Half a Century of Practice: Who is Still Storing
Plaintext Passwords?

Erick Bauman, Yafeng Lu, Zhigiang Lin

Department of Computer Science, The University of Texas at Dallas
800 W. Campbell RD, Richardson, TX 75080 USA
{firstname.lastname } @utdallas.edu

Abstract. Text-based passwords are probably the most common way to authenti-
cate a user on the Internet today. To implement a password system, it is critical to
ensure the confidentiality of the stored password—if an attacker obtains a password,
they get full access to that account. However, in the past several years, we have
witnessed several major password leakages in which all the passwords were stored
in plaintext. Considering the severity of these security breaches, we believe that
the website owners should have upgraded their systems to store password hashes.
Unfortunately, there are still many websites that store plaintext passwords. Given
the persistence of such bad practice, it is crucial to raise public awareness about
this issue, find these websites, and shed light on best practices. As such, in this
paper, we systematically analyze websites in both industry and academia and check
whether they are still storing plaintext passwords (or used to do so). In industry,
we find 11 such websites in Alexa’s top 500 websites list. Also, we find this is
a universal problem, regardless of the profile of the websites according to our
analysis of almost 3,000 analyzed sites. Interestingly, we also find that even though
end users have reported websites that are storing plaintext passwords, significant
amounts of website owners ignore this. On the academic side, our analysis of 135
conference submission sites shows that the majority of them are also still storing
plaintext passwords despite the existence of patches that fix this problem.

1 Introduction

To access sensitive information (e.g., online financial accounts, social networks, and email
services) protected by a computer system, end users often need to provide a password,
which is a secret string of characters that is matched with a stored value in a database to
authenticate a user. While password based schemes are disliked by users [16] and have
many alternatives [18], they are still the de facto standard for authentication, especially
in today’s Internet, due to their easier deployment (no need of special hardware), low
cost, and simplicity.

However, implementing a secure password system is still complicated, and many
things can go wrong. Among these password threats, some of them can be fixed easily.
For instance, we should always store passwords as hashes instead of as plaintext. Note
that the systems and security field began discussing password secrecy half a century
ago [32,37], and it was decided early on that using hashes provided needed security
and storing plaintext passwords was unwise. As a statement of fact, a website should

never store plaintext passwords, but this statement can be made even stronger by adding
that sites should also not store passwords with reversible encryption. While encrypting
passwords is stronger than nothing, the key in many cases may be on the same server
that is compromised, thereby defeating its purpose. Therefore, regardless of the way a
password is being stored on the server, the salient fact is that for proper security a website
should never be able to retrieve a user’s original password. This should preclude the fact
that under no circumstances should a user’s password be sent to them in plain text.

Unfortunately, in practice, website owners ignore these facts and continue to store
and send passwords insecurely. Regardless of how the passwords are being stored on the
server side, if a server sends a user’s plaintext password back to them, it is following bad
password practices. While some sites may consider sending a user’s password to them a
matter of convenience, we define a site following such practices as “insecure” regardless
of motivations. Note that insecure here means “subject to password leakage”.

In the past several years, we have

witnessed a number of major password [Site Address [Amount [Year[Plaimext?[Source]
o . myspace.com 34,000 {2006 4 [25]
leakage incidents. More specifically, as | Jocon com 32603388 [2000] v | [39]
illustrated in Table 1, we can notice that |hotmail.com 8,931 2009 v [20]
awker. 1,300,000 {2010 35
many of the leaked passwords were actu- |5 oo snen ol o |
ally in plaintext, and in total more than [tianya.cn 31,761,424 |2011) v/ 191
. bo. 4,765,895 [2011| v 9
100,000,000 plaintext passwords have 7Wf7k° cc(?r:: 6541991 120111 v {9}
been leaked. Given that end users often |renren.com 4,768,600 |2011| ¢ 191
. . 17173.com 18,333,776 [2011| v [9]
tend to reuse their passwords for different |4 0 com 2305005 |2011] o 9]
websites [28,24,21], such leakage forces |uuu9.com 5,577,553 |2011| v 91
. . ieee.org 100,000 2011 v [10]
users to change their passwords or risk | 1.5 814501 |2011] {1
someone breaking into their accounts. youporn.com 1,566,156 2012| v | [15]
. voices.yahoo.com 453,000 |2012 v [14]
Do website owners learn lessons from |militarysingles.com| 163,792 [2012| X [13]
: : : linkedin.com 6,500,000 [2012| X [12]
the mistakes of others and quickly fix their | /10 150000.000(2013] x [43]

websites in response to reports of millions
of leaked plaintext passwords? Table 1 Table 1. Notable Examples of Recent Password
shows that is clearly not always the case. Leakages.

For instance, the massive password leak-

age of rockyou.com in 2009 [39] resulted in substantial media coverage, but we still
observe that over 70 million plaintext passwords were stolen in 2011 [9], which is a
historic record. While the most recent password leakage was not plaintext (the leaked
passwords from Adobe were encrypted), we can still find websites that store plaintext
passwords. This is in fact true in both academia and industry. Specifically, we find
many academic conference paper submission sites (especially those using HotCRP [29])
that store plaintext passwords, and we also find several websites from Alexa’s top 500
websites list that store plaintext passwords as well.

Therefore, given the existence of such a bad practice, it is crucial to raise public
awareness, find these websites, and shed light on best practices. As such, in this paper,
we systematically analyze websites in both industry and academia, investigate whether
they are insecure (or used to be insecure), and discuss why they are still insecure. In
industry, we find 11 insecure websites in Alexa’s top 500 websites list. Interestingly, we
also find that even though end users have reported that a website is insecure, significant

numbers of website owners appear to ignore this. On the academic side, we examine 135
academic conferences in security, systems, and networking from the past five years. Our
results reveal that many conference paper submission sites remain insecure and store
plaintext passwords, in spite of the existence of patches to fix this problem.

2 Background

Password security has been an important security issue for decades. Users trust service
providers with valuable information that can be reached by anyone with the correct
username and password; maintaining password secrecy is paramount. While the use of
password hashing can be traced back to Multics and UNIX in the 1960s and 1970s', we
focus on the web. We do not discuss password transmission, although we note that the
client-server connection should be encrypted at the very least. We also do not discuss
alternatives to password authentication, because we want to focus on the most popular
authentication mechanism.

2.1 How to Store a Password

There are many ways to store a password. At a high level, there are three basic ways: (1)
plaintext, (2) encrypted plaintext, (3) hashed plaintext. In the following, we review these
approaches and discuss their pros and cons.

Plaintext. The most straightforward approach to implement a password system is to
store the user’s password in plaintext and perform a simple comparison to authenticate a
user. While this approach is easy to implement, it creates a lot of security problems.

First, anyone with access to the database can view all users’ passwords. Given that
many Internet users tend to reuse their passwords [28,24,21], it may allow malicious
owners of a site to login to user accounts on other sites. Second, even if we trust
the website owners, if an attacker gains database access, all passwords will be leaked.
This also makes password collection trivial, and is the reason that millions of plaintext
passwords have been revealed.

The advantages of plaintext are appealing to an inexperienced developer. It is simple
authentication without the need to use cryptography, and it gives an illusion of security.
The disadvantages are obvious and serious enough that plaintext should never be used.

Encrypted Plaintext. A natural solution is to encrypt the user’s password. One can
either directly encrypt the password with a single key, or encrypt a constant with a user
supplied password as the key.

For the first approach, the server must store the key so it can encrypt the password.
Therefore, passwords are at risk of being revealed if the key is compromised. While one
can separate the key from the data by putting the key in the code and the passwords in the
database, this only slightly reduces the attack vectors. Also, if the key is ever revealed,
all passwords encrypted with the key are compromised, and the owners will know the

" An incident on the CTSS system in the mid-1960s, in which the contents of the password file
were displayed on login, was inspiration for password hashing [32]. Such an algorithm was in
use in Multics since at least the early 1970s [37] and in UNIX since Version 3 in 1973 [31].

passwords since they have the key. Finally, an attacker with access to only ciphertext can
still tell if users have the same password.

The second approach operates in a similar manner to hash functions. It produces
a fixed-length ciphertext. It is better than the first approach but can reveal identical
passwords like the first approach does. The strength of the password will rely on the
encryption, which was not designed specifically for such use.

Hashed Plaintext. One-way cryptographic hash functions exist for the specific purpose
of authentication. There is no need to decrypt a password; the server can compare the
final hash with the value in its database. By default, we should use the hash function to
transform user provided passwords and then store the hashes. Security then depends on
which hash function is used. Some well-known hashing algorithms are MD5, SHA-1,
SHA-2, and SHA-3. MD5 and SHA-1 are no longer recommended for cryptographic
purposes. These functions can produce hashes relatively quickly.

Using a cryptographic hash function (with salts) has been proven to be the right
approach for storing passwords, but it still remains susceptible to certain attacks (§2.2).
The use of salts makes precomputing passwords for rainbow table attacks impractical,
slows dictionary attacks, and hides the presence of identical passwords, and therefore it
notably improves the process. Also, hashing costs can be increased with algorithms such
as PBKDF2 or berypt.

2.2 Attacks Against a Stored Password

Large password databases are tempting targets to hackers and crackers, and therefore
server administrators must take care to secure their servers as best they can. Here are
some ways that attackers can obtain and crack passwords:

Password Stealing. The first objective of an attacker is usually to gain access to the
server or to user accounts. One client-side strategy that is near-impossible for a site to
defend from is phishing attacks, in which an attacker sets up a fake version of the real
site to fool users?. Other client-side attacks include keyloggers or other malware that
steals a user’s password.

An issue of greater concern to the owners of a site is maintaining the security of
their database of passwords and user data. One significant attack vector for sites is SQL
injection, which exploits mistakes made in sanitizing user data before passing it to the
database. Other attacks include obtaining server dumps (as an inside job) or convincing
the server to divulge its memory contents, which is what happened with the Heartbleed
SSL vulnerability.

Password Cracking. If passwords are stored in plaintext, then once an attacker retrieves
the contents of the database their job is done. Hashing forces an attacker to perform
extremely difficult calculations in order to retrieve usable passwords, and in theory
the calculations require a high enough time complexity to render them infeasible.
Unfortunately, there are several strategies attackers can take to make cracking the hashes
easier.

2 While a site can hope that its SSL certificate will help a user distinguish an untrusted impostor
from the real site, if a user is fooled, the real site may have no way of knowing the attack even
happened.

Hashing algorithms are one-way functions; they are easy to calculate one way and
extremely hard to calculate the other way. Therefore, the most straightforward attack on
hashes is to simply attempt to compute hashes for every possible password by brute force
instead of trying to derive passwords from the hashes, which is nearly impossible [32].
The disadvantage to this attack is that the password space is enormous and slower hashing
algorithms make computing many hashes a very time-consuming process.

Instead of choosing every possible password combination, it is much faster if an
attacker instead selects candidate passwords from a dictionary or database of common
passwords or phrases. Since many users choose weak passwords, it is much more likely
that an attacker will find a valid password sooner in their search than with simple
brute forcing. In addition, attackers can make changes to the dictionary words to reflect
common modifications that users perform on their passwords to make them more “secure.’
Again, one way to try to defend against this is by making it computationally expensive
to calculate a large number of hashes, but an attacker would likely still be able to obtain
the weakest passwords despite this.

1)

3 Practice in Industry

Since storing plaintext passwords is a very bad practice, it is important to make sure
website owners properly store users’ passwords. However, from a client perspective,
we cannot tell how the passwords are being stored in the server’s database. However,
there is a straightforward method to determine if the website is able to retrieve a user’s
original password. In particular, we can use the “forgot password” option, in which
website owners mail the user a password reset link, a new (random) password, or the
user’s previous password. If it is the user’s previous password, then the server must be
storing user passwords in plaintext or reversible encryption with the server having access
to the decryption key, and they are sending the plaintext password via an unencrypted
channel (email). We therefore consider websites that send a user’s password back to
them as insecure.

Experiment Setup. Therefore, to determine whether a particular website is subject to
password leakage or not, we must first register a user and then trigger the password
mailing option. While we wish we could write a robot to automatically scan these
websites and perform a large scale study, captchas and special verification such as using
SMS require manual inspection, which limits the number of sites that can be collected.

Fortunately, we noticed that there is a website dedicated to reporting websites of this
type called PLAINTEXTOFFENDERS [5], which allows Internet users to submit examples
of websites that store user passwords. Therefore, those submitted websites could serve
as first hand raw data and enable us to extract insights from industry practice. However,
these insecure sites are submitted in an ad-hoc manner, and therefore the archive may
be missing certain important websites. Given the fact that it is not feasible to register to
a large number of sites, but it is still desirable to obtain a large sample, we decided to
inspect the PLAINTEXTOFFENDERS archive first (§3.1), and then manually inspect the
top 500 websites (§3.2). In the following, we present our findings.

Fig. 1. Plain Text Offenders website reporting rate by year and month. Some posts had multiple
URLs. The data shows no downward trend in the number of websites being reported.

3.1 Results from PLAINTEXTOFFENDERS

PLAINTEXTOFFENDERS [5] is a website that allows users to submit examples of
websites that store user passwords. It has a substantial archive of sites with submissions
that contain a URL for each insecure site, and an image of an email containing the user’s
password, demonstrating that the site is storing user passwords without hashing them.
However, at the time of our original study, PLAINTEXTOFFENDERS did not provide any
aggregated statistics or analysis of its submissions. Therefore, we developed a script to
automatically scrape the entire site contents. We perform four types of studies that aim
to understand (1) the trend of industry practice, (2) site rankings, (3) site classification,
and (4) the properties of reformed sites.

The Trend. We first wanted to see whether indus- Ra‘l‘ksigﬁ Siteﬁoum
try practice has been improving. Since PLAIN- 501-1000] 41
TEXTOFFENDERS’s archives go back to 2011, we 1001-10000| 297

. o . . 10001-100000| 747
decided to obtain information on the reporting 100001-1000000] 989
rate. We retrieved the date the site was posted, '000001-18888888 48981

. . . >

the URL, and the description of the site from UNKNOWN| 224

PLAINTEXTOFFENDERS. In total, the site yielded

2,914 URLs. We calculated the number of web- Table 2. PLAINTEXTOFFENDERS web-
sites reported per month over the lifetime of Sites grouped by their Alexa rankings.
PLAINTEXTOFFENDERS; the results are shown 1€ majority of the sites are in the top
in Figure 1. The number of submissions to the million sites.

site shows no clear indication of a trend. Ideally,

the graph would show a downward trend to indicate less websites storing plain text
passwords. However, due to external factors such as increases in the number of global
websites and potential increasing popularity of PLAINTEXTOFFENDERS, it is difficult to
accurately determine the change in percentage of such websites on the Internet.

Site Ranking. It is important to determine how popular the insecure sites are, because the
problem is more significant if popular, high-traffic sites are also insecure. Therefore, we
decided to rank the sites by using Alexa to determine the popularity of the listed insecure
sites. By retrieving their Alexa rankings, we could group them to show the distribution
of the sites by number of users. We show this result in Table 2. The UNKNOWN category

consists of sites that did not rank in Alexa’s system. Note that ranks in Alexa’s ranking
system are not considered statistically meaningful beyond 100,000, but there is still a
substantial number of them in that range—over 1,000.

Observation 1 Over 350 sites are in the top 10,000, 82 sites in the top 1,000, and 41 in
the top 500. Some of the world’s most popular sites are showing passwords in plaintext.

It is important to note that Alexa rankings change frequently. While the rankings
listed were accurate at the time of retrieval, the distribution will change over time, even
if the underlying list of sites stays the same.

Site Classification. We then ran each URL

Category |Site Count
through uClassify [8], a free API for text classi- Information Technology| — 494
. . . UNKNOWN| 282
fication. We developed a script allow it to analyze Marketing and Advertising| 281
the contents of the home page of each site. The Retail Trade| 227
. . . . Telecommunications 192
contents were classified into one of thirty business Investing| 157
categories. The UNKNOWN category consists of Hospitality| 147
. : . Accounti 142
sites that did not respond when uClassify attempted Consumer Goods and Servieer| 122
to query them. The top categories are shown in Arts and Entertainment| 107
: . . Opportuniti 97
Table 3. There are important sectors dealing with Cooporatives| 69
potentially sensitive data, and PLAINTEXTOF- Food and Related Products| 67
Business Services| 65
FENDERS offers hundreds of concrete examples |1 emational Busioss and Tradel 62
of websites in these sectors. There are URLSs for Environment| 62

many online retailers, over ten banks, and sites
dealing with tax forms, which shows that the risk
to consumers in these sectors is real.

Table 3. PLAINTEXTOFFENDERS web-
sites categorized by uClassify business
categories, sorted by greatest to least.

. . . The bottom 15 categories are omitted.
Observation 2 Password plaintext storage is com- &

mon in industries working with sensitive data.

Reformed Sites. One important consideration is whether sites that once stored passwords
insecurely have improved. If they have, then this indicates growing awareness and
willingness of site owners to change and improve their sites.

The sites that were reported on PLAINTEXTOFFENDERS in 2011 have had three
years to improve their password storage systems. We decided that this set of sites was a
good candidate for investigating to see if they have stopped storing plaintext passwords.
We performed a manual investigation of the sites reported on PLAINTEXTOFFENDERS
in 2011 to determine if they had fixed their password systems, and in total there are 483
sites. Among them, 293 (i.e., 60.7%) could be tested. There are several reasons why the
sites could not be tested: some were no longer online, and some needed a phone number
or other special information that could not be provided. Of the 293 sites that were tested,
205 had fixed the problem and 88 remain insecure, meaning that approximately 70% of
the testable sites no longer store passwords in plain text.

PLAINTEXTOFFENDERS has a list of “Reformed Offenders,” which consists of sites
that have been confirmed to no longer send passwords in plaintext. Surprisingly, the list
is extremely short; people may be less inclined to verify existing sites in the database
than to add new ones. As indicated by our results, there may be a significant number of

sites reported on PLAINTEXTOFFENDERS that are no longer insecure, and so the actual
number of still-insecure sites may not be as serious as it first appears. We will submit the
list of reformed sites that we found to PLAINTEXTOFFENDERS after publication.

We took the 205 fixed sites and grouped them by category like we did for the entire
set of PLAINTEXTOFFENDERS sites. This way, we could compare the demographics of
the reformed sites and the entirety of the PLAINTEXTOFFENDERS archives to determine
if there are any specific kinds of sites that improved. . Interestingly, the sites fell into
similar category groupings. While the order varied slightly, these sites had very similar
distributions to the overall distribution of the PLAINTEXTOFFENDERS archives.

There was no specific type of site that indicated that the site would be more or less
likely to be fixed. Less new sites may adhere to best practices than long-established sites,
but many websites do eventually stop storing passwords in plaintext. Therefore, we can
conclude that

Imnsight 1 There is no specific website profile that can definitively indicate the probability
of whether it is handling user passwords correctly, or its likelihood to fix the problem
if it is not following best practices. However, a website is more likely to have fixed the
problem the longer they have existed.

This result corresponds well with previous studies; it has been found that longer-lived
sites tend to follow better security practices [19].

3.2 Result of the Manual Analysis of Top 500

As discussed earlier, insecure sites are submitted to PLAINTEXTOFFENDERS in an
ad-hoc manner, as the existence of a submission depends on a user knowing about
PLAINTEXTOFFENDERS, using the insecure site, and choosing to report it. To have a
better view, we decided to perform a manual analysis systematically on a given number
of sites. We chose Alexa’s top 500 sites as input, and manually analyzed whether there
are any websites that still store plaintext passwords. Recall earlier we found 41 insecure
sites on PLAINTEXTOFFENDERS in Alexa’s top 500 sites (Observation 1), and this study
would also allow us to confirm how many of these top 500 sites have fixed the problem.
We used the manual method-

ology discussed earlier to deter- Site Address Rank. | Category Country
mine whether a given website fc2.com 58 |Business Services Japan
e . . lists.wikimedia.org| 135 |Cooperatives United States
18 IHSCCUI'G. by reg1§te}r1ng auser badoo.com 164 |Cooperatives Italy
and checking the site’s response espncricinfo.com | 188 |Arts & Entertainment|India

I 2 : liveinternet.ru 192 |Arts & Entertainment|Russia
to the fOl"gOt p assword . OpthIl. rutracker.org 301 |Arts & Entertainment|Russia
For the current top 500 sites, we corriere.it 380 |Arts & Entertainment|Italy
were able to manually inspect @ftratorrent.cc 415 |Arts & Entertainment Ind}a

. jrj.com.cn 456 |Investing China
393 (1.e., 786%) of them (the kooora.com 464 |Arts & Entertainment |SaudiArabia
rest cannot be verified due to con- Xywy.com 484 |Healtheare China

Stra~1nts S_uCh as requ1.r1ng special Table 4. The sites from our study of the top 500. None of
verification, a special account, thege have been fixed yet. The countries were determined
special utilities or services, aref- by Alexa based on popularity.

eree, an existing account number,

or a safe code). Among them, we found at least 11 reported insecure sites have not been
patched yet. Among the remaining 30 top 500 sites from PLAINTEXTOFFENDERS , they
could either not be verified due to requiring personal information, or they were fixed or
incorrectly reported. The sites found on PLAINTEXTOFFENDERS and manually verified
by us are presented in Table 4.

Observation 3 There are likely insecure sites that have not been reported, and there
may be several more in the top 500 that we were unable to verify.

However, the number we were able to confirm is a small percentage (2.2%) of the
top 500 sites, and even the total number reported on PLAINTEXTOFFENDERS (8.2%) is
not nearly as serious as it could be. This matches the pattern found in previous studies
that more popular sites tend to have better password security [19].

4 Practice in Academia

We have observed the mistakes made by Checked Plaintext
industry. Does academia perform better? Software Name | Centralized|| # | % || # | %
Si demi h . d HotCRP (HO) X 106]78.5([103]97.2
ince academic researchers often nee EasyChair (EC)| 191411l 7 1368
to set up conference websites to manage SoftConf (SC) v 41301 31750
- . . EDAS (ED) v 51371 3 |60.0
paper submissions and reviews, we inves- CMT (€M) v 1107l o1 o

tigated how conference submission sites
manage user passwords. In this section, Table 5. Conference Management Software In-

we present our findings regarding this. spected in Our Study.

4.1 Experiment Setup

Conference paper submission and review is an important activity for academic re-
searchers, especially in computer science. During a paper submission, an author/reviewer
often needs to register on a submission site and choose a username (or email) and pass-
word for authentication. There are a number of frequently used examples of conference
management software, such as HotCRP [29], EasyChair [1], Softconf [7], EDAS [2],
and CMT [4], and they are hosted on web servers to provide this service.

As presented in Table 5, some of the conference management software is managed
through a centralized service (e.g., EasyChair), some of them are hosted independently by
individual conference submission sites (e.g., HotCRP), and some of them are mixed, with
both centralized hosting and individual hosting (e.g., SoftConf). Centralized services
host the conference software themselves and perform all setup and maintenance for
a conference. However, many conference organizers choose to host their own paper
submission sites, which gives them more control, but also puts the responsibility of
patching and updating the conference software on each individual conference.

In our study, we selected these five conference management software packages for
study, and observed how they managed their users’ passwords. Except for CMT, a closed
source service from Microsoft which we cannot confirm, all others have been identified
as having been insecure in the past, but they have all been patched within the last few

years. In total, we examined 135 conferences from security, systems, and networking,
using the past five years as the time window. For each conference, we checked which
conference software it used and whether it was insecure. If the website was still live,
we used the same “forgot password” option as we did in the industry study to validate
whether it was insecure. Otherwise, we checked our own email history as well as the
email of our colleagues to confirm whether they were insecure.

4.2 Our Findings

The detailed inspection results for these conferences are presented in Table 6. Interest-
ingly, we notice that the majority (78.4%) of them use HotCRP, especially in systems
conference management, with the second being EasyChair, which accounts for 14.2%.
Surprisingly we found 97.1% of HotCRP sites were insecure. We would have assumed
the conference sites managed by security researchers should be more secure, but there
was no exception for the security conferences.

Observation 4 Surprisingly, website owners often do not follow best security practices,
even when they are well-educated and understand the risks.

Also, it is important to note that the trend is moving towards good practice, as we
have seen Oakland, SIGCOMM, and MobiCOM in 2014 store hashes when they use
HotCRP. However, why were so many conferences before 2014 insecure, especially
those using HotCRP? Fortunately, HotCRP is open source, so we decided to inspect
its source to determine how it handled passwords and when it started storing hashed
passwords.

We examined the code and configurations on the git repository of the most recent
release of HotCRP. Interestingly, we noticed that it contains a flag called “safePasswords”,
which enables the storage of password hashes instead of plaintext. This flag is enabled by
default. However, work on this feature did not begin until August 2013, as documented in
the changelog [3]. This explains why all conferences before 2013 that used HotCRP were
insecure: HotCRP did not have the ability to store password hashes until late summer
2013. Then why are some conferences in 2014 still insecure? We suspect they are running
an older version of HotCRP (such as all the conferences hosted by USENIX) or the
administrators did not configure it correctly. If it is the latter case, our Observation 4 is
further reinforced. We would like to emphasize that the confidentiality of research is
considered important; if someone obtained the password to an account for a conference,
they could view papers or modify reviews.

Finally, we noticed from our investigation that EasyChair and SoftConf fixed this
problem in 2011, and EDAS fixed in 2012. Also, we did find that one user submitted a
report to PLAINTEXTOFFENDERS exposing EasyChair’s plaintext practice in 2011.

5 Discussions and Implications

After analyzing insecure sites in both industry and academia, we must answer why
websites are still storing plaintext passwords. To this end, we would like to ask the
following questions:

2014 [2013 [2012 [2011 [2010
Software[Plaintext?|Software [Plaintext?|Software[Plaintext? [Software [Plaintext?|Software [Plaintext?|

Conference Name }

CCS EC X EC X EC X EC v EC v
CSF EC X EC X HC v HC v EC v
ESORICS EC X EC X EC X EC v EC v
NDSS HC v EC X EC X HC v SC v
Oakland HC X HC (4 HC 4 HC v HC v
RAID HC v EC X HC v HC v EC v
USENIX-Security| HC v HC v HC v HC v HC v
ASPLOS HC v EC X SC X SC v SC v
EuroSys HC v HC v HC v HC v HC v
FAST HC v HC v HC v HC v HC v
HPCA HC v HC v HC v HC v HC v
ISCA HC v HC v HC v HC v HC v
LISA HC v HC v HC v HC v HC v
MICRO HC v HC v HC v HC v HC v
OSDI HC v - - HC v - - HC v
PACT HC v HC v HC v HC v HC v
SenSys HC v HC v HC v HC v HC v
SoCC HC v HC v HC v HC v CM X
SOSP - - HC v - - HC v - -
USENIX-ATC HC v HC 4 HC v HC v HC v
VEE HC v HC v HC v EC v HC v
CoNEXT HC v HC v HC v ED v ED v
mMC HC v HC v HC v HC v HC v
MobiCom HC X HC v HC v HC v HC v
MobiHoc ED X ED X HC v HC v ED v
MobiSys HC v HC v HC 4 HC v HC v
NSDI HC v HC v HC v HC v HC v
SIGCOMM HC X HC v HC v HC v HC v

Table 6. Statistics on the Conference Submission Sites. Symbol ¢ denotes the corresponding site
was plaintext, X denotes not plaintext, and — denotes the conference was not held in that year.

Q1. Does the fact that a website is physically isolated make it more secure?

Insight 2 Site owners may think that their sites are sufficiently secured or isolated from
attackers that they do not need to worry about intruders. However, repeated security
breaches of websites that considered themselves secure have proved this is unrealistic.

Q2. Why have operating systems been hashing passwords for almost 50 years, as in
Multics or UNIX, but some websites today do not?

Insight 3 Such systems were designed by experts. They quickly discovered that they
could not eliminate the threat of a breach and therefore came up with a provably secure
solution. Unlike with the development of an OS, a website can be created by someone
with no experience. Therefore, some websites are developed without following any best
practices.

Q3. Is a password a critical piece of private data that is as sensitive as bank accounts and
SSNs?

Insight 4 Some websites do not store any valuable personal data like addresses or credit
card numbers. Therefore, owners of those sites may think that there is no need to protect
passwords. However, due to password reuse, an attacker can use passwords retrieved

from a breached site to retrieve valuable data from a more secure one. This opens up an
attack vector that very secure websites cannot protect against. This threat is significant
enough that even sites that do not store other sensitive data should consider passwords
as highly sensitive. However, many of these sites do not.

It is important to note that these insights are not revolutionary, and have been the
subject of previous discussions of password security. However, we wish to very clearly
emphasize these conclusions; it is crucial that both academia and industry unequivocally
condemn plaintext password storage so as to provide correct guidance to website owners.

6 Mitigations and the Future

Getting websites to change their password practices is clearly difficult. Here are several
mitigations for users and potential solutions for the future.

Password generator and manager. One solution is to use a password generator to
create unique passwords for each website, and then use a password manager to store
each password. However, this requires a master password or a key and (in the case of an
online password manager), introduces the challenge of secure password transmission
across the Internet. There are many password managers, however, and there are ones that
do take security seriously [6]. Therefore, this is likely a significant security improvement
for the average user if they can keep their master password safe.

Client-side hashing. With a client-side program or browser extension [36], a user can
hash their password before sending it to a website, effectively making that hash their de
facto password for that site. If the user adds a salt to their password based on the site in
question (by, for example, using the site domain), the password’s hash will be different
for every site. From the site’s perspective, the user is sending a long string of random
characters, with no hint as to the original password and salt. Therefore, even if a site
with poor security is compromised, the only user information revealed is the hash of
their password, which is unique to—and only usable for—that specific site.

Single sign-on and related technologies. Another alternative for securing login creden-
tials is to trust them with a central authority and use a framework like OpenID, OAuth,
or Facebook Connect. Such a system requires the user to log in to the central authority,
which then authenticates the user to any third-party site integrated with the system. An
advantage of this is that the user never has to give their credentials to any third-party site.
However, these systems are not foolproof [40], and the user must trust that the central
authority is storing their password securely.

Established standards. Many aspects of password security lack an agreed-upon stan-
dard [19]. If a comprehensive standard were developed for password storage, it could
provide a baseline to compare sites to. In addition, a reference implementation from
a trusted authority could discourage developers from designing their own potentially
flawed authentication, and provide developers with an authoritative, publicly audited
starting point for making secure design decisions.

7 Related Work

There has been a substantial amount of research centered around password security.
In general, the research mostly focuses on how to generate (e.g., [23,38,30]), transfer
(e.g., [34,44]), store (e.g., [26]), manage (e.g., [45,24,17]), and attack and defend pass-
words from numerous attack vectors (e.g., [32,28,27,46]). In this section, we review
related work on password storage attacks and defenses.

In 2010, Bonneau et al. performed a large-scale general analysis of how websites
handle passwords. They covered many aspects of password security, including password
storage. In their study of 150 sites, 29% emailed user passwords in plaintext [19]. To
motivate websites to fix their bad password practices, PLAINTEXTOFFENDERS [5] was
launched in April 2011. Our work is closely related to the site in that we both aim to
raise public awareness. The difference is that we also perform a more systematic study
of the problem and its solutions.

Since security experts advocate storing hashes, there has been a great amount of
interest in efficiently cracking hashes and obtaining plaintext. The earliest attempts
stem from brute forcing and evolved into dictionary attacks. Recently, there were also
efforts to make dictionary attacks smarter by employing Markov models (e.g., [33]),
probabilistic context free grammars (e.g., [42]), and history based guessing (e.g., [46]).

Interestingly, the large amounts of plaintext passwords revealed from recent password
leakages have also enabled many valuable password studies. Dell’ Amico et al. [22]
analyzed the strength of passwords from leaked MySpace passwords and two other
websites. Weir et al. [41] leveraged the 32M passwords leaked from RockYou to test
the metrics (especially the entropy) for password creation policies. Das et al. [21]
investigated several hundred thousand leaked passwords and conducted a password reuse
survey, finding that about 43-51% users reuse their passwords for several websites. In
addition, they have also developed a password guessing algorithm to guess cross-site
passwords.

8 Conclusion

Despite almost 50 years of practice of storing and managing passwords, we still find
many websites storing plaintext passwords. In this paper, we systematically analyzed
the insecure sites from both industry and academia to investigate the reasons behind
this issue. We found 11 of the most popular 500 websites and over 100 conference
submission sites from the past five years that do not hash user passwords. Finally, we
discuss how the illusion of security, lack of security experts, and lack of attention to
secure passwords on sites not storing other sensitive data are likely the root causes of
why today we are still storing plaintext passwords.

Acknowledgements. We thank the anonymous reviewers for their feedback. This
research was supported in part by AFOSR grant FA9550-14-1-0119. Any opinions,
findings, conclusions, or recommendations expressed are those of the authors and not
necessarily of the AFOSR.

References

—

O 0 N N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Easychair home page. http://www.easychair.org/.
. Edas. https://www.edas.info/index.php.
. Hotcrp begin work on safe password storage. https://github.com/kohler/

hotcrp/commit/127613bfbeel96c06b6e799%bcd705b7be37cc06.

. Microsoft’s conference management toolkit. https://

cmt.research.microsoft.com/.

. Plain text offenders. http://plaintextoffenders.com/.

. Security - keepass. http://keepass.info/help/base/security.html.

. Softconf start v2 conferencemanager. http://www.softconf.com/.

. uclassify. http://www.uclassify.com/.

. Hackers released the passwords of over 70 million chinese internet accounts. https:

//dazzlepod.com/rootkit/, 2011.

Ieee data breach: 100k passwords leak in plain text. http://www.neowin.net/news/
ieee-data-breach-100k-passwords—leak-in-plain-text, 2011.
rootkit.com cleartext passwords. https://dazzlepod.com/rootkit/, 2011.
Linkedin password hack: Check to see if yours was one of the 6.5 million leaked.
http://www.huffingtonpost.com/2012/06/07/1linkedin-password-
hack—-check_n_1577184.html, 2012.

Militarysingles.com hack exposes over 160,000 users’ information. http:
//www.databreaches.net/militarysingles—com-hack-exposes—over—
160000-users—information/, 2012.

Yahoo hack leaks 453,000 voice passwords. http://www.darkreading.com/
attacks—-and-breaches/yahoo-hack-1leaks-453000-voice-
passwords/d/d-1d/11052897?,2012.

Youporn passwords available for download, thousands of users exposed. http:
//nakedsecurity.sophos.com/2012/02/22/youporn-password-
download/, 2012.

A. Adams and M. A. Sasse. Users are not the enemy. Commun. ACM, 42(12):40-46, Dec.
1999.

H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh. Kamouflage: Loss-resistant password
management. ESORICS’ 10, pages 286-302, Berlin, Heidelberg, 2010. Springer-Verlag.

J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The quest to replace passwords: A
framework for comparative evaluation of web authentication schemes. SP ’12, pages 553-567,
Washington, DC, USA, 2012. IEEE Computer Society.

J. Bonneau and S. Preibusch. The password thicket: Technical and market failures in human
authentication on the web. In WEIS, 2010.

B. Calin. Statistics from 10,000 leaked hotmail passwords. http://www.acunetix.com/
blog/news/statistics-from-10000-leaked-hotmail-passwords/,
20009.

A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang. The Tangled Web of Password
Reuse. In NDSS ’14, February 2014.

M. Dell’ Amico, P. Michiardi, and Y. Roudier. Password strength: An empirical analysis.
INFOCOM' 10, pages 983-991, Piscataway, NJ, USA, 2010. IEEE Press.

D. Florencio and C. Herley. A large-scale study of web password habits. WWW 07, pages
657-666, New York, NY, USA, 2007. ACM.

S. Gaw and E. W. Felten. Password management strategies for online accounts. SOUPS 06,
pages 44-55, New York, NY, USA, 2006. ACM.

R. A. Grimes. Myspace password exploit: Crunching the numbers.

http://www.easychair.org/
https://www.edas.info/index.php
https://github.com/kohler/hotcrp/commit/127613bfbee196c06b6e799bbc4705b7be37cc06
https://github.com/kohler/hotcrp/commit/127613bfbee196c06b6e799bbc4705b7be37cc06
https://cmt.research.microsoft.com/
https://cmt.research.microsoft.com/
http://plaintextoffenders.com/
http://keepass.info/help/base/security.html
http://www.softconf.com/
http://www.uclassify.com/
https://dazzlepod.com/rootkit/
https://dazzlepod.com/rootkit/
http://www.neowin.net/news/ieee-data-breach-100k-passwords-leak-in-plain-text
http://www.neowin.net/news/ieee-data-breach-100k-passwords-leak-in-plain-text
https://dazzlepod.com/rootkit/
http://www.huffingtonpost.com/2012/06/07/linkedin-password-hack-check_n_1577184.html
http://www.huffingtonpost.com/2012/06/07/linkedin-password-hack-check_n_1577184.html
http://www.databreaches.net/militarysingles-com-hack-exposes-over-160000-users-information/
http://www.databreaches.net/militarysingles-com-hack-exposes-over-160000-users-information/
http://www.databreaches.net/militarysingles-com-hack-exposes-over-160000-users-information/
http://www.darkreading.com/attacks-and-breaches/yahoo-hack-leaks-453000-voice-passwords/d/d-id/1105289?
http://www.darkreading.com/attacks-and-breaches/yahoo-hack-leaks-453000-voice-passwords/d/d-id/1105289?
http://www.darkreading.com/attacks-and-breaches/yahoo-hack-leaks-453000-voice-passwords/d/d-id/1105289?
http://nakedsecurity.sophos.com/2012/02/22/youporn-password-download/
http://nakedsecurity.sophos.com/2012/02/22/youporn-password-download/
http://nakedsecurity.sophos.com/2012/02/22/youporn-password-download/
http://www.acunetix.com/blog/news/statistics-from-10000-leaked-hotmail-passwords/
http://www.acunetix.com/blog/news/statistics-from-10000-leaked-hotmail-passwords/

26

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

. J. Hart, K. Markantonakis, and K. Mayes. Website credential storage and two-factor web
authentication with a java sim. WISTP’10, pages 229-236, Berlin, Heidelberg, 2010.

T. Holz, M. Engelberth, and F. Freiling. Learning more about the underground economy: A
case-study of keyloggers and dropzones. ESORICS’09, pages 1-18, Berlin, Heidelberg, 2009.
B. Ives, K. R. Walsh, and H. Schneider. The domino effect of password reuse. Commun.
ACM, 47(4):75-78, Apr. 2004.

E. Kohler. Hotcrp conference management software. http://
read.seas.harvard.edu/~kohler/hotcrp/, 2014.

S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin, L. F. Cranor, and
S. Egelman. CHI "11, pages 2595-2604, New York, NY, USA, 2011. ACM.

M. D. Mcllroy. A research unix reader: Annotated excerpts from the programmer’s manual.
1971.

R. Morris and K. Thompson. Password security: A case history. Communications of the ACM,
22(11):594-597, 1979.

A. Narayanan and V. Shmatikov. Fast dictionary attacks on passwords using time-space
tradeoff. CCS 05, pages 364-372, New York, NY, USA, 2005. ACM.

M. Peyravian and N. Zunic. Methods for protecting password transmission. Computers&
Security, 19(5):466-469, 2000.

J. Raphael. Gawker hack exposes ridiculous password habits. http://
www.pcworld.com/article/213679/Gawker_Hack_Exposes_Ridiculous_
Password_Habits.html, 2010.

B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger password
authentication using browser extensions. In Proceedings of the 14th Usenix Security
Symposium, volume 31, 2005.

J. H. Saltzer. Protection and the control of information sharing in multics. Commun. ACM,
17(7):388-402, July 1974.

R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek, L. Bauer, N. Christin, and
L. F. Cranor. Encountering stronger password requirements: User attitudes and behaviors.
SOUPS ’10, pages 2:1-2:20, New York, NY, USA, 2010. ACM.

M. Siegler. One of the 32 million with a rockyou account? you may want to change
all your passwords. like now. http://techcrunch.com/2009/12/14/rockyou-
hacked/, 2009.

R. Wang, S. Chen, and X. Wang. Signing me onto your accounts through facebook and google:
A traffic-guided security study of commercially deployed single-sign-on web services. In SP
’12, pages 365-379. IEEE, 2012.

M. Weir, S. Aggarwal, M. Collins, and H. Stern. Testing metrics for password creation policies
by attacking large sets of revealed passwords. CCS 10, pages 162—-175, New York, NY, USA,
2010. ACM.

M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek. Password cracking using probabilistic
context-free grammars. SP 09, pages 391-405, Washington, DC, USA, 2009. IEEE Computer
Society.

C. White. Adobe leaks 150 million passwords; facebook and others impacted.
http://www.neowin.net/news/adobe-leaks-150-million-passwords—
facebook-and-others—impacted, 2013.

C.-C. Yang, T.-Y. Chang, and M.-S. Hwang. Security of improvement on methods for
protecting password transmission. Informatica, 14(4):551-558, Dec. 2003.

K.-P. Yee and K. Sitaker. Passpet: Convenient password management and phishing protection.
SOUPS ’06, pages 3243, New York, NY, USA, 2006. ACM.

Y. Zhang, F. Monrose, and M. K. Reiter. The security of modern password expiration: An
algorithmic framework and empirical analysis. CCS ’10, pages 176-186, New York, NY,
USA, 2010. ACM.

http://read.seas.harvard.edu/~kohler/hotcrp/
http://read.seas.harvard.edu/~kohler/hotcrp/
http://www.pcworld.com/article/213679/Gawker_Hack_Exposes_Ridiculous_Password_Habits.html
http://www.pcworld.com/article/213679/Gawker_Hack_Exposes_Ridiculous_Password_Habits.html
http://www.pcworld.com/article/213679/Gawker_Hack_Exposes_Ridiculous_Password_Habits.html
http://techcrunch.com/2009/12/14/rockyou-hacked/
http://techcrunch.com/2009/12/14/rockyou-hacked/
http://www.neowin.net/news/adobe-leaks-150-million-passwords-facebook-and-others-impacted
http://www.neowin.net/news/adobe-leaks-150-million-passwords-facebook-and-others-impacted

	Half a Century of Practice: Who is Still Storing Plaintext Passwords?

