
Understanding Miniapp Malware:
Identification, Dissection, and Characterization

Yuqing Yang
The Ohio State University

yang.5656@osu.edu

Yue Zhang
Drexel University
yz899@drexel.edu

Zhiqiang Lin
The Ohio State University

zlin@cse.ohio-state.edu

Abstract—Super apps, serving as centralized platforms that
manage user information and integrate third-party miniapps,
have revolutionized mobile computing but also introduced sig-
nificant security risks from malicious miniapps. Despite the
mandatory miniapp vetting enforced to the built-in miniapp store,
the threat of evolving miniapp malware persists, engaging in a
continual cat-and-mouse game with platform security measures.
However, compared with traditional paradigms such as mobile
and web computing, there has been a lack of miniapp malware
dataset available for the community to explore, hindering the
generation of crucial insights and the development of robust
detection techniques. In response to this, this paper addresses
the scarcely explored territory of malicious miniapp analysis,
dedicating over three year to identifying, dissecting, and exam-
ining the risks posed by these miniapps, resulting in the first
miniapp malware dataset now available to aid future studies to
enhance the security of super app ecosystems.

To build the dataset, our primary focus has been on the
WECHAT platform, the largest super app, hosting millions of
miniapps and serving a billion users. Over an extensive period, we
collected over 4.5 million miniapps, identifying a subset (19, 905)
as malicious through a rigorous cross-check process: 1) applying
static signatures derived from real-world cases, and 2) confirming
that the miniapps were delisted and removed from the market
by the platform. With these identified samples, we proceed to
characterize them, focusing on their lifecycle including prop-
agation, activation, as well as payload execution. Additionally,
we analyzed the collected malware samples using real-world
cases to demonstrate their practical security impact. Our findings
reveal that these malware frequently target user privacy, leverage
social network sharing capabilities to disseminate unauthorized
services, and manipulate the advertisement-based revenue model
to illicitly generate profits. These actions result in significant
privacy and financial harm to both users and the platform.

I. INTRODUCTION

In recent years, miniapps have emerged as a transformative
computing model, gaining widespread adoption across leading
mobile super apps, well beyond the traditional IT vendors.
This novel framework permits third-party developers to inte-
grate their services into a host mobile app, utilizing its data
and functionalities. Embedded within super app platforms,

miniapps have become fundamental to their ecosystems, en-
riching super apps with a diverse array of services for a vast
user base. For instance, WECHAT, a prominent super app
platform providing services to over a billion users [1], has
experienced rapid growth of its miniapp market. Reaching
more than four million miniapps, the miniapps hosted by
WECHAT’s miniapp store now surpasses the number of mobile
apps available on Google Play, which currently stands at about
three million [6].

To enhance user stickiness and increase the dominance of
super apps, these platforms have introduced three key features
for miniapp integration. (1) They provide miniapps with access
to user data such as account details, phone numbers, real-time
location, and home addresses. These accesses facilitate a
diverse range of services, from e-commerce to transportation.
(2) Miniapps can generate revenue through pay-per-click
advertisements within the super app’s ecosystem, providing
a financial incentive for developers. (3) The ability to share
miniapps within the super app’s social networks, such as
group chats, promotes their distribution and attracts new
users. Thus, leveraging vast user data, ad-based monetization
models, and social-network-based distribution channels,
miniapps have emerged as a distinct and crucial component
of the digital ecosystem, standing alongside traditional mobile
and desktop environments.

Unfortunately, with the versatile user data delegation and
miniapp distribution, the miniapp ecosystem have also been
targeted by malicious parties to inflict losses to the ecosys-
tem, including the super app platform and the end users.
Despite that robust app vetting and strict control over miniapp
distribution have been enforced by super apps, the hunt for
malware remains a constant cat-and-mouse game, as malicious
miniapps have been seeking approaches to evade the vetting
and infiltrate the ecosystems. For instance, Lu et al. [48]
have demonstrated the capability of malicious miniapps to
bypass vetting processes and illicitly harvest private data. This
ongoing struggle has also led to the development of various
evasive and obfuscation techniques. What makes the situation
even worse is that, to this date, there is an absence of an
available malware dataset for research, leaving crucial insights
for developing effective defense strategies still undiscovered.

To address this gap, this paper sets forth to collect the
first miniapp malware dataset. Our preliminary investigation

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230082
www.ndss-symposium.org

reveals that despite being versatile and constantly evolving,
miniapp malware inevitably leave traces in the ecosystem.
Since miniapp malware must be released to the app store
to interact with victim users, they often conceal their mali-
cious content (payload) to bypass the mandatory vetting, only
executing their harmful payloads after the approval. Further,
passing vetting does not guarantee the malware’s survival, as
end users can still report suspicious miniapps to the platform,
leading to their removal from the ecosystem.

Based on these observations, we conducted the first collec-
tion and analysis of miniapp malware over a three-year period,
targeting samples that meet two key criteria. (1) The malware
must contain the ability to evade vetting processes. To identify
such evasive signatures, we analyzed the dataset using the
APIs from prohibited evasion-capable libraries and examples
as reported by WECHAT [9], covering both code and content
vetting evasion techniques. (2) The malware must have been
removed from the ecosystem, indicating that the malicious
activities were acknowledged by the platform. To collect such
information, we iterated through WECHAT miniapp store twice
from March 2020 to December 2022. This effort revealed
that 360,467 miniapps had been removed by the time when
finishing our second collection. By applying these malware
signatures to the miniapps removed from the platform, we
ultimately compiled a dataset of 19, 905 miniapps, forming
our final malware dataset.

To demonstrate the real-world impact and gain a deeper
understanding of the lifecycle and motivations behind these
malware, we conducted detailed case studies on the collected
samples. In particular, we systematically investigated the
lifecycle of miniapp malware, including infection channels,
activation methods, and the types of malicious payloads
involved. Additionally, we classified the malware into 6
categories with detailed case studies to showcase their
security impacts. These findings reveal a broad spectrum of
security threats, ranging from privacy violations to financial
fraud, posed by these malicious entities.

Contributions. In short, this paper makes the following con-
tributions:
• Publicized miniapp malware dataset (§III). We have

identified, organized, and are now releasing the first com-
prehensive dataset of miniapp malware1. This collection,
sourced from the official WECHAT miniapp market, com-
prises miniapps that demonstrated evasive behavior and had
been removed from the store, indicating their malicious
intent and violation of super app regulations.

• Taxonomy of malicious miniapp payloads (§IV). We
further dissected the collected evasive miniapp malware,
focusing on aspects such as vetting evasion, infection
mechanisms, activation triggers, and the nature of malicious
payloads. Using static control and data flow techniques, we
examined function calls, layout components, and content

1The instructions of requesting the dataset is published at https://
minimalware.github.io/

displayed by the miniapps. The malicious payloads identi-
fied through this process were then organized into 6 distinct
categories, in accordance with the official guidelines gov-
erning miniapp operations [36].

• Characterization of miniapp malware (§V). Building
on our taxonomy, we characterized the malware families
by examining how they combine malicious payloads and
evasive techniques to harm the ecosystem. This charac-
terization focuses on three primary categories: privacy
collection “spyware”, monetization abuse “adware”, and
propagation of rogue services “grayware”. Additionally, we
compared these miniapp malware with traditional malware
to highlight their distinctive features.

II. BACKGROUND

A. Resources Vulnerable to Miniapp Malware

Super app platforms, which serve vast numbers of users,
have become prime targets for malware distribution due
to their extensive user base that significantly magnifies the
potential security impact of such threats. With millions of
users interacting daily within these ecosystems and their
data being accessed by miniapps, certain super-app-specific
resources are particularly vulnerable to cyber attacks. These
include (1) user account data hosted and shared with
third parties by super apps, (2) the advertisement-based
monetization mechanisms that can be abused for financial
gain, and (3) the expansive social networks that enable
malware to spread rapidly, potentially compromising large
numbers of users in a very short period of time.

Account data: privacy harvesting. Unlike traditional plat-
forms such as personal desktops, which collect user identity
data in a distributed and localized manner, super apps op-
erate as fully-fledged applications that centralize and store
significant amounts of user data, including phone numbers,
nicknames, and addresses, in the cloud. This centralized data
collection is integral to their core services, enabling miniapps
to access this information for tasks such as account registration
and online food delivery. While this unified data access
mechanism is convenient for both the platform and developers,
it also creates a substantial risk for large-scale data breaches
if miniapps are allowed unrestricted access to sensitive user
information. To mitigate this, the super app platforms have
built an additional layer of security mechanisms called “autho-
rization scope” [25], akin to permission-based data access in
Android and iOS. However, malicious miniapps may still seek
to bypass these grant-based mechanisms by invoking APIs that
are able to collect other personal data not protected by autho-
rization scopes such as device information and system versions
to perform user tracking in background, or simply circumvent
the authorization process by inducing users to manually enter
the sensitive information, causing privacy leaks.

Advertisement mechanism: monetization abuse. In addi-
tion to generating revenue from users through paid services,
miniapps can earn profits directly from the platform via

2

https://minimalware.github.io/
https://minimalware.github.io/

the pay-per-click advertising mechanism, utilizing APIs or
UI widgets to embed ads. The platform then compensates
the miniapp based on the “traffic”, a metric based on how
many users visit the miniapp [4]. According to a third-party
report [11], a miniapp receives about 2 cents per click on
a banner advertisement, and 7 cents per click for video
advertisements. Since platforms retain 50% of the revenue
generated from advertisements, this advertising model has
become a significant revenue stream for both miniapps and the
platforms themselves [15]. As a result, malware developers are
incentivized to manipulate traffic metrics, leading to artificially
inflated advertisement interactions to maximize financial gains.

Social network: rogue service propagation. In super apps,
the miniapps can be and are encouraged to be shared among
users’ social networks, including friends, group chats, and
users’ personal timelines. This differs remarkably from tra-
ditional apps and is facilitated not just with URLs but also
with meta-information such as miniapp names, thumbnails,
and descriptions. To further encourage users to try out shared
miniapps, the miniapp is automatically downloaded and exe-
cuted within the super app, without requiring the user to enter
an app store, download, and manually install the package. The
simplified click-to-use and install-less mechanism of miniapps
enables rapid spread among users, which unfortunately also
serves as an effective distribution channel for malware. This
unfortunately also results in the propagation of rogue services,
and poses legal liability issues for the platforms due to the
challenges in detecting and regulating these services.

B. The Super App Vetting Mechanism

In face of the security risks posed by miniapp malware,
super app vendors have adopted mandatory vetting mechanism
on all miniapps submitted to their stores, involving both code
and content vetting.

Code vetting. Miniapps must undergo a thorough review
process before they can be distributed, as mentioned in a study
by Lu et al. [48]. In accordance with regulations outlined
in the specified reference [36], once malicious payloads are
identified, miniapps must either eliminate those payloads or
be removed from the market. This vetting mechanism is
particularly effective as miniapps are distributed exclusively
through official markets, unlike desktop and Android apps
which have alternative distribution channels.

Content vetting. In addition to code vetting, super apps
also place a strong emphasis on content security. Given their
vast social networks, the dissemination of rogue contents
and services within these networks could expose vendors to
significant legal liabilities. Therefore, miniapp contents are
rigorously vetted. For example, the operational regulations for
miniapps [36] prohibits content that includes sexually explicit
material, hate speech, violence, terrorism-related content, and
illegal activities.

1 <!--pages/index/index.js-->
2 onLoad: function(e) {
3 wx.login({
4 success: function(e) {
5 n.getState();
6 ...
7 },
8 getState: function() {
9 var e = this;

10 wx.request({
11 url: a.versionUri, //malicious domain
12 success: function(a) {
13 //set state according to the data
14 }
15 });
16 },
17

18 <!--pages/add/add.wxml-->
19 //This is benign path
20 <view wx:if="{{state===0}}" class="p">
21 <view class="w_view">
22 <navigator class="w_list" url="{{item.url}}"

wx:for="{{lists}}">↪→
23 <image class="w_icon"

src="{{item.icon}}"></image>↪→
24 <image class="w_text"

src="{{item.text}}"></image>↪→
25 ...
26 </navigator>
27 </view>
28 </view>
29 //This is malicious path
30 <web-view src="weburl"

wx:elif="{{state===1}}"></web-view>↪→

Figure 1: Code example for offline payload controlling

C. Evasive Techniques Against Vetting

Given that existing vetting mechanisms require miniapps to
pass a security check before release, it is crucial for malware
developers to adopt evasive tactics to circumvent these checks,
such as by submitting benign code for vetting but later updat-
ing to malicious versions. To bypass vetting, these malware
dynamically change their program behavior, either through
the APIs invoked or the contents displayed. To achieve this,
they leverage various interpreter-based JavaScript libraries and
APIs as a convenient way to execute arbitrary sequences of
bytecode or JavaScript strings. Although WECHAT disables
various JavaScript APIs such as eval() to ensure such
dynamic hot update is not feasible for miniapps, there are cases
where malicious developers attempt to perform hot update via
third-party libraries, such as using interpreters (e.g., evil-
eval [17]) and sandboxes such as vm [34] and vm2 [33]. In
response, since July 2022, WECHAT prohibits the usage of a
list of JavaScript libraries enabling dynamic code execution
in miniapps [28], which provided a list of libraries prohibited
from the miniapps. However, these malware may also imple-
ment their own interpreters [27], making the identification of
miniapp malware even more challenging.

For content vetting evasion miniapps, attackers may exploit
conditional display features supported by miniapps alongside
dynamic updating. For instance, as illustrated in Figure 1, the
malware implements a <web-view> in line 30 pointing to a
malicious domain for displaying rogue contents. The visibility
of this <web-view> component is controlled by the state

3

variable. This variable is set by getState at line 8 upon
the miniapp loads, which fetches a file from versionUri
(line 11). Consequently, the attackers may change the contents
of the file hosted on versionUri to control the value of
state variable, setting the value either to 0 or 1. Specifically,
during vetting, the attacker may set the value to 0, which
allows the miniapp to display the view at line 20, essentially
showing a list of foods along with their nutrition information.
After the miniapp passes vetting, the attacker can update the
file to set state to 1, enabling the display of the web-view
at line 30, which points to weburl, where the attackers can
host and display their malicious content.

III. IDENTIFICATION

Motivated by the existence and potential security impacts
of the evasive miniapp malware, we aim to automatically
collect evasive miniapp malware for future research. In this
section, we detail the scope of malware we collected, the
methodology we employed, and provide an overview of the
dataset, including a validation of the collection result.

A. Scope

In light of the significant security risks posed by miniapp
malware, we aim to devise an automated method to collect
and identify the evasive malware and facilitate future research.
Unlike mobile and desktop malware, an established database
for miniapp malware is not yet available, and thus identifying
miniapp malware presents a unique challenge due to the ab-
sence of established ground truths. To tackle this challenge, we
specifically focus on WECHAT in this paper for three reasons.
First, as a pioneering platform in the miniapp ecosystem,
WECHAT hosts over 4 million miniapps and serves 1.2 billion
monthly active users [1]. This vast repository of miniapps not
only ensures a rich dataset but also underscores the potential
security ramifications of uncovering malware within it. Sec-
ond, similar security and functionality features (particularly
the vetting, data access, and monetization mechanisms) are
also adopted by other miniapp platforms like BAIDU [31] and
ALIPAY [3], which suggests that methodologies developed for
detecting malware on WECHAT could be applicable across
these platforms. Third, WECHAT’s miniapp ecosystem, with
seven years of development, is among the most mature,
offering a more diverse range of malware compared to newer
platforms like ZALO [21].

However, collecting malware from WECHAT is challenging
because, unlike mobile and Linux malware, which benefit
from established databases for monitoring and analysis,
there is no such comprehensive ground truth for WECHAT
miniapps. Nevertheless, as miniapps can only be submitted to
the official miniapp store where mandatory vetting is enforced,
the malware must develop evasive techniques to bypass the
vetting process by hiding malicious contents during the review
and activating harmful behavior only after the miniapps are
released. As such, this paper focuses specifically on this type
of evasive malware (i.e., malware having evasive signatures),

Documentation
Analysis

Malware
Identification

Dissection and
Characterization

Mar May Dec
20232022

First Collection

2021

1st 2nd

Jun

Second Collection

DecJun
2020

DecMar Dec

Figure 2: The timeline of the malware collection

a strategy similarly used in studies on web extensions [44]
and Android malware [66], which has proven to be a powerful
indicator for identifying malware samples and analyzing the
malicious activities enabled by their evasive behaviors.

B. Methodology

To collect the malware exhibiting the evasive signature,
we implemented a cross-check identification policy designed
to minimize false positives in malware detection. First, the
malware must demonstrate capabilities to evade the vetting
process. Second, the malware must have been removed from
the official miniapp store, indicating that the platforms have
recognized its malicious behavior and subsequently delisted it,
thereby confirming its status as malware. To collect malware
that satisfy these two criteria, our collection comprises two
steps: gathering removed miniapps, and identifying with
evasive characteristics.

Step 1: Gathering removed miniapps. To capture these
removed miniapps, we perform a longitudinal monitoring of
the WECHAT miniapp store’s inventory. As illustrated in
Figure 2, the collection for delisted miniapps was carried out
from March 2020 to December 2022, spanning two cycles
of miniapp collection. Initially, in 2020, we collected the
available miniapps from the miniapp store. In 2021, we scaled
up our collection efforts by incorporating MiniCrawler [65],
and completed the first round of miniapp collection in June
2022, amassing 4,595,680 miniapps. Immediately after that,
we revisited the miniapp store, querying the miniapp market
whether the appIDs of the miniapps collected in the first round
still exist. By the end of 2022, we noticed that a significant
number of miniapps, 360, 467 in total, had been delisted.

Step 2: Identifying with evasive characteristics. To circum-
vent vetting, a malware can hide either the code to execute
malicious behavior or the resources to display malicious
contents, which can be categorized as code vetting evasion
or content vetting evasion. However, either of these two
approaches leave trace in the code, as malware developers
need to implement modules that allow them to control the
behavior of their malware after the malware passes vetting. By
examining malicious examples exhibiting evasive behavior, the
key to identify such malware is to detect the implementation
of malicious dynamic code execution and content rendering.

1) Detecting malicious dynamic code execution. The capa-
bility for a miniapp to execute an arbitrary JavaScript code
string is vital for evasive malware to perform dynamic code
execution, as it allows malware developers to send malicious

4

1 Us = function() {
2 function t(e) {
3 var r = e.vm, n = e.key, o = e.value, a =

e.parent;↪→
4 Mi(this, t), this.value = o, this.vm = r,

this.key = n;↪→
5 var i = Ns(n, a);
6 this.root = i.root, this.path = i.path, this.dep

= new Rs(), Ps(o, "__ob__", this),↪→
7 Array.isArray(o) ? ((ks ? Is : Cs)(o, Ds, js),

this.observeArray(o)) : this.walk(o);↪→
8 }
9 return Ri(t, [{

10 key: "walk",
11 value: function(t) {
12 for (var e = ft(t), r = 0; r < e.length; r++)

qs({↪→
13 vm: this.vm,
14 obj: t,
15 key: e[r],
16 value: t[e[r]],
17 parent: t
18 });
19 }
20 }, {
21 key: "get",
22 value: function() {
23 Rs.target && Fs.push(Rs.target), Rs.target =

this;↪→
24 var t = this.getter.call(this.vm, this.vm);
25 return Rs.target = Fs.pop(),

this.cleanupDeps(), t;↪→
26 }
27 }, {
28 key: "evaluate",
29 value: function() {
30 this.value = this.get(), this.dirty = !1;
31 }
32 },
33 ...
34])
35 }

Figure 3: Code example of VM-based obfuscation for
evasive library

code to the vetted miniapps, transforming vetted miniapps
to malware. As a dynamic language, JavaScript has abun-
dant libraries to support such dynamic execution, including
JavaScript interpreters (e.g., eval), and sandboxes (e.g., vm).
Witnessing this situation, WECHAT announced in 2022 that
it will prohibit the use of such libraries that allow miniapps
to perform hot update [28], which was also confirmed by our
observation. However, the developers may be aware of the
risk for being detected, and thus they may obfuscate their
code against the vetting process. As shown in Figure 3, the
script is indeed deeply obfuscated, with the exported functions
constructed as key value pairs, containing functions such as
walk (line 10), get (line 21), and evaluate (line 28).
These functions essentially establish a tree containing multiple
nodes, allowing miniapps to dynamically evaluate node values.

Fortunately, the complexity of the evasive techniques sug-
gests that malware developers are less inclined to implement
these behaviors from scratch, but instead more inclined to
adopt existing code snippets to support such evasive behavior.
For instance, despite the fact that malware may integrate
minified or obfuscated libraries that are prohibited due to
dynamic execution capabilities, the APIs provided to the end

developers remain similar to their original counterparts. Thus,
we still may identify these API usages based on the function
signatures. As such, we first examined through the official
announcements from WECHAT about libraries deemed as
capable for miniapps to implement hot update to evade code
vetting, resulting in a list of libraries. Further, we extracted
the signatures of APIs in each library for executing strings as
JavaScript code. With these signatures, we scanned the delisted
miniapps for invocations to these APIs, as well as usage of
these libraries.

2) Detecting malicious content rendering. Aside from
bypassing code vetting with dynamic code execution,
malware may also evade the vetting by entirely concealing
malicious content from their static code, and then deliver the
malicious contents from the cloud after the malware passes
vetting. To do this, a miniapp needs to dynamically deliver
malicious contents to a post-vetting miniapp, and then control
which contents a post-vetting miniapp displays. Therefore,
web-view and conditional display techniques are commonly
used by these miniapp malware.

The web-view component is a special view in the miniapp
layout, which displays contents in a domain designated by
the developer. On the other hand, the conditional display
allows the miniapp to switch displayed components based on a
Boolean variable. When these two features are used together, it
forms an ideal approach for evasive malware to hide contents.
For example, the code in Figure 1 uses a single variable,
state, whose value is fetched from their back-end servers,
to control whether to display benign contents or to display
malicious information in <web-view>. As these contents are
hosted on third-party domains not affiliated with WECHAT
and can be easily updated without having to be vetted, the
platform will not be able to detect these malicious contents
if the attackers maintain a blank page when the malware is
vetted, hiding the malicious contents which will be revealed
after the malware passes vetting.

In summary, malware bypassing content vetting with con-
ditional rendering commonly involves two key properties: (1)
a web view that displays contents from an attacker-controlled
domain, and (2) a variable that controls the display of the
web view via wx:if. Based on these patterns, we statically
analyzed each delisted miniapp’s WXML file to identify
the components controlled by variables in the lookout of a
malicious web-view controlled by cloud-delivered variables.

C. Dataset Overview

With the evasive signatures we extracted from the two types
of malware by investigating the malicious examples acquired
from Tencent, in Feburary 2023, we deployed the malware
identification on the removed miniapps using a server with
16 Intel Xeon Silver 4314 CPUs. The identification process
was executed with 16 threads for over one month, resulting
in 19, 905 malware samples.

Threats to Validity. To evaluate the accuracy of the malware
detection, we sampled a total of 500 miniapps out of the

5

bu
sin

es
s

e-
le

ar
ni

ng
ed

uc
at

io
n

en
te

rta
in

m
en

t
fin

an
ce

fo
od

ga
m

es
go

ve
rn

m
en

t
he

al
th jo
b

lif
es

ty
le

ph
ot

o
sh

op
pi

ng
so

cia
l

sp
or

ts
to

ol
tra

ffi
c

tra
ve

llin
g

un
ca

te
go

riz
ed

0

1000

2000

3000

4000

5000

6000

7000

8000

Ev

as
iv

e
M

in
ia

pp

evasive malware

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Al

l C
ol

le
ct

ed
 M

in
ia

pp

1e6
all miniapps

Figure 4: Categorial Distribution between Overall
Miniapps and Miniapp Malware. The orange bars rep-
resent collected malware, and the blue bars represent all
collected miniapps. Please note that the y-axis to the left
are for the malware (orange), and the y-axis to the right
are for all miniapps (blue).

Nov
 20

17

Jun
 20

18

Se
p 2

01
8

Dec
20

18

Mar
20

19

Jun
 20

19

Se
p 2

01
9

Dec
20

19

Mar
20

20

Jun
 20

20

Se
p 2

02
0

Dec
20

20

Mar
20

21

Jun
 20

21

Se
p 2

02
1

Months

0

25

50

75

100

125

150

175

M

in
ia

pp
s b

y
Ca

te
go

ry

Category and Date of Evasive Malware Collected
business
e-learning
education
entertainment
finance
food
games
government
health

job
lifestyle
photo
shopping
social
sports
tool
traffic
travelling
uncategorized

Figure 5: Amount of miniapps per category based on the
creation time.

19, 905 malware, and manually checked whether the miniapp
involves evasive signatures. Despite that these files may be
heavily obfuscated, we evaluated the semantics of the associ-
ated sensitive APIs to the best of our knowledge to identify
whether it involves code signatures we extracted from the
evasive samples that may cause code side effects (e.g., change
of program behavior or displayed items). In total, 34 of the 500
sampled miniapps are associated with content vetting evasion,
whereas the rest 466 sampled miniapps are identified as code
vetting evasion. Among all these miniapps, 487 miniapps are
correctly identified, whilst 13 miniapp were false positive

1 y.templateSettings = {
2 evaluate: /<%([\s\S]+?)%>/g,
3 interpolate: /<%=([\s\S]+?)%>/g,
4 escape: /<%-([\s\S]+?)%>/g
5 };
6 ...
7 y.template = function(e, t, n) {
8 ...
9 var r = RegExp([(t.escape || I).source, (t.interpolate

|| I).source, (t.evaluate || I).source].join("|") +
"|$", "g"), o = 0, i = "__p+='";

↪→
↪→

10 e.replace(r, function(t, n, r, a, u) {
11 return i += e.slice(o, u).replace(T, R), o = u +

t.length, n ? i += "'+\n((__t=(" + n +
"))==null?'':_.escape(__t))+\n'" : r ? i +=
"'+\n((__t=(" + r + "))==null?'':__t)+\n'" : a &&
(i += "';\n" + a + "\n__p+='"),

↪→
↪→
↪→
↪→

12 t;
13 }), i += "';\n", t.variable || (i = "with(obj||{}){\n" +

i + "}\n"), i = "var
__t,__p='',__j=Array.prototype.join,\+

↪→
↪→

14 "print=function(){__p+=__j.call(arguments,'');};\n" + i
+ "return __p;\n";↪→

15 try {
16 var a = new Function(t.variable || "obj", "_", i);
17 } catch (e) {
18 e = VM2_INTERNAL_STATE_DO_NOT_USE_OR_PROGRAM_WILL_FAIL.
19 handleException(e);
20 throw e.source = i, e;
21 }
22 var u = function(e) {
23 return a.call(this, e, y);
24 }, c = t.variable || "obj";
25 return u.source = "function(" + c + "){\n" + i + "}",

u;↪→
26 },

Figure 6: Code example for self-implemented JS/WXML
processing

cases. Among these 13 miniapps, 10 are identified as evasive
incorrectly because the miniapp implements the API eval-
uate to “allow users to evaluate purchased products”, which
is not implemented to perform execution of JavaScript code
as strings to replace the prohibited eval library. 3 of them
are identified as content vetting evasion because they involve
web views controlled by variables, but they are displaying
videos upon users’ requests instead of attempting to evade
vetting. That is, we do not claim that the malware samples we
identified are 100% accurate, but we will explicitly identify
these cases we evaluated together with the validation notes in
the dataset to help researchers to reproduce our findings.

Evasive behavior categorization. Notably, our validation
on the sampled miniapps have revealed different approaches
adopted by miniapps for the evasion. In summary, among
the 500 miniapps, 451 miniapps contain a file called
vendor.js, which is commonly used in web development
to include and pack third-party libraries or dependencies.
As this file is essentially a compilation of multiple libraries,
each miniapp’s vendor.js can be different. Among these
451 miniapps, 32 involve an object called Watcher which
is designed to interact with the DOM tree, 16 involves
regular expression to match WXML tag format, and there is
even one that leaves all variable names and code comments
in the code, from which we notice copyright information
of eval5.min.js, a library prohibited by WECHAT but

6

Category API/Library # Description

E

evaluate 18,428 Signature API for executing strings
eval 18,112 API for executing JS code
runInNewContext 46 API for executing code in sandbox
runInContext 20 API for executing code in sandbox
vm 69 Library of sandbox execution
eval5 5 Library alternate of eval
evil-eval 2 Library alternate of eval
vm2 2 Library of sandbox execution

S
showShareMenu 6,022 Toggles share miniapp button
onShareAppMessage 1,338 Invoked when miniapp is shared
onShareTimeline 61 Invoked when shared to timelines

R navigateToMiniprogram 10,519 Inter-miniapp communication

Table I: Sensitive APIs Invoked by the Collected Malware.
E: evasive, S: share, R: redirection

imported as code snippets into vendor.js by the miniapp.
Moreover, 3 miniapps even encode the file names, such
as 7C56DE058DE715DF1A30B602F2364CA4.js. As
shown in Figure 6, the script implements templateSet-
tings at line 1 that uses regular expressions to identify
WXML tags by matching the “<” and the “>” globally, and
then implements template at line 7, which is a function that
eventually concatenates JavaScript functions for execution in
line 11. Additionally, 2 miniapps integrate dw_shared.js,
which breaks down the traversal of AST trees and expression
evaluation as JSONObject in the return value.

For the content vetting evasion malware, we found that
server-controlled data is widely used to show both benign
contents before vetting and malicious contents after vetting.
In the example shown in Figure 1, the malware fetches item
from the malicious domain and displays nutrition knowledge
(which is irrelevant from the actual gaming service that the
miniapp provides), such as calories of foods. After the server-
controlled variable state is changed to 1, the malware
displays the web view to an external domain of a game with
in-game purchasing. However, this miniapp is registered under
the “information query” category as a tool rather than as a
game or shopping app, where the platform does not require
the developer’s commercial certificates. By disguising itself as
a non-commercial tool to avoid stricter vetting processes, this
malware’s behavior is categorized as “non-conformation of
category”, which also violates platform operation regulations.

Service categories of the collected malware. As illustrated
in Figure 4, we are surprised to find that there are signif-
icantly more malware in the Tool category, compared with
overall miniapps where the Shopping miniapps is the top-
hit category. By scrutinizing the official miniapp categories
and subcategories [30], we notice that almost all subcategories
under the Tool category do not require developers to submit
any qualification certificates, such as the certification for
providing commercial license. On the contrary, most of the
Shopping miniapps are required to submit these commercial
licenses along with other types of proof, and thus the vetting
process for non-tool miniapps are much stricter. Therefore, it

is highly possible that malware developers deliberately choose
the categories involving minimum requirements on the license
or the identities of developers to evade vetting and deploy their
malware with minimum cost.

Creation time of the collected malware. After we finished
the initial collection of miniapps, we also started crawling
meta information displayed in the “details” page of miniapps
since June 2022. Unfortunately, the interface to crawl such
information has strict rate limit, and we were only able to
crawl the meta data for 829,288 miniapps by the end of the
revisiting process in December 2022. Among these miniapps,
we found 2,257 miniapps to be malware. Unfortunately,
by the time of December 2022, all the rest malware we
included in the dataset was already removed from the market,
and thus we were unable to retrieve the meta information
of the rest of the malware. However, we still made some
interesting findings that, as shown in Figure 5, attackers
started to release malware to the miniapp ecosystem since
2017, which is the year when the miniapp ecosystem initially
debuted. During the next two years, the published malware
steadily growed, and peaked in January 2019. Additionally,
this figure also shows that tool-based miniapps continued to
be the predominant category among the malware samples, as
illustrated in the categories of collected malware.

IV. DISSECTION

In this section, we dissect the malware based on their
post-vetting lifecycle, which is broken down into three key
stages as illustrated in Figure 7: propagation to victim users
(§IV-A), activation of malicious behaviors (§IV-B), and the
execution of malicious payloads (§IV-C).

A. Malware Propagation

To propagate the miniapps to victims, it is intuitive that the
attacker may bypass the vetting and release the malware to
the miniapp store, waiting for victims to click and use the
malware published on it. However, the infection of malware
may be significantly augmented by the rich features support-
ing miniapp sharing among user social networks and cross-
miniapp redirection between miniapps.

(I1) Miniapp store discovery. The most intuitive way for
a malware to be distributed is to wait until the malware be
discovered by users in the built-in miniapp store directly.
These malware often involve inducing miniapp names and
descriptions, such as “play the game and earn money”, or
“your churning tool for coupon codes”, to attract potential
users.

(I2) Sharing among social networks. As the super app
allows and encourages miniapps to be shared among the
user’s social network, e.g., group chats, with convenient share-
related APIs, malware can exploit this sharing capability. By
customizing the information displayed to users, malware can
present more enticing content to attract potential victims. In
some cases, malware explicitly prompts users to share the

7

Miniapp Malware

§IV.A Propagation §IV.B Activation

(A1) On Start-up

§IV.C Payload

Sensitive Info Collection(I1) Miniapp Store

(I3) Cross-miniapp Redirection

(I2) Social Network (A2) User Initiated Interaction

(A3) Remote Controlled

Monetized Traffic Cheating

(P1) Scope Bypassing

(P2) Stealth Collection

(P3) Colluded Collection

(P4) Rogue Malware (P5) Incentivized Sharing

(P6) Advertisement Overload

Malicious Service Propagation

Figure 7: The Dissection of Miniapp Malware

miniapp or even offers financial incentives for sharing it with
more group chats. As illustrated in Table I, over one-third
of the collected malware customize the title and description
of the shared links via share-related APIs to help customize
shared information, tailoring the shared content to increase the
likelihood of cascaded sharing and further dissemination.

(I3) Cross-miniapp redirection. As miniapps may redirect to
each other with wx.navigateToMiniProgram, the cross-
miniapp redirection become a new approach for miniapps to
be distributed to victims. By developing multiple interlinked
malware that redirect to each other, once a victim uses one
malware, he/she may be redirected to all of these malware
via redirection. Moreover, to induce users to “try out” more
of these miniapps, these malware may adopt tactics simi-
lar to sharing-based malware, offering financial rewards for
users trying out additional malicious miniapps. This strategy
effectively bundles the malware, increasing the likelihood of
distribution to victims’ devices through these “bundle-sales”
activities.

B. Activation

After the malware reaches the victim users, the next step is
to execute malicious payload on the victim devices. However,
being evasive by nature, these malware do not necessarily
exhibit malicious behaviors immediately, but only under
certain conditions. Thus, the activation of malicious behavior
can be categorized into those executed upon start-up, after
user initiates certain interaction, and via remote control.

(A1) On start-up. Among the various miniapp lifecycle
callback functions, onLoad, onLaunch, and onShow
are the most common ones, particularly for those malware
attempting to stealthily collect user information. These
functions allow malware to immediately gather and transmit
tracking data to their back-end servers as soon as the miniapp
is launched. Other than stealth privacy collection, these
lifecycle functions include a default parameter option,
which contains various context information such as URL
parameters or appId, if the user enters this miniapp from
other miniapps or via URL. This feature enables miniapps to
give user financial benefit under induced sharing or collection
scenario. For example, a miniapp induces Alice to share
the miniapp and invite new customers, promising financial

rewards or coupons for both Alice and the new users. As such,
the miniapp generates a sharing link with parameters such as
&userid=. When a new customer Bob enters the miniapp
with this link, the miniapp can fetch this parameter in the
lifecycle function to confirm Alice’s user ID, thereby ensuring
that Alice receives the reward for sharing the miniapp.

(A2) User triggered activation. The user-triggered activation
is closely related to the infection of malware, which comprises
two major approaches: via sharing (I2) and via redirection
(I3). When the user shares a miniapp, callback functions
such as onShareAppMessage is triggered to allow the
miniapps to customize the shared links with icons, titles, and
descriptions to induce more victims to use the malware. When
the user clicks on an arbitrary component associated with
navigateToMiniProgram, the malware may now directly
redirect the users to external malware to cause more impacts.

(A3) Remote controlled. Remote-controlled activation is
generally used by malware aiming to bypass code vetting with
hot update and those distributing rogue services via content
vetting bypassing, as they typically use variables or codes for
execution that are fetched from remote servers to control the
behavior of the miniapp. By doing so, the attackers can freely
control the malware and then execute malicious payloads.

C. Payload Execution

Next, we illustrate the practical impacts of the collected mal-
ware, by first categorizing the malicious behaviors commonly
employed by miniapp malware, and then presenting real-world
malware cases uncovered through a combination of automated
scanning and manual confirmation.

Malicious behavior categorization. Although the behaviors
of evasive malware can be highly varied, in this paper,
we particularly focus on the payloads identified by official
regulations as malicious, specifically those that negatively
impact platforms and users. To identify and categorize such
malicious payloads, we performed a top-down analysis based
on the regulations outlined by the WECHAT platform [36].

While violating the official code of conduct is a necessary
criterion for defining miniapp malware, it is important to note
that not all such behaviors are of interest for our study. Some
violations are either too vague or do not pose significant risks

8

to end users, despite being against the official guidelines. For
instance, our taxonomy does not include intellectual property
violations. Although this is a common issue in app stores, there
is currently no solid metric for determining the extent of simi-
larity with existing miniapps that would constitute a violation.

To refine our focus, we reviewed behaviors considered as
violations of operational rules and involved three security
researchers to help categorize those with clear and measurable
malicious signatures. This process resulted in six categories
as shown in Table II, including authorization bypass, stealth
privacy information collection, collusion, rogue malware,
incentivized sharing, and advertisement overload.

Payload scanning. To illustrate the concrete impact of these
malware, we proceed to identify real-world cases that involve
these malicious payloads from our 19, 905 evasive malware.
To do so, we extracted signatures from publicized malware
examples [9], as well as examples we obtained during our
interaction with WECHAT security teams. These signatures
involve both static code signatures (such as invocation to
certain APIs) and content-related signatures generated by
a hierarchical keyword list. Then, we manually sampled 5
miniapps in each of these 6 categories. Below, we present
the practical impact of these malware with real-world cases.

1) Sensitive information collection. Compared with mobile
systems, super apps offer miniapps a wider range of privacy-
sensitive data to facilitate their services, particularly the ac-
count and phone information that users have provided to the
super apps, the acquisition of these cloud-hosted data are
protected with a permission-based mechanism called autho-
rization scopes to prevent abuse. These scopes are essential
to ensure that users know and thus may grant or reject
information accesses initiated by miniapps. However, malware
exploiting the user data still attempt to harvest these types
of sensitive information, either by directly inducing users or
circumventing the grant mechanism with a single miniapp,
or collaborating with other malicious miniapps to receive
sensitive information via cross-miniapp channels.

(P1) Authorization bypass (single miniapp). To collect user
information, the most straight-forward way is to use official
APIs, but these official APIs will prompt the users to grant ac-
cess first. Thus, to increase the likelihood of users consenting,
the first variation of explicit collection malware will display
texts such as please provide your contact info so we can
reach you later, or provide your phone number for log in, to
encourage users to grant the access. In addition to using official
APIs, the second variation of these malware requires users to
enter their private data manually into text boxes. Since official
APIs are not used in this case, the collection process does
not trigger an authorization dialog, making it less apparent to
users. Those with limited knowledge of the miniapp platform’s
authorization mechanisms may unknowingly enter their infor-
mation, which is then collected without being monitored by
the platform, making it more difficult to detect.

Category Sub Category # Miniapps # Families %

P1 Auth. Bypass - 4,360 48 21.91%

P2 Stealth Collection

getSystemInfoSync 1,078 17 5.42%
getSystemInfo 192 22 0.96%
getScreenBrightness 1 1 0.01%
getDeviceInfo 1 1 0.01%
getClipboardData 2 2 0.01%

P3 Collusion

Account info 17 2 0.09%
Password 16 2 0.08%
User ID 33 6 0.17%
User Name 7 2 0.04%
Extradata 23 3 0.12%
Phone 18 5 0.09%
Address 1 1 0.01%
Userdata 1 1 0.01%
Vehicle Plate 2 1 0.01%

P4 Rogue Malware Web Earning 4,105 41 20.63%
Redpocket 1,202 29 6.04%

P5 Incentivized Sharing
Pyramid Selling 5,040 38 25.33%
Induce Share 2,167 31 10.89%
Forced Share 1,456 28 7.32%

P6 Ad Overload - 420 30 2.15%

Table II: Breakdown of malicious payloads of evasive
malware

(P2) Stealth collection (single miniapp). By examining the
privacy data protected by authorization scopes, we found that
many APIs used for acquiring system and device information
are not protected by permission scope, allowing malware to
collect these information unnoticed. For example, access to
clipboard, system information, and screen information is not
protected with scopes in WECHAT, whereas they are com-
monly used for user tracking. As listed in Table II, we identi-
fied 5 such APIs from the official API lists that may provide
information for tracking unique users for device fingerprinting.
As shown in Figure 9, at line 2 and line 9 separately, the code
snippet obfuscates the collection of information such as phone
model, screen information, and system information. Then,
these information is encoded and sent to back-ends, which
may facilitate event tracking [37], causing potential privacy
issues as reported by many recent works in web security
community [50], [53], [51], [38]. Approximately 6% of the
collected malware use this API to gather such information via
the synchronous or asynchronous versions of the API, with a
few instances even collecting data from the clipboard.

It is worth noting that even for the resources protected by
permission scope, the authorization is only granted on the
first time, and thus if a user is redirected to the miniapp by
mistakes, the miniapp will be able to stealthily collect granted
data upon the miniapp launches, potentially against the user’s
intentions. For instance, Figure 8 shows a miniapp attempting
to collect users’ system information upon start at line 2 to line
5, and check whether the location permission has been granted
at line 11. If the user had previously granted this permission,
then each time the miniapp is launched, whether intentionally
by the user or through redirection by another miniapp, this
miniapp will immediately collect the location data upon launch
to track the user’s geographical information.

9

1 try {
2 var on = wx.getSystemInfoSync();
3 K.br = on.brand, K.pm = on.model, K.pr =

on.pixelRatio, K.ww = on.windowWidth, K.wh =
on.windowHeight,

↪→
↪→

4 K.lang = on.language, K.wv = on.version, K.wvv =
on.platform, K.wsdk = on.SDKVersion,↪→

5 K.sv = on.system;
6 } catch (o) {}
7 return wx.getNetworkType({
8 success: function(n) {
9 K.nt = n.networkType;

10 }
11 }), wx.getSetting({
12 success: function(n) {
13 n.authSetting["scope.userLocation"] ?

wx.getLocation({↪→
14 type: "wgs84",
15 success: function(n) {
16 K.lat = n.latitude, K.lng = n.longitude,

K.spd = n.speed;↪→
17 }
18 }) : D.getLocation && wx.getLocation({
19 type: "wgs84",
20 success: function(n) {
21 K.lat = n.latitude, K.lng = n.longitude,

K.spd = n.speed;↪→
22 }
23 });
24 }
25 }),

Figure 8: A miniapp stealthily collecting location upon
start

(P3) Colluded collection (multiple miniapps). In addition to
using APIs to fetch information from the platform, miniapps
may also transmit sensitive data via cross-miniapp communi-
cation channel, which poses a threat to the miniapp ecosystem.
This practice can undermine the data authorization model.
Since WECHAT does not enforce strict protection on data
transmitted between miniapps, a “privileged” miniapp that has
been granted access to sensitive data like a phone number can
directly transmit the user’s ID and phone number to a third-
party miniapp through redirection, without requiring additional
user confirmation. However, the fact that a user grants miniapp
A access to their phone number does not imply consent for
miniapp B to access the same data. As a result, miniapp B
can potentially obtain privileged data without having to go
through the proper data authorization process. To evaluate
the prevalence of this issue, we collected the data transmitted
and received as extraData. Our findings revealed that
18 miniapps were transmitting users’ phone numbers via
redirection, 33 miniapps were transmitting users’ names, and
23 miniapps were transmitting the entire extraData payload
obtained from previous redirections, leading to a cascading
transmission of privileged data across multiple miniapps.

2) Malicious service propagation. A significant difference
between super apps and traditional mobile systems lies in
the convenient and versatile sharing features. In super apps,
miniapps are designed to be easily shared among users’
friends and group chats, encouraging wider propagation to
increase revenue by reaching more users. However, this
convenient and rapid, socially-oriented propagation can also

1 var p = [{
2 method: wx.getSystemInfo,
3 infos: ["brand", "model", "pixelRatio",

"screenWidth", "screenHeight", "windowWidth",
"windowHeight", "language", "version", "system",
"platform" ...]

↪→
↪→
↪→

4 } ...]
5 function s() {
6 // execute all methods in p and return info of return

value↪→
7 }
8 function a(t) {
9 var o = ["brand", "model", "pixelRatio",

"screenWidth", "screenHeight", "system", "platform"
];

↪→
↪→

10

11 var n = t.reduce(function(e, t) {
12 return o.indexOf(t.key) > -1 ? e + t.value + "," : e

+ "";↪→
13 }, "");
14 _ = f.hex_md5(n.substring(0, n.length - 1)),

l.setCookie({↪→
15 data: {
16 shshshfp: {
17 value: _,
18 maxAge: 3153e3
19 }
20 }
21 });
22 }
23 module.exports = {
24 Jdwebm: function() {
25 var e = s();
26 w.all(e).then(function(e) {
27 ...
28 a((e = e.concat(t, o)).reduce(function(e, t)

{↪→
29 return e.concat(t);
30 }, []));
31 }).catch(function(e) {
32 console.log(e);
33 });
34 },
35 CookieUtils: l
36 };

Figure 9: Malicious user fingerprinting with obfuscation

be exploited by malware, enabling it to spread quickly across
a large number of users. Consequently, rogue malware that
offers illegal services or violates platform regulations has
become a critical issue within the super app ecosystem.

(P4) Rogue malware. Other than privacy collection, malware
may also provide services against the platforms’ regulation
as well. More specifically, WECHAT prohibits the services of
“web earning” and “non-official lucky draw” for the potential
financial concerns. A typical web earning fraud malware
implements pages inducing users to share the miniapp to
friends in return for a small amount of money, but when the
user clicks on the “withdraw money” button, the malware
simply redirects the user to a blank page. When the user
finally realizes that the miniapp does not allow withdrawal, the
malware had already been shared to numerous group chats.
Also, there are 1,175 malware involving self-implemented
“red packet” (a digital envelope filled with money) services,
which is essentially a game where a user puts money for
group members to draw a random amount. However, these
services are not provided by the WECHAT officially, but are
implemented by these third-party malware instead, without

10

the guarantee that the users will eventually get the money.
Thus, the non-official “red packet” services are prohibited by
WECHAT due to financial fraud concerns.

3) Monetized traffic cheating. The monetization model of
miniapps is unique compared with mobile apps, as super
apps offer developers the chance to monetize through ad-
based revenue models tied to app popularity. In response to
this, a new breed of malware has emerged, exploiting this
system to churn revenues directly from the platform. Unlike
traditional app marketplaces such as Google Play, where fees
may be associated with developer account registration and
app publication, miniapp platforms often allow free account
creation and the publication of multiple miniapps (up to 10
in the case of WECHAT [16]). This has led to a proliferation
of traffic cheating miniapps that either manipulate metrics to
artificially inflate popularity or induce users with excessive
advertising, severely degrading the user experience. Such
practices not only have potential financial ramifications but
also risk damaging the reputation of miniapp platforms and
adversely affecting users in terms of user experiences.

(P5) Incentivized sharing (manipulating miniapp traffic).
Our analysis revealed a prevalent tactic among malware
to incentivize users to share miniapps in group chats by
offering reimbursements or discounts. This strategy is
employed because sharing miniapps, especially those laden
with advertisements, can significantly amplify “traffic”, and
thus increase revenue from embedded pay-per-click ads. To
maximize this traffic, the malware often entices users with a
nominal monetary reward, although typically far less than the
profits accrued by the attackers, as compensation for their role
in disseminating the miniapp. This form of malware bears
resemblance to “internet earning” miniapps, with the primary
objective of leveraging users to spread the miniapp across their
social networks, thereby generating substantial traffic and, con-
sequently, having financial gains from the super app platform.

(P6) Advertisement overload (manipulating Ad traffic).
While miniapp platforms permit the integration of advertise-
ments within miniapps, platform guidelines often highlight that
these advertisements should neither be excessively intrusive
nor obstruct essential app functionalities, so as to preserve the
user experience [20]. However, there are two prevalent forms
of malware that contravene these guidelines by overloading
miniapps with advertisements. Given that many advertisement
models are based on user clicks, some miniapps resort to
overlaying essential content with interstitial advertisements to
guarantee user engagement. Others might aggressively prompt
users with advertisements in a way that even hinders the
app’s normal functionality. Beyond advertisements obstruc-
tion, certain malicious miniapps exploit the situation further
by offering users incentives similar to Incentivized sharing
malware (P5), such as cashback or discounts for interacting
with these advertisements. This approach is notably prevalent
in gaming miniapps, where, for example, users depleted of

Type Data Category API/Data # Miniapps

Acquisition

User
Information getUserProfile 1,314

Location
Information

getLocation 4,870
startLocationUpdateBackground 50
startLocationUpdate 15
getWifiList 31

Bluetooth
Access openBluetoothAdapter 117

Phone
Information

addPhoneContact 1,198
getPhoneNumber 403

Microphone
Access startRecord 177

Health
Information getWeRunData 72

Storage

Account
Information

openid 3,029
openId 1,336
user openid 172
nickName 162
avatarUrl 168

User
Information

$userInfo 2,794
userInfo 2,680
userinfo 310
phone 306
mobile 117
city 2,234
address 195
username 205
latitude 1,888
longitude 186

Device
Information

$ip 2,776
versionInfo 921
aldstat uuid 327

Share
Information shareDate 776

Cryptographic
Keys session key 323

Table III: Sensitive Data Acquired and Accessed by the
Collected Malware

hitpoints (HP) might be prompted to watch an advertisements
in exchange for additional lives or boost items.

V. CHARACTERIZATION

A. Malware Data Access Practices

Beyond identifying sensitive APIs indicative of malware
activities, it’s crucial to ascertain the types of data these
malicious entities access and manipulate. To evaluate this, we
split the sensitive APIs into two categories: APIs that acquire
sensitive data, and APIs that can store data for future use.
For the sensitive acquisition APIs, we scanned through the
API list provided by WECHAT, and summarized 6 types of
APIs that require user permission to access, which indicates
that the data acquired by these APIs are more sensitive.
For the storage APIs, we focused on the interactions with
setStorage, a prevalent API among the malware in our
dataset, used by 18,737 instances, that facilitates local data
storage within miniapps for subsequent use. As this API stores
data as a key value pair, we particularly extracted the keys,
which are the names of the variables stored by the miniapps.

11

Figure 10: Cluster of miniapps sharing similar malicious
payloads. The colored nodes (large) represent the malicious
payloads, and grey nodes (tiny) represent malware. An
edges from malware to a type of payload means that the
malware contains such payload.

Then, we grouped these keys to the stored data, and involved
three security researchers to evaluate the security impacts.

As delineated in Table III, approximately a quarter of the
malware, was found to collect users’ device location data.
Additionally, these malicious miniapps often gather compre-
hensive user details and access the phone contacts of victims.
Beyond exploiting APIs for accessing data managed by super
apps, these malware extensively store information on devices,
encompassing user account details, names, and addresses, as
well as device specifics potentially utilized for user tracking.
Moreover, some malware maintain logs of shared information
to monitor their spread through social networks and store
cryptographic data, such as session_key, to decrypt user
information originally encrypted by super apps.

B. Malware Families

To understand the association between miniapps and ma-
licious payloads, we visualize their correlation in Figure 10,
where the large colored nodes represent the malicious pay-
loads, and tiny dark nodes represent each malware, with
edges connected to associated malicious payloads. We discover
that there are four large clusters in the center of the figure
associated with multiple payloads (①,②,③, and ④), as well as
2 in the edge of the figure associated with single malicious
payloads (⑥ and ⑨). In this section, we further categorize the
motivation of these malware into three types.

“Spyware”: information collection. The most common type
of malware falls into the category of privacy-sensitive informa-
tion collection, which includes the induced collection of privi-
leged data, stealth collection of device fingerprints for tracking
users, and collusive data harvesting. As shown in Figure 10,

both authorization bypass techniques to induce users to enter
privacy information (②) and stealth fingerprinting methods (④)
often involve the abuse of sharing. This is intuitive, as the
impact of privacy data collection is maximized by harvest-
ing information from a large number of victims. However,
miniapp spyware differs from traditional spyware in several
key aspects. Traditional spyware typically intercepts general
data types on victims’ devices, whereas miniapp spyware
primarily targets specific privacy data managed by the miniapp
platform under authorization scope, such as phone numbers,
user account information, and addresses. Additionally, miniapp
spyware is more comprehensive, collecting not only user data
stored on devices and account data stored by the platform, but
also social network information, such as group chat IDs, which
can be exploited for further attacks such as social engineering.

“Adware”: monetization abuse. Another prevalent malware
family we identified exploits the platform’s advertisement
monetization model by artificially inflating traffic. These mal-
ware leverage the sharing feature to rapidly propagate, generat-
ing significant popularity in a short period for maximum click-
based profits. By utilizing sharing features, these malware
are often spread among a user’s friends and group chats,
where users are more likely to trust the sharer and click on
the miniapp URL. To enhance their spread, these malware
frequently employ malicious payloads involving sharing abuse
and rogue content, particularly through schemes like internet
earnings and non-authentic red packet services, which entice
users to share the malware with more victims. As a result,
sharing abuse constitutes one of the largest clusters associated
with single payloads (⑥). The developers of these malware
may choose to share a small portion of the profits with users,
or they may deceive users by promising rewards that are never
actually provided, such as claiming to offer money but not
enabling withdrawals. Consequently, there is a high correlation
between rogue content and sharing abuse payloads among
the largest clusters (①, ③, and ④). Collectively, these adware
families make up approximately half of the total families.

Compared with the traditional adware, the monetization
abuse malware differs in that it primarily seeks to exploit
the platform’s popularity-based monetization mechanism for
financial gain, rather than simply downloading and displaying
advertisement content to victims. Interestingly, miniapp ad-
ware may collaborate with users by sharing a portion of the
profits with them in the form of “discounts” or “cashback” via
lucky draws. As a result, users may be less motivated to report
the malware compared to traditional spamming malware.

“Greyware”: rogue content. In addition to ad monetization
and privacy harvesting, malware may also exploit the ecosys-
tem to distribute rogue contents. The rogue contents blocked
by the platform generally cause potential legal or financial
fraud issues. Unfortunately, the victims may as well welcome
these services, either because these malware satisfies users’
illicit needs or these malware induces users with the promised
rewards, making these malware distribute rapidly among social
networks, which may explain why there are large clusters

12

in Figure 7 involving both rogue contents and share abuse
(①, ③, and ④). Unfortunately, the “benefits” may instead
inflict losses to users’ privacy: among the three clusters, two
either involve stealth device fingerprinting (⑨) or induces
users to enter privacy information (④). Although the rogue
malware in miniapp also may provide normal services to end
users, resembling traditional greyware, now that these miniapp
malware is released to an ecosystem with convenient sharing
features and social network of up to a billion of end users,
they may now propagate rapidly throughout the users’ social
network, affecting a large number of users in a very short
period of time.

C. Malware Attacks and Evolution

Malware refers to software specifically designed to cause
harm to computer systems, including those on desktops,
mobiles, and IoT systems. Over the past few decades, malware
has evolved significantly, adapting to new technologies and
environments. During the early desktop era, malware primarily
focused on activities related to fun and profit, such as stealing
passwords through keyloggers, engaging in crypto mining to
earn cryptocurrencies like Bitcoin, and deploying ransomware.
The spread of malware during this period was relatively
limited, often relying on methods like infecting systems
via floppy disks or, later, USB drives. As the mobile era
emerged, the focus of malware shifted towards the collection
of highly sensitive user information. With data being regarded
as highly valuable assets, varying across different contexts,
malware targeted the collection of such data for strategic
purposes. Additionally, with the advent of super apps and
their diverse programming interfaces, malware evolved from
simple file-infection viruses that relied heavily on floppy disks
or USB drives to more sophisticated self-contained programs.
These modern malware leverage social network propagation
channels and deploy a variety of malicious payloads, making
them far more versatile and dangerous.

We aim to provide a systematic view of malware running
on various platforms and highlight the distinctions between
malicious miniapps and malware found on other platforms, as
illustrated in Table IV.
• Malicious miniapps have more restricted capabilities.

Due to the stringent security measures implemented by
super apps, malicious miniapps have limited capabilities.
First, they are unable to access the underlying system
interfaces since they operate within the confines of a native
app, rather than directly on the system itself. Second,
super apps do not provide interfaces that allow miniapps
to spread through means like SMS or peripheral devices
such as USB. Third, while miniapps can access files, they
do not have direct access to the underlying disk. Instead,
they are confined within the sandboxes created by the
super apps. Lastly, malicious miniapps are unable to run
in the background, as their execution is restricted when
they are actively being used by the user.

Category Item Destop Mobile Miniapp

Capabilities

Invoke System Call [22] ○ ○ ○␣
Accessing Network [8] ○ ○ ○
Accessing SMS [32] ○␣ ○ ○␣
Accessing Peripherals [13] ○ ○ ○␣
Accessing Disks Directly [47] ○ ○ ○␣
Running Background [24] ○ ○ ○␣

Infection

Market to Device [32] ○ ○ ○
Web to Device [35] ○ ○ ○
QRCode to Device [14] ○␣ ○ ○
Wireless to Device [13] ○ ○␣ ○␣
USB to Device [47] ○ ○ ○␣
Email to Device [18] ○ ○ ○␣
SMS to Device [32] ○␣ ○ ○␣
App to Device [23] ○ ○ ○

Payloads

Information Collection [42] ○ ○ ○
Rootkits [22] ○ ○ ○␣
Spyware [8] ○ ○ ○
Ransomware [35] ○ ○ ○␣
Adware [12] ○ ○ ○
Backdoor [23] ○ ○ ○
Worm [47] ○ ○ ○␣
Phishing (or Trojans) [18] ○ ○ ○
Financial Charge [32] ○ ○ ○
Bots and Botnets [10] ○ ○ ○␣
Keylogger [24] ○ ○ ○␣
Wiper [29] ○ ○ ○␣
Hijackers [7] ○ ○ ○␣

Table IV: Comparison of malware on different platforms.

• Malicious miniapps heavily rely on social networks.
In the past, malware primarily used networks and USB
drivers to infect others during the desktop era. However,
modern malicious miniapps heavily rely on social networks
for spreading and causing harm. For instance, Tencent has
implemented restrictions to prevent malware from sending
SMS, and even WECHAT has specific rules to prevent
malware from exploiting the host app to infect other users.
Our investigation have revealed numerous instances of mal-
ware deceiving users into sharing them with their friends
and relatives. Additionally, we have observed that many
malware collect users’ information related to their social
network, which can be used for launching phishing attacks.

• Victims can be the super apps. In the early days,
there were no super apps; instead, operating systems
like Android and iOS played similar roles by providing
environments for malware to operate. However, the ultimate
target of such malware was still primarily the end users,
and they would often first compromise the OS and then use
the compromised system to attack users. In the miniapp
era, we observed that the major target of miniapp malware
now involve both the users and the platforms, and in many
circumstances, users mainly act as a means for malware
propagation, especially for monetization abuse type of
malware. Meanwhile, due to the sensitivity and amount of
privacy data of millions of users stored by the super app
platform, malware gains significantly more motivation for
attacking the platform for large-scale privacy breaches.

13

VI. DISCUSSION

A. Ethics Considerations

We have given the utmost consideration to ethics throughout
our research process to ensure the well-being of end users,
platforms (such as Tencent), and developers. First, although
we have collected numerous malware samples for this study,
we have kept them private and have not distributed them to the
public. Following similar practice as in the Android Malware
Genome Project [5], the dataset will be released only to the
parties whose identities have been verified before granting the
access. Second, in our study, we downloaded over 4 million
miniapps. To prevent imposing a burden on Tencent’s servers,
we deliberately limited the download speed to a few seconds
per miniapp, which is also the partial reason of why it took
many months to collect all these miniapps. Third, despite the
fact that all the malware samples we collected have already
been removed from the WECHAT’s miniapp market, we have
reached out to Tencent and shared our findings, including
insights and heuristics developed during our study. We are
now working with Tencent security teams for improved coun-
termeasures and extended insights for detecting these malware.

B. Cross-platform applicability

While our paper focuses solely on one super app, namely
WECHAT, to reflect the current state of the art, the results
and methods employed in our study are representative and
generalizable. First of all, as popular super apps including
ALIPAY, TIKTOK, and BAIDU commonly adopt JavaScript
as the language for implementing miniapps, the concern of
dynamic code execution and content rendering is applicable
across platforms. For instance, other platforms such as BAIDU
and TIKTOK also disable dynamic updating techniques (e.g.,
by disabling functionalities such as eval). On the other
hand, super apps follow similar frameworks and share
similar concerns regarding violation of rules from malware.
For example, regulations against the 6 types of malicious
payloads as listed in this paper can be commonly found in the
rules of operation published by major super app platforms,
including ALIPAY [2], DOUYIN [19], BAIDU [26], and even
ZALO [21], which is a Vietnamese super app.

C. Limitation

Our study does have certain limitations that need to be
acknowledged. First, our detection of evasive malware is
based on function signatures of prohibited libraries, and false
positives may occur due to synonym issues. To validate this
issue, we manually examined 500 cases to the best of our
knowledge, and are actively working with the platform to
cross-check our findings. Second, our approach is based on
downloaded miniapp packages, which are at the front-end.
However, due to the evasive nature of these malware, the
malware may dynamically hide malicious contents without dis-
tributing them to the front-end by the time we tested the cases.
As such, in this paper, we particularly focus on malware’s
capability to perform vetting evasion, cross-checked by the fact

that the miniapp is taken down from the platform’s miniapp
store, to ensure that the discovered miniapps’ maliciousness.
To improve this line of work, we are actively working to
extend the malicious semantics of evasive miniapp malware.
Third, when seeking real-world malware samples, we adopted
keyword-based heuristics to scan for certain types of mali-
cious payloads, which may cause false-positives. However, the
keyword-based scanning is for obtaining cases to demonstrate
the impact, and we do not claim its comprehensiveness for
payload categorization. Moreover, we manually confirmed
each example in this paper that they are indeed malicious,
and will continue improving our algorithms to generate robust
malware categorization in the future.

In short, this paper aims to provide a dataset of evasive
miniapp malware to facilitate related research in this field.
Further, this paper presents a systematic categorization of
miniapp malware’s lifecycle and malicious payloads with
real-world examples to demonstrate their impacts. We hope
that this work further augments the security landscape of
miniapps and super apps, and call for the community’s action
to contribute to this critical endeavor.

D. Mitigation

While the malware has been engaged in a continuous
arms race against the platform to bypass vetting mechanisms
and inflict losses to the platform and users, countermeasures
can still be adopted by the platforms to thwart the efforts
from the attackers. First of all, platforms can enforce forced
execution of branches controlled by conditional variables,
such as the flags for displaying dynamic content, so as to
identify miniapps adopting dynamic content rendering to
circumvent vetting. In the meanwhile, the platforms can
enhance continuous monitoring, including continuous API
tracking and user behavior tracking. If a miniapp incorporates
a self-implemented interpreter to execute cloud-transmitted
JavaScript code to change behavior, the self-implemented
API for executing the code may be frequently invoked with
parameters received from cloud via APIs such as request,
which may cause change of API invocation pattern. Similarly,
content-related evasive malware may involve web views
displaying contents from attacker-controlled URLs to trap
users in the web view displaying malicious contents,
which may change user behavior pattern, e.g., victims may
commonly stay in a certain page with a single web view for
significantly more time than others. As such, by incorporating
anomaly detection in APIs and user interaction pattern, the
platforms may significantly thwart such evasive malware.

VII. RELATED WORKS

Super app security. Recently, super app security has gained
significant attention with various efforts such as the demon-
stration of access control flaws and phishing attacks by Lu et
al [48], race condition attacks by Zhang et al [63], undocu-
mented API attacks by Wang et al [57] and also their cross-
platform discrepancy attacks [56], [58], and the cross miniapp

14

request forgery attacks [61]. In addition to these attacks, there
are also efforts to identify security threats [60] and develop
proactive defense such as TaintMini [55], which identifies
cross-language and cross-program data flows in mini-apps for
privacy leaks detection, and the work by Wang et al. [59],
which highlights the differences between the threat model
of traditional browsers and super-apps. Compared to these
efforts, our work is the first to perform a large-scale analysis
to understand real-world miniapp malware attacks.

Malware attacks. Since the 1980s, the landscape of malware
attacks has undergone significant transformation, adapting
to technological advancements and finding new avenues for
exploitation. In the era of mobile computing, malware has
notably evolved to exploit the connectivity and functionalities
inherent to mobile devices, targeting sensitive user data and
leading to widespread financial and privacy ramifications [66],
[43]. This evolution has necessitated the development of
sophisticated defenses [54], [64], [52], [40], [41] and compre-
hensive research efforts [46], [49], [39], [45], [62] aimed at
understanding and mitigating these modern malware threats.

Within the complex ecosystem of super apps, various forms
of evasive malware have emerged, exploiting both the large
user base and the extensive integration capabilities of these
platforms. Despite the deployment of multiple defense mecha-
nisms, these miniapps often leverage social networks to spread
their malicious payloads, underscoring the dynamic and persis-
tent nature of malware threats in the domain. This paper seeks
to shed light on these challenges, highlighting the enduring
impact and sophistication of malware in the digital age.

VIII. CONCLUSION

In this paper, we have presented a thorough three-year in-
vestigation, during which we analyzed and categorized 19, 905
malicious miniapp samples from a larger pool of over 4.5
million miniapps on the WECHAT platform. We identified the
malware that may evade vetting and release malicious payloads
by identifying the invocation of sensitive API signatures gener-
ated from publicized malware cases, and reveals a significant
concern: malicious miniapps effectively use social networks
to increase their spread and harmful effects, posing notable
risks to user privacy and the WECHAT ecosystem’s security.
The insights from this study aim to inform the academic and
tech communities about the changing landscape of threats
within the miniapp ecosystem. By sharing our findings and
the dataset, we hope to support the development of stronger
protective measures against such malicious miniapps, enhanc-
ing the security and reliability of mobile super apps.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
feedbacks. This research was supported in part by NSF award
2330264. Any opinions, findings, conclusions, or recommen-
dations expressed are those of the authors and not necessarily
of the NSF.

REFERENCES

[1] “55+ wechat statistics - 2022 update,” https://99firms.com/blog/
wechat-statistics/#gref.

[2] “Alipay mini program operation rules,” https://opendocs.alipay.com/b/
0a8w4g.

[3] “Alipay Miniprogram Center — Alipay ,” https://opendocs.alipay.com/
mini/developer/getting-started.

[4] “Analysis of types of advertisements and revenues in wechat mini-
apps,” https://developers.weixin.qq.com/community/develop/article/doc/
000482ef31c32830526ee228e56413, accessed: 2023-12-26.

[5] “Android malware genome project,” http://www.malgenomeproject.org/,
(Accessed on 01/28/2024).

[6] “Biggest app stores in the world 2022,” https://www.statista.com/
statistics/276623/number-of-apps-available-in-leading-app-stores/, (Ac-
cessed on 04/30/2022).

[7] “Browser hijacking,” https://www.kaspersky.com/resource-center/
threats/browser-hijacking.

[8] “Darkhotel,” https://en.wikipedia.org/wiki/DarkHotel.
[9] “Dissecting the violative miniapp cases,” https://developers.weixin.qq.

com/community/business/course/00080470cb41c0c6094ab3b785b00d.
[10] “Echobot,” https://malpedia.caad.fkie.fraunhofer.de/details/elf.echobot.
[11] “Explaining the advertisement revenues of mini-apps,” https://www.

sohu.com/a/680423468 121708220, accessed: 2023-12-26.
[12] “Fireball – the chinese malware of 250 million com-

puters infected,” https://blog.checkpoint.com/research/
fireball-chinese-malware-250-million-infection/.

[13] “Flame (malware),” https://en.wikipedia.org/wiki/Flame (malware).
[14] “Grifthorse android trojan steals millions from over 10

million victims globally,” https://www.zimperium.com/blog/
grifthorse-android-trojan-steals-millions-from-over-10-million-victims-globally/.

[15] “Half of the ad revenues are demanded by wechat - ”tencent”
mini-games are gaining popularity,” https://www.jiemian.com/article/
2306249.htm, accessed: 2023-12-26.

[16] “How many miniapps can an entity register?” https://developers.weixin.
qq.com/community/develop/doc/000484159a0308e4ffcf942ca56c00.

[17] “A javascript interpreter written in javascript,” https://github.com/jkeylu/
evil-eval.

[18] “Meet crowdstrike’s adversary of the month for febru-
ary: Mummy spider,” https://www.crowdstrike.com/blog/
meet-crowdstrikes-adversary-of-the-month-for-february-mummy-spider/.

[19] “Mini program operation rules,” https://developer.open-douyin.com/
docs/resource/zh-CN/mini-app/operation/management/specification/
standard.

[20] “Miniapp advertisement regulation violation and punishment,” https://
ad.weixin.qq.com/pdf.html?id=rynYA8o3f.

[21] “Miniapp censorship policy,” https://mini.zalo.me/docs/
zalo-mini-app-censorship-policy/.

[22] “More nefarious strain of zacinlo malware infecting
windows 10 machines,” https://www.eweek.com/security/
more-nefarious-strain-of-zacinlo-malware-infecting-windows-10-machines/.

[23] “Mytob,” http://virus.wikidot.com/mytob.
[24] “Olympic vision keylogger and bec scams,” https://www.phishlabs.com/

blog/olympic-vision-keylogger-and-bec-scams/.
[25] “Open Capabilities - User Authorization,” https://developers.weixin.qq.

com/miniprogram/dev/framework/open-ability/authorize.html.
[26] “Platform operation rules,” https://smartprogram.baidu.com/

opensourcedocs/operations/specification/.
[27] “Prohibiting miniapps to use interpreters? confronting tencent again,”

https://zhuanlan.zhihu.com/p/539725089.
[28] “Regarding the requirement of prohibiting miniapps to use javascript in-

terpreters,” https://developers.weixin.qq.com/community/minihome/doc/
0000ae500e4fd0541f2ea33755b801.

[29] “Russia vs ukraine cyberwarfare: Lessons learned,” https:
//www.researchgate.net/publication/364111929 Russia vs Ukraine
Cyberwarfare Lessons Learned.

[30] “Service categories opened for miniapps,” https://developers.weixin.qq.
com/minigame/product/material/.

[31] “Smart Miniprogram Platform — Baidu ,” https://smartprogram.baidu.
com/developer/index.html.

[32] “Toll fraud malware: How an android application can drain your
wallet,” https://www.microsoft.com/en-us/security/blog/2022/06/30/
toll-fraud-malware-how-an-android-application-can-drain-your-wallet/.

[33] “vm2 - npm,” https://www.npmjs.com/package/vm2.

15

https://99firms.com/blog/wechat-statistics/#gref
https://99firms.com/blog/wechat-statistics/#gref
https://opendocs.alipay.com/b/0a8w4g
https://opendocs.alipay.com/b/0a8w4g
https://opendocs.alipay.com/mini/developer/getting-started
https://opendocs.alipay.com/mini/developer/getting-started
https://developers.weixin.qq.com/community/develop/article/doc/000482ef31c32830526ee228e56413
https://developers.weixin.qq.com/community/develop/article/doc/000482ef31c32830526ee228e56413
http://www.malgenomeproject.org/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.kaspersky.com/resource-center/threats/browser-hijacking
https://www.kaspersky.com/resource-center/threats/browser-hijacking
https://en.wikipedia.org/wiki/DarkHotel
https://developers.weixin.qq.com/community/business/course/00080470cb41c0c6094ab3b785b00d
https://developers.weixin.qq.com/community/business/course/00080470cb41c0c6094ab3b785b00d
https://malpedia.caad.fkie.fraunhofer.de/details/elf.echobot
https://www.sohu.com/a/680423468_121708220
https://www.sohu.com/a/680423468_121708220
https://blog.checkpoint.com/research/fireball-chinese-malware-250-million-infection/
https://blog.checkpoint.com/research/fireball-chinese-malware-250-million-infection/
https://en.wikipedia.org/wiki/Flame_(malware)
 https://www.zimperium.com/blog/grifthorse-android-trojan-steals-millions-from-over-10-million-victims-globally/
 https://www.zimperium.com/blog/grifthorse-android-trojan-steals-millions-from-over-10-million-victims-globally/
https://www.jiemian.com/article/2306249.htm
https://www.jiemian.com/article/2306249.htm
https://developers.weixin.qq.com/community/develop/doc/000484159a0308e4ffcf942ca56c00
https://developers.weixin.qq.com/community/develop/doc/000484159a0308e4ffcf942ca56c00
https://github.com/jkeylu/evil-eval
https://github.com/jkeylu/evil-eval
https://www.crowdstrike.com/blog/meet-crowdstrikes-adversary-of-the-month-for-february-mummy-spider/
https://www.crowdstrike.com/blog/meet-crowdstrikes-adversary-of-the-month-for-february-mummy-spider/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/operation/management/specification/standard
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/operation/management/specification/standard
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/operation/management/specification/standard
https://ad.weixin.qq.com/pdf.html?id=rynYA8o3f
https://ad.weixin.qq.com/pdf.html?id=rynYA8o3f
https://mini.zalo.me/docs/zalo-mini-app-censorship-policy/
https://mini.zalo.me/docs/zalo-mini-app-censorship-policy/
https://www.eweek.com/security/more-nefarious-strain-of-zacinlo-malware-infecting-windows-10-machines/
https://www.eweek.com/security/more-nefarious-strain-of-zacinlo-malware-infecting-windows-10-machines/
http://virus.wikidot.com/mytob
https://www.phishlabs.com/blog/olympic-vision-keylogger-and-bec-scams/
https://www.phishlabs.com/blog/olympic-vision-keylogger-and-bec-scams/
https://developers.weixin.qq.com/miniprogram/dev/framework/open-ability/authorize.html
https://developers.weixin.qq.com/miniprogram/dev/framework/open-ability/authorize.html
https://smartprogram.baidu.com/opensourcedocs/operations/specification/
https://smartprogram.baidu.com/opensourcedocs/operations/specification/
https://zhuanlan.zhihu.com/p/539725089
https://developers.weixin.qq.com/community/minihome/doc/0000ae500e4fd0541f2ea33755b801
https://developers.weixin.qq.com/community/minihome/doc/0000ae500e4fd0541f2ea33755b801
https://www.researchgate.net/publication/364111929_Russia_vs_Ukraine_Cyberwarfare_Lessons_Learned
https://www.researchgate.net/publication/364111929_Russia_vs_Ukraine_Cyberwarfare_Lessons_Learned
https://www.researchgate.net/publication/364111929_Russia_vs_Ukraine_Cyberwarfare_Lessons_Learned
https://developers.weixin.qq.com/minigame/product/material/
https://developers.weixin.qq.com/minigame/product/material/
https://smartprogram.baidu.com/developer/index.html
https://smartprogram.baidu.com/developer/index.html
https://www.microsoft.com/en-us/security/blog/2022/06/30/toll-fraud-malware-how-an-android-application-can-drain-your-wallet/
https://www.microsoft.com/en-us/security/blog/2022/06/30/toll-fraud-malware-how-an-android-application-can-drain-your-wallet/
https://www.npmjs.com/package/vm2

[34] “vm.js: Javascript bytecode compiler,” https://github.com/tarruda/vm.js/.
[35] “Wannacry,” https://en.wikipedia.org/wiki/WannaCry ransomware

attack.
[36] “Weixin mini program platform operation rules,” https://developers.

weixin.qq.com/miniprogram/en/product/.
[37] “What is mobile app event tracking?” 2023. [Online]. Available:

https://mixpanel.com/blog/what-is-mobile-app-event-tracking/
[38] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and

C. Diaz, “The web never forgets: Persistent tracking mechanisms in
the wild,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 674–689.
[Online]. Available: https://doi.org/10.1145/2660267.2660347

[39] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani,
D. Balzarotti, G. Vigna, and C. Kruegel, “When Malware is Packin’
Heat; Limits of Machine Learning Classifiers Based on Static Analysis
Features,” in Network and Distributed System Security (NDSS) Sympo-
sium, ser. NDSS 20, February 2020.

[40] M. Brengel and C. Rossow, “YARIX: Scalable YARA-based
malware intelligence,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
3541–3558. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/brengel

[41] B. Cheng, J. Ming, E. A. Leal, H. Zhang, J. Fu, G. Peng, and
J.-Y. Marion, “Obfuscation-Resilient executable payload extraction
from packed malware,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
3451–3468. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/cheng-binlin

[42] R. Flores and L. Remorin, “Piercing the hawkeye: Nigerian cybercrim-
inals use a simple keylogger to prey on smbs worldwide,” Trend Micro.
June, vol. 19, 2015.

[43] X. Han, N. Kheir, and D. Balzarotti, “The Role of Cloud Services in
Malicious Software: Trends and Insights,” July 2015.

[44] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna,
“Revolver: An automated approach to the detection of evasive
web-based malware,” in 22nd USENIX Security Symposium (USENIX
Security 13). Washington, D.C.: USENIX Association, Aug. 2013,
pp. 637–652. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/kapravelos

[45] E. Kim, S.-J. Park, S. Choi, D.-K. Chae, and S.-W. Kim, “Maniac:
A man-machine collaborative system for classifying malware author
groups,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2441–2443.
[Online]. Available: https://doi.org/10.1145/3460120.3485355

[46] A. Küchler, A. Mantovani, Y. Han, L. Bilge, and D. Balzarotti, “Does
every second count? time-based evolution of malware behavior in
sandboxes,” in 28th Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet
Society, 2021.

[47] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security
and Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[48] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang,
“Demystifying resource management risks in emerging mobile app-in-
app ecosystems,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 569–585.
[Online]. Available: https://doi.org/10.1145/3372297.3417255

[49] A. Mantovani, S. Aonzo, X. Ugarte-Pedrero, A. Merlo, and D. Balzarotti,
“Prevalence and impact of low-entropy packing schemes in the malware
ecosystem,” in 27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA, February 23-26,
2020. The Internet Society, 2020.

[50] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy and
technology,” in 2012 IEEE Symposium on Security and Privacy, 2012,
pp. 413–427.

[51] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid:
privilege separation for applications and advertisers in android,” in
Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, ser. ASIACCS ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 71–72. [Online].
Available: https://doi.org/10.1145/2414456.2414498

[52] R. Petrik, B. Arik, and J. M. Smith, “Towards architecture
and os-independent malware detection via memory forensics,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 2267–2269. [Online].
Available: https://doi.org/10.1145/3243734.3278527

[53] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending
against Third-Party tracking on the web,” in 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12). San
Jose, CA: USENIX Association, Apr. 2012, pp. 155–168. [Online].
Available: https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/roesner

[54] L. Shi, J. Ming, J. Fu, G. Peng, D. Xu, K. Gao, and X. Pan, “Vahunt:
Warding off new repackaged android malware in app-virtualization’s
clothing,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 535–549.
[Online]. Available: https://doi.org/10.1145/3372297.3423341

[55] C. Wang, R. Ko, Y. Zhang, Y. Yang, and Z. Lin, “Taintmini: Detecting
flow of sensitive data in mini-programs with static taint analysis,”
in Proceedings of the 45th International Conference on Software
Engineering, ser. ICSE ’23. IEEE Press, 2023, p. 932–944. [Online].
Available: https://doi.org/10.1109/ICSE48619.2023.00086

[56] C. Wang, Y. Zhang, and Z. Lin, “One size does not fit
all: Uncovering and exploiting cross platform discrepant APIs
in WeChat,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023,
pp. 6629–6646. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/wang-chao

[57] ——, “Uncovering and exploiting hidden apis in mobile super apps,”
in Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 2471–2485. [Online].
Available: https://doi.org/10.1145/3576915.3616676

[58] ——, “Rootfree attacks: Exploiting mobile platform’s super apps
from desktop,” in Proceedings of the 19th ACM Asia Conference on
Computer and Communications Security, ser. ASIA CCS ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
830–842. [Online]. Available: https://doi.org/10.1145/3634737.3645001

[59] Y. Wang, Y. Yao, S. Shi, W. Chen, and L. Huang, “Towards a
better super-app architecture from a browser security perspective,” in
Proceedings of the 2023 ACM Workshop on Secure and Trustworthy
Superapps, ser. SaTS ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 23–28. [Online]. Available:
https://doi.org/10.1145/3605762.3624427

[60] Y. Yang, C. Wang, Y. Zhang, and Z. Lin, “Sok: Decoding the super app
enigma: The security mechanisms, threats, and trade-offs in os-alike
apps,” 2023. [Online]. Available: https://arxiv.org/abs/2306.07495

[61] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp request forgery: Root
causes, attacks, and vulnerability detection,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 3079–3092. [Online]. Available:
https://doi.org/10.1145/3548606.3560597

[62] M. Yong Wong, M. Landen, M. Antonakakis, D. M. Blough, E. M.
Redmiles, and M. Ahamad, “An inside look into the practice of malware
analysis,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 3053–3069.
[Online]. Available: https://doi.org/10.1145/3460120.3484759

[63] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang,
G. Yang, and M. Yang, “Identity confusion in WebView-based
mobile app-in-app ecosystems,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 1597–1613. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/zhang-lei

[64] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang,
M. Zhang, and M. Yang, “Enhancing state-of-the-art classifiers with
api semantics to detect evolved android malware,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 757–770. [Online]. Available: https:
//doi.org/10.1145/3372297.3417291

16

https://github.com/tarruda/vm.js/
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://developers.weixin.qq.com/miniprogram/en/product/
https://developers.weixin.qq.com/miniprogram/en/product/
https://mixpanel.com/blog/what-is-mobile-app-event-tracking/
https://doi.org/10.1145/2660267.2660347
https://www.usenix.org/conference/usenixsecurity21/presentation/brengel
https://www.usenix.org/conference/usenixsecurity21/presentation/brengel
https://www.usenix.org/conference/usenixsecurity21/presentation/cheng-binlin
https://www.usenix.org/conference/usenixsecurity21/presentation/cheng-binlin
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/kapravelos
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/kapravelos
https://doi.org/10.1145/3460120.3485355
https://doi.org/10.1145/3372297.3417255
https://doi.org/10.1145/2414456.2414498
https://doi.org/10.1145/3243734.3278527
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/roesner
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/roesner
https://doi.org/10.1145/3372297.3423341
https://doi.org/10.1109/ICSE48619.2023.00086
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-chao
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-chao
https://doi.org/10.1145/3576915.3616676
https://doi.org/10.1145/3634737.3645001
https://doi.org/10.1145/3605762.3624427
https://arxiv.org/abs/2306.07495
https://doi.org/10.1145/3548606.3560597
https://doi.org/10.1145/3460120.3484759
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-lei
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-lei
https://doi.org/10.1145/3372297.3417291
https://doi.org/10.1145/3372297.3417291

[65] Y. Zhang, B. Turkistani, A. Y. Yang, C. Zuo, and Z. Lin,
“A measurement study of wechat mini-apps,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 5, no. 2, jun 2021. [Online]. Available:
https://doi.org/10.1145/3460081

[66] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE Symposium on Security and Privacy, 2012,
pp. 95–109.

17

https://doi.org/10.1145/3460081

	Introduction
	Background
	Resources Vulnerable to Miniapp Malware
	The Super App Vetting Mechanism
	Evasive Techniques Against Vetting

	Identification
	Scope
	Methodology
	Dataset Overview

	Dissection
	Malware Propagation
	Activation
	Payload Execution

	Characterization
	Malware Data Access Practices
	Malware Families
	Malware Attacks and Evolution

	Discussion
	Ethics Considerations
	Cross-platform applicability
	Limitation
	Mitigation

	Related Works
	Conclusion
	References

