

Geo-locating Drivers: A Study of Sensitive Data Leakage in Ride-Hailing Services

Qingchuan Zhao*, Chaoshun Zuo*, Giancarlo Pellegrino^{†‡}, Zhiqiang Lin*

*The Ohio State University †CISPA Helmholtz Center for Information Security [‡]Stanford University

NDSS 2019

THE OHIO STATE UNIVRESITY

Introduction •000	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions O	Related Work O	Conclusion 000	References O
What i	s Ride-Hailing	Service?					

		<u> </u>					
Introduction •••••	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions 0	Related Work O	Conclusion 000	References O

What is Ride-Hailing Service?

Rider App

Driver App

	- Dista Hattina	C					
Introduction •000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions O	Related Work O	Conclusion 000	References O

What is Ride-Hailing Service?

\A/L	- D'.L. I.L. 'I'	C ' 2				
Introduction •000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	References O

What is Ride-Hailing Service?

~		1 0 1			
0000					0
Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Related Work	References

Concerns with Driver's Security

Uber under assault around the world as taxi drivers fight back

Gregg Zoroya and Angela Waters, USA TODAY Published 3:44 p.m. ET July

Smartphone-driven Uber is revolu global backlash that includes viole New Delhi and police raids in Chi

The common anti-Uber battle cry claim Uber's business model evan

(Photo11: Michel Euler, AP)

Last month, French taxi drivers ur and even taking hostages, Two U

While conceding France is a worst-case scenario, Uber says that focusing c stories.

ANGRY TAXI DRIVERS ON STRIKE ATTACK UBER TAXIS IN DOWNTOWN ATHENS (VIDEOS)

Ø March 6, 2018 Social @ 684 Views

Like 0 Save Share 1

Angry taxi drivers on work stoppage attacked Uber drivers but also their colleagues who had refused to

join the 9-hour work stoppage in Athens and Attica on Tuesday. strike. It was mostly Uber drivers who

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References O
A Sim	olified Protoco	bl					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions 0	Related Work O	Conclusion 000	References O
A Simp	lified Protoco	bl					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions 0	Related Work O	Conclusion 000	References O
A Sim	olified Protoco	bl					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions 0	Related Work O	Conclusion 000	References O
A Sim	olified Protoco	bl					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions 0	Related Work O	Conclusion 000	References O
A Sim	olified Protoco	bl					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions O	Related Work O	Conclusion 000	References O
The N	earby Cars A	API					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions O	Related Work O	Conclusion 000	References O
The N	earby Cars A	API					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions 0	Related Work O	Conclusion 000	References O
The N	earby Cars A	NPI					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions O	Related Work O	Conclusion 000	References O
The No.	earby Cars A	API					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions O	Related Work O	Conclusion 000	References O
The N	earby Cars A	PI					

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References O
The N	oarby Cars /	DI					

The Research Questions

- Private Info Leakage
 - Direct PII of Drivers
 - Movement of Drivers
 - Working Patterns of Drivers
 - Appeared Locations of Drivers
- Ø Business Info Leakage
 - Dual-Apping Driver
 - Driver Preference
 - ► # Drivers (Local or Global)
 - Operation Performance

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References O	
App S	Selection							

Service Name	#Downloads	APK Obfus?
Uber	100+ millions	~
Easy	10+ millions	~
Gett	10+ millions	~
Lyft	10+ millions	~
myTaxi	5+ millions	~
Taxify	5+ millions	×
BiTaksi	1+ millions	~
Heetch	1+ millions	~
Jeeny	500+ thousands	~
Flywheel	100+ thousands	×
GoCatch	100+ thousands	~
miCab	100+ thousands	×
RideAustin	100+ thousands	×
Ztrip	100+ thousands	~
eCab	50+ thousands	~
GroundLink	10+ thousands	×
HelloCabs	10+ thousands	×
Ride LA	10+ thousands	X
Bounce	10+ thousands	X
DC Taxi Rider	5+ thousands	~

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References O	
App S	Selection							

Service Name	#Downloads	APK Obfus?
Uber	100+ millions	 ✓
Easy	10+ millions	~
Gett	10+ millions	~
Lyft	10+ millions	~
myTaxi	5+ millions	~
Taxify	5+ millions	×
BiTaksi	1+ millions	~
Heetch	1+ millions	~
Jeeny	500+ thousands	~
Flywheel	100+ thousands	×
GoCatch	100+ thousands	~
miCab	100+ thousands	×
RideAustin	100+ thousands	×
Ztrip	100+ thousands	~
eCab	50+ thousands	~
GroundLink	10+ thousands	×
HelloCabs	10+ thousands	×
Ride LA	10+ thousands	×
Bounce	10+ thousands	×
DC Taxi Rider	5+ thousands	~

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions 0	Related Work O	Conclusion 000	References O	
App Se	election							

Somico Namo	#Downloads	ARK Obfue?
Service Mame	#Downloads	AFK Oblus:
Uber	100+ millions	~
Easy	10+ millions	~
Gett	10+ millions	~
Lyft	10+ millions	~
myTaxi	5+ millions	~
Taxify	5+ millions	×
BiTaksi	1+ millions	~
Heetch	1+ millions	~
Jeeny	500+ thousands	~
Flywheel	100+ thousands	×
GoCatch	100+ thousands	~
miCab	100+ thousands	×
RideAustin	100+ thousands	×
Ztrip	100+ thousands	~
eCab	50+ thousands	~
GroundLink	10+ thousands	×
HelloCabs	10+ thousands	×
Ride LA	10+ thousands	×
Bounce	10+ thousands	×
DC Taxi Rider	5+ thousands	~

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References O	
App S	Selection							

Service Name	#Downloads	APK Obfus?
Uber	100+ millions	~
Easy	10+ millions	~
Gett	10+ millions	~
Lyft	10+ millions	~
myTaxi	5+ millions	~
Taxify	5+ millions	×
BiTaksi	1+ millions	~
Heetch	1+ millions	~
Jeeny	500+ thousands	~
Flywheel	100+ thousands	×
GoCatch	100+ thousands	~
miCab	100+ thousands	×
RideAustin	100+ thousands	×
Ztrip	100+ thousands	~
eCab	50+ thousands	~
GroundLink	10+ thousands	×
HelloCabs	10+ thousands	×
Ride LA	10+ thousands	X
Bounce	10+ thousands	X
DC Taxi Rider	5+ thousands	~

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References O
A Rur	nning Example						

```
GET /v1/nearby-drivers-pickup-etas?
lat=10.10&lng=-10.10 HTTP/1.1
Authorization: Bearer dmGtpMx1qCKeA
HTTP/1.1 200 OK
Content-type: application/json
    "nearby_drivers":[
            "driver":{
            },
            "locations":[
                1
                   "lat":10.10,
                   "lng":-10.10,
                   "recorded at ms":1234
                 },
                . . .
          },
           ł
             "driver":{
             ۱.
```

```
(c) Nearby Cars API
```

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References O
A Run	ning Example						

```
GET /v1/nearby-drivers-pickup-etas?
lat=10.10&lng=-10.10 HTTP/1.1
Authorization: Bearer dmGtpMx1qCKeA
HTTP/1.1 200 OK
Content-type: application/json
    "nearby_drivers":[
            "driver":{
            },
            "locations":[
                - 1
                   "lat":10.10,
                   "lng":-10.10,
                   "recorded at ms":1234
                 },
                . . .
          },
           ł
             "driver":{
             ۱.
         (c) Nearby Cars API
```

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References O
A Run	ning Example						

```
POST /oauth2/access token HTTP/1.1
                                              GET /v1/nearby-drivers-pickup-etas?
grant type = ***Aphone &
                                              lat=10.10&lng=-10.10 HTTP/1.1
phone number = 123 \& phone code = 111
                                            Authorization: Bearer dmGtpMx1gCKeA
                                              HTTP/1.1 200 OK
HTTP/1.1 200 OK
                                              Content-type: application/json
Content-type: application/ison
                                                  "nearby drivers":[
    "access token": "eHdNsgsNvREH1",
    "expires in": 86400,
                                                           "driver":{
    "refresh token": "bEwazc0wcI",
                                                           ۱.
           (a) Login API
                                                           "locations":[
POST /oauth2/access token HTTP/1.1
                                                                 "lat":10.10,
                                                                 "lng":-10.10,
grant type=refresh token &
                                                                 "recorded at ms":1234
refresh token=bEwazc0wcI
                                                               },
                                                              . . .
HTTP/1.1 200 OK
                                                         },
Content-type: application/json
                                                            "driver":{
    "access token": "dmGtpMx1gCKeA", -
    "expires in": 86400,
                                                            }.
    "refresh token": "3Rva2VuIiw",
       (b) Refresh Token API
                                                       (c) Nearby Cars API
```


Automating This Process With A Tool

Tool Objectives

- Pinpointing the Nearby Cars APIs
- Identifying the Dependencies
- Bypassing Obfuscations Used in the Apps

Introduction Methodology and Tool Security Analysis Vulnerabilities Discussions Related Work Conclusion References

Introduction 0000 October 2000 October 2000

 Introduction
 Methodology and Tool
 Security Analysis
 Vulnerabilities
 Discussions
 Related Work
 Conclusion
 References

 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Introduction Methodology and Tool Security Analysis Vulnerabilities Discussions Related Work Conclusion References of Conclusion ADIa

Tool Implementation: Trace the Executions of Sys/Networking APIs

GET /vl/nearby-drivers-pickup-etas? lat=10.10&lng=-10.10 HTTP/1.1 Authorization: Bearer dmGtpMxlqCKeA

```
HTTP/1.1 200 OK
Content-type: application/json
    "nearby drivers":[
             "driver": {
             ۱.
             "locations":[
                    "lat":10.10.
                    "lng":-10.10,
                    "recorded at ms":1234
                  }.
           },
              "driver":{
              1.
         . . .
```

 Introduction
 Methodology and Tool
 Security Analysis
 Vulnerabilities
 Discussions
 Related Work
 Conclusion
 References

 0000
 000
 0
 0
 0
 0
 0
 0
 0

Tool Implementation: Trace the Executions of Sys/Networking APIs

GET /v1/nearby-drivers-pickup-etas? lat=10.10&lng=-10.10 HTTP/1.1 Authorization: Bearer dmGtpMxlqCKeA

```
HTTP/1.1 200 OK
Content-type: application/json
    "nearby drivers":[
             "driver": {
             ۱.
             "locations":[
                    "lat":10.10
                    "lng":-10.10,
                    "recorded at ms":1234
                  }.
           },
              "driver":{
              1.
        . . .
```

 Introduction
 Methodology and Tool
 Security Analysis
 Vulnerabilities
 Discussions
 Related Work
 Conclusion
 References

 0000
 000
 000
 000
 000
 000
 000
 000

 Introduction
 Methodology and Tool
 Security Analysis
 Vulnerabilities
 Discussions
 Related Work
 Conclusion
 References

 0000
 000
 0
 000
 0
 0
 0
 0
 0

Tool Implementation: Trace the Executions of Sys/Networking APIs

An API's Response

Countermeasures Against Data Harvesting of The Nearby Cars API

Introduction
 Methodology and Tool
 Security Analysis
 Vulnerabilities
 Discussions
 Related Work
 Conclusion
 References

 Countermeasures Against Data Harvesting of The Nearby Cars API

- Rate Limiting
 - ► RL1 : Reqs/s
 - RL2 : Different IPs

Countermeasures Against Data Harvesting of The Nearby Cars API

- Rate Limiting
 - ► RL1 : Reqs/s
 - ► RL2 : Different IPs
- Session Management
 - SM1 : Authentication
 - ► SM2 : Session Lifespan

Countermeasures Against Data Harvesting of The Nearby Cars API

- Rate Limiting
 - ► RL1 : Reqs/s
 - ► RL2 : Different IPs
- Session Management
 - SM1 : Authentication
 - SM2 : Session Lifespan
- Anti-GPS Spoofing

Countermeasures Against Data Harvesting of The Nearby Cars API

- Rate Limiting
 - ► RL1 : Reqs/s
 - ► RL2 : Different IPs
- Session Management
 - SM1 : Authentication
 - SM2 : Session Lifespan
- Anti-GPS Spoofing
- Anonymization
 - AN1 : Identifier Lifespan
 - ► AN2 : Personal Identifiable Information

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions O	Related Work O	Conclusion 000	References 0

Rider App	Reqs/s	Diff IPs	Authen	Sn Lifespan	Anti-GPS	ID Lifespan	PII
Uber	•	0	•	∞	0	∞	•
Easy	-	0	0	∞	0	∞	٠
Gett	-	0	•	∞	0	∞	٠
Lyft	•	0	•	24h	0	∞	0
myTaxi	-	0	0	∞	0	20m	٠
Taxify	•	0	•	∞	0	∞	•
BiTaksi	-	0	•	∞	0	∞	٠
Heetch	-	0	•	∞	0	∞	٠
Jeeny	-	0	0	∞	0	20m	٠
Flywheel	-	0	•	20m	0	10m	٠
GoCatch	-	0	•	∞	0	∞	٠
miCab	-	0	•	∞	0	∞	0
RideAustin	-	0	•	∞	0	∞	٠
Ztrip	-	0	•	30m	0	∞	٠
eCab	•	0	0	∞	0	∞	٠
GroundLink	-	0	0	∞	0	∞	٠
HelloCabs	-	0	•	∞	0	∞	0
Ride LA	-	0	0	∞	0	∞	0
Bounce	-	0	•	∞	0	∞	0
DC Taxi Rider	-	0	•	∞	0	∞	0

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References O

Rider App	Reqs/s	Diff IPs	Authen	Sn Lifespan	Anti-GPS	ID Lifespan	PII
Uber	•	0	•	∞	0	∞	•
Easy	-	0	0	∞	0	∞	٠
Gett	-	0	•	∞	0	∞	٠
Lyft	•	0	•	24h	0	∞	0
myTaxi	-	0	0	∞	0	20m	٠
Taxify	•	0	•	∞	0	∞	٠
BiTaksi	-	0	•	∞	0	∞	٠
Heetch	-	0	•	∞	0	∞	٠
Jeeny	-	0	0	∞	0	20m	٠
Flywheel	-	0	•	20m	0	10m	٠
GoCatch	-	0	•	∞	0	∞	٠
miCab	-	0	•	∞	0	∞	0
RideAustin	-	0	•	∞	0	∞	٠
Ztrip	-	0	•	30m	0	∞	٠
eCab	•	0	0	∞	0	∞	٠
GroundLink	-	0	0	∞	0	∞	٠
HelloCabs	-	0	•	∞	0	∞	0
Ride LA	-	0	0	∞	0	∞	0
Bounce	-	0	•	∞	0	∞	0
DC Taxi Rider	-	0	•	∞	0	∞	0

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions O	Related Work O	Conclusion 000	References 0

Rider App	Reqs/s	Diff IPs	Authen	Sn Lifespan	Anti-GPS	ID Lifespan	PII
Uber	•	0	•	∞	0	∞	•
Easy	-	0	0	∞	0	∞	٠
Gett	-	0	•	∞	0	∞	٠
Lyft	•	0	•	24h	0	∞	0
myTaxi	-	0	0	∞	0	20m	٠
Taxify	•	0	•	∞	0	∞	٠
BiTaksi	-	0	•	∞	0	∞	٠
Heetch	-	0	•	∞	0	∞	٠
Jeeny	-	0	0	∞	0	20m	٠
Flywheel	-	0	•	20m	0	10m	٠
GoCatch	-	0	•	∞	0	∞	٠
miCab	-	0	•	∞	0	∞	0
RideAustin	-	0	•	∞	0	∞	٠
Ztrip	-	0	•	30m	0	∞	٠
eCab	•	0	0	∞	0	∞	٠
GroundLink	-	0	0	∞	0	∞	٠
HelloCabs	-	0	•	∞	0	∞	0
Ride LA	-	0	0	∞	0	∞	0
Bounce	-	0	•	∞	0	∞	0
DC Taxi Rider	-	0	•	∞	0	∞	0

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions O	Related Work O	Conclusion 000	References 0

Rider App	Reqs/s	Diff IPs	Authen	Sn Lifespan	Anti-GPS	ID Lifespan	PII
Uber	•	0	•	∞	0	∞	•
Easy	-	0	0	∞	0	∞	٠
Gett	-	0	•	∞	0	∞	٠
Lyft	•	0	•	24h	0	∞	0
myTaxi	-	0	0	∞	0	20m	٠
Taxify	•	0	•	∞	0	∞	٠
BiTaksi	-	0	•	∞	0	∞	٠
Heetch	-	0	•	∞	0	∞	٠
Jeeny	-	0	0	∞	0	20m	٠
Flywheel	-	0	•	20m	0	10m	٠
GoCatch	-	0	•	∞	0	∞	٠
miCab	-	0	•	∞	0	∞	0
RideAustin	-	0	•	∞	0	∞	٠
Ztrip	-	0	•	30m	0	∞	٠
eCab	•	0	0	∞	0	∞	٠
GroundLink	-	0	0	∞	0	∞	٠
HelloCabs	-	0	•	∞	0	∞	0
Ride LA	-	0	0	∞	0	∞	0
Bounce	-	0	•	∞	0	∞	0
DC Taxi Rider	-	0	•	∞	0	∞	0

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions O	Related Work O	Conclusion 000	References 0

Rider App	Reqs/s	Diff IPs	Authen	Sn Lifespan	Anti-GPS	ID Lifespan	PII
Uber	•	0	•	∞	0	∞	•
Easy	-	0	0	∞	0	∞	•
Gett	-	0	•	∞	0	∞	•
Lyft	•	0	•	24h	0	∞	0
myTaxi	-	0	0	∞	0	20m	٠
Taxify	•	0	•	∞	0	∞	•
BiTaksi	-	0	•	∞	0	∞	٠
Heetch	-	0	•	∞	0	∞	٠
Jeeny	-	0	0	∞	0	20m	•
Flywheel	-	0	•	20m	0	10m	•
GoCatch	-	0	•	∞	0	∞	•
miCab	-	0	•	∞	0	∞	0
RideAustin	-	0	•	∞	0	∞	•
Ztrip	-	0	•	30m	0	∞	•
eCab	•	0	0	∞	0	∞	•
GroundLink	-	0	0	∞	0	∞	•
HelloCabs	-	0	•	∞	0	∞	0
Ride LA	-	0	0	∞	0	∞	0
Bounce	-	0	•	∞	0	∞	0
DC Taxi Rider	-	0	•	∞	0	∞	0

-							
Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions O	Related Work O	Conclusion	References O

Rider App	Reqs/s	Diff IPs	Authen	Sn Lifespan	Anti-GPS	ID Lifespan	PII
Uber	•	0	•	∞	0	∞	•
Easy	-	0	0	∞	0	∞	٠
Gett	-	0	•	∞	0	∞	•
Lyft	•	0	•	24h	0	∞	0
myTaxi	-	0	0	∞	0	20m	•
Taxify	•	0	•	∞	0	∞	•
BiTaksi	-	0	•	∞	0	∞	•
Heetch	-	0	•	∞	0	∞	•
Jeeny	-	0	0	∞	0	20m	•
Flywheel	-	0	•	20m	0	10m	•
GoCatch	-	0	•	∞	0	∞	•
miCab	-	0	•	∞	0	∞	0
RideAustin	-	0	•	∞	0	∞	•
Ztrip	-	0	•	30m	0	∞	•
eCab	•	0	0	∞	0	∞	•
GroundLink	-	0	0	∞	0	∞	•
HelloCabs	-	0	•	∞	0	∞	0
Ride LA	-	0	0	∞	0	∞	0
Bounce	-	0	•	∞	0	∞	0
DC Taxi Rider	-	0	•	∞	0	∞	0

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion	References O
_							

Rider App	Reqs/s	Diff IPs	Authen	Sn Lifespan	Anti-GPS	ID Lifespan	PII
Uber	•	0	•	∞	0	∞	٠
Easy	-	0	0	∞	0	∞	٠
Gett	-	0	•	∞	0	∞	٠
Lyft	•	0	•	24h	0	∞	0
myTaxi	-	0	0	∞	0	20m	٠
Taxify	•	0	•	∞	0	∞	٠
BiTaksi	-	0	•	∞	0	∞	٠
Heetch	-	0	•	∞	0	∞	٠
Jeeny	-	0	0	∞	0	20m	٠
Flywheel	-	0	•	20m	0	10m	٠
GoCatch	-	0	•	∞	0	∞	٠
miCab	-	0	•	∞	0	∞	0
RideAustin	-	0	•	∞	0	∞	٠
Ztrip	-	0	•	30m	0	∞	٠
eCab	•	0	0	∞	0	∞	٠
GroundLink	-	0	0	∞	0	∞	٠
HelloCabs	-	0	•	∞	0	∞	0
Ride LA	-	0	0	∞	0	∞	0
Bounce	-	0	•	∞	0	∞	0
DC Taxi Rider	-	0	•	∞	0	∞	0

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	O Discussions	Related Work O	Conclusion	References O
_							

Rider App	Reqs/s	Diff IPs	Authen	Sn Lifespan	Anti-GPS	ID Lifespan	PII
Uber	•	0	•	∞	0	∞	٠
Easy	-	0	0	∞	0	∞	•
Gett	-	0	•	∞	0	∞	•
Lyft	•	0	•	24h	0	∞	0
myTaxi	-	0	0	∞	0	20m	•
Taxify	•	0	•	∞	0	∞	•
BiTaksi	-	0	•	∞	0	∞	•
Heetch	-	0	•	∞	0	∞	•
Jeeny	-	0	0	∞	0	20m	•
Flywheel	-	0	•	20m	0	10m	•
GoCatch	-	0	•	∞	0	∞	•
miCab	-	0	•	∞	0	∞	0
RideAustin	-	0	•	∞	0	∞	•
Ztrip	-	0	•	30m	0	∞	•
eCab	•	0	0	∞	0	∞	•
GroundLink	-	0	0	∞	0	∞	•
HelloCabs	-	0	•	∞	0	∞	0
Ride LA	-	0	0	∞	0	∞	0
Bounce	-	0	•	∞	0	∞	0
DC Taxi Rider	-	0	•	∞	0	∞	0

~							
		00					0
Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions	Related Work	Conclusion	References

Rider App	Reqs/s	Diff IPs	Authen	Sn Lifespan	Anti-GPS	ID Lifespan	PII
Uber	•	0	•	∞	0	∞	•
Easy	-	0	0	∞	0	∞	٠
Gett	-	0	•	∞	0	∞	٠
Lyft	•	0	•	24h	0	∞	0
myTaxi	-	0	0	∞	0	20m	٠
Taxify	•	0	•	∞	0	∞	٠
BiTaksi	-	0	•	∞	0	∞	٠
Heetch	-	0	•	∞	0	∞	٠
Jeeny	-	0	0	∞	0	20m	٠
Flywheel	-	0	•	20m	0	10m	٠
GoCatch	-	0	•	∞	0	∞	٠
miCab	-	0	•	∞	0	∞	0
RideAustin	-	0	•	∞	0	∞	٠
Ztrip	-	0	•	30m	0	∞	٠
eCab	•	0	0	∞	0	∞	٠
GroundLink	-	0	0	∞	0	∞	٠
HelloCabs	-	0	•	∞	0	∞	0
Ride LA	-	0	0	∞	0	∞	0
Bounce	-	0	•	∞	0	∞	0
DC Taxi Rider	-	0	•	∞	0	∞	0

Summary

- No Particular Countermeasures Implemented
- Six Services Do Not Require User Authentication
- Six Services Directly Return A Variety of PII

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities ••••••	Discussions 0	Related Work O	Conclusion 000	References O
Data A	Acquisition: Se	electing Cit	y				

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities •000000	Discussions 0	Related Work O	Conclusion 000	References O
Data A	caulicition: Se	lecting City	,				

Introduction 0000	Methodology and Tool	Security Analysis 00	Vulnerabilities 000000	Discussions 0	Related Work O	Conclusion 000	References O

Data Acquisition: Placing Monitors

Introduction 0000	Methodology and Tool	Security Analysis 00	Vulnerabilities 000000	Discussions 0	Related Work O	Conclusion 000	References O

Data Acquisition: Placing Monitors

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 000000	Discussions O	Related Work O	Conclusion 000	References O

Data Acquisition: Placing Monitors

Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions	Related Work	Conclusion	References
			000000				0

The Answers to Research Questions

The Research Questions

- Private Info Leakage
 - Direct PII of Drivers
 - Movement of Drivers
 - Working Patterns of Drivers
 - Appeared Locations of Drivers
- Ø Business Info Leakage
 - Dual-Apping Driver
 - Driver Preference
 - ► # Drivers
 - Operation Performance

The Answers to Research Questions

The Research Questions

- Private Info Leakage
 - Direct PII of Drivers
 - Movement of Drivers
 - Working Patterns of Drivers
 - Appeared Locations of Drivers
- Business Info Leakage
 - Dual-Apping Driver
 - Driver Preference
 - ► # Drivers
 - Operation Performance

Confirmed Vulnerabilities

- Private Info Leakage
 - Direct PII of Drivers
 - Movement of Drivers
 - Working Patterns of Drivers
 - Appeared Locations of Drivers
- Business Info Leakage
 - Dual-Apping Driver
 - Driver Preference
 - # Drivers
 - Operation Performance

(I). Private Information Leakage : Direct PII Leakage

Service name	Sensitive information
_yft	Driver avatar
HelloCabs	Name, phone number
Ride LA	Name, phone number
DC Taxi Rider	Name, phone number, email
niCab	Account creating time, account last up-
	date time, device number, hiring status
Bounce	Name, date of birth, driver avatar, phone
	number, social security number, driver
	license number, driver license expira-
	tion date, home address, bank account
	number, routing number, account bal-
	ance, vehicle inspection details, vehicle
	insurance details

Introduction Methodology and Tool Security Analysis Vulnerabilities Discussions OOO Conclusion References OOO Conclusion Conclusion

(I). Private Information Leakage: Movements of Drivers

 Introduction
 Methodology and Tool
 Security Analysis
 Vulnerabilities
 Discussions
 Related Work
 Conclusion
 References

 0000
 0000
 0
 0
 0
 0
 0
 0
 0

 Introduction
 Methodology and Tool
 Security Analysis
 Vulnerabilities
 Discussions
 Related Work
 Conclusion
 References

 0000
 000
 000
 0
 0
 0
 0
 0
 0

 Introduction
 Methodology and Tool
 Security Analysis
 Vulnerabilities
 Discussions
 Related Work
 Conclusion
 References

 0000
 000
 000
 0
 0
 0
 0
 0
 0

			000000				0
Introduction	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions	Related Work	Conclusion	References

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions 0	Related Work O	Conclusion 000	References O

0000	0000	00	000000	O	O	000	o O
				D •			

0000	0000	00	000000	O	O	000	o O
				D •			

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions O	Related Work O	Conclusion 000	References O
				— •			

0000	0000	00	000000	0	0	000	0
(11) 5				.			

80

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions •	Related Work O	Conclusion 000	References O
Discus	sions						

Suggestions

- Appropriate Implementation Logic
 - ► No PII before Service Reservation
- Oconcealing Position with Distance
 - Replacing Car Position with Distance to Riders
- Mitigating Linkability
 - Removing or Using Short-live Car IDs

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions •	Related Work O	Conclusion 000	References O
Discus	sions						

Suggestions

- Appropriate Implementation Logic
 - No PII before Service Reservation
- Oconcealing Position with Distance
 - Replacing Car Position with Distance to Riders
- Mitigating Linkability
 - Removing or Using Short-live Car IDs

Responsible Disclosure

- Disclosure to all 20 Apps
- **2** 8 Responded and Started Fixing: removing PII, using short-live IDs, ...
- Two Bug Bounties from Uber and Lyft
| Introduction
0000 | Methodology and Tool | Security Analysis | Vulnerabilities | Discussions
O | Related Work • | Conclusion | References
O |
|----------------------|----------------------|-------------------|-----------------|------------------|-----------------|------------|-----------------|
| Related | Work | | | | | | |

- Privacy-Preserving Location-Based Services (LBS): [LKZM08], [HLR11], [ZC11], [LH10], ORide [PDE⁺17] and PrivateRide [PDJ⁺17].
- Leakage of Privacy Sensitive Data in Mobile Applications: TaintDroid. [EGC⁺10], Appintent. [YYZ⁺13], PiOS. [EKKV11], SUPOR [HLX⁺15], UiRef [AAL⁺17], [JHY⁺14], [FHM⁺12], [MDM⁺15], [KCE⁺17], AuthScope [ZZL17], and LeakScope [ZLZ19].
- Web API and Protocol Reverse Engineering: [CKW07], [PI], [CS07], AutoFormat [LJXZ08], Dispatcher [CPKS09], Reformat [WJC⁺09], and WARDroid [MG18].
- Dynamic Analysis of Mobile Apps:TaintDroid [EGC⁺10], AppsPlayground [RCE13], DECAF [LNGL14], and SmartGen [ZL17].

 Introduction
 Methodology and Tool
 Security Analysis
 Vulnerabilities
 Discussions
 Related Work
 Conclusion
 References

 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <td

Summary: The Security with The Nearby Cars API

Introduction Methodology and Tool Security Analysis Vulnerabilities Discussions Related Work Conclusion References

Summary: The Security with The Nearby Cars API

Summary

- In-depth Study of Ride-Hailing Services
 - Top 20 Suggested Ride-Hailing Apps
 - World-wide Known
- No Particular Countermeasure for Data Scraping
 - No defense for Diff IPs, GPS Spoofing
 - Few uses short-live session & identifier

Summary: The Security with The Nearby Cars API

Summary

- In-depth Study of Ride-Hailing Services
 - Top 20 Suggested Ride-Hailing Apps
 - World-wide Known
- No Particular Countermeasure for Data Scraping
 - No defense for Diff IPs, GPS Spoofing
 - Few uses short-live session & identifier

Confirmed Vulnerabilities

Private Info Leakage

- Direct PII of Drivers
- Movement of Drivers
- Working Patterns of Drivers
- Appeared Locations of Drivers
- **2** Business Info Leakage
 - ► Dual-Apping Driver ✔
 - Driver Preference
 - ► # Drivers ✔
 - Operation Performance

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion	References O
Thank	You						

Geo-locating Drivers: A Study of Sensitive Data Leakage in Ride-Hailing Services

Qingchuan Zhao*, Chaoshun Zuo*, Giancarlo Pellegrino^{†‡}, Zhiqiang Lin*

*The Ohio State University †CISPA Helmholtz Center for Information Security [‡]Stanford University

NDSS 2019

Introduction Methodology and Tool Security Analysis Vulnerabilities Discussions of Conclusion OCO References OCO

Summary

- In-depth Study of Ride-Hailing Services
 - Top 20 Suggested Ride-Hailing Apps
 - World-wide Known
- No Particular Countermeasure for Data Scraping
 - No defense for Diff IPs, GPS Spoofing
 - Few uses short-live session & identifier

Confirmed Vulnerabilities

Private Info Leakage

- Direct PII of Drivers
- Movement of Drivers
- Working Patterns of Drivers
- Appeared Locations of Drivers
- Business Info Leakage
 - ► Dual-Apping Driver ✔
 - Driver Preference
 - ► # Drivers ✔
 - Operation Performance

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References •
Referer	nces l						

Benjamin Andow, Akhil Acharya, Dengfeng Li, William Enck, Kapil Singh, and Tao Xie, Uiref: Analysis of sensitive user inputs in android applications. Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks (New York, NY, USA), WiSec '17, ACM, 2017, pp. 23-34, Weidong Cui, Javanthkumar Kannan, and Helen J. Wang, Discoverer: Automatic protocol reverse engineering from network traces. Proceedings of the 16th USENIX Security Symposium (Security'07) (Boston, MA), August 2007. Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song, Dispatcher: Enabling active botnet infiltration using automatic protocol reverse-engineering, Proceedings of the 16th ACM Conference on Computer and and Communications Security (CCS'09) (Chicago, Illinois USA), 2009, pp. 621-634. 1 Juan Caballero and Dawn Song, Polyglot: Automatic extraction of protocol format using dynamic binary analysis, Proceedings of the 14th ACM Conference on Computer and and Communications Security (CCS'07) (Alexandria, Virginia, USA), 2007, pp. 317–329. William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid: An information-flow tracking system for realtime privacy monitoring on smartphones. Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation (Berkeley, CA, USA), OSDI'10, USENIX Association, 2010, pp. 393-407. Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna, PiOS: Detecting privacy leaks in iOS applications, NDSS 2011, 18th Annual Network and Distributed System Security Symposium, 6-9 February 2011, San Diego, CA, USA (San Diego, UNITED STATES), 02

2011.

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions O	Related Work O	Conclusion 000	References •
Refer	ences II						
	Sascha Fahl, Marian Harbach, ⁷ An analysis of android ssl (in)se USA), CCS '12, ACM, 2012, pj	Thomas Muders, Lars Ba ecurity, Proceedings of th 5. 50–61.	umgärtner, Bernd Fra ne 2012 ACM Confere	eisleben, and Mattl ince on Computer a	new Smith, <i>Why eve</i> and Communications	and mallory love a Security (New Yor	ndroid: ˈk, NY,
	Systems (ICDCS), 2011 31st International Conference on, June 2011, pp. 740–749.						
	Jianjun Huang, Zhichun Li, Xus user input detection for androic	heng Xiao, Zhenyu Wu, <i>apps.</i> , USENIX Security	Kangjie Lu, Xiangyu ⁄ Symposium, 2015, p	Zhang, and Guofei p. 977–992.	i Jiang, <i>Supor: Preci</i> s	se and scalable sen:	sitive
	Xing Jin, Xuchao Hu, Kailiang <i>Characterization, detection and</i> (New York, NY, USA), CCS '14	Ying, Wenliang Du, Hen <i>mitigation</i> , Proceedings 4, ACM, 2014, pp. 66–77	g Yin, and Gautam N of the 2014 ACM SI '.	agesh Peri, <i>Code i</i> GSAC Conference c	njection attacks on h on Computer and Cor	<i>tml5-based mobile</i> nmunications Secu	<i>apps:</i> rity

William Koch, Abdelberi Chaabane, Manuel Egele, William Robertson, and Engin Kirda, *Semi-automated discovery of server-based information oversharing vulnerabilities in android applications*, Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, ACM, 2017, pp. 147–157.

Wanying Luo and Urs Hengartner, Veriplace: A privacy-aware location proof architecture, Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (New York, NY, USA), GIS '10, ACM, 2010, pp. 23–32.

Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang, Automatic protocol format reverse engineering through context-aware monitored execution, Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS'08) (San Diego, CA), February 2008.

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities	Discussions O	Related Work O	Conclusion 000	References •
Refer	ences III						
	Vincent Lenders, Emmanouil Ko Applications, challenges and im, NY, USA), HotMobile '08, ACN	oukoumidis, Pei Zhang, plementations, Proceedi 1, 2008, pp. 60–64.	and Margaret Marton ngs of the 9th Worksl	osi, <i>Location-based</i> nop on Mobile Com	trust for mobile used puting Systems and	<i>-generated conten</i> Applications (New	<i>t:</i> York,
	Bin Liu, Suman Nath, Ramesh USENIX Conference on Network	Govindan, and Jie Liu, <i>I</i> ed Systems Design and	Decaf: Detecting and Implementation (Berk	characterizing ad fi eley, CA, USA), NS	raud in mobile apps, SDI'14, USENIX Asso	Proceedings of the ociation, 2014, pp.	11th 57–70.
	Patrick Mutchler, Adam Doupé Proceedings of the Mobile Secu	John Mitchell, Chris K rity Technologies Works	ruegel, and Giovanni ' hop (MoST), 2015.	Vigna, A large-scale	e study of mobile wel	o app security,	
	Abner Mendoza and Guofei Gu, Mobile application web api reconnaissance: Web-to-mobile inconsistencies and vulnerabilities, Proceedings of the 39th IEEE Symposium on Security and Privacy (SP18). May 2018						
	Anh Pham, Italo Dacosta, Guill privacy-preserving yet accountal Association, 2017, pp. 1235–12	aume Endignoux, Juan I ble ride-hailing service, 2 52.	Ramon Troncoso Past 26th USENIX Security	oriza, Kevin Hugue Symposium (USEI	nin, and Jean-Pierre NIX Security 17) (Va	Hubaux, <i>Oride: A</i> ncouver, BC), USE	ENIX
	Anh Pham, Italo Dacosta, Bast Privateride: A privacy-enhanced	en Jacot-Guillarmod, K I <i>ride-hailing service</i> , Po	évin Huguenin, Taha I PETs 2017 (2017), no	Hajar, Florian Tram 5. 2, 38–56.	ièr, Virgil D. Gligor, a	and Jean-Pierre Hu	ıbaux,
	The Protocol Informatics Project	ct, http://www.baseline	research.net/PI/.				
	Vaibhav Rastogi, Yan Chen, and	d William Enck, <i>Appspla</i>	ayground: Automatic	security analysis of	smartphone applicati	ons, Proceedings o	of the

Third ACM Conference on Data and Application Security and Privacy (New York, NY, USA), CODASPY '13, ACM, 2013, pp. 209-220.

26 / 27

Introduction 0000	Methodology and Tool	Security Analysis	Vulnerabilities 0000000	Discussions 0	Related Work O	Conclusion 000	References •
Refere	nces IV						

Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace, <i>Reformat: Automatic reverse engineering of encrypted messages</i> , Proceedings of 14th European Symposium on Research in Computer Security (ESORICS'09) (Saint Malo, France), LNCS, September 2009.
Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang, <i>Appintent: Analyzing sensitive data transmission in android for privacy leakage detection</i> , Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security (New York, NY, USA), CCS '13, ACM, 2013, pp. 1043–1054.
Zhichao Zhu and Guohong Cao, Applaus: A privacy-preserving location proof updating system for location-based services, INFOCOM, 2011 Proceedings IEEE, April 2011, pp. 1889–1897.
Chaoshun Zuo and Zhiqiang Lin, Exposing server urls of mobile apps with selective symbolic execution, Proceedings of the 26th World Wide Web Conference (WWW'17) (Perth, Australia), April 2017.
Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang, <i>Why does your data leak? uncovering the data leakage in cloud from mobile apps</i> , Proceedings of the 2019 IEEE Symposium on Security and Privacy (San Francisco, CA), May 2019.
Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin, Authscope: Towards automatic discovery of vulnerable authorizations in online services, Proceedings of the 24th ACM Conference on Computer and Communications Security (CCS'17) (Dallas, TX), November 2017.