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Abstract—Function name inference in stripped binaries is an
important yet challenging task for many security applications,
such as malware analysis and vulnerability discovery, due to the
need to grasp binary code semantics amidst diverse instruction
sets, architectures, compiler optimizations, and obfuscations.
While machine learning has made significant progress in this field,
existing methods often struggle with unseen data, constrained
by their reliance on a limited vocabulary-based classification
approach. In this paper, we present SYMGEN, a novel framework
employing an autoregressive generation paradigm powered by
domain-adapted generative large language models (LLMs) for
enhanced binary code interpretation. We have evaluated SYMGEN
on a dataset comprising 2,237,915 binary functions across four
architectures (x86-64, x86-32, ARM, MIPS) with four levels of
optimizations (O0-O3) where it surpasses the state-of-the-art
with up to 409.3%, 553.5%, and 489.4% advancement in
precision, recall, and F1 score, respectively, showing superior
effectiveness and generalizability. Our ablation and case studies
also demonstrate the significant performance boosts achieved
by our design, e.g., the domain adaptation approach, alongside
showcasing SYMGEN’s practicality in analyzing real-world
binaries, e.g., obfuscated binaries and malware executables.

I. INTRODUCTION

Inferring function names for stripped binaries is crucial for
many binary analysis and reverse engineering tasks, such as mal-
ware detection [45], vulnerability discovery [39], [71], decom-
pilation [5], and code similarity detection [54]. Binary function
names act as a succinct abstraction of the semantics of functions
embedded within the binary code. Through this abstraction,
security professionals can efficiently comprehend the core se-
mantics of functions, eliminating the need for a comprehensive
and time-consuming reverse engineering process. For example,
Mandiant, a recognized cybersecurity company, applies function
name inference in binary malware analysis by automatically
annotating function names in assembly code to better understand
malicious behavior and develop effective countermeasures [67].

Yet, function name inference for commercial-off-the-shelf
(COTS) binaries presents substantial challenges. COTS binaries
are compiled from varied compilation settings that encompass
different computer architectures and optimization levels,
thereby producing a variety of binary code. Complicating
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matters further, COTS binaries originate from source projects
developed by individuals with diverse backgrounds and for a
wide range of purposes, such as IoT firmware or malware [7].
This diversity in development origins introduces additional
variability in the binary code and its contextual semantics [41].
Furthermore, a significant hurdle in function name recovery for
COTS binaries is the binary stripping process, which results in
the maximal semantic loss (e.g., removing all the symbol names,
except those used for dynamic linking, including function
names, variable names, and debugging symbols if the program
is compiled with these information). COTS binaries are also
potentially fortified by protective measures, e.g., obfuscation,
impeding reverse engineering of binary code semantics.

Encouragingly, recent research [31], [52], [20] has
illuminated a promising direction in leveraging machine
learning and language models to decode binary code semantics.
However, these approaches often fall short of achieving a
truly generalizable solution. Instead, they frequently yield
models that tend to be overfitted on their training data but
show poor performance on unknown data. For example, while
SYMLM [31] demonstrates promising performance, achieving
an F1 score over 0.73 on its own test set, its effectiveness
significantly diminishes when applied to previously unseen
binaries, e.g., test functions excluded from the training dataset,
with performance decreasing to a mere 0.08 F1 score. This
stark decline in performance underlines the models’ poor
generalizability, rendering them less effective for practical
application on real-world COTS binaries. Moreover, a critical
limitation of these approaches is their reliance on weak base
models, such as LSTM [79] for NFRE [20], and BERT [17]
for SYMLM [31] and XFL [52]. These models introduce high
variance, particularly when they conceptualize the function
name prediction task as a classification problem, inherently
limiting their generalizability. The classification-based solutions
confine the predictive model to selecting names and words
from their training vocabularies, which represent only a small
segment of the broader spectrum of natural language semantics.

Meanwhile, substantial advances are witnessed in the realm
of machine learning for constructing generalizable models (e.g.,
ChatGPT and Llama) that have achieved state-of-the-art perfor-
mance in numerous tasks, such as question answering and natu-
ral language understanding [74], [32]. A notable strategy under-
pinning the success of these models is the adoption of generative
large language models (LLMs) that benefit from task-agnostic
pre-training on extensive natural language corpora. Remarkably,
these generative LLMs have shown promising results in zero-
and one-shot learning scenarios, demonstrating significant
performance on tasks previously unseen during training, with
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minimal or no task-specific data. Despite these advances, a crit-
ical limitation emerges when applying generative LLMs to the
domain of binary code understanding: the inability to accurately
grasp the “meaning” of binary code due to a lack of domain-
specific knowledge [28]. The training datasets for these LLMs
predominantly consist of natural language text with a small pro-
portion of source code data [66], [56], devoid of the specialized
content necessary to comprehend binary code semantics.

In this paper, we present SYMGEN, the first generative
framework designed to infer function names for stripped
binaries in a robust and generalizable manner. Unlike existing
classification-based research, SYMGEN conceptualizes the
function name prediction problem as an autoregressive gener-
ation task. This paradigm shift allows for a more subtle and
flexible generation of function names, catering to the inherent
complexities of binary code. To overcome the generalizability
challenges, SYMGEN harnesses the capabilities of generative
LLMs. Recognizing the conventional LLMs’ shortfall in binary
code comprehension, we employ a domain adaptation strategy
specifically tailored to the binary code summarization task.
This approach is crucial in bridging the knowledge gap,
thereby equipping the LLMs with the required insight into
binary code semantics. Furthermore, SYMGEN incorporates
decompiler output, i.e., decompiled code, for addressing the
variability in binary code resulting from diverse compila-
tion settings. Confronting the limitations posed by resource
constraints—particularly the impracticality of full parameter
training for LLMs—we adopt a parameter-efficient learning
methodology within SYMGEN. This approach utilizes LoRA-
based matrix decomposition [25] to optimize the training pro-
cess, significantly reducing the computational resources required
while maintaining the model’s performance and scalability.

Our comprehensive evaluations reveal SYMGEN’s excep-
tional generalizability and performance superiority over current
state-of-the-art solutions across four architectures (x86-64, x86-
32, ARM, MIPS) and four optimization levels (O0-O3). Specifi-
cally, SYMGEN demonstrated remarkable improvements in pre-
cision, recall, and F1 score—outperforming the state-of-the-art
by 409.3%, 553.5%, and 489.4%, respectively. Additionally, our
tests on real-world binaries, including obfuscated binaries, IoT
firmware images, and malware executables, have demonstrated
SYMGEN’s security practicality. For instance, when evaluated
against obfuscated binaries, SYMGEN outperforms the state-of-
the-art by an astonishing 488% increase in F1 score. SYMGEN
can also successfully predict malware’s function names, e.g.,
get_random_ip, assisting malware analysis.

We have also evaluated the effectiveness of SYMGEN’s
components by ablation studies. First, when using decompiled
code as input, SYMGEN achieves a 285.7% higher F1 score
compared to using assembly code as input. Additionally, we
find that domain adaptation with LLM-generated summaries
improves the performance with increases of 6.36% in F1
score. With the parameter-efficient learning approach, the
computational resource usage is significantly reduced, e.g., the
training duration is condensed to 37 hours on a single A100
GPU, which is considerably shorter than full-parameter training
that takes 21 days on 2,048 A100 GPUs [66]. SYMGEN’s
advanced performance with our design and use of individual
components further confirms its effectiveness and novelty.

Contributions. We make the following contributions:

• We propose a novel framework for binary function name
inference, leveraging LLMs to achieve unprecedented levels
of generalizability and accuracy.

• We present an advanced domain adaptation approach and a
parameter-efficient learning strategy for tuning the pretrained
generative LLMs to binary semantic modeling.

• Our work outperforms existing solutions in function
name prediction, setting new generalizability benchmarks,
with practical utility to obfuscated binary analysis.
Our dataset and code are publicly available at
https://github.com/OSUSecLab/SymGen.

II. BACKGROUND AND RELATED WORK

A. Preliminary
Inferring function names from stripped binaries is a process

of reverse engineering the semantics of binary functions and
then generating accurate function names that reflect this function
semantics. Unlike existing works [20], [31], [23] that define
the problem as a classification problem, i.e., selecting function
name words from training vocabularies as the predicted function
names, we define this problem as a generation task.

Formally, given the input binary function f (f ∈ F ) that
can be tokenized into a sequence of binary code tokens, i.e.,
f = {t1, t2, ..., tn | ti ∈ Vf}, the function name inference
model M (M : F → S) generates an output sequence of
natural language words s = {w1, w2, ..., wm | wj ∈ Vs}
(s ∈ S). In this paper, the model M (i.e., SYMGEN) follows an
autoregressive generation paradigm, i.e., p(s) =

∏m
j=1 p(wj |

w1, ..., wj−1, f), where the generation of each word wi depends
on both the binary function semantics and the preceding
words ({w1, ..., wi−1}). This problem formulation is critical
for boosting the generalizability of SYMGEN. Here, we define
the model’s generalizability as its performance on previously
unseen functions that are not included in its training set.

B. Binary Reverse Engineering
In software development, binary stripping is commonly

used to remove meaningful debugging symbols from binaries,
including function names and type information. This process,
while beneficial for performance and security, leads to a
remarkable reduction in semantic information within the
binaries, posing significant challenges for reverse engineers
in analyzing the underlying code semantics. To mitigate these
challenges, many disassembly and decompilation techniques [4],
[68] have been developed to bridge the gap created by the
absence of these crucial symbols.

Specifically, disassembly translates binary code—consisting
of machine-level code—back into assembly code, and the
resulting assembly code is a format more intelligible to humans.
Existing binary function name prediction works [31], [52],
[20], [14], [33] predominantly rely on the assembly code
obtained by disassembling binaries. For example, SYMLM
predicts function names from assembly code along with a trace-
based model [31]. ASMDEPICTOR encodes binary function
semantics from assembly code using a Transformer model [52].
Decompilation goes a step further. It recovers the missing
semantic information and generates a roughly equivalent source
code or pseudo-code, which is typically in a form resembling
C, albeit approximated.

Recently, we have also observed an increasing trend of
using machine learning for symbol recovery tasks, e.g., function
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name prediction [14], [20], [31], [33], [52], [51] and variable
name/type inference [23], [10], [48], [53], [78], which could
enhance decompiler output. For example, DIRTY [10] models
the local decompiled code semantics for predicting variable
names and types. NERO [14] grasps the function semantics
using convolutional neural networks. Note that, function name
prediction is different from the other binary reverse engineering
tasks, e.g., variable and type inference, as it requires modeling
the global semantics of functions.

C. Generative LLMs
Generative LLMs are models that produce output based

on input sequences, following the autoregressive generation
paradigm, i.e., the generation of tokens depends on the previ-
ously generated tokens [66]. These models can be categorized
into encoder-decoder models and decoder-only models based
on model architectures [74], [29]. The encoder-decoder model,
adopting the Transformer architecture, involves two separate
components for processing input and output [57]. The encoder
processes the input data and encodes it into a context-rich
representation, while the decoder generates output based on this
representation. The decoder-only models, on the other hand,
are based solely on the Transformer decoder module [56],
[66]. They are particularly known for their effectiveness in
understanding and generating texts. The GPT model family
(including the well-known ChatGPT and GPT-4) by OpenAI is
a prime example of a decoder-only model [56], [47], [1]. The
decoder-only model architecture, while simpler compared to
encoder-decoder models, proves effectiveness in a wide range
of tasks [62], [74]. More importantly, decoder-only models have
exhibited substantial capabilities in terms of generalizability
under the zero- or few-shot setting [6], distinguishing them
from other generative language models. In addition to the
generative LLMs, there are also language models that leverage
the encoder-only model architecture, e.g., BERT [17]. These
models are specifically designed for encoding input, but they
are not primarily geared towards generating text. In function
name prediction, existing LLM-based solutions mainly adopt
the encoder-only model [31], [52].

III. OVERVIEW

A. Challenges

C1: Generalizable Function Name Inference. The
generalizability of function name inference models is very
important in dealing with COTS binaries in real-world reverse
engineering tasks. Yet, these binaries, compiled from a variety
of source projects infused with domain-specific knowledge
from multiple fields, present a significant challenge in learning
their semantics. This complexity is compounded by the fact that
COTS binaries are compiled from source projects crafted by
developers with distinct backgrounds and intended for various
production purposes. Additionally, COTS binaries, commonly
stripped, carry very little semantic information which makes
learning and reverse engineering their semantic representations
especially hard. Furthermore, the diversity of binary code is
also mirrored in the output of the models; that is, the range of
function names that need to be predicted is also varied [31].

C2: Knowledge Gaps between Natural Language Tasks
and Function Name Inference. While generative LLMs,
such as ChatGPT and Llama, exhibit promising potential
for our task, their efficacy in comprehending binary code is

prohibitively poor [28]. This limitation significantly impedes
their direct application in inferring function names [28]. Unlike
the objectives of many generative tasks, such as question
answering where the models excel, function names are highly
abstract and encapsulate the core semantics of functions in a
very succinct manner. Consequently, the substantial knowledge
gaps between the natural language processing capabilities of
generative LLMs and the specific requirements for interpreting
binary code in our task present a formidable challenge.

C3: Resource-expensive Training of LLMs. The advanced
performance of LLMs presents a promising direction for
function name inference. However, this potential is tempered
by the extraordinarily high costs associated with hardware
resources, time, and data availability required for model training.
The prevalent practice of full-parameter training demands
substantial resources; for instance, training the Llama model
necessitates the use of 2048 NVIDIA A100 GPUs and 21
days [66]. Additionally, there is an absence of sufficiently large
binary datasets that can satisfy the requirements for training
these LLMs. The creation of a high-quality binary dataset with
accurate ground truth annotations entails significant human
efforts. Consequently, employing LLMs for our task poses
notable challenges in model training.

C4: Data Leakage and Duplication. Data leakage—test binary
functions also appear in the training set—significantly affects
the accuracy of evaluating generalizability. Additionally, the
training set may contain popular but duplicated binary functions,
leading to model overfitting on these functions and reducing
performance on new, unseen samples [9], [37]. Moreover, using
well-trained models as a base for training can also introduce
leakage through their pretraining process. Detecting this leakage
and identifying duplicates is extremely challenging for several
reasons. First, stripped binary functions compiled from the same
source code can appear different due to factors like varying
binary symbol addresses (introducing unique address-specific
callee function names). Second, the pretraining datasets for
these well-trained models are typically closed-source, making
it difficult to track potential overlaps.

B. Key Insights
S1: Autoregressive Function Name Inference with Genera-
tive LLMs. Existing generative LLMs demonstrate exceptional
generalizability, attributable to their autoregressive training
paradigm. In contrast, the base models for prior function
name prediction efforts are predominantly trained using the
masked language modeling objective, employing encoder-only
models pre-trained in this manner. This approach allows the
model to consider both preceding and succeeding contexts
during prediction, but such a setting does not hold for real-
world applications because the succeeding context is missing.
In contrast, autoregressive training and inference accurately
mirror the nature of real-world generation processes, thereby
offering enhanced generalizability [6]. Consequently, we apply
autoregressive training to SYMGEN.

S2: Domain-adaptive Learning with Function Summaries.
To address C2, a straightforward method involves directly
finetuning the model on a binary function name inference
dataset. This method, however, faces limitations due to the
inherent abstractness of function names, which encapsulate only
a fraction of the function’s semantics. And different function
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1 /* Return the address of the last file name component of
NAME. If NAME has no relative file name components
because it is a file system root, return the empty
string. */

↪→
↪→
↪→

2

3 char * last_component (char const *name)
4 {
5 char const *base = name + FILE_SYSTEM_PREFIX_LEN

(name);↪→
6 char const *p;
7 bool last_was_slash = false;
8

9 while (ISSLASH (*base))
10 base++;
11

12 for (p = base; *p; p++)
13 {
14 if (ISSLASH (*p))
15 last_was_slash = true;
16 else if (last_was_slash)
17 {
18 base = p;
19 last_was_slash = false;
20 }
21 }
22

23 return (char *) base;
24 }

Figure 1: Function Summary of last_component from
GNU Sed Project

names may emphasize various aspects of a function’s semantics,
leading to inconsistencies in semantic representation. For
example, Figure 1 presents the last_component function,
in which the function summary (at line 1) describes retrieving
the last component of a file path—a detail not explicitly
captured by its name. This discrepancy underscores that
function summaries, typically presented as comments, are
rich in semantic information, detailing function behavior in
natural language, thereby playing to the strengths of LLMs.
Such summaries can serve as a crucial bridge to narrow
the knowledge between binary function semantics and the
descriptive richness required for accurate interpretation.

S3: Parameter-efficient Learning. In addressing C3, we
leverage a parameter-efficient training methodology customized
to our target generative LLMs. Using the fine-tuning
optimization [16], [25], we freeze the weights of the pre-trained
model and employ a gradient decomposition technique to
produce low-rank representations of these weights. These low-
rank weights significantly reduce the parameter count compared
to the original model weights, thus enhancing computational
efficiency. Notably, the attention and feed-forward layers
account for a substantial portion of the model’s size and
demand considerable resources for updates. Consequently,
we specifically apply parameter reduction and integrate
the resultant low-rank weights into the model via residual
connections, optimizing performance without losing the model’s
original capacities (e.g., the instruction following ability).

S4: Data Deduplication and Leakage Mitigation. For
C4, we have proposed systematic methods to reduce data
duplication and leakage. We start by defining the leakage
and duplication problems from two angles: in-dataset and
cross-dataset duplication. With this framework, we identify
duplicates by (i) matching the same source function names or
function bodies during compilation, and (ii) detecting duplicated

but syntax-different binary functions compiled from the same
source functions using callee normalization. To address leakage
in the base model, we apply the prevalent membership inference
technique to identify potential leakage in its pretraining.

C. System Overview
The workflow of SYMGEN consists of three major steps:

(I) Domain adaptation by function summarization involves
the strategic training of SYMGEN’s base model to enhance its
knowledge of binary code using function summaries.

(II) Parameter-efficient learning minimizes the number of
training parameters for both domain adaptation and function
name inference tasks by layer weight selection, weight
freezing, matrix decomposition, and residual connections.

(III) Finetuning for function name generation transfers the
knowledge from the domain-adapted model, as developed in
Step (I), to the task of inferring function names.

IV. DETAILED DESIGN

A. Domain Adaptation
Our objective is to develop a generalizable model capable of

learning binary code semantics and generating accurate names
for binary functions. To this end, we exploit the capabilities of
pre-trained generative LLMs to grasp the complex and dynamic
semantics of binary code as described in §III-B. To leverage
these models for binary function name inference, the intuitive
methods include zero-shot (or few-shot) prompting and direct
finetuning for our task, where finetuning usually can boost the
models’ performance more. However, as revealed through our
evaluations in §VI-D, the straightforward fine-tuning achieves
the desired efficacy, with the latter resulting in a performance
that is 8.21% inferior to our proposed approach. Our analysis
indicates that this is due to the models’ limited exposure
to binary code during training, as they are predominantly
developed on natural language corpora [6], [66]. Although
these corpora may include a minor set of source code (e.g., 5%
in Llama [66]), source code is fundamentally different from
binary code, where source code is with rich semantics, e.g.,
function and variable names, data types, and structural details.
This difference leads to a significant knowledge gap between
the models’ pre-training on natural language (and to some
extent, source code) and the specific requirements of our binary
code comprehension task, thereby resulting in the observed
performance inefficiencies. To mitigate this knowledge gap of
LLMs, we propose to perform domain adaptation by training
the models on summarizing decompiled code.

Figure 2 presents the workflow of SYMGEN’s domain
adaptation approach. Our initial step involves curating open-
source C projects, which have been extensively utilized in
prior learning-based binary analysis research [48], [31], [52].
These projects are then compiled into binaries, with debug-
ging symbols to facilitate analysis across diverse computer
architectures and optimization levels. Subsequent to binary
stripping, the generated stripped binaries are decompiled
into decompiled code. To adapt the LLMs on binary code
comprehension, we need to obtain the dataset with ground
truth, i.e. the description of binary code semantics. For this,
we initially sought to align with methodologies from source
code summarization research [2], which typically uses function
comments as ground truth. However, we observe that the noise
within these function comments poses a significant challenge,
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Figure 2: Domain Adaptation by Function Summarization

potentially compromising SYMGEN. In this paper, we propose
two approaches to address this challenge, including (1) function
comment preprocessing and noise removal, and (2) summary
generation using code LLMs.

Function Comment Preprocessing and Noise Removal. To
understand the noises in function comments, we first perform
a manual study on the function comments of 900 randomly
sampled source functions from 45 open-source projects. Overall,
we have identified five categories of noises, stemming from
varying coding conventions and assumptions, as well as the
often ad-hoc nature of development processes and practices.
For example, one category of errors is the comment used for
communication, instead of summarizing the function semantics,
where developers use keywords like “TODO” and “FIXME”
to communicate with others. More details of these noises are
provided in Appendix §A for interested readers.

In order to remove the noises from the function comments
and form a dataset with high-quality ground truth, we have
followed the noise-removal solutions from existing code
comment cleaning research [61]. Specifically, we run their
open-sourced artifact1 on our source code dataset. This process
involves two steps: (1) identifying the source functions and
their associated function comments using abstract syntax tree
(AST) parsing, and (2) cleaning these comments using the
rule-based artifact [61]. For step (1), we have provided more
details of our engineering efforts in Appendix §B. Note that,
for function comments, we consider the comment, right above
the function signature, as our target and directly extract it
from source files for each function.

Summary Generation via Code LLMs. In addition to
the approach of function comment preprocessing, we have
also explored the use of LLMs for generating high-quality
function summaries for domain adaptation. Our design choice
is motivated by recent advancements in code LLMs, such
as Code Llama [60] and StarCoder [38], which demonstrate
impressive capabilities in generating succinct, high-quality
source code summaries. Moreover, it has been found that the
output generated by these powerful LLMs can serve as high-
quality references for training other LLMs [72]. For example,
ShareGPT is a set of dialogue corpus, generated by ChatGPT,
which has been widely used for training other LLMs [13], [18].
Therefore, we opt to use Code LLMs to generate summaries
for binary functions via understanding their source code.

1https://github.com/BuiltOntheRock/FSE22 BuiltOntheRock

While code LLMs can produce seemingly accurate
comments, a major concern is their potential for hallucination,
i.e., generating summaries that express incorrect or nonexistent
semantics. To address this issue, we observe that LLMs
can self-improve, i.e., they can correct their own errors
via reasoning [27]. Therefore, we have adopted techniques
from prior studies of self-consistency checking [72], [12],
[42]. Specifically, we employ the universal self-consistency
method [12], a straightforward yet effective approach to
eliminate hallucinations. We query the LLM multiple times to
produce several summary candidates. We then use the LLMs
again to evaluate these candidates and select the most consistent
summary among them as the final output. Through a systematic
series of experiments involving various prompts, we identify
the most effective prompt for our task, as shown in Figure 9a
(in Appendix §C). In this process, we select and use the Code
Llama model, which is fine-tuned from the Llama 2 model, for
its state-of-the-art performance on code understanding [60].

To this end, we have proposed two approaches to address the
long-standing issue of noise in function comments [77], [11], to
the best of our efforts. Our subsequent evaluations indicate that
(1) both approaches can boost SYMGEN’s effectiveness, and
(2) the summary generation-based approach is more effective
for SYMGEN, e.g., SYMGEN with the summary generation-
based approach has 5.81% better precision than SYMGEN
with preprocessed comments (see §VI-D). Consequently, we
have selected summary generation as our default solution for
domain adaptation. With the decompiled code and generated
ground-truth summaries of binary functions, we proceed to
train LLMs for domain adaptation using a parameter-efficient
learning approach.

B. Parameter-efficient Learning
Existing binary function name prediction models, e.g.,

SYMLM [31] and XFL [52], commonly involve full-parameter
supervised finetuning. This method essentially fits models to suit
a specific binary code dataset. However, this fine-tuning process
updates all parameters of the model, demanding significant
computational resources, e.g., it takes 8 days for SYMLM’s fine-
tuning as reported by the paper [31]. In SYMGEN, we leverage
more advanced generative LLMs, which have significantly
more parameters than the base models of SYMLM and XFL,
i.e., BERT [17]. Therefore, this inefficiency leads to substantial
challenges in training resources and time. To address this
issue, numerous efficient finetuning efforts have been proposed.
For example, parameter-frozen tuning integrates tunable
low-rank matrices into model layers and has shown superior
performance compared to full-parameter finetuning [69], [25].
Observing these advances, we leverage a parameter-efficient
learning framework based on LoRA [25], as shown in Figure 3.
In particular, we focus on the attention and feed-forward layers
of SYMGEN and perform low-rank matrix decomposition and
residual connection on the frozen layer weights.

Layer Weight Selection. SYMGEN is built upon the generative
LLM using the transformer decoder model architecture. This
model architecture consists of four major layers, including (i)
masked multi-head attention layers, (ii) multi-head attention
layers, (iii) add & norm layers, and (iv) feed-forward lay-
ers. Different from BitFit [76] and DiffPruning [21], which
selectively adjust a subset of the model’s layers, SYMGEN’s
training focuses on layers with trainable weights. That is, we
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Figure 3: Parameter-Efficient Learning. In the Transformer
decoder model, we train the low-rank weights for the multi-
head attention layers and feed-forward layers.

exclude the add & norm layers, which inherently have no
trainable parameters. This design choice of tuning all learnable
weights is to optimize SYMGEN to better understand binary
code semantics. For this, we focus on SYMGEN’s attention
layers (i.e., masked multi-head attention layers and multi-
head attention layers) and feed-forward layers. One of the
shared features of these layers is that they have the same
mechanism of performing dot products of layer weights and
the input. Formally, given a sequence of decompiled code
tokens X = {x1, x2, ..., xn}, the attention layer produces the
key, value, and query matrices, i.e. K, V , and Q by:

ki = Wk · xi, qi = Wq · xi, vi = Wv · xi (1)

where ki ∈ K, qi ∈ Q and vi ∈ V for 1 ≤ i ≤ n. Wk ∈ Rd×d,
Wq ∈ Rd×d, and Wv ∈ Rd×d are learnable weight matrices.
The feed-forward layer essentially encapsulates dot product
calculation, i.e., O = Wo ·X ′. In this paper, we focus on tuning
the weights of Wk, Wq , Wv , and Wo as illustrated in Figure 3.

Low-rank Weight Decomposition. In deep neural networks,
the weight updates are performed by the backward propagation
process, in which the gradients of layer weights are calculated
to update themselves [35]. For parameter-efficient training, we
use the low-rank matrix decomposition approach proposed
by existing parameter-frozen training research [25], [16]. As
shown in Figure 3, we first freeze the original model weights W
(W ∈ Rd×d can be any of Wk, Wq , Wv , and Wo). Freezing the
model weights can not only reduce the computational resources
required for training but also preserve the instruction-following
capacities of our target pretrained models. Next, SYMGEN cre-
ates the low-dimension trainable weight by decomposing each
frozen weight into two low-rank matrices (W∇ ∈ Rd×r and
W∆ ∈ Rr×d) which have far less parameters compared with
the original weights. Specifically, given the frozen weight W ,
the backward propagation generates the gradient δW ∈ Rd×d.

SYMGEN decomposes this gradient into W∇ and W∆, so that
δW = W∇ ·W∆. In these low-rank weights, r is far less than
d, i.e., r ≪ d, which decreases the number of parameters that
need to be trained from d×d to 2× r×d. This decomposition
can dramatically reduce the trainable weights (e.g., our training
on the 13.5 GB Llama model only requires 20.3 MB weight
updates). Eventually, the low-rank matrices are integrated into
attention and feed-forward layers by residual connections [24].

C. Finetuning for Function Name Inference
SYMGEN aims to accurately infer function names for

stripped binaries. To achieve this, we finetune the LLM that
has been adapted to the binary code understanding domain
(§IV-A) on binary function name inference dataset.

Input Masking. As discussed in §III-B, SYMGEN takes
as input the decompiled code from stripped binaries and
generates function names. This decompiled code carries the
artificial function names generated by decompilers, such as
FUN_080021e where 080021e is the function address. We
observe that simply feeding the model with the raw decompiled
code can hurt its performance since the model to be finetuned
can be misled by the artificial function names. One simple
solution is to add instructions to let the model avoid focusing on
these artificial names but this method cannot effectively address
the problem due to two reasons. First, artificial function names
vary as the function addresses change. Second, the function
body can also include artificial function names for callees.
Considering these noises, we formalize the fine-tuning task as
a cloze-solving problem [63], i.e., we mimic the process of
how human beings learn the semantics of words by the context.
Similarly, in SYMGEN, binary function names are inferred
and generated by understanding the context information of
the function semantics. To achieve this, the artificial function
name in decompiled code is replaced by the [MASK] token
without altering any other portion of the decompiled code (e.g.,
function body and function parameters). It is worth noting that
the [MASK] token is widely used in pretraining LLMs. The
resultant decompiled code is used as the input to SYMGEN.
For readers’ interest, Figure 9c (in Appendix §C) presents
SYMGEN’s prompt for completing the cloze-solving task.

Finetuning Ground Truth and Objective. For finetuning, we
have used the developer-created function names as ground truth,
following the common practice as existing research [31], [52],
[20], [14]. Specifically, we obtain it from the DWARF entries of
the binaries with debugging symbols since we have full control
of the dataset generation process. To process the ground truth
names into tokens of the SYMGEN’s base model vocabulary, we
use the BPE tokenizer2 downloaded along with our base model,
i.e. Code Llama. To train the model on our binary function name
generation dataset, we formalize the finetuning process as the
autoregressive generation task. Formally, for a tokenized input
sequence x = {x1, x2, x3, ..., xn} and output sequence y =
{y1, y2, y3, ..., ym}, SYMGEN aims to maximize the likelihood
following the forward autoregressive factorization model:

max
θ

logPθ(y) =
m∑
i=1

logPθ(yi | x; y1:i−1) (2)

2We use Huggingface tokenizers that comes with SYMGEN’s base model.
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logPθ(yi | x; y1:i−1) =
exp(hθ(x; y1:i−1)

⊤e(yi))∑
y′ exp(hθ(x; y1:i−1)⊤e(y′))

(3)

where y1:i−1 denotes the preceding tokens of yi. hθ(·) is the
hidden states produced by SYMGEN’s intermediate layers for
context representation. e(·) is the input embedding.

V. SYMGEN DATASET AND LEAKAGE MITIGATION

We collect 33 open-sourced C projects from GNU Software
and widely used libraries, including those that have been exten-
sively used by existing binary reverse engineering research [31],
[20], [52], e.g., OpenSSL, binutils and bash (the detailed
list of projects is presented in Table VI of Appendix §D).

A. Dataset Construction

Function Name Prediction Dataset. We compile above source
projects into four computer architectures (x86-32, x86-64, ARM,
and MIPS) and four optimization levels (O0, O1, O2, and O3)
using GCC-9.4.0. Our dataset contains 9,842 unique binaries
and 2,237,915 binary functions in total. We randomly split our
dataset into training, validation, and test sets with the ratio
of 8:1:1 at the binary level, same as prior works [14], [31].
Note that, the binary compilation renders both binaries with
and without debugging information. To construct datasets for
our task, we obtain the input decompiled code from stripped
binaries and the ground truth function names by analyzing the
DWARF entries from binaries with debugging information.

Domain Adaptation Dataset. Using compiled binaries, we also
construct our domain adaptation datasets by the two approaches
proposed in §IV-A, i.e., (1) function comment preprocessing
and noise removal, and (2) summary generation via code LLMs.
After applying our proposed steps to obtain the function com-
ments and LLM-generated summaries, we observe a common
problem of matching source function comments/summaries and
binary functions, because the comments and summaries are
obtained at the source level, not from binaries. To address this
issue, we connect source function comments/summaries and
stripped binary functions by establishing connections using
binary function addresses. Specifically, after obtaining the
function comments or summaries (§IV-A), we first connect
the source and binary functions by matching source function
names and the binary function names from the DWARF entries
of binary with debugging information. Next, we further parse
the DWARF entries to connect the source function names and
the binary function start and end addresses. As the start and end
addresses of a function remain unchanged regardless of whether
it is stripped, we link stripped and unstripped binary functions
by matched function addresses. To this end, we successfully
match the function comments/summaries with its corresponding
stripped binary functions.

B. Data Leakage Mitigation and Deduplication
In real-world binaries, there are functions that inevatably

used across projects for reasons such as code reuse and the use
of libraries, e.g., binutils binaries share a large amount of
code that is copied. We observe that the datasets of existing
works, e.g., SYMLM [31], commonly contain many duplicated
functions in the test set which also occurs in the training
set. In machine learning evaluations, these duplicated samples
are defined as data leakage [22], i.e., the duplicated functions
have been leaked to the model during training. While facing
this issue, we observe that existing function name inference

...

mov_esi_ 0x40c78c ,
mov_rdi_rax,

call_ 0x2e24 ,
mov_qword_ptr_[rbp-0x10]_rax,
cmp_qword_ptr_[rbp-0x10]_0,
...

(a) ASMDEPICTOR’s Training Sample (Line 37,492 in its Training
File)

...

mov_esi_ 0x41ce4c ,
mov_rdi_rax,

call_ 0xffffffffffffb75b ,
mov_qword_ptr_[rbp-0x10]_rax,
cmp_qword_ptr_[rbp-0x10]_0,
...

(b) ASMDEPICTOR’s Test Sample (Line 27 in its Test File)

Figure 4: Data Leakage in ASMDEPICTOR. The two samples,
compiled from the same source function but in different
function addresses, are treated as different samples.

works do not fully resolve it. In particular, SYMLM [31]
and XFL [52] do not consider data leakage in their design.
ASMDEPICTOR [33] removes duplicates by matching the input
code exactly, which unfortunately fails to identify duplicate
samples that differ slightly. For example, Figure 4 presents
code snippets of two functions from ASMDEPICTOR’s training
and test sets, respectively. These two functions originate from
the same source function but from different binaries, resulting
in distinct symbol addresses. Consequently, the highlighted
addresses in lines 1 and 3 differ between these two functions.
Unfortunately, ASMDEPICTOR ignores their equivalence due
to these superficial differences.

Dataset Duplicates and Leakage. In this paper, we have
observed two types of dataset duplicates: (1) cross-dataset
duplicates and (2) in-dataset duplicates. Cross-dataset duplicates
are defined as binary functions that appear in both the training
and test sets, which is commonly defined as data leakage.
In-dataset duplicates refer to functions that appear more
than once within the training set or the test set, such as
syncok and copy_termtype showing several times in our
training set. For the purpose of generalizability evaluation, it
necessitates removing the leaked samples, i.e., cross-dataset
duplicates, from our test sets. However, the question of whether
deduplicating in-dataset duplicates within the training set (or
test set) is necessary remains unanswered. Such a question was
unfortunately ignored by prior research and they keep in-dataset
duplicates in both training sets and test sets. In this paper, we
have conducted ablation studies to validate the performance
of both SYMGEN and our baselines with and without in-
dataset duplicates in §VI-D. Our rigorous evaluations show
that removing in-dataset duplicates from the training sets can
effectively address overfitting and improve model performance
by 2.94×. Therefore, unless otherwise specified, we remove
in-dataset duplicates in our subsequent evaluations by default.

Data Deduplication and Leakage Mitigation. Based on
these observations, we employ a more rigorous deduplication
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Algorithm 1: Callee Normalization in Stripped De-
compiled Code
1 Function visit(node):
2 switch node.type do
3 case expression:
4 visitExpression(node)

5 ...

6 initialize funcMap := {}
7 Function visitPostfixExpression(node):
8 if node.primaryExpression exists and node.LeftParen

exists then
9 callFunName := node.primaryExpression.Identifier

10 if callFunName in funcMap then
11 callFunName := funcMap[callFunName]

12 else
13 newFunName := "FUN_" + funcMap.count
14 funcMap[callFunName] := newFunName
15 callFunName := newFunName

16 return visit(node.children);

approach to mitigate in-dataset and cross-dataset duplicates. To
be more thorough, we perform deduplication on two levels: (i)
duplicates with the same function names or binary code, and (ii)
duplicates with the same source function but different binary
code due to different addresses, as shown in Figure 4. For level
(i), we remove binary functions that either share the same source
function names or have different names but identical function
bodies. For level (ii), our approach is motivated by the observa-
tion of examples in Figure 4. Specifically, the decompiled code
of stripped binaries often contains address-related callee func-
tion names in its call statement. These addresses in callee names
can appear different due to variations in the memory layout of
different binaries, resulting in duplicated decompiled functions
with distinct function bodies. To avoid duplicates that ASMDE-
PICTOR failed to identify, we propose algorithm 1 to normalize
callee function names for deduplication. Specifically, we first
parse the decompiled binary functions from stripped binaries to
generate their abstract syntax trees (ASTs). Next, as shown in
lines 1 to 5, we perform a depth-first search on the generated
AST to traverse all nodes. Finally, we normalize the callee
function names by substituting them with placeholders using the
visitPostfixExpression function (lines 6 to 16). An ex-
ample of decompiled code before and after applying algorithm 1
is provided in Figure 10a and Figure 10b (in Appendix §E). It is
worth noting that our approach might aggressively filter out false
positive cases, e.g., functions having the same names but differ-
ent semantics. However, we argue that such a rigorous approach
will result in a reliable dataset to accurately reflect SYMGEN’s
generalizability. Eventually, our approach identifies 77.9% dupli-
cated functions (i.e., 1,742,421 binary functions). The resultant
dataset contains 495,494 unique binary functions, which is
comparable in size to the dataset of existing research [52].

Leakage Detection in SYMGEN’s Base Model. SYMGEN is
trained based on the Code Llama model [60], and the samples
of our test set can be potentially leaked in Code Llama’s
training process. However, its pertaining dataset is unfortunately
closed-source, posing significant challenges in detecting this

leakage. Although Code Llama is mostly trained on source
code, which is significantly different from the stripped binary
code in our test set, we argue it is crucial to detect such leakage
to ensure the quality of our dataset. For this, we have applied a
membership inference approach, prevalent in previous dataset
inference work [8], [40]. Specifically, we prompt our base
model to complete the incomplete stripped binary code of our
test sets and measure its completion effectiveness. Following the
common setting [8], [40], we prepare the incomplete stripped
binary code by removing the last 5 lines of each decompiled
function while the average number of lines is 32. We use the
popular metrics, i.e., exact matching and CodeBLEU [58], as
the completion metric. The evaluations of our test datasets on
Code Llama present scores of 0 in exact matching, indicating
that none of the test samples are completed. Additionally,
the average CodeBLEU similarity score is only 0.098, where
CodeBLEU is computed by n-gram matching that matches
the variable names and symbols, and we find that generated
lines only match some symbols without producing complete
lines. To this end, we argue that our test sets are not leaked to
SYMGEN’s base model in its training process.

VI. EVALUATION

We have implemented SYMGEN with 3,068 lines of own
code using the pretrained Code Llama with its own BPE
tokenizer3 as the base model for SYMGEN, which is code-
specific version of Llama 2 and finetuned on six programming
languages, e.g., C++ [60]. We employ Ghidra [44] to parse
binaries and generate decompiler output. It is important to
underscore that SYMGEN’s design is agnostic to decompilers.
We opt to use Ghidra due to its open-source nature and its
widespread recognition and adoption. We develop the source
and decompiled code parsers based on ANTLR 4 [49]. For
parameter-efficient learning and finetuning, we have developed
the training pipeline on top of Pytorch [50], transformers [73],
alpaca-lora [65], and loralib [26].

Our evaluations aim to answer the following research
questions:
• RQ1: What is SYMGEN’s overall performance, i.e., across

different optimization levels and architectures?
• RQ2: Compared with the state-of-the-art, how effective and

generalizable is SYMGEN?
• RQ3: How can SYMGEN’s components and strategic design,

e.g., domain adaptation, improve its performance?
• RQ4: Can SYMGEN predict function names for real-world

binaries, e.g., obfuscated binaries and malware executables?

A. Experimental Setup

Evaluation Environment. Our evaluations are performed on a
server equipped with a 48-core AMD EPYC 7643 processor
at 2.3 GHz, 921 GB memory, and four NVIDIA A100 GPUs
with 80 GB VRAM each, running RHEL 8.6 OS.

Evaluation Metrics. We adopt the evaluation metrics, i.e.,
precision, recall, and F1 score, that are commonly used by prior
works [31], [20], [14]. Given the ground truth function name
S and inferred function name Ŝ, we split them into individual

3The model is downloaded from Huggingface: https://huggingface.co/
codellama
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words, i.e., S = {w1, w2, ..., wn} and Ŝ = {ŵ1, ŵ2, ..., ŵn}
and then calculate precision, recall and F1 score by:

TP =
∑
ŵi∈Ŝ

1S(ŵi), FP =
∑
ŵi∈Ŝ

1−1S(ŵi), FN = ∥S∥−TP

1S(ŵi) =

{
1 if ŵi ∈ S
0 if ŵi ̸∈ S

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

F1 =
2× Precision × Recall

Precision + Recall
where TP , FP , and FN are true positive, false positive, and
false negative. We adopt the CodeWordNet of SYMLM [31] to
address label noise introduced by semantically similar words.
More illustration of our evaluation metrics is provided in
Appendix §F for readers of interest.

Baselines. In this paper, we choose SYMLM, ASMDEPIC-
TOR [33], and XFL [52] as our baselines. For these three
baselines, we train their models using our dataset under the same
settings as SYMGEN to ensure a fair comparison. According to
the XFL paper, it is only applicable to x86-64 binaries due to
their design with VEX IR [52]. Therefore, we evaluate XFL and
compare it with SYMGEN on x86-64 binary dataset. We have
tried different training parameters for our baselines and selected
the best performance following their training instructions. We
skip evaluating NERO [14], NFRE [20], and DEBIN [23] as
our baselines have demonstrated superior performance.

B. RQ1: Overall Performance of SYMGEN

To answer RQ1, we have evaluated SYMGEN on our dataset.
Table I presents its performance across the four computer
architectures and four optimization levels. For each architecture
and optimization level, we train an individual model, separately,
and test it on our corresponding test set. Overall, SYMGEN
achieves a precision of 0.275, a recall of 0.281, and an F1 score
of 0.277 on average. For the x86-64 architecture, SYMGEN
achieves an average precision of 0.373, a recall of 0.388,
and an F1 score of 0.380. On the x86-32 binaries, SYMGEN
records a precision of 0.324, a recall of 0.338, and an F1 score
of 0.330. On MIPS and ARM, SYMGEN’s performance yields
precision scores of 0.136 and 0.265, recall scores of 0.138 and
0.260, and F1 scores of 0.137 and 0.262, respectively. In this
performance, we have observed the performance discrepancy
of SYMGEN between x86-64/x86-32 and ARM/MIPS binaries,
which is the same as those of SYMLM. For instance, SYMGEN
exhibits 1.45× better performance on x86-64 binaries
compared to ARM binaries, whereas SYMLM shows a 1.37×
improvement under similar conditions. We hypothesize that
this difference stems from the architecture-specific application
binary interfaces (ABIs), which introduce more challenges in
understanding MIPS/ARM binaries.

SYMGEN demonstrates optimal average performance on
binaries optimized at the O3 level, achieving an F1 score of
0.290. Notably, SYMGEN performs better on binaries with
higher optimization levels (O2 and O3) compared to those
with lower levels (O0 and O1), with the exception of MIPS
binaries. This improved performance can be attributed to the
higher optimized binaries containing clearer function semantics
and fewer invalid instructions, which aligns with observations
made by Theodoridis et al. [64].
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Figure 5: SYMGEN Performance with and without Domain
Adaptation Using (a) Preprocessed Comments and (b) LLM-
generated Summaries

C. RQ2: Baseline Comparison
To deepen our analysis, we also evaluate our baselines on

our dataset, and the evaluation results are reported in Table I.
Generally, ASMDEPICTOR obtains the performance of 0.054
precision, 0.043 recall, and 0.047 F1 score on average. In
contrast, SYMLM achieves the average precision of 0.114, recall
of 0.099, and 0.105 F1 score across all computer architectures
and optimization levels. XFL achieves an average precision of
0.189, recall of 0.156, and F1 score of 0.171.

More importantly, we observe the significant superiority of
SYMGEN over all baselines, achieving up to 1650%, 1280%,
and 1455.6% improvements in precision, recall, and F1 score,
respectively. Specifically, SYMGEN is more effective than
SYMLM, and its average precision, recall, and f1 score across
all computer architectures and optimization levels are 241.2%,
283.8%, and 263.8% times these of SYMLM, respectively.
Additionally, it outperforms ASMDEPICTOR with 409.3%,
553.5%, and 489.4% improvements on average precision, recall,
and F1 score, respectively. For XFL, although it outperforms
ASMDEPICTOR and SYMLM on x86-64 binaries, SYMGEN
also achieves 197%, 249%, and 222% better precision, recall,
and F1 score, respectively, compared to XFL. From the results,
we observe that the performance metrics of baselines on our
dataset are not as high as those reported in their respective
papers. For instance, SYMLM achieved an average F1 score of
0.73 on its own dataset, which drops to 0.105 on our dataset.
The F1 score of XFL also drops from 0.68 on the DEBIN dataset
to 0.16 on our deduplicated dataset. As discussed in §V-B, this
discrepancy is largely due to data leakage issues in their test
sets, which do not accurately reflect real-world performance
when duplicates are effectively removed, as is the case with our
dataset. This observation is consistent with findings from the
unknown binary evaluation in the SYMLM paper [31], where
both SYMLM achieved F1 scores lower than 0.10 on unknown
samples. ASMDEPICTOR also mentioned function deduplication
in paper [33]. Similarly, XFL’s performance drops significantly
on unseen function names as presented in its paper [52]. That
said, SYMGEN has dramatically advanced the state-of-the-art,
showing much better effectiveness and generalizability.
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Table I: Overall Performance of SYMGEN and Our Baselines. Note that ↑ and ↓ indicate the improvement and deterioration
of SYMGEN over baselines.

Arch Model Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

O0 O1 O2 O3

x86-64

SYMGEN 0.346 0.356 0.351 0.376 0.387 0.381 0.383 0.401 0.392 0.388 0.407 0.397
SYMLM 0.099 0.100 0.100 0.101 0.103 0.102 0.106 0.092 0.098 0.109 0.094 0.101

ASMDEPICTOR 0.059 0.043 0.050 0.067 0.055 0.060 0.061 0.045 0.052 0.075 0.060 0.067
XFL ∗ 0.169 0.140 0.153 0.188 0.133 0.156 0.196 0.177 0.186 0.203 0.175 0.188

SYMGEN v.s. ASMDEPICTOR (↑486.4%) (↑727.9%) (↑602.0%) (↑461.2%) (↑603.6%) (↑535.0%) (↑527.9%) (↑791.1%) (↑653.8%) (↑417.3%) (↑578.3%) (↑492.5%)
SYMGEN v.s. SYMLM (↑249.5%) (↑256.0%) (↑251.0%) (↑272.3%) (↑275.7%) (↑273.5%) (↑261.3%) (↑335.9%) (↑300.0%) (↑256.0%) (↑333.0%) (↑293.1%)

SYMGEN v.s. XFL (↑104.7%) (↑154.3%) (↑129.4%) (↑100.0%) (↑191.0%) (↑144.2%) (↑95.4%) (↑126.6%) (↑110.8%) (↑91.1%) (↑132.6%) (↑111.2%)

x86-32

SYMGEN 0.297 0.315 0.306 0.314 0.324 0.319 0.342 0.356 0.348 0.342 0.358 0.349
SYMLM 0.098 0.114 0.106 0.138 0.106 0.120 0.111 0.133 0.121 0.085 0.112 0.096

ASMDEPICTOR 0.059 0.045 0.051 0.061 0.033 0.043 0.057 0.050 0.053 0.057 0.040 0.047
SYMGEN v.s. ASMDEPICTOR (↑403.4%) (↑600.0%) (↑500.0%) (↑414.8%) (↑881.8%) (↑641.9%) (↑500.0%) (↑612.0%) (↑556.6%) (↑500.0%) (↑795.0%) (↑642.6%)

SYMGEN v.s. SYMLM (↑203.1%) (↑176.3%) (↑188.7%) (↑127.5%) (↑205.7%) (↑165.8%) (↑208.1%) (↑167.7%) (↑187.6%) (↑302.4%) (↑219.6%) (↑263.5%)

MIPS

SYMGEN 0.144 0.148 0.146 0.138 0.140 0.139 0.130 0.131 0.130 0.135 0.134 0.134
SYMLM 0.124 0.133 0.146 0.118 0.155 0.139 0.150 0.085 0.108 0.130 0.071 0.091

ASMDEPICTOR 0.056 0.044 0.049 0.078 0.059 0.067 0.050 0.040 0.045 0.044 0.036 0.040
SYMGEN v.s. ASMDEPICTOR (↑157.1%) (↑236.4%) (↑198.0%) (↑76.9%) (↑137.3%) (↑107.5%) (↑160.0%) (↑227.5%) (↑188.9%) (↑206.8%) (↑272.2%) (↑235.0%)

SYMGEN v.s. SYMLM (↑16.1%) (↑11.3%) (↑0.0%) (↑16.9%) (↓16.7%) (↑0.0%) (↓15.4%) (↑54.1%) (↑20.4%) (↑3.8%) (↑88.7%) (↑47.3%)

ARM

SYMGEN 0.240 0.238 0.239 0.265 0.257 0.261 0.268 0.269 0.269 0.280 0.276 0.280
SYMLM 0.088 0.042 0.057 0.113 0.061 0.079 0.135 0.097 0.113 0.122 0.089 0.103

ASMDEPICTOR 0.044 0.044 0.044 0.049 0.037 0.042 0.030 0.033 0.032 0.016 0.020 0.018
SYMGEN v.s. ASMDEPICTOR (↑445.5%) (↑466.7%) (↑443.2%) (↑440.8%) (↑594.6%) (↑521.4%) (↑793.3%) (↑715.2%) (↑740.6%) (↑1650.0%) (↑1280.0%) (↑1455.6%)

SYMGEN v.s. SYMLM (↑172.7%) (↑440.9%) (↑319.3%) (↑134.5%) (↑321.3%) (↑230.4%) (↑98.5%) (↑177.3%) (↑138.1%) (↑129.5%) (↑210.1%) (↑171.8%)

* For XFL, its design and implementations are limited to x86 64 binaries, as reported by its paper [52]. Therefore, XFL is only evaluated on our x86 64 dataset.

D. RQ3: Ablation Study

Domain Adaptation by Function Summarization. The pur-
pose of domain adaptation is to improve SYMGEN’s capacities
of binary code comprehension by mitigating the knowledge gap
of our target pretrained LLMs. To validate its effectiveness, we
perform the comparative evaluations on SYMGEN by studying
its performance with and without domain adaptation (1) the
function comments that have been preprocessed with noise
removal and (2) the function summaries generated by LLMs.
For SYMGEN without domain adaptation, we directly perform
finetuning on function name inference with parameter-efficient
learning.

We first present the results of domain adaptation using
our preprocessed function comments in Figure 5a. This
domain adaptation strategy enhances SYMGEN’s recall and
F1 score by 4.86% and 1.82% respectively, but it results in
a decline in precision by 1.21%. In contrast, as shown in
Figure 5b, domain adaptation with LLM-generated summaries
improves SYMGEN across all metrics, with increases of
4.53%, 8.21%, and 6.36% in precision, recall, and F1 score,
respectively. Through cross-comparison, we observe that
LLM-generated summaries are more effective than function
comments, enhancing precision by 5.81%, recall by 3.19%,
and the F1 score by 4.46%. Overall, these findings indicate
that domain adaptation can significantly enhance SYMGEN’s
performance in function name prediction. Furthermore, we
also note that SYMGEN without domain adaptation tends to
generate meaningless function names, such as FUN_876458.
After performing domain adaptation, such meaningless function
names are significantly reduced by 71.7% in inference results.

Parameter-efficient Learning. Parameter-efficient learning
significantly reduces both the training duration and GPU
memory demands for SYMGEN. For context, the full-parameter
pretraining of the Llama model necessitates the use of 2,048
A100 GPUs, each equipped with 80 GB of VRAM, spanning
approximately 21 days—an aggregate of 163,840 GB of
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Figure 6: Performance of SYMGEN and ASMDEPICTOR
Using Decompiled Code and Assembly Code as Input

GPU VRAM [66]. Moreover, finetuning the Llama model is
recommended to have at least 8 A100 GPUs, cumulatively
amounting to 640 GB of VRAM [59]. In contrast, leveraging
our parameter-efficient learning approach enables the training of
SYMGEN with the Code Llama 34B model on only one A100
GPU within a considerably reduced timeframe of around 37
hours. This stark reduction in resource utilization underscores
the efficiency of our method, making it a viable solution for
environments with limited hardware capabilities. In addition,
we also observe that parameter-efficient learning can effectively
assist SYMGEN to converge. While setting the total number of
epochs as 16, we observe the model training converges at about
6 epochs. Figure 11 (in Appendix §G) presents the training loss
of SYMGEN across the training epochs. This early stop can
effectively avoid overfitting of SYMGEN on our training dataset,
particularly in the context of the supervised learning process.

Decompiled Code as Binary Representations. Given the
superior performance of SYMGEN over our baselines, we
examine our design choice of using decompiled code as model
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Table II: Performance of SYMGEN and Baselines on
Training Set with and without Duplicates

Model Training Set Precision Recall F1 Score

ASMDEPICTOR
w/ duplicates 0.019 0.015 0.017
w/o duplicates 0.059 0.043 0.050

SYMLM w/ duplicates 0.117 0.068 0.086
w/o duplicates 0.099 0.100 0.100

XFL w/ duplicates 0.159 0.144 0.151
w/o duplicates 0.169 0.140 0.153

SYMGEN
w/ duplicates 0.353 0.329 0.341
w/o duplicates 0.346 0.356 0.351

Table III: Performance of SYMGEN and Baselines on Test
Set with and without Duplicates

Model Test Set Precision Recall F1 Score

ASMDEPICTOR
w/ duplicates 0.057 0.042 0.048
w/o duplicates 0.059 0.043 0.050

SYMLM w/ duplicates 0.103 0.093 0.097
w/o duplicates 0.099 0.100 0.100

XFL w/ duplicates 0.152 0.138 0.144
w/o duplicates 0.169 0.140 0.153

SYMGEN
w/ duplicates 0.348 0.369 0.358
w/o duplicates 0.346 0.356 0.351

input, by comparing it to the use of assembly code as input. For
cross-comparison, we have also enhanced our baseline models
by retraining them on our decompiled code dataset and using
the same experimental setup, described in §VI-A. Here, we
choose ASMDEPICTOR as the baseline for this ablation study
due to several reasons. First, we could not adapt SYMLM to
decompiled code since it was originally trained on a microtrace-
based model with specific input representations designed for
assembly code [31], which cannot be applied to decompiled
code. XFL’s binary analysis process is based on VEX IR, which
cannot be adapted to decompiled code as well. Consequently,
we focus on ASMDEPICTOR and retrain it using the exact same
configurations outlined in its original paper. We only modify
its input to decompiled code, with all other settings unchanged.
For comparison, we updated SYMGEN’s domain adaptation and
fine-tuning processes to account for nuances specific to handling
assembly code as input. This involves modifying the prompts
used during finetuning to align with assembly code, e.g., the
prompt for finetuning is shown in Figure 9b (in Appendix §C).

Figure 6 presents the evaluation results. For ASMDEPICTOR,
the decompiled code improves its precision, recall, and F1 score
by 12.1%, 36.0%, and 24.6%. In contrast, with decompiled code
serving as the binary function representation, SYMGEN achieves
333.7% improvement in precision, 304.2% in recall, and 317.6%
in F1 score over the assembly code input variant. Moreover,
for the same decompiled input, SYMGEN is also much more
effective than ASMDEPICTOR, i.e., with the 404.1%, 470.6%,
and 435.2% better precision, recall, and F1 score, respectively.
Considering our objective on generalizability, we attribute the
outperformance of SYMGEN to its unique problem formaliza-
tion as well as the efficient and generalizable training design.

In-dataset Deduplication. To investigate whether in-dataset
duplicates, which were defined in §V-B, in the training set

Table IV: Performance of SYMGEN, SYMLM, and XFL
on Obfuscated Binaries

Obfuscation SYMGEN SYMLM XFL

w/o obfuscation 0.302 0.071 0.139
bcfobf 0.288 (-4.6%) 0.063 (-11.3%) 0.044 (-215.9%)
cffobf 0.271 (-10.3%) 0.056 (-21.1%) 0.034 (-308.8%)
subobf 0.303 (+0.3%) 0.062 (-12.7%) 0.039 (-256.4%)

can affect model performance, we also train our baselines and
SYMGEN using training sets with and without such duplicates.
Table II presents the evaluation results. Overall, we observe that
these duplicates significantly reduce the performance of our
baselines, while they have negligible impact on SYMGEN. For
instance, the F1 scores of SYMLM, XFL, and ASMDEPICTOR
without training set duplicates are 1.23×, 1.01×, and 2.94×
better compared with duplicates. Meanwhile, SYMGEN achieves
an F1 score of 0.341 with duplicates in the training set, which
is 2.6% lower than the performance without duplicates. While
we could have compared SYMGEN with baselines on the with-
duplicate setting to show better outperformance, we chose to
deduplicate training sets to give a fair comparison and report
baselines’ better performance. In-dataset duplicates can cause
the model to overfit on the training set and memorize these
repeated data rather than learning generalizable features. This
results in poor performance when the model encounters unseen
data. Such overfitting is also widely noted by prior research [3],
[34], [9], [37].

In addition to training sets, we have also evaluated the
in-dataset duplicate removal for test sets. Table III presents
the performance of SYMGEN and baselines on the duplicated
test set, where the F1 scores of ASMDEPICTOR, SYMLM and
XFL are 0.048, 0.097, and 0.144, respectively. In contrast,
their F1 scores without test set duplicates are 0.050, 0.100, and
0.153, showing minor differences of only 3.09%, 4.0%, and
5.8%. Similarly, SYMGEN achieves an F1 score of 0.358 on the
duplicated test set, compared to 0.351 on the non-duplicated
test set. This indicates that in the duplicated test set, despite
some function names appearing more frequently than others, the
final performance of the models is not significantly impacted.

E. RQ4: Effectiveness on Real-world Binaries

Obfuscated Binaries. Binary Obfuscation is widely used to
increase the complexity of the code, making binary analysis
and reverse engineering more difficult. To evaluate the ob-
fuscation resistance performance of SYMGEN and baselines,
we reuse SYMLM’s obfuscated binary dataset with the same
evaluation setup as §VI-A. Specifically, this obfuscation dataset
consists of 363 obfuscated binaries from 6 GNU projects
(i.e., findutils, coreutils, curl, less, putty, and
bash). Following prior works [31], [53], [54], we have
used Hikari [46] to obfuscate the binaries three obfuscation
options, i.e., bogus control flow (bcfobf), control flow
flattening (cffobj), and instruction substitution (subobf).
For each obfuscation option, we leverage its default obfuscation
configurations. To analyze SYMGEN’s performance affected
by obfuscation, we also include the original binaries (without
obfuscation) in our evaluation dataset.

Table IV presents the performance on obfuscated binaries
of SYMGEN, SYMLM and XFL. For simplicity, we also skip
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presenting ASMDEPICTOR’s performance as it has shown the
worse performance in §VI-C. For SYMGEN, it achieves 0.288,
0.271, and 0.303 average F1 scores on the obfuscated binaries,
which shows the 488% better F1 score than SYMLM and 777%
better than XFL. Compared with the performance of SYMGEN
on the original binaries (w/o obfuscation), SYMGEN’s perfor-
mance decreases by 4.6% and 10.3% on bcfobf and cffobf
binaries. This degradation is much lower than these in SYMLM
and XFL. For instance, the performance of XFL decreases
by 308.8% in cffobf. This demonstrates SYMGEN’s better
obfuscation resistance than SYMLM and XFL. Moreover, when
SYMGEN achieves the same F1 score on the subobf binaries
compared as the original ones, SYMLM and XFL degrades on
these binaries by 12.7% and 256.4%, respectively. We attribute
the better performance of SYMGEN to its specific generalizable
learning paradigm with the domain-adapted generative model.

Malware Executables. To further understand SYMGEN’s
generalizability, we have used it to predict function names
for malware executables. For this, we first collect all Linux
malware projects (e.g., backdoors, botnets, infectors, and Mirai)
from the prevalent open-source malware repository [70]. We
then follow its compilation instructions, resulting in 16 x86-64
binaries, which are further stripped as our test binaries. To
apply SYMGEN, we directly use the model that we have trained
on our own dataset to generate the function names for all 812
malware binary functions. Surprisingly, SYMGEN achieves
0.320 precision, 0.381 recall, and 0.348 F1 score. Considering
the training dataset of SYMGEN includes projects of the GNU
repository, which have completely different project context
from the test malware binaries, this performance is remarkably
close to the one that we have reported in §VI. We believe
it demonstrates a strong generalizability when SYMGEN
encountered the unknown malware binaries. To understand why
SYMGEN can successfully predict malware function names, we
further study and discuss several malware functions in §VII-B.

VII. FURTHER ANALYSIS

In addition to reporting the aggregate statistical performance
of SYMGEN, we study individual cases of the prediction results
to understand its prediction errors and generalizability and
report our findings in this section.

A. Concrete Cases and Inference Errors
Table V presents the predicted function names of SYMGEN

and our baselines, sampled from our inference results. In this
table, both ground truth and SYMGEN predicted function names
are tokenized, consistent with our baselines’ outputs, though
SYMGEN produces function names in the same complete form
as ground truth. From Table V, we observe that SYMGEN can
accurately infer the function name for some binary functions
(e.g., split_string), while baselines cannot learn the
correct function semantics and generates wrong names. Addi-
tionally, SYMGEN is capable of inferring the core semantics
of other functions, generating names that capture essential
semantics but may omit or add some details. For example,
SYMGEN correctly identifies the key semantics of check and
dir for the binary function gc_ide_check_dir but misses
ide and the project-specific word gc, while our baselines
unfortunately fail to grasp the function semantics.

Inference Errors. Despite we have advanced the-state-of-art in
inferring binary function names, we still observe inference er-

1 void set_uint32(char *cp,uint32_t v)
2 {
3 *(uint32_t *)cp = v;
4 return;
5 }

(a) Decompiled Code before Binary Stripping

1 void FUN_05e4a017(undefined4 *param_1,undefined4
param_2)↪→

2 {
3 *param_1 = param_2;
4 return;
5 }

(b) Decompiled Code after Binary Stripping

Figure 7: An Example of Semantic Loss in Stripped Binaries.
The key semantics of set_uint32 is preserved in its type
(line 3), which is removed in the stripped binary.

rors in our results. Beyond the aforementioned issues of omitted
or additional words, we identify the other two common error
sources, including (i) semantic loss due to binary stripping and
(ii) out-of-vocabulary (OOV) words. In the process of binary
stripping, the symbols, such as variable types, are removed.
For instance, Figure 7 presents the decompiled code of the
function set_uint32 from the GNU coreutils-8.32
project. In Figure 7a, the variable cp is casted into the type
uint_32 at line 3. This function is named as set_uint32
to reflect such type casting operation. However, in Figure 7b,
the variable type is stripped, leading to a huge semantic gap
before and after stripping. SYMGEN predicts the function
name as assign, which is treated as an inference error in
our evaluations. Another common inference error comes from
the out-of-vocabulary words that are specific to projects. For
example, in our dataset, the test functions from the adns and
dico projects mostly feature the prefixes adns_ and dico_
in their ground truth names. These words are unknown to our
model and cause inference errors. One example function is
dico_handle_command, for which SYMGEN predicts its
name as do_command. Although SYMGEN correctly infers
the key semantics of this function, our calculated precision,
recall, and F1 score for this function are merely 50.0%, 33.3%,
and 40.0%, respectively. While we could identify and remove
such prefixes to improve SYMGEN’s performance, we chose
not to, aiming to more accurately reflect real-world use cases.

B. Generalizability and Effectiveness

Generalizability on Malware Function Name Prediction. We
first zoom into individual malware functions, because SYMGEN
achieves impressive generalizability, especially on malware
executables (presented in §VI-E). Our analysis identifies that
the function names of some functions, highly related to
malware, are accurately predicted, e.g., command_flood
and get_random_ip. For instance, Figure 8 presents the
decompiled code for the getRandomPublicIP function,
and Figure 12 (in Appendix §H) presents the source code of
the function. This function generates a random public IPv4
address. If a valid range is available in ipState, it increments
the fourth part to create and return a new address. Otherwise,
it randomly generates an address, ensuring it avoids reserved
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Table V: Examples of Inferred Function Names.

Ground Truth SYMGEN ASMDEPICTOR SYMLM XFL

gc ide check dir check dir remove temp mu init check parse mu check file
split string split string copy string to string print write file add mu str set
client session ssl session load skip file write read output s type check pid
ftp time left accept get time left string to read parse file get get time read
write error stderr print error v print f print gmp c add print standard err
read file to buffer do read file expand ipmi monitor ctx test get padding file
elf type parse type expand assignment p be type get set ip
gcd odd gcd odd mpn copy u s n gmp mpn is get
host hash hash string png index of number be p s get mpz listen

ranges until a valid address is found. Finally, it returns the
generated IP address with the last octet set to 0.

After binary stripping, the variable names in the
original code have all become meaningless names, like
DAT_0020e389 and iVar1, and the function name is
replaced with FUN_041324a. However, the execution flow of
the function has not changed. Surprisingly, SYMGEN precisely
infers function semantics from this decompiled code and
generates the function name get_random_ip. Although the
token public is missed, we still can get the crucial semantics
of random IP generation via its name, which is particularly
helpful for malware analysts. Note that, botnets can be used
to perform DDoS attacks, steal data, send spam, and allow
the attacker to access victim devices [75].

Retrieval-augmented Function Name Generation. Our anal-
ysis of SYMGEN’s outputs also reveals its capability to directly
extract key semantic information from the function body, when
available. For instance, when we insert the uint32_t type at
line 3 in Figure 7a, SYMGEN is able to accurately predict the
modified function’s name as writ_uint32_t. To validate if
this finding is generalizable, we use the IoT firmware binaries
as the test data. For this, we collect 935 test functions from 9
firmware binaries (with ground truth) that are used by existing
firmware analysis research [19]. Notably, the firmware function
names have many OOV words, e.g. IoT-specific terms. Given the
IoT binaries, we test SYMGEN using decompiled functions with
and without symbols (i.e., variable names and types). We find
that the symbols can boost SYMGEN’s performance by 258.6%.

In natural language processing, such behavior is defined
as retrieval-augmented generation (RAG) [36]. RAG is a
process where LLMs can integrate information (e.g., words
and phrases) into its output, retrieved from input to enhance
the quality of its output. We attribute the emergent RAG
capacity of SYMGEN to its two key design advantages. The
first advantage lies in SYMGEN’s novel generative learning
design. Moreover, SYMGEN utilizes decompiled code as binary
code representations. The decompiled code can be enhanced
by decompilers. Although the stripped binaries can barely have
symbols, SYMGEN can be boosted by the outcomes of existing
binary symbol recovery frameworks, e.g., variable type and
name inference models [10], because of its RAG capacity. This
property will benefit other large-scale security analyses [30].

VIII. DISCUSSION

This section outlines the limitations of our study and
proposes directions for future research.

Base Model. We employ the pretrained Code Llama as
SYMGEN’s base model. Given the rapid advancements in

1 void get_random_ip (void) {

2 ...
3 if ((DAT_0020e389 == 0) (DAT_0020e38c == -1)) {
4 iVar1 = rand();
5 DAT_0020e389 = (char)iVar1 + (char)(iVar1 / 0xff);
6 ...
7 DAT_0020e38c = '\0';
8 while ((((((((DAT_0020e389 == 0
9 (DAT_0020e389 == 10))

10 ...
11 (0xdf < DAT_0020e389)))))
12 {
13 iVar1 = rand();
14 DAT_0020e389 = (char)iVar1 + (char)(iVar1 / 0xff);
15 ...
16 }

Figure 8: The Decompiled Code with SYMGEN Predicted
Function Name (Highlighted) for a Botnet Binary Function.
Its ground truth name is getRandomPublicIP.

the field of generative large language models (LLMs), it is
conceivable that future developments could introduce models
with superior capabilities in understanding binary code seman-
tics. Furthermore, enhancing SYMGEN with additional model
parameters might further augment its performance. Considering
SYMGEN’s adaptable design to any generative LLMs, exploring
alternative base models can be a promising research topic.

Decompiler. In this study, we employ Ghidra, the most popular
open-sourced decompiler, to generate decompiled code for
SYMGEN. It is important to acknowledge that such decompiler
outputs may include errors inherent to the decompilation
process. Additionally, the output from different decompilers
can vary, potentially introducing biases. Despite SYMGEN’s
design being decompiler-agnostic, exploring SYMGEN with
outputs from alternative decompiler output presents a valuable
avenue for future research.

Performance and Inference Errors. The errors introduced by
binary stripping and OOV words (§VII-A) remain challenging
to resolve due to the missing semantics. Unlike simpler
classification tasks, e.g., binary classification, SYMGEN
generates each word of function names from the entire English
vocabulary, encompassing >170K unique words [43]. This
complexity significantly increases the difficulty of accurately
predicting function names for SYMGEN. Additionally,
SYMGEN’s evaluation is conducted at the word level; thus, any
inaccuracies in word prediction are rigorously counted in our
results, even if those inaccuracies have minimal semantic impact.
Despite these rigorous standards, SYMGEN has achieved an
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overall F1 score of 0.277, marking a substantial advancement
over prior works and a remarkable step towards practicality.

Dataset Quality. Dataset quality is crucial in model training.
Besides our efforts in data deduplication and leakage mitigation,
low-quality or meaningless function names can also downgrade
dataset quality. For instance, some functions are automatically
generated by the compiler and linker. Their names do not
accurately reflect the function semantics. To address this, we
made attempts to manually remove these meaningless functions
from our dataset. Moreover, we also found some words appear
more frequently than others without carrying much semantics.
For example, 4.5% of all function names contain “set”. These
function names usually consist of three to five tokens, and
“set” represents only 1.2% of the total tokens. We believe
the rigorous approach to address this quality issue requires
manual annotation. However, it is very time-consuming and
relies heavily on the programmer’s experience and judgment.
Automating the identification of such functions to further
enhance dataset quality presents a potential research direction.

Computational Cost. We have also measured the compu-
tational cost for training and offline inference. Specifically,
the training and reproduction of our baselines, including
ASMDEPICTOR, SYMLM, and XFL, take 14, 30, and 32 hours
per model, respectively, while SYMGEN costs 41 hours. For
offline inference, the time per sample is 0.2, 1, 1, and 3 seconds
for ASMDEPICTOR, SYMLM, XFL, SYMGEN. In addition to
the time cost, the hardware resources are the same for SYMGEN
and our baselines as we used the same evaluation settings. Note
that the training cost is a one-time effort, i.e., the model is
trained once but can be used for inference many times. While
SYMGEN is computationally more expensive due to its larger
model size, we believe model compression techniques [15],
e.g., model quantization and distillation [55], can be applied
to reduce this cost.

IX. CONCLUSION

We have presented SYMGEN, a novel framework designed
for inferring function names in stripped binaries with the
new problem formalization. Unlike the classification-based
approaches, SYMGEN is the first to employ a generative
learning paradigm to enhance model generalizability for real-
world binaries. Our extensive evaluations reveal that SYMGEN
surpasses current state-of-the-art models in effectiveness with
better obfuscation resistance. Our ablation studies further
validate the effectiveness of SYMGEN’s key components.

ACKNOWLEDGMENT

We appreciate anonymous reviewers for their valuable
feedback and comments. This research was supported in part by
DARPA award N6600120C4020, ARO award W911NF2110081,
and NSF award CNS-2112471. Any opinions, findings, and
conclusions expressed herein are the authors’ and do not reflect
those of the sponsors.

REFERENCES

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[2] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” arXiv
preprint arXiv:2005.00653, 2020.

[3] M. Allamanis, H. Jackson-Flux, and M. Brockschmidt, “Self-supervised
bug detection and repair,” Advances in Neural Information Processing
Systems, vol. 34, pp. 27 865–27 876, 2021.

[4] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska, and H. Bos, “An
{In-Depth} analysis of disassembly on {Full-Scale} x86/x64 binaries,”
in 25th USENIX security symposium (USENIX security 16), 2016, pp.
583–600.

[5] Z. L. Basque, A. P. Bajaj, W. Gibbs, J. O’Kain, D. Miao, T. Bao,
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augmented generation for knowledge-intensive nlp tasks,” Advances
in Neural Information Processing Systems, vol. 33, pp. 9459–9474,
2020.

[37] K. Li, D. Persaud, K. Choudhary, B. DeCost, M. Greenwood, and
J. Hattrick-Simpers, “Exploiting redundancy in large materials datasets
for efficient machine learning with less data,” Nature Communications,
vol. 14, no. 1, p. 7283, 2023.

[38] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[39] Z. Luo, P. Wang, B. Wang, Y. Tang, W. Xie, X. Zhou, D. Liu, and K. Lu,
“Vulhawk: Cross-architecture vulnerability detection with entropy-based
binary code search.” in NDSS, 2023.

[40] V. Majdinasab, A. Nikanjam, and F. Khomh, “Trained without my
consent: Detecting code inclusion in language models trained on code,”
arXiv preprint arXiv:2402.09299, 2024.

[41] A. Mantovani, S. Aonzo, Y. Fratantonio, and D. Balzarotti, “{RE-Mind}:
a first look inside the mind of a reverse engineer,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 2727–2745.

[42] M. J. Min, Y. Ding, L. Buratti, S. Pujar, G. Kaiser, S. Jana, and B. Ray,
“Beyond accuracy: Evaluating self-consistency of code large language
models with identitychain,” arXiv preprint arXiv:2310.14053, 2023.

[43] A. Name, “How many words are in the english
language?” https://englishlive.ef.com/en-blog/language-lab/
many-words-english-language/, Year, accessed: 2024-02-03.

[44] National Security Agency, “Ghidra,” https://ghidra-sre.org/, accessed:
2022-04-21.

[45] S. Naval, V. Laxmi, M. Rajarajan, M. S. Gaur, and M. Conti, “Employing
program semantics for malware detection,” IEEE Transactions on
Information Forensics and Security, vol. 10, no. 12, pp. 2591–2604,
2015.

[46] Naville Zhang and Contributors, “Hikari: Llvm obfuscator,” https://
github.com/HikariObfuscator/Hikari, 2023, accessed: 2024-02-05.

[47] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in Neural
Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

[48] K. K. Pal, A. P. Bajaj, P. Banerjee, A. Dutcher, M. Nakamura, Z. L.
Basque, H. Gupta, S. A. Sawant, U. Anantheswaran, Y. Shoshitaishvili
et al., ““len or index or count, anything but v1”: Predicting variable
names in decompilation output with transfer learning,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society,
2024, pp. 152–152.

[49] T. Parr, “The definitive antlr 4 reference,” The Definitive ANTLR 4
Reference, pp. 1–326, 2013.

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[51] J. Patrick-Evans, L. Cavallaro, and J. Kinder, “Probabilistic naming of
functions in stripped binaries,” in Annual Computer Security Applications
Conference, 2020, pp. 373–385.

[52] J. Patrick-Evans, M. Dannehl, and J. Kinder, “Xfl: Naming functions in
binaries with extreme multi-label learning,” in 2023 IEEE Symposium
on Security and Privacy (SP). IEEE, 2023, pp. 2375–2390.

[53] K. Pei, J. Guan, M. Broughton, Z. Chen, S. Yao, D. Williams-King,
V. Ummadisetty, J. Yang, B. Ray, and S. Jana, “Stateformer: fine-
grained type recovery from binaries using generative state modeling,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 690–702.

[54] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray, “Trex: Learning
execution semantics from micro-traces for binary similarity,” arXiv
preprint arXiv:2012.08680, 2020.

[55] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[56] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[57] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” The Journal of Machine Learning
Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[58] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[59] F. Research, “Llama: Large language model by facebook research,”
https://github.com/facebookresearch/llama, 2023, accessed: 2024-02-05.

[60] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[61] L. Shi, F. Mu, X. Chen, S. Wang, J. Wang, Y. Yang, G. Li, X. Xia,
and Q. Wang, “Are we building on the rock? on the importance of data
preprocessing for code summarization,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 107–119.

[62] J. Su, C. Jiang, X. Jin, Y. Qiao, T. Xiao, H. Ma, R. Wei, Z. Jing, J. Xu, and
J. Lin, “Large language models for forecasting and anomaly detection:
A systematic literature review,” arXiv preprint arXiv:2402.10350, 2024.

[63] W. L. Taylor, ““cloze procedure”: A new tool for measuring readability,”
Journalism quarterly, vol. 30, no. 4, pp. 415–433, 1953.

[64] T. Theodoridis, T. Grosser, and Z. Su, “Understanding and exploiting
optimal function inlining,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 977–989.

15

https://pypi.org/project/loralib/
https://englishlive.ef.com/en-blog/language-lab/many-words-english-language/
https://englishlive.ef.com/en-blog/language-lab/many-words-english-language/
https://ghidra-sre.org/
https://github.com/HikariObfuscator/Hikari
https://github.com/HikariObfuscator/Hikari
https://github.com/facebookresearch/llama


[65] tloen, “alpaca-lora: Instruct-tune llama on consumer hardware,” https:
//github.com/tloen/alpaca-lora, 2024, accessed: 2024-02-06.

[66] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[67] P. Tully, S. Vasisht, O. Sardar, and J. Gibble. (2022) Annotating
malware disassembly functions with insights from google cloud threat
intelligence. [Online]. Available: https://cloud.google.com/blog/topics/
threat-intelligence/annotating-malware-disassembly-functions/

[68] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek,
“An observational investigation of reverse {Engineers’} processes,” in
29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
1875–1892.

[69] T. Vu, B. Lester, N. Constant, R. Al-Rfou, and D. Cer, “Spot: Better
frozen model adaptation through soft prompt transfer,” arXiv preprint
arXiv:2110.07904, 2021.

[70] vx underground, “Malwaresourcecode,” https://github.com/
vxunderground/MalwareSourceCode, 2024.

[71] S. Wang, X. Wang, K. Sun, S. Jajodia, H. Wang, and Q. Li, “Graphspd:
Graph-based security patch detection with enriched code semantics,” in
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023, pp.
2409–2426.

[72] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi,
and H. Hajishirzi, “Self-instruct: Aligning language model with self
generated instructions,” arXiv preprint arXiv:2212.10560, 2022.

[73] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s trans-
formers: State-of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

[74] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, B. Yin, and X. Hu,
“Harnessing the power of llms in practice: A survey on chatgpt and
beyond,” arXiv preprint arXiv:2304.13712, 2023.

[75] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware
detection using data mining techniques,” ACM Computing Surveys
(CSUR), vol. 50, no. 3, pp. 1–40, 2017.

[76] E. B. Zaken, S. Ravfogel, and Y. Goldberg, “Bitfit: Simple parameter-
efficient fine-tuning for transformer-based masked language-models,”
arXiv preprint arXiv:2106.10199, 2021.

[77] J. Zhai, X. Xu, Y. Shi, G. Tao, M. Pan, S. Ma, L. Xu, W. Zhang,
L. Tan, and X. Zhang, “Cpc: Automatically classifying and propagating
natural language comments via program analysis,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 1359–1371.

[78] Z. Zhang, Y. Ye, W. You, G. Tao, W.-c. Lee, Y. Kwon, Y. Aafer,
and X. Zhang, “Osprey: Recovery of variable and data structure via
probabilistic analysis for stripped binary,” in 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 2021, pp. 813–832.

[79] T. Zia and U. Zahid, “Long short-term memory recurrent neural network
architectures for urdu acoustic modeling,” International Journal of
Speech Technology, vol. 22, pp. 21–30, 2019.

APPENDIX

A. Noises in Function Comments
As stated in §IV-A, we have observed the following five

categories of noises during our manual analysis of the sampled
source code and comments.
• Incomplete and Manipulated Comment. Some comments

are in the form of incomplete comments which do not express
the full semantics of function semantics. Moreover, some
developers incorporate the comment content generated with
HTML tags for documentation auto-generation purposes or
include URLs for external references, which have changed
the original comments created by developers.

• Wordy Comment. Some comments come with noisy details
that are not expressed in the function bodies, such as the link

to some documentation and specific explanations of function
arguments, variables, and configurations.

• Non-English Comment. In this paper, we focus on the func-
tion comments in English. We observe that some developers
write comments in their native languages, sometimes mixing
these with English within the comments.

• Comment for Communications. Some comments are pri-
marily used for communication among developers, rather than
just summarizing functionalities. For example, developers
use keywords like “TODO” and “FIXME” as the message
to inform their co-workers about the next steps.

• Irrelevant Comment. We have also observed that some
comments are not relevant to the function semantics, which
are purely noises. Some of these comments can be the ones
that are under construction, meaning that the developers
have not finished the comment, therefore, the comments
themselves appear to be meaningless.

B. Constructing Abstract Syntax Trees for Source Functions
To construct Abstract Syntax Trees (ASTs) for source code,

a parser is needed to interpret the source structure. We build
a C code parser based on ANTLR 4 [49] by adapting a C
language grammar file4. Provided with source code, the parser
will produces an AST representing the code’s structure. Each
explicitly defined grammar rule in the grammar file corresponds
to a node in the AST. For instance, the following rule defines
the grammar of function declaration.

1 functionDefinition:
2 declarationSpecifiers? declarator

declarationList? compoundStatement;↪→

In this rule, declarationSpecifiers, declarator, declarationList,
and compoundStatement represent the function’s return type,
name, input arguments, and body, respectively. Each of these
components is further defined by its own set of rules. If a
function declaration appears in the source code, a node of type
functionDefinition will be created in the AST by parser, with
four child nodes representing these attributes.

After generating the AST, we can perform a depth-first
search (DFS) to traverse each node, aiming to collect all
function bodies in the source code. The algorithm is presented in
algorithm 2. The traversal begins at the AST root using function
CollectFunctions (lines 8 to 12). As each node is visited,
the code checks if the node’s type is functionDefinition. If true,
this indicates that the node corresponds to a function declaration,
allowing us to collect its content, which represents the function
body (lines 2–7).

C. Prompts for Function Summary Generation and Function
Name Inference

The choice of prompt is especially critical to the results of
the model. For generating function summary and predicting
function name, we tried many different prompts on a small
dataset and finally chose the prompts with best performance.
For function summary task, Figure 9a presents the prompt we
used. For predicting function name, the prompts with assembly
code and decompiled code as input are shown in Figure 9b
and Figure 9c. As mentioned in §IV-C, the original artificial
function name in decompiled code is replaced by the [MASK]

4https://github.com/antlr/grammars-v4/blob/master/c/C.g4
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Algorithm 2: Collect Functions from AST
1 initialize funcMap := {}
2 Function CollectFunctions(node):
3 if node.type == functionDefinition then
4 funcMap[node.name] := (node.args, node.content)

5 for each child in node.Children do
6 CollectFunctions(child)

7 return

8 Function DFS():
9 root := getASTRoot()

10 CollectFunctions(root)
11 return

Table VI: Source Projects and Binaries in Our Dataset

Project # Binaries Project # Binaries

openssl-3.0.6 2128 libiconv-1.17 48
coreutils-8.32 1848 grep-3.8 48
ncurses-6.3 1440 gmp-6.2.1 40
readline-8.2 568 libidn2-2.3.4 32
bash-5.2 472 tar-1.34 32
adns-1.6.0 448 datamash-1.8 32
gettext-0.21 444 curl-7.86.0 32
inetutils-2.4 400 gss-1.0.4 32
binutils-2.39 352 poke-2.4 32
dico-2.11 276 libpng-1.6.39 32
gawk-5.2.1 240 gzip-1.12 16
libredwg-0.12 192 libmicrohttpd-0.9.75 16
mailutils-3.8 180 libunistring-1.0 16
wget2-2.0.1 136 cflow-1.7 16
freeipmi-1.6.10 112 libtool-2.4.7 16
diffutils-3.8 96 units-2.22 16
texinfo-7.0 54 - -

token without altering any other portion of the decompiled
code (e.g., function body and function parameters.)

D. Source Project and Binaries in SYMGEN dataset
Table VI presents the 33 open-source projects that we used

to build our dataset, which contains 9,842 unique binaries in
total. We have chosen well-known GNU projects, including
bash, wget, and so on. bash is a Unix shell and command
language developed as part of the GNU Project. It provides a
command-line interface for users to interact with their operating
system, offering powerful scripting capabilities and extensive
support for automating tasks. wget is a command-line utility
for downloading files from the web. It supports downloading
via HTTP, HTTPS, and FTP protocols, and can recursively
download entire directories with ease. These projects are widely
used and highly representative.

E. Substitution in Function Body
In the decompiled code, the callee function names will affect

the identification of the same function body. Due to the lack of
debuging information, the function names in the function call
sentences is the combination of FUN and its address. Figure 10a
presents the function add_intrinsic before preprocessing.

Using ANTLR 4 to build the AST (Appendix §B), then we
substitute these callee function names with consistent names.

Summarize the function provided below in a concise and 
clear manner within 512 words. Highlight the key inputs, 
outputs, main steps, and the main purpose of the function. 
Avoid unnecessary details and focus on delivering a high-
level overview.

...

static int display_shell_version (
    int count, int c)
{
    ... 
}

(a) Prompt for Function Summary Generation

Suppose you are an expert in software reverse engineering. 
Here is a piece of assembly code which is compiled from some 
meaningful functions, and you need to infer the function name 
according to the assembly code. Now please infer the most 
possible meaningful function name. The assembly code is as 
follows:

The predicted function name is ……

movl $4, %eax
movl $1, %ebx
movl $output, %ecx
movl $14, %edx

BIN

(b) Prompt of Assembly Code as Input

Suppose you are an expert in software reverse engineering. 
Here is a piece of decompiled code. Please infer the code 
semantics and tell me the original function name from the 
contents of the function to replace [MASK]. Now, the 
decompiled code is as follows:

The predicted function name is ……

void [MASK] (undefined4 *param_1 …) 
{ 
    *param_1 = param_2;
    return;
}

BIN

(c) Prompt of Decompiled Code as Input

Figure 9: Prompts for Summary Generation and Function
Name Prediction.

Figure 10b presents the function after preprocessing. New
function names are based on the order of appearance.

F. Illustration of Our Evaluation Metrics and CodeWordNet
To help readers understand how our evaluation met-

rics (defined in §VI-A) work, we use the function
ftp_timeleft_accept in forth line of Table V as an
example to demonstrate how we calculate the scores. First,
we will divide the function name into a series of tokens.
For example, ftp_timeleft_accept is divided into ftp,
time, left, accept and our predicted name is divided
into get, time, left. Then we calculate TP, FP and FN.
True positive (TP) refers to a result in binary classification
where the model correctly identifies a positive instance as
positive. False positive (FP) refers to the incorrect identification
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1 void [MASK](undefined8 param_1,undefined8
param_2)↪→

2 {
3 undefined8 uVar1;
4

5 uVar1 = FUN_00000c4b(param_1);
6 uVar1 = FUN_00003016(uVar1);
7 FUN_00003086(uVar1,param_2);
8 FUN_00003086(uVar1,0);
9 return;

10 }

(a) The Decompiled Code of add_intrinsic

1 void [MASK](undefined8 param_1,undefined8
param_2)↪→

2

3 {
4 undefined8 uVar1;
5

6 uVar1 = FUN_0(param_1);
7 uVar1 = FUN_1(uVar1);
8 FUN_2(uVar1,param_2);
9 FUN_2(uVar1,0);

10 return;
11 }

(b) The Decompiled Code of add_intrinsic after Process-
ing

Figure 10: Comparison of Decompiled Code Before and
After Processing
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Figure 11: Training Loss across Epochs

of something as belonging to a certain category, while false
negative (FN) is the failure to identify something as belonging
to that category when it actually does. In this example, token
time and left belong to true positive and get belongs to
false positive. The predicted name missed ftp and accept,
both of which belong to false negatives. So the precision, recall
and F1 score of this function are 0.67, 0.50 and 0.57. We have
used the CodeWordNet module of SYMLM [31] to precisely
match semantically similar words. Specifically, CodeWordNet
is trained on the word embedding models which can generate
the close embeddings for morphological words, e.g., synonyms.
Using CodeWordNet, SYMGEN can precisely calculate the
scores based on its embedding models.

G. Training Loss across Epoches
When applying parameter-efficient training, we observe the

early-stop effect during training. Figure 11 presents the training
loss of SYMGEN across the training epochs. The loss reaches
a stable status at 6 epochs, while our default setting is 16.

1 in_addr_t getRandomPublicIP()
2 {
3 if(ipState[1] > 0 && ipState[4] < 255)
4 {
5 ipState[4]++;
6 char ip[16] = {0};
7 szprintf(ip, "%d.%d.%d.%d", ipState[1],

ipState[2], ipState[3], ipState[4]);↪→
8 return inet_addr(ip);
9 }

10

11 ipState[1] = rand() % 255;
12 ipState[2] = rand() % 255;
13 ipState[3] = rand() % 255;
14 ipState[4] = 0;
15 while(
16 (ipState[1] == 0)
17 (ipState[1] == 10)
18 (ipState[1] == 100 && (ipState[2] >= 64

&& ipState[2] <= 127))↪→
19 (ipState[1] == 127)
20 (ipState[1] == 169 && ipState[2] == 254)
21 (ipState[1] == 172 && (ipState[2] <= 16

&& ipState[2] <= 31))↪→
22 (ipState[1] == 192 && ipState[2] == 0 &&

ipState[3] == 2)↪→
23 (ipState[1] == 192 && ipState[2] == 88

&& ipState[3] == 99)↪→
24 (ipState[1] == 192 && ipState[2] == 168)
25 (ipState[1] == 198 && (ipState[2] == 18

ipState[2] == 19))↪→
26 (ipState[1] == 198 && ipState[2] == 51

&& ipState[3] == 100)↪→
27 (ipState[1] == 203 && ipState[2] == 0 &&

ipState[3] == 113)↪→
28 (ipState[1] >= 224)
29 )
30 {
31 ipState[1] = rand() % 255;
32 ipState[2] = rand() % 255;
33 ipState[3] = rand() % 255;
34 }
35

36 char ip[16] = {0};
37 szprintf(ip, "%d.%d.%d.0", ipState[1],

ipState[2], ipState[3]);↪→
38 return inet_addr(ip);
39 }

Figure 12: The Source Code of getRandomPublicIP

H. Source Code of Malware Function
Figure 12 presents the source code of function

getRandomPublicIP in botnet.
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