
SMV-HUNTER: Large Scale, Automated

Detection of SSL/TLS Man-in-the-Middle

Vulnerabilities in Android Apps

David Sounthiraraj Justin Sahs Garret Greenwood

Zhiqiang Lin Latifur Khan

University of Texas at Dallas

February 26, 2014

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Problem Statement

◮ Many Android apps use SSL/TLS to transmit sensitive data

◮ Android allows developers to override the built-in validation

◮ Used to connect to servers whose certificates come from

non-standard Certificate Authorities (CAs)
◮ Used to avoid purchasing certificates for testing or user

acceptance environment
◮ Can lead to SSL Man-in-the-Middle Vulnerabilities (SMVs)

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

SSL/TLS

In SSL/TLS, a server’s identity is verified by a certificate chain. A

chain is valid if:

◮ Each certificate has not expired

◮ The root certificate of the chain is from a CA present in the

keystore

◮ Each certificate has a valid cryptographic signature from the CA

immediately after it in the chain

Additionally, the certificate chain’s hostname must match the domain

name being connected to (possibly with wildcards).

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Example Vulnerability

A famous example is the Chase Banking App (CVE-2012-5810):

1 public final void checkServerTrusted(X509Certificate[]

2 paramArrayOfX509Certficate, String paramString)

3 {
4 if ((paramArrayOfX509Certficate != null) && (

5 paramArrayOfX509Certficate.length == 1))

6 paramArrayOfX509Certficate[0].checkValidity();

7 while (true)

8 {
9 return;

10 this.a.checkServerTrusted(

11 paramArrayOfX509Certficate,paramString);

12 }
13 }

(from (Georgiev et al., 2012))

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Example Vulnerability

A famous example is the Chase Banking App (CVE-2012-5810):

1 public final void checkServerTrusted(X509Certificate[]

2 paramArrayOfX509Certficate, String paramString)

3 {
4 if ((paramArrayOfX509Certficate != null) && (

5 paramArrayOfX509Certficate.length == 1))

6 paramArrayOfX509Certficate[0].checkValidity();

7 while (true)

8 {
9 return;

10 this.a.checkServerTrusted(

11 paramArrayOfX509Certficate,paramString);

12 }
13 }

(from (Georgiev et al., 2012))

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Approach

◮ Purely static analysis unreliable

◮ Purely dynamic analysis infeasible

◮ enumerate all possible UI interaction paths
◮ text input

◮ We propose a hybrid approach

◮ use static analysis to prune the search space for and provide valid

text to dynamic analysis

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

System Overview

Static Analysis Dynamic Analysis

Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

Device & UI

Automation

MITM

Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

System Overview

Static Analysis Dynamic Analysis

Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

Device & UI

Automation

MITM

Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

System Overview

Static Analysis Dynamic Analysis

Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

Device & UI

Automation

MITM

Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

System Overview

Static Analysis Dynamic Analysis

Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

Device & UI

Automation

MITM

Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

System Overview

Static Analysis Dynamic Analysis

Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

Device & UI

Automation

MITM

Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

System Overview

Static Analysis Dynamic Analysis

Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

Device & UI

Automation

MITM

Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

System Overview

Static Analysis Dynamic Analysis

Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

Device & UI

Automation

MITM

Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

System Overview

Static Analysis Dynamic Analysis

Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

Device & UI

Automation

MITM

Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Static Analysis

. . .Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Disassembly

. . .Vulnerable

Apps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

◮ apktool to disassemble

the packaged compiled

code into a

human-readable format

called Smali.

◮ Significantly faster and

more reliable than

decompilation, especially

when the code has been

obfuscated

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Static SMV Detection

. . .Vulnerable

Apps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

◮ Simply check whether the

X509TrustManager or

HostNameVerifier

interfaces have been

overridden

◮ Apps that do not override

these either do not use SSL

or use the built-in SSL

support without

modification

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Vulnerable Entry Point Identification

. . .Vulnerable

Apps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

◮ Each app can be started at

a number of entry points

(called activities)

◮ Many entry points will not

trigger secure connections

◮ Trace backwards through

method calls to identify

entry points that might

trigger potential

vulnerabilities

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Smart Input Generation

. . .Vulnerable

Apps
Vulnerability

Detection

Disassembly

Entry Point

Identification

Smali Files

Method Names

Smart Input

Generation

◮ Apps often perform

validation on text input or

convert text to other

datatypes (e.g. integers)

◮ Intelligently provide input
based on:

◮ Input type annotations
◮ Type cast operations in

the code

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Dynamic Analysis

. . .

Device & UI

Automation

MITM

Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Device Management

For completeness and scalability, our system must:

◮ Manage multiple emulators in parallel,

◮ Handle emulator crashes and other errors,

◮ Schedule and distribute app testing across running emulators, and

◮ Collect and manage log data including installation and

uninstallation details and network traffic.

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Device Management

The device management component has two threads:

◮ Emulator Management

◮ App Scheduling

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Device Management

The device management component has two threads:

◮ Emulator Management

◮ Maintains a pool of active and free emulators
◮ Monitors the state of each emulator, restarting ones that go

“offline” or crash

◮ App Scheduling

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Device Management

The device management component has two threads:

◮ Emulator Management

◮ App Scheduling

◮ Executes UI Automation on each activity identified by static

analysis
◮ Handles errors that do not crash the emulator (e.g. app crashes)
◮ Logs installation/uninstallation timestamps and DNS queries

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

UI Automation Activity UI Enumeration Smart Input

Injection

Tap Event

Processing

Tap Event

Return Event

State

Change

Detection

No State

Change

State Change

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

UI Automation Activity UI Enumeration Smart Input

Injection

Tap Event

Processing

Tap Event

Return Event

State

Change

Detection

No State

Change

State Change

UI Automation

System

ViewServer

WindowManager

Query

UI Elements

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

UI Automation Activity UI Enumeration Smart Input

Injection

Tap Event

Processing

Tap Event

Return Event

State

Change

Detection

No State

Change

State Change

UI Automation

System

ViewServer

UI Elements
Tap and

Text events

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

UI Automation Activity UI Enumeration Smart Input

Injection

Tap Event

Processing

Tap Event

Return Event

State

Change

Detection

No State

Change

State Change

◮ The system uses WindowChange and FocusChange events

that are triggered when the interface changes

◮ Back button events are used to return to the target activity

◮ When a “non-cancellable” dialog appears that disables the back

button, events are generated to tap on “OK” or “Cancel” buttons

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

MITM Proxy

◮ During UI automation, all HTTPS traffic is directed through a

proxy that provides illegitimate certificates for each connection

◮ Successful connections are logged

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Correlative Analysis

◮ The MITM proxy only sees network traffic, cannot map

successful attacks to vulnerable apps

◮ The correlative analysis component matches attack timestamps
with application installation timestamps

◮ Identifies what apps were running during the attack

◮ DNS query logs are used to identify which app(s) were actually

attacked

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Data Sets

Two datasets crawled from the Google Play market:

◮ DS1: 3,165 finance-related apps (using finance-specific query
terms)

◮ Banking apps more likely to use SSL/TLS

◮ DS2: 20,316 apps

◮ Contains apps with more complex UIs (e.g. games)

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Data Set Distributions

0

10

20

30

40

%
D

S
1

0

2.5

5.0

7.5

10.0

%
D

S
2

A
rc

ad
e
&

A
ct

io
n

B
oo

ks
&

R
ef

er
en

ce

B
ra

in
&

Puz
zl

e

B
us

in
es

s

C
ar

ds
&

C
as

in
o

C
as

ua
l

C
om

ic
s

C
om

m
un

ic
at

io
n

Edu
ca

tio
n

Ent
er

ta
in

m
en

t

Fin
an

ce

H
ea

lth
&

Fitn
es

s

Lib
ra

rie
s &

D
em

os

Life
st
yl

e

M
ed

ia
&

V
id

eo

M
ed

ic
al

M
us

ic
&

A
ud

io

N
ew

s &
M

ag
az

in
es

Per
so

na
liz

at
io

n

Pho
to

gr
ap

hy

Pro
du

ct
iv

ity

R
ac

in
g

Sho
pp

in
g

Soc
ia

l

Spo
rts

Spo
rts

G
am

es

Too
ls

Tra
ns

po
rta

tio
n

Tra
ve

l &
Loc

al

W
ea

th
er

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Static Analysis

◮ Time Requirements:

◮ Disassembly took 0.42 seconds per app, on average (compared to

276 seconds per app to decompile)
◮ Vulnerable Entry Point Identification took 3.63 seconds per app,

on average
◮ Smart Input Generation took 1.2 seconds per app, on average

◮ Of 260,395 activities, 8,713 were identified as potentially

vulnerable

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Static Analysis

DS1 DS2

Vulnerable Apps 221 1322

Vulnerable Activities 1670 7043

Disassembly 23.5 minutes 2.4 hours

Entry Point Identification 3.2 hours 20.5 hours

Apps with Detectable Text Fields 87 417

Detected Text Fields 600 5599

Annotated Text Fields 289 3532

Type Casts 92 263

Space Requirements 26G 176G

Smali Files 1.3 million 8.7 million

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Dynamic Analysis

◮ Eight emulators running Android OS 4.1 to test the apps in

parallel

◮ The process took 18.81 hours (2.91 for DS1, 15.90 for DS2)

◮ We recorded 12 emulator crashes, and each emulator crashed or

went “offline” at least once

◮ Of the 8,713 tested entry points, 1,705 crashed on launch

◮ more likely in finance category apps, likely because of missing

login credentials

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Vulnerable Apps

0

16

32

48

64

#
V

u
ln

.
(D

S
1

)

0

37.25

74.50

111.75

149.00

#
V

u
ln

.
(D

S
2

)

Number of Vulnerable Apps in Each Category

A
rc

ad
e
&

A
ct

io
n

B
oo

ks
&

R
ef

er
en

ce

B
ra

in
&

Puz
zl

e

B
us

in
es

s

C
ar

ds
&

C
as

in
o

C
as

ua
l

C
om

ic
s

C
om

m
un

ic
at

io
n

Edu
ca

tio
n

Ent
er

ta
in

m
en

t

Fin
an

ce

H
ea

lth
&

Fitn
es

s

Lib
ra

rie
s &

D
em

os

Life
st
yl

e

M
ed

ia
&

V
id

eo

M
ed

ic
al

M
us

ic
&

A
ud

io

N
ew

s &
M

ag
az

in
es

Per
so

na
liz

at
io

n

Pho
to

gr
ap

hy

Pro
du

ct
iv

ity

R
ac

in
g

Sho
pp

in
g

Soc
ia

l

Spo
rts

Spo
rts

G
am

es

Too
ls

Tra
ns

po
rta

tio
n

Tra
ve

l &
Loc

al

W
ea

th
er

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Vulnerable Apps

0

5

10

15

20

%
V

u
ln

.
(D

S
1

)

0

3.75

7.50

11.25

15.00

%
V

u
ln

.
(D

S
2

)

Proportion of Each Category that is Vulnerable

A
rc

ad
e
&

A
ct

io
n

B
oo

ks
&

R
ef

er
en

ce

B
ra

in
&

Puz
zl

e

B
us

in
es

s

C
ar

ds
&

C
as

in
o

C
as

ua
l

C
om

ic
s

C
om

m
un

ic
at

io
n

Edu
ca

tio
n

Ent
er

ta
in

m
en

t

Fin
an

ce

H
ea

lth
&

Fitn
es

s

Lib
ra

rie
s &

D
em

os

Life
st
yl

e

M
ed

ia
&

V
id

eo

M
ed

ic
al

M
us

ic
&

A
ud

io

N
ew

s &
M

ag
az

in
es

Per
so

na
liz

at
io

n

Pho
to

gr
ap

hy

Pro
du

ct
iv

ity

R
ac

in
g

Sho
pp

in
g

Soc
ia

l

Spo
rts

Spo
rts

G
am

es

Too
ls

Tra
ns

po
rta

tio
n

Tra
ve

l &
Loc

al

W
ea

th
er

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Vulnerable Apps

◮ This project was conducted over a one-year window, allowing us

to revisit vulnerable apps

◮ We attempted to re-download all 726 confirmed-vulnerable apps

◮ 14.6% were unavailable, and 76.17% were still vulnerable

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Limitations/Future Work

◮ The dynamic analysis component can introduce false negatives
due to some limitations:

◮ Multi-Page input
◮ Advanced UI Operations (e.g. swipe, long touch)
◮ WebViews: embedded browser components that cannot be

analyzed by the ViewServer

Introduction System Overview Static Analysis Dynamic Analysis Experiments Discussion

Conclusion

◮ Our system combines static and dynamic analysis techniques to

perform large-scale, automated SMV detection on Android

◮ We identified 726 confirmed-vulnerable apps (out of 23,481

apps, approx. 3%)

◮ Months later, more than 3
4

were still vulnerable

This material is based upon work supported by The Air Force Office of Scientific

Research under Award No. FA-9550-12-1-0077.

	Introduction
	System Overview
	Static Analysis
	Dynamic Analysis
	Experiments
	Discussion

