SMV-HUNTER: Large Scale, Automated
Detection of SSL/TLS Man-in-the-Middle
Vulnerabilities in Android Apps

David Sounthiraraj Justin Sahs  Garret Greenwood
Zhigiang Lin  Latifur Khan

University of Texas at Dallas

February 26, 2014



Introduction
©00

Problem Statement

» Many Android apps use SSL/TLS to transmit sensitive data
» Android allows developers to override the built-in validation

>

Used to connect to servers whose certificates come from
non-standard Certificate Authorities (CAs)

Used to avoid purchasing certificates for testing or user
acceptance environment

Can lead to SSL Man-in-the-Middle Vulnerabilities (SMVs)
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SSL/TLS

In SSL/TLS, a server’s identity is verified by a certificate chain. A
chain is valid if:

» Each certificate has not expired

» The root certificate of the chain is from a CA present in the
keystore

» Each certificate has a valid cryptographic signature from the CA
immediately after it in the chain

Additionally, the certificate chain’s hostname must match the domain
name being connected to (possibly with wildcards).
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Example Vulnerability
A famous example is the Chase Banking App (CVE-2012-5810):

1|public final void checkServerTrusted (X509Certificatel]
2 paramArrayOfX509Certficate, String paramString)
3|4

4 if ((paramArrayOfX509Certficate != null) && (

5 paramArrayOfX509Certficate.length == 1))

6 paramArrayOfX509Certficate[0] .checkValidity();

7 while (true)

sl |

9 return;

10 this.a.checkServerTrusted (

11 paramArrayOfX509Certficate, paramString);

12 }

13|}

(from (Georgiev et al., 2012))
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Approach

» Purely static analysis unreliable

» Purely dynamic analysis infeasible
» enumerate all possible Ul interaction paths
> text input

» We propose a hybrid approach

> use static analysis to prune the search space for and provide valid
text to dynamic analysis
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Disassembly

» apktool to disassemble
the packaged compiled
code into a
human-readable format
called Smali.

Yerte, [ mart Input ’_, -~ » Significantly faster and
Generation i
Memoleames more reliable than
decompilation, especially
| [ Aeenton when the code has been
obfuscated

]

Smali | Files

Vulnerability
Detection
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Static SMV Detection
» Simply check whether the
X509TrustManager or
- HostName Verifier
interfaces have been
overridden

Smali | Files

Vulnerability Vul“e”‘blel Smart Input S Apps that do not override
Detection Apps ||| Generation .
Method | Names these either do not use SSL
Entry Point or use the built-in SSL
Identification .
support without
modification
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Vulnerable Entry Point ldentification

» Each app can be started at
a number of entry points
(called activities)

_—
» Many entry points will not
Smali| Files trigger secure connections
Vulnerability Vulnerablel| | Smart Input coe
e aops || Generation » Trace backwards through
MethodNames method calls to identify
Entry Point 1 1
entry points that might
; trigger potential

vulnerabilities
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Smart Input Generation

» Apps often perform
validation on text input or
—_— convert text to other

Disassembly datatypes (e.g. integers)
Smali Files > Intelligenﬂy provide input

Vulnerability Vulnerable ee based on:
Detection Apps .
» Input type annotations

Method | Names

» Type cast operations in
Entry Point yp p
Identification the Code
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-
Device Management

For completeness and scalability, our system must:
» Manage multiple emulators in parallel,

» Handle emulator crashes and other errors,

v

Schedule and distribute app testing across running emulators, and

v

Collect and manage log data including installation and
uninstallation details and network traffic.
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-
Device Management

The device management component has two threads:
» Emulator Management

> App Scheduling
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-
Device Management

The device management component has two threads:
» Emulator Management

» Maintains a pool of active and free emulators
» Monitors the state of each emulator, restarting ones that go
“offline” or crash

» App Scheduling
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Device Management

The device management component has two threads:

» Emulator Management
» App Scheduling
» Executes Ul Automation on each activity identified by static
analysis
» Handles errors that do not crash the emulator (e.g. app crashes)
» Logs installation/uninstallation timestamps and DNS queries
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» The system uses WindowChange and FocusChange events
that are triggered when the interface changes

» Back button events are used to return to the target activity

» When a “non-cancellable” dialog appears that disables the back
button, events are generated to tap on “OK” or “Cancel” buttons
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MITM Proxy

» During UI automation, all HTTPS traffic is directed through a
proxy that provides illegitimate certificates for each connection

» Successful connections are logged
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Correlative Analysis

» The MITM proxy only sees network traffic, cannot map
successful attacks to vulnerable apps

» The correlative analysis component matches attack timestamps
with application installation timestamps

» Identifies what apps were running during the attack

» DNS query logs are used to identify which app(s) were actually
attacked
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Data Sets

Two datasets crawled from the Google Play market:

» DS1: 3,165 finance-related apps (using finance-specific query
terms)

» Banking apps more likely to use SSL/TLS
» DS2: 20,316 apps

» Contains apps with more complex Uls (e.g. games)
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Data Set Distributions
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Static Analysis

» Time Requirements:
» Disassembly took 0.42 seconds per app, on average (compared to
276 seconds per app to decompile)
» Vulnerable Entry Point Identification took 3.63 seconds per app,
on average
» Smart Input Generation took 1.2 seconds per app, on average

> Of 260,395 activities, 8,713 were identified as potentially
vulnerable
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Static Analysis
DSI DS2
Vulnerable Apps 221 1322
Vulnerable Activities 1670 7043
Disassembly | 23.5 minutes 2.4 hours
Entry Point Identification 3.2 hours | 20.5 hours
Apps with Detectable Text Fields 87 417
Detected Text Fields 600 5599
Annotated Text Fields 289 3532
Type Casts 92 263
Space Requirements 26G 176G
Smali Files 1.3 million | 8.7 million
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Dynamic Analysis

» Eight emulators running Android OS 4.1 to test the apps in
parallel

» The process took 18.81 hours (2.91 for DS1, 15.90 for DS2)
» We recorded 12 emulator crashes, and each emulator crashed or
went “offline” at least once

» Of the 8,713 tested entry points, 1,705 crashed on launch

» more likely in finance category apps, likely because of missing
login credentials
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Vulnerable Apps
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Vulnerable Apps
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Vulnerable Apps

» This project was conducted over a one-year window, allowing us
to revisit vulnerable apps

» We attempted to re-download all 726 confirmed-vulnerable apps

» 14.6% were unavailable, and 76.17% were still vulnerable



Limitations/Future Work

» The dynamic analysis component can introduce false negatives
due to some limitations:
» Multi-Page input
» Advanced UI Operations (e.g. swipe, long touch)
» WebViews: embedded browser components that cannot be
analyzed by the ViewServer
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Conclusion

» Our system combines static and dynamic analysis techniques to
perform large-scale, automated SMV detection on Android

» We identified 726 confirmed-vulnerable apps (out of 23,481
apps, approx. 3%)

» Months later, more than % were still vulnerable

This material is based upon work supported by The Air Force Office of Scientific
Research under Award No. FA-9550-12-1-0077.
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