check the integrity for all the
key kernel symbols such as system call table, ITD, and many other
kernel function pointers as demonstrated in §6.

4. SIMULATION SETUP
The memory integrity checking is off CPU critical path. We eval-

uate the performance, energy, and area overhead of our MGUARD

based on the extended architectural and DRAM simulators. In
particular, we extended three simulators (i.e., GEM5 [5], DRAM-
Sim2 [34], and OR1ksim [1]). GEM5 is a system simulator built
from a combination of M5 [6] and GEMS [28] simulators. GEM5
supports most commercial ISAs such as x86, ARM, and MIPS. It
can run a full system simulation and provide a cycle based model
for out-of-order processors. DRAMSim2 [34] is a cycle accurate
open source JEDEC DDRx memory system simulator. It provides
a DDR2/3 memory system model that can be used with many ar-
chitectural simulators including GEM5. DRAMSim2 can model
power, latency, and bandwidth of DDR2 and DDR3. The pro-
grammable RISC core is modeled based on OR1ksim, a generic
OpenRISC architecture simulator capable of emulating the Open-
RISC based computer systems. To analyze DRAM interaction while
executing benchmarks, we integrated FB-DIMM and MGUARD

simulation capability with GEM5. The developed FB-DIMM sim-
ulation integrates various proposed components with parameters
derived from reference RTL implementations. The simulator in-
tegrates OR1ksim with DRAMSim2 by using the DRAMSim2 li-
brary mode. FB-DIMM support is modeled according to [29] and
[23, 22]. The default AMB clock frequency is set at 400MHz.

4.1 Machine Parameters
We hook up the GEM5 simulator with MGUARD simulator to

model a quad-core system. In particular, the multicore cpu is in-
tegrated with 2MB L2 cache and an on-chip memory controller.
The DRAM is modeled based on the micron FB-DIMM specifi-
cation. In the GEM5 side, the simulation is performed with an
out-of-order CPU model running at 2GHz and x86 ISA. The CPU
model has seven pipeline stages: fetch, decode, rename, issue, ex-
ecute, writeback, and commit. Each processor core has pipeline
resources: branch predictor, reorder buffer, instruction queue,load-
store queue, and functional units. The I-TLB and D-TLB have 64
fully associative entries. The L1-instruction and L1-data caches
are 64KB write-back caches with 64-byte block size, and an access
latency of 2 cycles. The L2 cache is unified, non-blocking, 2MB
size, 16-way associativity, 128-byte block size, and has an 10-cycle
access latency.

DRAM module Value DRAM timing Value

Number of channels 1 tCK 2.5ns

Number of banks 8 tRAS 18

Number of rows 16384 tCAS 5

Number of columns 2048 tRCD 5

Device width 4 tRC 23
Refresh Period 7800 tRP 5

AMB Value Memory Controller Value

Passthrough lat 2.2ns Policy open page

Deserialization lat 8.0ns Scheduler FR_FCFS

Serialization lat 5.0ns Read/write queue size 32

Channel mode
fixed lat
mode

Write mode enter/exit
threshold

28/6

M-Guard Value M-Guard Value

Lookup table lat 1.9ns FIFO size 48 entries

Table 2: DRAM, Extended AMB, and FB-DIMM Parameters

In the FB-DIMM side, we configure a 2GB FB-DIMM associate
with the GEM5. The parameters is shown in Table2. The ex-
tended AMB is modeled with the parameters shown in Table2.
By default it uses a fixed latency mode, which means, to the host
memory controller, all DIMMs on the channel will appear to have
a fixed latency. The DRAM is managed using an open page policy.
The FB-DIMM latency is derived from [29, 22]. The signal path
from the memory controller to the first FB-DIMM takes 0.6 ns de-
lay. The signal path from one FB-DIMM to another takes 0.2 ns
(assuming 4cm distance). The round trip latency can be modeled
by the simulator based on the parameters given in Table2 under the
fixed latency mode and open page policy. The AMB parameters are
based on the AMB standard, published numbers of commercially
available AMB chips from vendors (e.g., [12]), and [29].

4.2 Benchmarks
For performance evaluation, we used the SPEC CPU2006 bench-

mark suite. We tested ten memory intensive benchmarks of the
SPEC CPU2006. These include, bzip2, gcc, gobmk, hmmer, sjeng,
libquantum, h264ref, omnetpp, namd, and lbm. The detailed de-
scriptions of the benchmarks can be found in [19]. We also choose
5 popular server benchmarks applications with real-world input
dataset. The simulation started when the application passed the ini-
tialization stage. The cycle based simulation executed each bench-
mark application for one billion instructions or until it finished de-
pending on which one was longer.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

ge

kernel non-kernel

Figure 5: Percentage of Kernel Accesses

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

ge

write read

Figure 6: Types of Kernel Accesses

4.3 Synthesis
The major components of our extended AMB design include: a

frame intercept controller, an integrated programmable RISC core,
a DRAM controller for accessing private DDR2 memory, a shared
SoC bus and a DMA engine, a SRAM lookup table, various FI-
FOs and filters. For rapid prototyping, we leveraged open source
IP blocks whenever it is possible. We evaluate the power and area
performance of our MGUARD by integrating these components and
synthesizing the design using Synopsys tools with FreePDK at 45nm.
The dual-ported SRAM is evaluated using CACTI 6.0. The private
memory is 256MB DDR2 and simulated using DRAMSim2.

The shared system bus is based on the open source Wishbone
bus [20]. Wishbone is defined as an on-chip internal bus for the
System-on-Chip (SoC) architecture, which is a portable interface
for use with semiconductor IP cores. The DDR2 memory controller
for the private DDR2 is based on [4], an open source implemen-
tation of DDR2 SDRAM controller. An open source DMA engine
compatible with the Wishbone SoC bus is used as the DMA engine
for the private DRAM [38]. The Wishbone bus provides a common
bus between these IP cores. The FIFOs are adapted from Verilog
implementation of generic FIFOs. Verilog implementation of our
design is synthesized using the Design Compiler of Synopsys. It
provides parameters for estimating overhead and tuning the cycle
based simulation models.

5. EVALUATION

5.1 Performance Analysis
Fig.5 shows the percentage of DRAM accesses to the kernel dur-

ing execution of the benchmark applications. In most cases, only
about 4% of the accesses are in the kernel. Sjeng has the largest
percentage of kernel accesses (i.e. 11%). The average is 4.3%.
The types of kernel accesses are illustrated in Fig.6. Among all
the kernel DRAM accesses, only less than 15% are write accesses.
All the others are read accesses. The only exception is lbm applica-
tion. Almost half of the DRAM accesses are writes. The average of
all the benchmark applications is 13%. In terms of kernel DRAM
pages accessed during execution of the benchmark applications, the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n

ta
ge

write read only untouched

Figure 7: Accesses to Kernel DRAM Pages

��

���

���

���

���

���

���

	��

�
�
�
�
��
��
	

�

Figure 8: DRAM Usage for Different Benchmarks

results are displayed in Fig.7. It shows how much kernel space is
touched. In most applications except lbm and omnetpp, only 2%
of the kernel DRAM pages are touched. lbm and omnetpp have
about 11% and 20% touched kernel DRAM pages. On average,
93.7% kernel DRAM pages are not accessed. There are far few up-
dates to the kernel DRAM pages than read. The results suggest that
during execution of benchmark applications, only small percentage
of DRAM accesses are in the kernel. Meanwhile, the majority of
the kernel DRAM pages are not accessed. Of these kernel DRAM
pages touched, there are more read accesses than write accesses.
This means that under normal application execution environment,
the workload of frame interception by the extended AMB is very
light.

Simulator integrated with the DRAMSim2 library is used to study
how busy the FB-DIMM is during execution of the benchmarks.
Fig. 8 shows the percentage of DRAM usage. According to the
statistics, one can see that for certain applications, the DRAM is
idle most of the time during benchmark execution. For six out of
the ten benchmarks, the DRAM idle time is about 90%. Bench-
mark gobmk, sjeng, and lbm have more DRAM busy time. One
can further break down the DRAM idle time in terms of how long
the idle duration lasts. The results are shown in Fig.9. According
to Fig. 9, when DRAM is not busy, most of the idle time duration
is longer than 500ns.

We developed a set of programs (written in C and compiled using
OpenRISC toolchain) for detecting modifications to the important
kernel components and data structures. These include hash based
checking (md5) of system call table (SCT), its handlers, interrupt
descriptor table (IDT), interrupt handlers including SMM handlers,
etc. When kernel texts and handlers are changed, the modifications
can be captured by the AMB on-chip frame intercept mechanism.
The RISC core can compute the md5 hash code of a tracked ker-
nel space, and compare the hash result with a known hash value
pre-computed. We collected performance of these programs using
the cycle based OpenRISC simulator integrated with the simulation
environment and DRAMSim2. The results indicate that, it takes
about 1.3ms to check the integrity of the syscall table using md5.
IDT can be checked in 0.02ms because it is much smaller than the
syscall table. For checking integrity of syscall/interrupt handler, it
takes on average 4.34ms using md5 hash.

��

���

���

���

���

���

���

	��

��

���

����

�
�
��
�
�
��
�
�
	

����
���
������ �������
���
������ ����
���
������

Figure 9: Distribution of DRAM Command Interval

��

���

���

���

���

���

���

	��

��

���

����

�
������
��������� ��
�������������
������� �
 ��!�"��#��$$
�

%!���&'(�)�&�� * !+%"�"��

Figure 10: Area and Peak Power Characteristics ofMGUARD

Extension

There is an interesting question on whether the system can keep
up with the memory throughput. In our paper, the AMB is run-
ning at 400MHz. The south bound frame interval is 2.5ns at peak.
The build-in filter will remove NOP frames, idle frames, channel
frames before they are handled by the intercept controller. The in-
tercept controller only processes the frames accessing the kernel
space. It will compare the DRAM address with data stored in a
Lookup Table. The Lookup table has access latency of 1.9ns based
on Verilog implementation and synthesis results (listed in Table2).
This means that even in the very unlikely worst case scenario, all
the frames are read/write frames at peak rate, MGuard would be
able to handle the frame traffic.

5.2 Hardware Overhead
The area and peak power consumption of different hardware

components are shown in Fig.10. A fully synthesizable implemen-
tation of MGUARD AMB extension at 45nm operates at 400MHz,
occupies5.3mm

2, and dissipates 355mW of peak power. Most
of the area and power are consumed by the RISC core and SRAM
lookup table. For reducing die size overhead, we optimized the
RISC core by removing unnecessary components and unused facil-
ities. The result total die size is 70% smaller than using the default
OpenRISC design. Compared with the58mm

2 die area of Intel
6400/6402 advanced memory buffer, the total overhead of die size
is only about 9.1%.

In FB-DIMM architecture, the AMB can consume around 6W
of power based on vendor reported measurements and FB-DIMM
standards. A large part of the power consumption can be attributed
to the high speed serial links. In our extended AMB, it contains
several on-chip components that may increase the overall AMB
power consumption. Power models of these components are cre-
ated according to the descriptions in §4.3. A detailed transaction
based power model for AMB is constructed according to the AMB
standards, vendor datasheets, and previous published results [44].
Power consumption of the DRAM page lookup table is modeled us-
ing Cacti 6.5. For each benchmark, the DRAM page lookup table
power consumption is simulated using DRAM commands captured
by DRAMSim2. Only for tracked kernel DRAM pages, the SRAM
lookup table is updated. The RISC core wakes up periodically. In

��

��

��

��

��

��

��

�
�
��
�
�
��
�
�
	

Figure 11: AMB Relative Power Overhead

��

��

��

��

��

��

��

	�

�

��

���

�
�
��
�
�
��
�
�
	

Figure 12: Total FB-DIMM Relative Power Overhead

rest of the time, it stays in low power dozy mode. For the bench-
marks, the introduced AMB power overheads are shown in Fig.11.
For all the applications, the AMB on-chip power overhead is rather
small. The maximum is less than 5.5% and the average is about
4.2%. In addition to the AMB power overhead, we also evaluated
the overall power overhead considering the FB-DIMM as a whole
(counting all the DRAM devices accessible by the host memory
controller and the private DDR2 DRAM devices). Power model-
ing of the DRAM devices is given by DRAMSim2. The private
DRAM is accessed by the frame intercept controller and the RISC
core. The overall FB-DIMM power overhead is shown in Fig.12.
On average, the power overhead when considering the FB-DIMM
as a whole is only 4.4%. For named, hmmer, and xalan, the over-
head is over 5%.

6. SECURITY APPLICATION
MGUARD provides a holistic, off-cpu solution in detecting any

rootkits outside the hardware ring. To demonstrate this feature, we
developed a kernel rootkit detector, a hypervisor rootkit detector,
and a SMM rootkit detector using the md5 approach mentioned in
§5.1. In this experiment, we developed a functional simulator for
MGUARD that is integrated with the Bochs full-system emulator.
The analysis environment supports a complete operating system
with rootkit installed. In the following, we report our experiment
results.

OS Kernel Rootkit Detection We took12 source code available
rootkits frompacketstormsecurity.organd tested them with MGUARD

using Linux kernel 2.6.08. Not surprisingly, as presented in Table3,
MGUARD performs incredibly well and it successfully identifies11

rootkits that tamper such as system call table (SCT), interrupt de-
scriptor table (IDT), and the global kernel function pointers (e.g.,
tcp4_seq_show). It fails to identifyadore-ng-2.6 because
this rootkit also modifies kernel heap object but our current detec-
tion logic does not include the heap object traversal.

When detecting a kernel rootkit intrusion, there could be multi-
ple options for the response. The most simple one is to notify the
administrator and restart the system. The more complicated one is
to enable automatic response. Thanks to the programmable feature
of MGUARD, we can support many extra security policies such

Rootkit Type Name Attack-Vector Detected?
hookswrite IDT table X

int3backdoor IDT table X

kbdv3 syscall table X

kbeast-v1 syscall table, tcp4_seq_show X

mood-nt-2.3 syscall table X

OS Kernel override syscall table X

Rootkit phalanx-b6 syscall table, tcp4_seq_show X

rkit-1.01 syscall table X

rial syscall table X

suckit-2 IDT table X

adore-ng-2.6 global and heap pointers ✗
synapsys-0.4 syscall table X

Kvm-kmod1 kvm_x86_ops X

Hypervisor Kvm-kmod2 kvm_vmx_exit_handler X

Rootkit HVM-rootkit vmexit_handler X

VMBR Redirecting IRQ X

SMM-Rootkit SMM-Reload Cache Poisoning X

BIOS-Rootkit - X

Table 3: OS Kernel, Hypervisor, and SMM Rootkit Detection
Using MGUARD.

as automatic fixing of the contaminated kernel function pointers,
especially those pointers with known instruction addresses. For in-
stance, all the SCT entries are always pointing to the system call
handler code with known addresses, once a kernel is compiled. We
can thus prefetch these addresses before loading an OS and repair
the values if they are hijacked by kernel rootkits. In our experi-
ment, we configured MGUARD to repair the IDT entry, SCT entry,
and kernel global function pointers. We succeeded to recover the
values when a rootkit attempts to overwrite these pointers.

Hypervisor Rootkit Detection A hypervisor is a trusted platform
in the virtual machine environment by default. However, many
attacks target hypervisor to obtain a higher level privilege of ei-
ther a guest OS, or even a host OS without being detected. To
demonstrate that our MGUARD can detect hypervisor rootkit, we
developed two in-house KVM rootkits based on kvm-kmod-3.5. In
particular, one KVM rootkit hijackskvm_vmx_exit_handler,
and the other rootkit hijackskvm_x86_ops, to introduce the il-
licit behavior. We also used a real world HVM rootkit that targets
vmexit handler [8] to test MGUARD. As summarized in Table3,
MGUARD succeeded to detect all the contaminations done by the
hypervisor rootkits.

SMM Rootkit Detection Because SMM has its own memory space
(called SMRAM) and all memory accesses to SMRAM are arbi-
trated through the Memory Controller Hub (MCH), it can be made
invisible to code running outside of the SMM. Therefore, it is im-
possible to detect SMM rootkits by using devices residing off the
RAM (e.g., [33]). However, we can track and detect any modifica-
tion to the SMRAM (i.e., SMM rootkit) using our extended AMB
and the integrated RISC core. To show that our MGUARD can de-
tect SMM rootkit, we first implemented SMM based keylogger and
network backdoor (described in [13]) to enable keystroke logging
in SMM and send the logged keystroke to other machine via UDP.
The rootkits were tested using both emulation and real hardware.
Bochs supports complete emulation of SMM functionality. We also
tested the rootkit by injecting it into the BIOS of ASUS P5Q based
on Intel P45 hardware by using Windows kernel driver. Encourag-
ingly, MGUARD succeeded to detect all these malicious code inside
SMRAM. In addition, as shown in Table3, MGUARD succeeded
to detect other kinds of SMM rootkit such as BIOS rookit as well.

DiscussionMGUARD does have certain limitations. Because the
program for monitoring kernel space is running on the programmable
RISC core, it cannot access certain states internal to the proces-

sor. In addition, because MGUARD only monitors changes to the
physical memory, it is hard to detect attacks that leave no trace in
the physical memory. However, this can be addressed by flushing
the on-chip caches periodically through SMI interrupts sent from
MGUARD. Also, in our current prototype, we only demonstrate
that we can identify the rootkits that tamper with kernel global
function pointers. While our experiment shows we failed to iden-
tify adnore-ng-2.6 rootkit, MGUARD can actually identify the
pointers in kernel heap as well. For instance, we can integrate other
techniques such as KOP [9], SigGraph [27], or OSck [21] to tra-
verse the kernel heap and detect the rootkit. We leave this as one of
the future efforts.

7. RELATED WORK
Virtualization-based detectionAs hypervisor is positioned under-
neath the ring of OS, and it can be naturally used for inspecting the
OS kernel integrity. Livewire [16] pioneered virtual machine in-
trospection (VMI) and numerous efforts have been focused on how
to extend VMI to detect such as kernel rootkits. Notable examples
include such as VMwatcher [24], Lycoisid [25], and they all infer
kernel rootkit presence using a cross-view comparison approach.
HookSafe [41] intercepts guest-kernel function calls to check the
integrity; KOP [9] and OSck [21] collects all kernel function point-
ers through source code analysis and traverses the kernel memory
for this purpose.

However, as alluded in §1, today’s hypervisors often have a large
code base (with hundreds of thousands lines of code), and it is chal-
lenging to have a bug-free implementation. For instance, there are
still hundreds of vulnerabilities being found recently in popular hy-
pervisors such as Xen and VMware ESX, as summarized in Hy-
perWall [37]. While HyperSafe [40] enforces a lightweight control
flow integrity to protect the hypervisor from being compromised,
it is still a software only approach and requires recompile of the
hypervisor.

Hardware-assisted detectionThrough leveraging system manage-
ment mode (SMM) present in modern hardware, HyperSentry [2]
monitors the integrity of hypervisors using an agent planted in the
SMM. Similarly, HyperCheck [39] also leveraged the SMM feature
but with the cooperation from a PCI device. Unfortunately, SMM is
not secure and can be attacked by SMM rootkits [13]. Flicker [30]
provides a framework to isolate sensitive code execution and attes-
tation, by using the new processor features in modern x86 CPU.
However, Flicker requires the cooperation from OS and applica-
tions. HyperWall [37] extends the instruction set and protects guest
VMs from a compromised hypervisor. It also requires the guest
VM cooperations. While our MGUARD is also a hardware-assisted
approach, it works transparently to the legacy systems.

Extra-hardware based detectionFor convenience or transparency,
extra hardware was created for acquiring the contents of system
memory without OS or CPU interaction (e.g., [33]). In particular,
Copilot provides a PCI based solution for checking the integrity of
system memory by issuing PCI DMA requests periodically to take
snapshot of the physical memory of a live system. Unfortunately,
PCI based approach can be bypassed and rootkits can modify the
PCI configurations and bridge settings.

Most recently, Vigilare [31] leverages bus snooping techniques
with an extra hardware to detect the system integrity, and it is able
to capture the transient manipulations of kernel memory. While at
high level, both MGUARD and Vigilare recognized the problem of
the transient attacks, the solutions and targeted environments are
actually very different. The major concern about their technique as

The System S
of

tw
ar

e-
on

ly
ap

pr
oa

ch

H
ar

dw
ar

e-
as

si
st

ed
ap

pr
oa

ch

E
xt

ra
-h

ar
dw

ar
e

ap
pr

oa
ch

C
P

U
tr

an
sp

ar
en

t&
dr

op
-in

so
lu

tio
n

P
ro

te
ct

in
g

O
S

ke
rn

el

P
ro

te
ct

in
g

H
yp

er
vi

so
r

N
o

co
op

er
at

io
n

fr
om

O
S

N
o

co
op

er
at

io
n

fr
om

H
yp

er
vi

so
r

N
o

so
ur

ce
co

de
ac

ce
ss

S
na

ps
ho

t-
ba

se
d

m
on

ito
rin

g

C
on

tin
uo

us
m

on
ito

rin
g

F
le

xi
bl

e
se

cu
rit

y
po

lic
ie

s

VMwatcher X X X X X

Lycosid X X X X X X

KOP X X X X

HookSafe X X X X X

HyperSafe X X X X

HyperSentry X X X X X X X

HyperCheck X X X X X X X X

Flicker X X X X X

HyperWall X X X X X

MGUARD X X X X X X X X X

Vigilare X X X X X X X X

Copilot X X X X X X X X X

DeepWatch X X X X X X X X

Table 4: Summary of the Related Work Comparison.

acknowledged by the authors is: Vigilare has host bus bandwidth
limitation. The bandwidth of the high-end modern server may ex-
ceed the computing speed of a slow embedded processor which
is used in their experiment. In this case, Vigilare is not suitable
for high-end DRAM system running at much higher speed based
on point-to-point links such as FB-DIMM. Another significant dif-
ference between Vigilare and our solution is that Vigilare snoops
the bus between an embedded processor core and the memory con-
troller, which makes Vigilare unpractical as a real solution not only
because specific snoopers are required for different processors but
also because today’s commercial processors have integrated mem-
ory controller and the bus between processor cores and memory
controller is hidden and inaccessible by a snoop device. Such prob-
lems don’t exist in MGUARD because MGUARD is integrated with
DRAM DIMM devices and is transparent to the memory controller
and host CPU. In addition, with the DRAM page lookup table for
filtering out uninterested traffic and tracking updates to interested
kernel space automatically, MGUARD is much more efficient than
Vigilare.

By extending chipset-specific uController and internal DMA, Deep-
Watch [8] watches system memory via DMA and scan for signa-
tures of known VT-x based hypervisor rootkits such as malicious
vmexit handler and SMM rootkits. However, like many other ap-
proaches, DeepWatch is also snapshot-based, and it cannot detect
the transient attacks. In addition, there are also TPM chipset to
enable trusted computing in commodity hardware. However, TPM
approaches typically do not support the continuous monitoring of
system integrity, and they are either used to ensure the trusted boot-
ing or sealed storage (c.f., [30]).

8. CONCLUSION
We have presented MGUARD, a new hardware-assisted, most

inner ring system integrity monitor integrated with AMB DRAM.
The distinctive feature of MGUARD is that it continuously checks
the integrity of all the outer ring memory access including OS ker-
nel and hypervisor of interest, off the DRAM critical path. It has no
performance overhead and consumes on average 3.5% more power
according to our simulated experimental results. We have proven
with real world rootkits that MGUARD can effectively detect 11

OS kernel rootkits, 3 hypervisor rootkits and 3 SMM rootkits with
our kernel rootkit, hypervisor rootkit and SMM rootkit detectors
without any false positive or false negative. Our MGUARD is en-
tirely transparent to all the outer ring software and hardware, and
can therefore be easily applied to commodity systems.

9. ACKNOWLEDGEMENT
We would like to thank anonymous reviewers for their insight-

ful comments which significantly improved the paper. This re-
search is partially supported by the Department of Homeland Secu-
rity (DHS) under Award Number N66001-13-C-3002, the National
Science Foundation under Award Number CNS 1205708, the Air
Force Office of Scientific Research (AFOSR) under Award Num-
ber FA9550-12-1-0077, and a research gift from VMware Inc. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the opinions
or policies of DHS, NSF, AFOSR, or VMware Inc.

10. REFERENCES
[1] OpenRISC 1000: Architectural simulator.

http://www.opencores.org/openrisc,or1ksim.
[2] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C.

Skalsky. Hypersentry: enabling stealthy in-context
measurement of hypervisor integrity. InProceedings of the
17th ACM conference on Computer and communications
security, CCS ’10, pages 38–49, New York, NY, USA, 2010.
ACM.

[3] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference
and enforcement of kernel data structure invariants. In
Proceedings of the 2008 Annual Computer Security
Applications Conference (ACSAC’08), pages 77–86,
Anaheim, California, December 2008.

[4] U. Becker. Ddr2-sdram controller.
[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,

A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator.SIGARCH
Comput. Archit. News, 39:1–7, Aug. 2011.

[6] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The m5 simulator: Modeling
networked systems.IEEE Micro, 26(4):52–60, July 2006.

[7] Buffer. Hijacking linux page fault handler.Phrack Magazine,
0x0B, 0x3D, Phile #0x07 of 0x0f, 2003.

[8] Y. Bulygin and D. Samyde. Chipeset based appraoch to
detect virtualization malwre aka deepwatch.

[9] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping kernel objects to enable systematic
integrity checking. InThe 16th ACM Conference on
Computer and Communications Security (CCS’09), pages
555–565, Chicago, IL, USA, 2009.

[10] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin.
Robust signatures for kernel data structures. InProceedings
of the 16th ACM Conference on Computer and
Communications Security (CCS’09), pages 566–577,
Chicago, Illinois, USA, 2009. ACM.

[11] L. Duflot, D. Etiemble, and O. Grumelard. Using cpu system
management mode to circumvent operating system security
functions.DCSSI 51 bd. De la Tour Maubourg 75700 Paris
Cedex, 2007.

[12] Elpida. Fully buffered dimm - main memory for advanced
performance.

http://www.opencores.org/openrisc,or1ksim

[13] S. Embleton, S. Sparks, and C. Zou. Smm rootkits: a new
breed of os independent malware. InProceedings of the 4th
international conference on Security and privacy in
communication netowrks, SecureComm ’08, pages
11:1–11:12, 2008.

[14] Y. Fu and Z. Lin. Space traveling across vm: Automatically
bridging the semantic-gap in virtual machine introspection
via online kernel data redirection. InProceedings of the 2012
IEEE Symposium on Security and Privacy, San Francisco,
CA, May 2012.

[15] Y. Fu and Z. Lin. Exterior: Using a dual-vm based external
shell for guest-os introspection, configuration, and recovery.
In Proceedings of the 9th Annual International Conference
on Virtual Execution Environments, Houston, TX, March
2013.

[16] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In
Proceedings Network and Distributed Systems Security
Symposium, 2003.

[17] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin. Os-sommelier:
Memory-only operating system fingerprinting in the cloud.
In Proceedings of the 3rd ACM Symposium on Cloud
Computing (SOCC’12), San Jose, CA, October 2012.

[18] J. Heasman. Implementing and detecting a pci rootkit.White
paper of Next Generation Security Software Ltd., 2007.

[19] J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1–17, Sept. 2006.

[20] R. Herveille. Wishbone system-on-chip (soc) interconnection
architecture for portable ip cores, rev. version: B4.By Open
Cores Organization, 2010.

[21] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel.
Ensuring operating system kernel integrity with osck. In
Proceedings of the sixteenth international conference on
Architectural support for programming languages and
operating systems, ASPLOS ’11, pages 279–290, Newport
Beach, California, USA, 2011.

[22] JEDEC Standard. Fbdimm advanced memory buffer (amb).
2007.

[23] JEDEC Standard. Fbdimm: Architecture and protocol. 2007.
[24] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection

through vmm-based out-of-the-box semantic view
reconstruction. InProceedings of the 14th ACM Conference
on Computer and Communications Security, pages 128–138.
2007.

[25] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Vmm-based hidden process detection and
identification using lycosid. InProceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 91–100, Seattle, WA, 2008.

[26] S. T. King, P. M. Chen, Y. min Wang, C. Verbowski, H. J.
Wang, and J. R. Lorch. Subvirt: Implementing malware with
virtual machines. InIEEE Symposium on Security and
Privacy, pages 314–327, 2006.

[27] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. Siggraph:
Brute force scanning of kernel data structure instances using
graph-based signatures. InProceedings of the 18th Annual
Network and Distributed System Security Symposium, 2011.

[28] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset.SIGARCH Comput.
Archit. News, 33(4):92–99, Nov. 2005.

[29] R. Marwan. Fbsim and the fully buffered dimm memory
system architecture.Master of Science Thesis, Department of
Electrical and Computer Engineering, University of
Maryland, College Park.

[30] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for tcb
minimization. InProceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2008, Eurosys ’08, pages 315–328, Glasgow,
Scotland UK, 2008.

[31] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang.
Vigilare: toward snoop-based kernel integrity monitor. In
Proceedings of the 2012 ACM conference on Computer and
communications security, CCS ’12, pages 28–37, New York,
NY, USA, 2012. ACM.

[32] N. L. Petroni, Jr., T. Fraser, A. Walters, and W. A. Arbaugh.
An architecture for specification-based detection of semantic
integrity violations in kernel dynamic data. InProceedings of
the 15th USENIX Security Symposium, Vancouver, B.C.,
Canada, August 2006. USENIX Association.

[33] N. L. Petroni, J. Timothy, F. Jesus, M. William, and
A. Arbaugh. Copilot - a coprocessor-based kernel runtime
integrity monitor. InIn Proceedings of the 13th USENIX
Security Symposium, pages 179–194, 2004.

[34] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A
cycle accurate memory system simulator.IEEE Comput.
Archit. Lett., 10(1):16–19, Jan. 2011.

[35] J. Rutkowska. Beyond the cpu: Defeating hardware based
ram acquisition tools. InBlack Hat USA, 2007.

[36] J. Rutkowska. New blue pill. Aug 2007.
[37] J. Szefer and R. B. Lee. Architectural support for

hypervisor-secure virtualization. InProceedings of the
seventeenth international conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’12, pages 437–450, 2012.

[38] R. Usselmann. Wishbone dma/bridge ip core.
[39] J. Wang, A. Stavrou, and A. Ghosh. Hypercheck: a

hardware-assisted integrity monitor. InProceedings of the
13th international conference on Recent advances in
intrusion detection, RAID’10, pages 158–177, Berlin,
Heidelberg, 2010. Springer-Verlag.

[40] Z. Wang and X. Jiang. Hypersafe: A lightweight approach to
provide lifetime hypervisor control-flow integrity. InSecurity
and Privacy (SP), 2010 IEEE Symposium on, pages 380
–395, may 2010.

[41] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel
rootkits with lightweight hook protection. InProceedings of
the 16th ACM conference on Computer and communications
security, pages 545–554, Chicago, Illinois, 2009.

[42] J. Wei, B. D. Payne, J. Giffin, and C. Pu. Soft-timer driven
transient kernel control flow attacks and defense. In
Proceedings of the 2008 Annual Computer Security
Applications Conference, ACSAC ’08, pages 97–107, 2008.

[43] R. Wojtczuk. Subverting the Xen hypervisor. InBlack Hat
USA, 2008.

[44] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled dimm:
building high-bandwidth memory system using low-speed
dram devices. InProceedings of the 36th annual
international symposium on Computer architecture, ISCA
’09, pages 255–266, New York, NY, USA, 2009. ACM.

	1 Introduction
	2 Background and Overview
	2.1 Threat Model
	2.2 Kernel Inspection from Physical RAM Image
	2.3 Background on FB-DIMM
	2.4 Goals and Challenges
	2.5 MGuard Overview

	3 Detailed Design
	3.1 Frame Interception
	3.2 Address Mapping
	3.3 Active Probing
	3.4 Kernel State Monitoring
	3.5 An Example

	4 Simulation Setup
	4.1 Machine Parameters
	4.2 Benchmarks
	4.3 Synthesis

	5 Evaluation
	5.1 Performance Analysis
	5.2 Hardware Overhead

	6 Security Application
	7 Related Work
	8 Conclusion
	9 Acknowledgement
	10 References

