SMV-HUNTER: Large Scale, Automated
Detection of SSL/TLS Man-in-the-Middle
Vulnerabilities in Android Apps

David Sounthiraraj Justin Sahs Garret Greenwood
Zhigiang Lin Latifur Khan

University of Texas at Dallas

February 26, 2014

Introduction
©00

Problem Statement

» Many Android apps use SSL/TLS to transmit sensitive data
» Android allows developers to override the built-in validation

>

Used to connect to servers whose certificates come from
non-standard Certificate Authorities (CAs)

Used to avoid purchasing certificates for testing or user
acceptance environment

Can lead to SSL Man-in-the-Middle Vulnerabilities (SMVs)

Introduction
oceo

-V
SSL/TLS

In SSL/TLS, a server’s identity is verified by a certificate chain. A
chain is valid if:

» Each certificate has not expired

» The root certificate of the chain is from a CA present in the
keystore

» Each certificate has a valid cryptographic signature from the CA
immediately after it in the chain

Additionally, the certificate chain’s hostname must match the domain
name being connected to (possibly with wildcards).

Introduction
ocoe

-
Example Vulnerability
A famous example is the Chase Banking App (CVE-2012-5810):

1|public final void checkServerTrusted (X509Certificatel]
2 paramArrayOfX509Certficate, String paramString)
3|4

4 if ((paramArrayOfX509Certficate != null) && (

5 paramArrayOfX509Certficate.length == 1))

6 paramArrayOfX509Certficate[0] .checkValidity();

7 while (true)

sl |

9 return;

10 this.a.checkServerTrusted (

11 paramArrayOfX509Certficate, paramString);

12 }

13|}

(from (Georgiev et al., 2012))

Introduction
ocoe

-
Example Vulnerability
A famous example is the Chase Banking App (CVE-2012-5810):

1|public final void checkServerTrusted (X509Certificatel]
2 paramArrayOfX509Certficate, String paramString)
2| {

4 if ((paramArrayOfX509Certficate != null) && (

5 paramArrayOfX509Certficate.length == 1))

6 paramArrayOfX509Certficate[0] .checkValidity();

7 while (true)

sl |

9 return;

10 this.a.checkServerTrusted (

11 paramArrayOfX509Certficate, paramString);

12 }

13|}

(from (Georgiev et al., 2012))

System Overview

[Je]

-
Approach

» Purely static analysis unreliable

» Purely dynamic analysis infeasible
» enumerate all possible Ul interaction paths
> text input

» We propose a hybrid approach

> use static analysis to prune the search space for and provide valid
text to dynamic analysis

System Overview

Static Analysis

Dynamic Analysis

——

Disassembly

Vulnerability
Detection

Method | Names

Vulnerable

Apps

! Smart Input
Generation

HTTP Traffic
l Internet

Device & UL| HTTPS [MITM | | HTTPS

Aummation‘ Traffic ‘ Proxy ‘ Traffic

l l

‘ Correlative Analysis }—

System Overview

Static Analysis Dynamic Analysis
;
P—— : h
i HTTP Traffic
! l Internet
1 |
SmaliFiles ! Device & UL| HTTPS [MITM | | HTTPS
Vulnerable i Aummation‘ Traffic ‘ Proxy ‘ Traffic

! Smart Input
Generation

Vulnerability
Detection

Method | Names

Apps

l l

‘ Correlative Analysis }—

System Overview

Static Analysis

Dynamic Analysis

——

Disassembly
Vulnerability
Apps Detection

Method | Names

HTTP Traffic

!

Internet

Device & UI|_HTTPs [MITM

HTTPS

Aummation‘ Traffic ‘ Proxy

Traffic

l l

‘ Correlative Analysis }—

System Overview

Static Analysis Dynamic Analysis

——

|
!
|
Disassembly | l HIRIT Internet
|
|
|
|
|
|
|

HTTPS
Traffic

Device & UI|_HTTPs [MITM
Aummation‘ Traffic ‘ Proxy

l l

‘ Correlative Analysis }—

Vulnerability
Detection

Method | Names

]
I
I
!
I
Entry Point !
I
I
I
I
I

System Overview

Static Analysis

Dynamic Analysis

——

Disassembly

Vulnerability
Detection

Method | Names

Vulnerable

Apps

HTTP Traffic
l Internet

Device & UL| HTTPS [MITM | | HTTPS

Aummation‘ Traffic ‘ Proxy ‘ Traffic

l l

‘ Correlative Analysis }—

System Overview

Static Analysis Dynamic Analysis

——

|
!
|
Disassembly | l HIRIT Internet
|
|
|
|
|
|
|

PIYUXA0E HTTPS MITM HTTPS

Automation [JEVEI Proxy Traffic

Vulnerability

Detection

Method [Names
‘ Correlative Analysis }—

System Overview

Static Analysis Dynamic Analysis

——

t
|
i
. HTTP Traffi
Disassembly 3 l Ml Internet
|
i Device & UI | _HTTPS HTTPS
i
Vulnerability Vulnerznble! Smart Input |_|
Detection Apps Generation

Automation | Traffic Traffic

Method | Names

‘ Correlative Analysis }—

System Overview

Static Analysis Dynamic Analysis

——

|
!
|
Disassembly | l HIRIT Internet
|
|
|
|
|
|
|

HTTPS
Traffic

Device & UI|_HTTPs [MITM
Aummation‘ Traffic ‘ Proxy

Vulnerability

Detection

Method | Names

Static Analysis

Disassembly

Vulnerability
Detection

Method | Names

Entry Point
Identification

Vulnerable
Apps

Static Analysis
@000

Disassembly

» apktool to disassemble
the packaged compiled
code into a
human-readable format
called Smali.

Yerte, [mart Input ’_, -~ » Significantly faster and
Generation i
Memoleames more reliable than
decompilation, especially
| [Aeenton when the code has been
obfuscated

]

Smali | Files

Vulnerability
Detection

Static Analysis
0800

Static SMV Detection
» Simply check whether the
X509TrustManager or
- HostName Verifier
interfaces have been
overridden

Smali | Files

Vulnerability Vul“e”‘blel Smart Input S Apps that do not override
Detection Apps ||| Generation .
Method | Names these either do not use SSL
Entry Point or use the built-in SSL
Identification .
support without
modification

Static Analysis
00@0

Vulnerable Entry Point ldentification

» Each app can be started at
a number of entry points
(called activities)

_—
» Many entry points will not
Smali| Files trigger secure connections
Vulnerability Vulnerablel| | Smart Input coe
e aops || Generation » Trace backwards through
MethodNames method calls to identify
Entry Point 1 1
entry points that might
; trigger potential

vulnerabilities

Static Analysis
cooe

Smart Input Generation

» Apps often perform
validation on text input or
—_— convert text to other

Disassembly datatypes (e.g. integers)
Smali Files > Intelligenﬂy provide input

Vulnerability Vulnerable ee based on:
Detection Apps .
» Input type annotations

Method | Names

» Type cast operations in
Entry Point yp p
Identification the Code

Dynamic Analysis

HTTP Traffic
l Internet
Device & UI| HTTPs [MITM | | HTTPS
Automation | “Traffic | Proxy |1 Traffic

] |

‘ Correlative Analysis }—

Dynamic Analysis

[Jelele}

-
Device Management

For completeness and scalability, our system must:
» Manage multiple emulators in parallel,

» Handle emulator crashes and other errors,

v

Schedule and distribute app testing across running emulators, and

v

Collect and manage log data including installation and
uninstallation details and network traffic.

Dynamic Analysis

[Jelele}

-
Device Management

The device management component has two threads:
» Emulator Management

> App Scheduling

Dynamic Analysis

[Jelele}

-
Device Management

The device management component has two threads:
» Emulator Management

» Maintains a pool of active and free emulators
» Monitors the state of each emulator, restarting ones that go
“offline” or crash

» App Scheduling

Dynamic Analysis

[Jelele}

-
Device Management

The device management component has two threads:

» Emulator Management
» App Scheduling
» Executes Ul Automation on each activity identified by static
analysis
» Handles errors that do not crash the emulator (e.g. app crashes)
» Logs installation/uninstallation timestamps and DNS queries

Ul Automation M‘ prr—— | ey

No State

/ Change

Tap Event
Tap Event ap Even

Processing

Stale;hange

Dynamic Analysis
©00

Ul Automation

UI Enumeration ! Smart Input
Injection

No State

/ Change

Tap Event
Tap Evenr| | 7B [

Processing

Stalephange

ViewServer

\

UI Automation N
System

WindowManager

A

UI Elements

Dynamic Analysis

[e] Jele}

Ul Automation Mm

Tap Event
Processing

No State

/ Change

Stalephange

UI Automation

ViewServer

System

Text events

UI Elements

Y

Dynamic Analysis
0e00

UI Autom a [iOn M‘ UI Enumeration H Sr'na.rt I."P“‘

No State

/ Change

Tap Event
Tap Event AP Even D

Processing
State éjhan ge

» The system uses WindowChange and FocusChange events
that are triggered when the interface changes

» Back button events are used to return to the target activity

» When a “non-cancellable” dialog appears that disables the back
button, events are generated to tap on “OK” or “Cancel” buttons

Dynamic Analysis

[e]e] e}

-
MITM Proxy

» During UI automation, all HTTPS traffic is directed through a
proxy that provides illegitimate certificates for each connection

» Successful connections are logged

Dynamic Analysis

oooe

Correlative Analysis

» The MITM proxy only sees network traffic, cannot map
successful attacks to vulnerable apps

» The correlative analysis component matches attack timestamps
with application installation timestamps

» Identifies what apps were running during the attack

» DNS query logs are used to identify which app(s) were actually
attacked

Experiments
[Jelelele)

-
Data Sets

Two datasets crawled from the Google Play market:

» DS1: 3,165 finance-related apps (using finance-specific query
terms)

» Banking apps more likely to use SSL/TLS
» DS2: 20,316 apps

» Contains apps with more complex Uls (e.g. games)

Experiments

(o] lelele]

Data Set Distributions
40

T B
/0]
T | T P PP
S

0
> SO DE LD XS P O DS S8 o & ° o L DS
B S SRS 2 RO
R s S N AR SN KSR
g S W O Q' DY x) e}
Fyd & & WY L F H LSRR Q O
o R & NS Q & 3 S &\
Yioc%q, & s < 23?@& X %% Y &

Experiments
00e00

e
Static Analysis

» Time Requirements:
» Disassembly took 0.42 seconds per app, on average (compared to
276 seconds per app to decompile)
» Vulnerable Entry Point Identification took 3.63 seconds per app,
on average
» Smart Input Generation took 1.2 seconds per app, on average

> Of 260,395 activities, 8,713 were identified as potentially
vulnerable

Experiments
00e00

Static Analysis
DSI DS2
Vulnerable Apps 221 1322
Vulnerable Activities 1670 7043
Disassembly | 23.5 minutes 2.4 hours
Entry Point Identification 3.2 hours | 20.5 hours
Apps with Detectable Text Fields 87 417
Detected Text Fields 600 5599
Annotated Text Fields 289 3532
Type Casts 92 263
Space Requirements 26G 176G
Smali Files 1.3 million | 8.7 million

Experiments
[e]eleY To)

Dynamic Analysis

» Eight emulators running Android OS 4.1 to test the apps in
parallel

» The process took 18.81 hours (2.91 for DS1, 15.90 for DS2)
» We recorded 12 emulator crashes, and each emulator crashed or
went “offline” at least once

» Of the 8,713 tested entry points, 1,705 crashed on launch

» more likely in finance category apps, likely because of missing
login credentials

Experiments
[e]eletel)

Vulnerable Apps

Vauln. (DS1)

a
[70]
=)
£
S 37.25-
**
SEN L PSS S FE S SN q}b SRR R é’v‘ox%c*‘d& &
vo:@@ng%&@o@6§00§0§0%0‘§0‘%\‘%ﬁ&i&z@%V’Qéyi@ SR \\@\QQ %QC’&&O&’ \g@"’&\
¥ % S T ¥ VG PSS Sa¥
Frs & FF S & TR S &*° s
wFY & ¢ & ¥ R «
o8 Vv

Number of Vulnerable Apps in Each Category

Experiments

[e]ele]e])

Vulnerable Apps
20

z
e 15- ...
,E., 10_ ...
S im0 B om. AR =aBR
S
a
wn
8
£
=
S
0
> SO DE LD XS P O DS S8 o & ° o L DS
B S SRS S S
st Tl e e CASRG SO S S
S ol Sy¥
So & & 2*‘@ S & &@‘ﬁ@%“%‘ oy &\Q% s
SEe & & I ¥ Je &
R 3

Proportion of Each Category that is Vulnerable

Experiments
[e]eletel)

IS S -~ sl
e
Vulnerable Apps

» This project was conducted over a one-year window, allowing us
to revisit vulnerable apps

» We attempted to re-download all 726 confirmed-vulnerable apps

» 14.6% were unavailable, and 76.17% were still vulnerable

Limitations/Future Work

» The dynamic analysis component can introduce false negatives
due to some limitations:
» Multi-Page input
» Advanced UI Operations (e.g. swipe, long touch)
» WebViews: embedded browser components that cannot be
analyzed by the ViewServer

Discussion
oce

Conclusion

» Our system combines static and dynamic analysis techniques to
perform large-scale, automated SMV detection on Android

» We identified 726 confirmed-vulnerable apps (out of 23,481
apps, approx. 3%)

» Months later, more than % were still vulnerable

This material is based upon work supported by The Air Force Office of Scientific
Research under Award No. FA-9550-12-1-0077.

	Introduction
	System Overview
	Static Analysis
	Dynamic Analysis
	Experiments
	Discussion

