
1

LibsafeXP: A Practical & Transparent
Tool for Run-time Buffer Overflow
Preventions

Zhiqiang Lin, Bing Mao and Li Xie
Dept. of Computer Science
Nanjing University, P.R.China
June 23, 2006

The 7th Annual IEEE Information Assurance Workshop

Background Our Approach Evaluation Discussion Related Work Conclusion 2

Agenda

Background
Our Approach
Evaluation
Discussion
Related Work
Conclusion

Background Our Approach Evaluation Discussion Related Work Conclusion 3

Buffer Overflow: Common

Background

0

1000

2000

3000

4000

5000

6000

2002 2003 2004 2005 2006

N
um

be
r o

f V
ul

ne
ra

bi
lit

y
Total Vulnerabilities
Buffer Overflows

Buffer overflows in NIST National
Vulnerability Database

Background Our Approach Evaluation Discussion Related Work Conclusion 4

Buffer Overflow: Severe

Inject malicious code
Overwrite program critical data structures
Execute Attacker’s malicious code
…
Worms

Code Red, SQL Slammer, Blaster, etc.

Background

Background Our Approach Evaluation Discussion Related Work Conclusion 5

Limitations of Previous Approaches

Access to program source code
e.g., StackGuard, CRED

Significant performance overheads
e.g., J&K

Require hardware support
e.g., SmashGuard

Require debugging information
e.g., LibsafePlus

…

Thus, it is still necessary to provide both practical
and highly efficient solution to prevent buffer
overflows.

Background

Background Our Approach Evaluation Discussion Related Work Conclusion 6

Our Approach: A lightweight tool ,LibsafeXP

Add bounds checking for all the program
dereferencing buffer.

Global Buffers
Its size and starting address are extracted from the
symbol table section of ELF

Heap Buffers
Tracked at run-time in the intercepted malloc family
functions.

Stack Buffers
Frame pointer, as Libsafe to calculate.

Our Approach

Background Our Approach Evaluation Discussion Related Work Conclusion 7

Advantages:

Practical in application.
Effective against buffer overflow attacks.
Easy to use.
Low run-time overheads.

Our Approach

Background Our Approach Evaluation Discussion Related Work Conclusion 8

Memory Layout of UNIX Process

0X08048000
~128M

0X00000000

0XFFFFFFFF
4G

0XC0000000
3G

0X40000000
1G

Memory map region for
shared library

C Standard and other
shared library

Read only segment
(.text, .rodata, .init, .plt …)

Read write segment
(.got, .data, .bss, …)

Run-time heap
(created by malloc…)

User stack
(created at run-time)

Kernel virtual memory
(.code, .data, .stack…)

Invisible to user process

%esp (stack pointer)

brk (keep track of dynamically
 allocated memory)

Loaded from executable file

Our Approach

Background Our Approach Evaluation Discussion Related Work Conclusion 9

An Example
1 #include <stdio.h>
2 #include <string.h>
3 char str1[10]; //in .bss
4 char str2[20]="a test string"; //in .data
5 int main() {
6 static char str3[30]; //in .bss
7 static char str4[30]="in .data";
8 strcpy(str1,str2);
9 strcpy(str3,str4);
10 printf("str1=%s\n",str2);
11 return 0;
12 } ...

08049714 30 OBJECT LOCAL .bss str3.3
080495dc 30 OBJECT LOCAL .data str4.4
08049734 10 OBJECT GLOBAL .bss str1
080495c8 20 OBJECT GLOBAL .data str2
...
080483b4 91 FUNC GLOBAL .code main
...

Our Approach

Whole size. How to address the
members of record variable?

Background Our Approach Evaluation Discussion Related Work Conclusion 10

Remainder of the whole size

Our Approach

Whole size

Remainder

PStarting address

Background Our Approach Evaluation Discussion Related Work Conclusion 11

Overview of LibsafeXP
struct t_tree_node{

enum {red, black} colour;
char *addr;
int size;
struct t_tree_node *left,

*right,
*parent;

}

Our Approach

Background Our Approach Evaluation Discussion Related Work Conclusion 12

Buffer Overflow Prevention in LibsafeXP

In our approach, for any dereferencing destination buffer α, its
limited maximum access range f(α) is calculated by

f(α)=

EBP-α if α∈ Stack

T(α).size – (α –T(α).addr) if α∈ GlobalTree ∪ HeapTree

0 if α∈ Stack ∪ GlobalTree ∪ HeapTree

where EBP is the pointer to the stack frame in which α resides,
and T(α) is the most nearest node that could contain address α
in our red-black tree.

Our Approach

Background Our Approach Evaluation Discussion Related Work Conclusion 13

…

struct test {

 int a[600];

 char buf[20];

}A;

char p[20];

char str2[]="hello world\n";

....

foo(){

 ...

 strcpy(p+4,"buffers...");

 strcpy(A.buf,str2);

 ...

}

f(p+4) = T(p+4).size-((p+4)-T(p + 4).addr)

= 20- ((p + 4) - p) = 16

f(A.buf) = T(A.buf).size - ((A.buf) - T(A.buf).addr)
= 620 - (A.buf - A)
= 620 - ((A + 600) - A) = 20

Bounds checking on global buffers

Our Approach

Background Our Approach Evaluation Discussion Related Work Conclusion 14

Bounds checking on heap buffers

Once these malloc family functions are called,
add the newly allocated symbol’s starting
address and associated size into our HT.

And use the same buffer overflow prevention
method described above to determine the
legal access range so as to defend against
heap buffer overflows.

Our Approach

Background Our Approach Evaluation Discussion Related Work Conclusion 15

Bounds checking on stack buffers
Local variable’s symbol information is not available
in the program symbol tables. When the wrapper
functions refer these local buffers, they cannot find
the relevant address and size information.

Fortunately, based on the fact that once overflow
occurs local buffers would smash the frame pointer,
we can hence use the saved frame pointer as
Libsafe [2] did to act as the upper bounds when
program writes to destination address in stack.

Our Approach

Background Our Approach Evaluation Discussion Related Work Conclusion 16

Effectiveness

Protection against stack buffers
no worse than Libsafe

Protection against global and heap buffers
All the attack techniques developed in Wilander’s
test suite attempting to overwrite program .data
and .bss global variables were successfully
detected and prevented.
For the .heap buffer overflows, also as expected,
all the out-of-bounds write were successfully
caught and prevented.

Evaluation

Background Our Approach Evaluation Discussion Related Work Conclusion 17

Micro-benchmark

Evaluation

Background Our Approach Evaluation Discussion Related Work Conclusion 18

Macro-benchmark

Evaluation

Background Our Approach Evaluation Discussion Related Work Conclusion 19

Limitations

False negatives struct some_global_struct{
...
int (*foo_a)();
char buf[N];
...
int (*foo_b)();
...
int (*foo_c)();
...

};
int (*foo_d)();

Discussion

Background Our Approach Evaluation Discussion Related Work Conclusion 20

Limitations

False negatives

Symbol table

Standard C Library function

Dynamic Link

Discussion

Background Our Approach Evaluation Discussion Related Work Conclusion 21

Related Work

Static analysis
Compiler extensions
Safe library functions
Execution monitoring
Intrusion detections
Randomizing code/space transformations
…

Related Work

Background Our Approach Evaluation Discussion Related Work Conclusion 22

Libsafe & Libverify

Libsafe and Libverify
Libsafe provides secure calls to the buffer re-lated
glibc functions
Libverify uses a similar approach to StackGuard by
verifying the function return address before use.
Both of the two approaches were powerful, but
they only focused on the prevention of stack
buffers.

Related Work

Background Our Approach Evaluation Discussion Related Work Conclusion 23

LibsafePlus

TIED and LibsafePlus
TIED extracts buffer’s size from program
debugging information which contains not only
the global buffer’s size but also the local variables,
to help
LibsafePlus determine buffer overflows.

LibsafePlus is a very promising approach for
buffer overflow preventions, but it heavily relies
on the program debugging information.

Related Work

Background Our Approach Evaluation Discussion Related Work Conclusion 24

LibsafeXP
Since

(i) LibsafePlus requires the debugging information, which is
usually unavailable in the released software
(ii) Libsafe only provides limited scope checking

We extend and integrate them to implement our
tool LibsafeXP.

Although LibsafeXP looks like LibsafePlus, they are
based on different knowledge.

Debugging Section
Symbol Section

Related Work

Background Our Approach Evaluation Discussion Related Work Conclusion 25

Conclusion
A practical tool, LibsafeXP, to guard against
almost all the three types of buffer overflows
dynamically and transparently.

For global variables, we rely on the symbol
section of the protected ELF executable file, and
extract those information for our bounds checking.
For heap-based buffers, we intercept those
related buffer operation APIs and track the
allocated buffer’s size.
For stack-based local variables, as there is no
such information available, we use the frame
pointer as the upper bound.

Conclusion

Background Our Approach Evaluation Discussion Related Work Conclusion 26

Future Work

Extend LibsafeXP to other platforms, such as
Windows for PE files.

Conclusion

Background Our Approach Evaluation Discussion Related Work Conclusion 27

Q & A

linzq@dislab.nju.edu.cn
maobing@nju.edu.cn
xieli@nju.edu.cn
Thank you

Conclusion

mailto:linzq@dislab.nju.edu.cn
mailto:maobing@nju.edu.cn
mailto:xieli@nju.edu.cn

	LibsafeXP: A Practical & Transparent Tool for Run-time Buffer Overflow Preventions�
	Agenda
	Buffer Overflow: Common
	Buffer Overflow: Severe
	Limitations of Previous Approaches
	Our Approach: A lightweight tool ,LibsafeXP
	Advantages:
	Memory Layout of UNIX Process�
	An Example
	Remainder of the whole size
	Overview of LibsafeXP
	Buffer Overflow Prevention in LibsafeXP�
	Bounds checking on global buffers
	Bounds checking on heap buffers
	Bounds checking on stack buffers
	Effectiveness
	Micro-benchmark
	Macro-benchmark
	Limitations
	Limitations
	Related Work
	Libsafe & Libverify
	LibsafePlus
	LibsafeXP
	Conclusion
	Future Work
	Q & A

