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Abstract—Wireless technologies like Bluetooth Low Energy
(BLE) and Wi-Fi are essential to the Internet of Things (IoT),
facilitating seamless device communication without physical con-
nections. However, this convenience comes at a cost—exposed
data exchanges that are susceptible to observation by attackers,
leading to serious security and privacy threats such as device
tracking. Although protocol designers have traditionally relied
on strategies like address and identity randomization as a
countermeasure, our research reveals that these attacks remain
a significant threat due to a historically overlooked, funda-
mental flaw in exclusive-use wireless communication. We define
exclusive-use as a scenario where devices are designed to provide
functionality solely to an associated or paired device. The unique
communication patterns inherent in these relationships create
an observable boolean side-channel that attackers can exploit to
discover whether two devices “trust” each other. This information
leak allows for the deanonymization of devices, enabling tracking
even in the presence of modern countermeasures. We introduce
our tracking attacks as IDBLEED and demonstrate that BLE
and Wi-Fi protocols that support confidentiality, integrity, and
authentication remain vulnerable to deanonymization due to
this fundamental flaw in exclusive-use communication patterns.
Finally, we propose and quantitatively evaluate a generalized,
privacy-preserving mitigation we call ANONYMIZATION LAYER
to find a negligible 2% approximate overhead in performance
and power consumption on tested smartphones and PCs.

I. INTRODUCTION

Wireless technologies like Bluetooth and Wi-Fi play a
crucial role in the Internet of Things (IoT), enabling ap-
plications in smart homes, entertainment, healthcare, retail,
and personal fitness. However, the wireless communication
convenience also makes data exchanges vulnerable to sniffing
attacks that compromise security and privacy, such as device
location tracking. For example, smartphones using Bluetooth
Low Energy (BLE) [1] to connect with accessories, such as
earbuds, can have their packets observed by inexpensive snif-
fers. These packets contain a MAC address—the smartphone’s
identifier—which can be used to track the owner’s location due
to the low probability of address collisions [2], [3].

To defend against tracking attacks, protocol designers in-
troduced address or identity randomization. For example, the
Bluetooth Special Interest Group (SIG) recommends MAC

address randomization, the periodic change of MAC address
(e.g., every 15 minutes [4]). This countermeasure makes it
significantly more difficult to track devices through MAC
address tracking attacks across time cycles, particularly in
areas with heavy wireless congestion from multiple devices.

However, tracking is still possible. For instance,
implementation flaws have been shown to potentially
leak static information used for tracking [5], [6], [2]. BAT
attacks [7] also demonstrate BLE tracking through exploiting
a specification flaw in randomized MAC address generation,
observing differences in communication between devices
using allowlists. Inspired by this BLE focused research, we
investigated IoT wireless communication protocols from a
general perspective and surprisingly uncover a historically
overlooked characteristic fundamental to devices that
exclusively communicate: the difference in behavior between
trusted and untrusted devices at multiple steps in common
protocols supporting BLE and Wi-Fi communication.

More specifically, we introduce the concept of exclusive-use,
where a device exclusively provides functionality to a single
or small group of trusted devices. This unique, trusted associ-
ation allows for recognition and secure communication while
preventing unauthorized access, even when devices change
addresses. However, our research uncovers a boolean side-
channel leak during the encryption, integrity verification, au-
thentication, and auto-connection phases. By analyzing traffic
patterns between exclusive-use devices—regardless of the pro-
tocol or randomization measures—attackers can deanonymize
devices, enabling user tracking through the attack we introduce
as IDBLEED.

Consider an attacker attempting to deanonymize Alice’s
smartphone, which uses address randomization. Alice leaves
home and takes her smartphone but leaves behind her
exclusive-use smartspeaker, which only accepts connection
requests from her trusted device and rejects those from
untrusted. The attacker deploys multiple relay nodes at
different locations that forward packets between smartphones
and the smartspeaker. If a distant smartphone communicates
successfully with the smartspeaker through a relay, the
attacker can infer that the smartphone belongs to Alice and
identify its location, as communication would otherwise fail.

While IDBLEED attacks apply to any exclusive-use com-
munication protocol, we evaluated two ubiquitous wireless
technologies, BLE and Wi-Fi, for vulnerabilities related to
privacy and tracking. For example, we found that BLE devices
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using the Connection Signature Resolving Key (CSRK) for
data integrity verification are vulnerable. Although the Long
Term Key (LTK) ensures data confidentiality, it also exposes a
boolean side-channel due to different communication patterns
between trusted and untrusted devices.

Devices rely on trust mechanisms to provide functionality,
which inherently creates exclusive-use patterns and allows
attackers to break device anonymity. A sufficient counter-
measure requires protocol designers to yet again consider
the classical dilemma of balancing security and privacy with
performance and functionality. We propose our ANONYMIZA-
TION LAYER (AL), a generalized mitigation that allows de-
vices to communicate with trusted peers while obscuring
exclusive-use characteristics. This layer eliminates sniffable
source-destination information through implicit addressing and
encrypts packets to prevent side-channels throughout the com-
munication phases after they have formed their trusted rela-
tionship. We evaluate the performance and power consumption
impact against a baseline on a multi-core PC laptop and
Google Pixel 7, finding negligible overhead.

Contributions. Our contributions in this paper are threefold:
1) Novel Vulnerability (§III). We are the first to

demonstrate the vulnerability in a ubiquitous wireless
communication scenario we call exclusive-use, where
distinct traffic patterns at specific stages reveal trusted
relationships. We focus on IoT devices and show that
this fundamental and overlooked flaw can be exploited
by attackers through passive observation of wireless
traffic or by actively relaying or replaying packets.

2) Concrete Attacks (§IV). We confirm through protocol
and real-world packet analysis that widely used wireless
technologies, including BLE and Wi-Fi, are vulnerable to
tracking attacks that exploit exclusive-use characteristics
to deanonymize devices—an attack we introduce as
IDBLEED. Further, these attacks are feasible at low-cost,
leveraging protocol traffic pattern vulnerabilities without
requiring sophisticated device compromise or malware.

3) Mitigation Solution (§V). We propose a novel
generalized mitigation that introduces ANONYMIZATION
LAYER (AL) which supports anonymous communication
between devices over broadcast channels using ephemeral
identifiers, removes the need for destination addresses,
and addresses the boolean side-channel leak through
pseudo-communication with untrusted devices. We
implement AL in C and evaluate its performance
overhead on-device and observe a negligible 1.808
or 2.038% mean overhead, for PC or smartphone
respectively, measured from 1.4 million packets varying
in data size between 16 and 2048 bytes. Additionally,
our key resolution method (Cache) outperforms existing
methods by 2.5x-40.4x (PC) and 1.5x-30.8x (smartphone)
performance increase, measured over 1 to 512 pairs.

II. BACKGROUND

Wireless technologies are essential to IoT, freeing
devices from the constraints of physical wiring by enabling
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Fig. 1: Typical BLE and Wi-Fi workflows.

communication and exchange data over the air. Although
various wireless protocols exist, this paper focuses on BLE [1]
and Wi-Fi [8] due to their ubiquity and widespread adoption,
even beyond IoT. We present background information below.

A. Wireless Protocols

Bluetooth Low Energy. BLE enables devices to establish
bi-directional wireless links, commonly found in wireless
speakers, car infotainment systems, smart home devices, and
smartwatches. With a similar transmission range and lower
power requirements than classic Bluetooth, BLE is very com-
mon in IoT devices [9], [10]. With each connection, BLE de-
vices assume either a central or peripheral role, defining their
protocol responsibilities during communication. The general
workflow of BLE communication, illustrated in Figure 1, has
up to five stages:

1) A peripheral device, such as BLE-enabled audio earbuds,
broadcasts data packets that include identifiable informa-
tion such as its MAC address and Universally Unique
identifier (UUID) to indicate its willingness to connect
with another device.

2) A central device, such as a smartphone, discovers or
recognizes a broadcasting peripheral device and begins
to establish a connection.

3) The connection between devices is established.
4) The two devices optionally engage in pairing and bond-

ing, which involves negotiating cryptographic keys such
as a Long Term Key (LTK), Connection Signature Re-
solving Key (CSRK), or Identity Resolving Key (IRK), as
presented in Table II.

5) The central and peripheral devices communicate by read-
ing or writing data to BLE attributes, key/value pairs that
signify various data and functionalities.

Wi-Fi. Wireless Fidelity (Wi-Fi) is a family of protocols based
on IEEE 802.11 standards that enable devices to connect to
networks wirelessly. Wi-Fi Access Points (AP) act as servers,
allowing client devices—such as computers, smartphones,
and smart devices—to connect to the network using various
authentication mechanisms, as shown in Figure 1. Other
Wi-Fi protocols, such as Wi-Fi Direct, operate similarly to
classic Wi-Fi but enable traditionally client devices to act
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Address
Type Static Rotation

Cycles
Vulnerable

To Tracking Example Devices

PA ✓ ∞ ✓ Most IoT devices (e.g.,Smart locks)
SRA ✗ Device-Specifc ✗ Office supplies (e.g., Keyboards)
RRPA ✗ 1 - 15 mins ✗ Smartphones (e.g., Android and iOS)
NRPA ✗ 1 - 15 mins ✗ Bluetooth Beacons

TABLE I: Summary of four types of BLE addresses

as APs. A common use case is smartphones creating ad-hoc
networks to exchange data without using a cellular service.
The general workflow of Wi-Fi is as follows:

1) A Wi-Fi AP, such as a router or a smartphone hotspot,
broadcasts beacons containing its Service Set Identifier
(SSID, i.e. network name) that are received by a client
Wi-Fi device, such as a smartphone.

2) The user, or the device automatically, selects a network
to connect to based on the SSID and any other desired
criteria, such as the network type (e.g., private or public)
or security settings.

3) The client and AP establish a connection through the
exchange of association packets.

4) The client and AP authenticate each other through an
authentication request and response process containing
any necessary credentials.

5) With an established connection, the device and AP
exchange data packets to complete the connection
process and establish a reliable connection.

B. Identity and Address Randomization

Networks rely on unique device identities to route unicast
data to its intended destination. The most common type
of network device identifier is a Media Access Control
(MAC) address, included in a transmitted packet to act like
a recipient’s name on a mail envelope.

Unfortunately, MAC addresses are inherently vulnerable to
sniffing when packets are sent over the air using a wireless
technology. This allows attackers to identify and track devices,
raising user privacy concerns. For example, an attacker can
sniff packets exchanged between a paired smartwatch and
smartphone that may use unique MAC addresses and deter-
mine when a victim arrives or departs a particular location.

As a countermeasure, some devices now use address
randomization to enhance privacy and defend against tracking
while still allowing addressable devices. Typically this
involves a protocol that periodically generates new, random
identifiers, while still allowing communication with trusted
devices. The randomization technique used by a real-world
device is determined primarily by user settings, developers
providing backwards compatibility, or technology limitations.

BLE Address Randomization. BLE uses four different
types of addresses, three of which are randomly generated to
defend against tracking attacks, as shown in Table I.

• Public Address (PA): globally static, manufacturer
assigned to serve as a unique device identity. PA is vulner-
able to MAC address tracking attacks, as it never changes.

• Static Random Address (SRA): randomly generated by a
device upon reboot or reset. If that never or very rarely
occurs, the SRA is vulnerable to tracking.

• Resolvable Random Private Address (RRPA): randomly
generated, periodically device-created, and resolvable
by paired devices with a shared Identity Resolving Key
(IRK).

• Non-Resolvable Private Address (NRPA): randomly
and periodically generated, but is never intended to be
resolvable depending on the implementation.

Wi-Fi Address Randomization. Wi-Fi MAC address ran-
domization is widely used in recent Android [11] and iOS [12]
versions. Android uses two methods: the first generates a fixed
random MAC address per network based on its AP beacon
attributes, preventing tracking across networks. The second
generates a new MAC address every 24 hours if the device dis-
connects, defending against traffic sniffing. iOS 14+ similarly
assigns random MAC addresses per network. Additionally, Wi-
Fi probe requests use random addresses to prevent tracking
during AP discovery. To ensure AP compatibility, both
Android and iOS may use Wi-Fi authentication protocols like
Extensible Authentication Protocol (EAP), where the device
proves its identity through challenge-response exchanges.

C. Protocol Features

Confidentiality. Encryption ensures data confidentiality for
network protocols. During communication, devices negotiate
secret keys for verification or encryption. For example, BLE
devices may exchange LTK during pairing, later deriving
encryption session keys. The same LTK is used to generate
identical session keys, securing the trusted relationship.

Integrity. Data signatures or message authentication
codes (MAC) using shared cryptographic keys ensure data
integrity—confirming the data matches the originator’s
intent. For example, BLE verifies unencrypted data with a
CSRK, exchanged during pairing. The key generates a MAC
appended to the message as packet payload. Each BLE device
holds a unique CSRK with others, ensuring exclusive-use and
preventing unauthorized alterations.

Authenticity. Authentication verifies device identity for net-
work or resource access, often using a challenge-response
protocol with a shared cryptographic key. One device sends a
challenge with a MAC, and the other responds by solving it. If
valid, the first device authenticates the responder. While often
paired with encryption, authentication serves a distinct role.

Auto-Connection. Auto-connecting to trusted networks or
devices improves user experience. Smartphones automatically
join familiar Wi-Fi networks, like home routers, when detected
via probes. Similarly, IoT apps connect with paired BLE
devices when nearby. This seamless background connectivity
spares users from manual selection and delays.
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III. IDBLEED TRACKING ATTACKS

A. Deanonymization via Exclusive-use

We define exclusive-use as the observable association
between two or more trusted devices based on their
communication patterns. An exclusive-use device interacts
distinctively with a trusted peer compared to other devices.
This common protocol design mitigates security threats by
restricting access to specific resources and services to devices
with an established trust relationship, typically owned by the
same user or associated group.

However, we observe that the communication patterns of
this design also inherently deanonymize devices, enabling
attackers to track victims. While numerous studies have inves-
tigated tracking attacks [2], [3], [5], [6], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], we are confident that we are the first to
explore and raise awareness of this historically overlooked and
nuanced characteristic fundamental to exclusive-use devices.
Key distinctions from related work are discussed in §VIII. We
further recognize that numerous protocols exhibit exclusive-use
characteristics, making our concept not only applicable to IoT
but also ubiquitous across communication technologies.

Effectively, a device’s exclusive-use characteristics are ob-
served via a boolean traffic pattern side-channel leaked during
various communication stages. One of two possible outcomes
during communication potentially deanonymizes a device: a
successful path means a trusted relationship exists while a
failure path means it does not. We specifically observe this leak
during stages handling confidentiality, integrity, authenticity,
and auto-connection. Note, we use “boolean” to describe a
binary, success/failure, yes/no, if/else, etc., traffic pattern, and
not an actual data bit in the packet or a boolean datatype.

Combining the exclusive-use side-channel observation with
relay and replay techniques produces a new, modern tracking
attack we introduce as IDBLEED. Attackers deanonymize
and track victims despite modern countermeasures such as
MAC address randomization.

B. Scope

Attack Scope. We focus the scope of our IDBLEED attacks
and research by excluding tracking methods that directly ob-
tain cryptographic keys through a pairing process, explored by
prior works BIAS [32], Ghost Attacks [33], Downgrade [13],
and KNOB [34]. Further, we do not investigate the initial
pairing process, which has a low or one-time occurrence
rate and is difficult to time the capture. Additionally, we
exclude methods involving malware and instead focus purely
on communication protocol attacks. This underscores the flaws
in the protocol communication stages themselves rather than
rely on advanced malware capabilities that may track devices
using GPS, logging, or other means. We primarily focus on
ubiquitous wireless communications technologies to include
BLE and WiFi that demonstrate the vulnerability, without
augmentation with other techniques that require fields of
view, sound localization techniques, etc. Packet collection via

sniffing is constrained by the target device’s communication
protocol and transmission power, however, does not limit the
total distance a packet may ultimately travel between devices
via other technologies and relay methods.

Victim Scope. Our research focuses on scenarios where mul-
tiple devices are present at the potential location of the victim.
This highlights the significance of exclusive-use communica-
tion patterns in the real world, since it would be significantly
easier to identify a lone device at a specific location without
using IDBLEED attacks. Further, the number of devices in an
area does not impact the attack model or practicality since
an attacker is observing the difference in communication
patterns between trusted exclusive-use devices. Our research
investigates exclusive-use patterns in known, trusted relation-
ships and does not target arbitrary victims, therefore known
potential device location of (residence, office, etc.) is required.

C. Threat Model

Attacker Goals & Motivations. An attacker is a person or
group motivated to track a specific, targeted person’s location.
Some examples include family members or friends by per-
sonal investigators; political figures, government employees,
researchers with sensitive information, or people in power
by nation-states or radical extremists; high-net worth indi-
viduals or celebrities by paparazzi, stalkers, or extortionists;
people involved in legal cases such as defendants, victims,
informants, or lawyers by aggressors with opposing views.
Example locations include a home, office, daycare, coffee
shop, airport, state, country, facility, etc. Motivations include
tracking locations or pattern-of-life analysis as a step in a
larger goal to potentially inflict physical harm, harass, extort,
gather intelligence, influence, or exploit in ways outside of
the digital world but first requires knowledge of a victim’s
physical location. Note, there is no age discrimination of
the victims for tracking attacks. The potential attackers and
their motivations for tracking victims is nearly endless and
alarming, underscoring the need for a sufficient defense that
we provide in §V.

Real-world Attacker Feasibility. The IDBLEED hardware
setup is relatively low-cost, making it feasible and practical
even for a hobbyist and trivial for motivated nation-state
actors. For passive attacks, an attacker simply sets up a
wireless sniffer such as out-of-the-box BLE or Wi-Fi dongle,
or a more advanced software defined radio setup. These can
be used with Raspberry Pi’s or smartphones with cellular data
plans or nearby Wi-Fi, a common utility in public places such
as coffee shops. An Internet connection allows transmitting
data via an open-source publisher-subscriber message queue
service and web application that an attacker can remotely
receive and analyze data. An attacker places these sniffing
nodes at any location their victim may or soon be located.
For active attacks, an attacker extends the passive setup to
include a relay network of sniffing nodes at targeted locations
that can also receive and re-transmit captured data packets.
The effective range is limited by the wireless technology
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between victim devices and nodes, however, the attacks remain
practical given radio frequency waves’ ability to travel through
structures and transmission speeds in an Internet-connected
relay network.

Wireless interfaces or dongles are available at technology
retailers between $10-$50 USD, including those for BLE,
Wi-Fi, and other IoT protocols such as Z-Wave, Zigbee, and
LoRaWAN. Raspberry Pi’s range between $50-$100 USD,
with minimum RAM models being plenty sufficient. For
a motivated nation-state actor, the cost becomes trivially
low even when electing for advanced electronics, such as
long-range antennas and signal amplifiers.

Assumptions & Requirements. The two prerequisite assump-
tions and requirements for IDBLEED attacks are:

1) The victim’s devices are exclusive-use and previously
formed a trusted relationship. This implies a unique as-
sociation between the user and the devices, which exhibit
distinct success and failure communication patterns.

2) The attacker can sniff and potentially relay and retransmit
communication traffic between devices. Note, sniffing
an initial “bonding” process is not assumed or required.

D. Attack Method Workflows

We now present the generalized Passive (M1) and Active
(M2) IDBLEED method workflows using honest users
Alice, Bob, Charlie, and attacker Eve. Each represent a
device capable of exchanging information using a sniffable
communication channel, for example, REQ(A → B) and
RSP(B → A). Further, Alice and Bob are exclusive-use and
trusted, thus associated. Charlie is simply any, and an infinite
number of, non-associated devices. Eve sniffs, relays, and
re-transmits their communication traffic. These workflows
provide a basis for our real-world analysis in §IV.

(M1) Passive Deanonymization. Bob is exclusive-use and
trusts Alice, and therefore only responds to their requests
but ignores Charlie’s. Meanwhile, Eve is able to observe the
communication between all three users. Shown in Figure 2, at
t1, Alice uses identity IDA1 to send request REQ(A1 → B),
which Bob responds with RSP(B → A1). Charlie also
sends a request REQ(C1 → B) but is ignored. At t2, both
Alice and Charlie change their identities to IDA2 and IDC2,
respectively. Once again, Alice and Charlie send requests to
Bob. Eve observes the requests and responses between Alice
and Bob, as well as Bob not responding to Charlie’s requests.
As such, these different responses leak a boolean side-channel
that leads Eve to conclude IDA1 and IDA2 belong to Alice. At
this moment, Eve breaks the anonymity offered by identity
randomization, leaving Alice vulnerable to tracking.

While M1 is effective when traffic from two devices can
be sniffed, it becomes unsuitable if they move beyond their
communication protocol’s range—such as when a smartphone
is taken to a coffee shop while a BLE-paired smart speaker
remains at home. Further, the passive attack relies on one
device maintaining a static identity, unless communication is
observed during asynchronous identity randomization between

Bob CharlieAlice

REQ ( A1 → B )

IDt1= A1 ID = B IDt1= C1

REQ ( C1 → B )
RSP ( B → A1 )

REQ ( A2 → B )
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RSP ( B → A2 )

Eve
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Fig. 2: Passive Deanonymization
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the two devices, as explored in [7]. These limitations are
addressed by the more powerful active IDBLEED attack.

(M2) Active Deanonymization. The active IDBLEED attack
utilizes a relay network setup by Eve at various locations
where Alice may be. As shown in Figure 3, consider when
Eve knows that Alice exclusively communicates with Bob.
At time t3, Alice is away from Bob. At one relay location,
an anonymized device initiates a request REQ(X → Y ),
Eve captures and relays the packet to Bob. If Bob responds
with RSP(B → X), Eve now knows that X is simply a
randomized identifier for Alice (X = A3) and that she is
nearby that particular relay’s location. Later, at time ti, Eve
once again captures and relays a packet REQ(Xi → Yi) to
Bob. However, Bob does not respond with the hypothesized
RSP(Bi → Xi). Therefore Xi != Ai and Eve determines
Alice is not near that relay node location.

The relay network enables Eve to facilitate communication
between devices at any distance, bypassing the proximity
limitations of M1 and discussed in attack scope. The two
devices remain unaware that packets are being relayed, given
absence of a distance or time-bounding protocol. The active
attack eliminates the static identity requirement of M1 since
observing successful communication patterns while relaying
packets breaks the anonymity from identity randomization.
Additionally, the relay technique allows for packet replay if
the communication protocol is vulnerable (e.g., not verifying
packet freshness using a sequence number, nonce, TTL, etc.),
enabling an attacker to replay previously transmitted packets
at different locations to identify the victim.

E. Real-world Attack Scenario & Workflow Example

The following threat scenario illustrates the feasibility of
the active IDBLEED attack. A nation-state actor, Eve, tar-
gets politician Alice to track her movements. Eve learns
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Key Length Lifetime Protection

Connection Signature Resolving Key (CSRK) 128 bit ∞ Verification
Long Term Key (LTK) 128 bit Reset after pairing Encryption
Session Key (SK) 128 bit Every session Encryption
Identity Resolving Key (IRK) 128 bit ∞ Authentication

TABLE II: Summary of keys negotiated during pairing

Alice’s home address and sniffs BLE packets from her paired
smartspeaker while nearby, which is not currently connected
to Alice’s smartphone and without needing to observe the
initial bonding. Eve sets up a smartphone relay node (R1)
outside Alice’s home, within BLE range (about 30 feet).
She also hosts a web application that allows relay nodes to
publish sniffed packets to other subscribers. Next, Eve deploys
three additional relay nodes (R2, R3, R4) at a coffee shop,
Alice’s workplace, and her child’s daycare. R1 captures the
smartspeaker’s broadcast packets, relaying them to R2, R3,
and R4, which they immediately broadcast over BLE. While
at the coffee shop (R2), Alice’s smartphone replies to the
broadcast, which R2 captures and relays back to R1. R1 then
confirms the smartspeaker received a positive response. Since
none of the smartphones at Alice’s work or daycare (R3, R4)
responded, Eve concludes that Alice is at the coffee shop (R2).
This confirmation of location can now be leveraged for more
sophisticated cyber or malicious attacks.

IV. CONCRETE IDBLEED ATTACKS

A. IDBLEED in BLE Confidentiality

Our first analysis focuses on BLE encryption that provides
data confidentiality. There are six types of keys exchanged
during the BLE pairing process that create an association
(Table II). Four of these keys are used to encrypt data: Session
Token Key (STK), Token Key (TK), Long Term Key (LTK),
and Session Key (SK). However, previous works show STK
and TK are insecure and vulnerable to key brute force attacks
[35]. We exclude those from our analysis and focus on LTK
and SK, two keys used in BLE Secure Connections from SMP.

Protocol Workflow. BLE Secure Connections encrypts traffic
bi-directionally using a derived SK that is unique to each
connection. Two devices generate a valid SK by performing
a process similar to Diffie-Helman, with real-world traces
shown in Table III, illustrated in Figure 4, and further detailed
as follows:.

1) The Central sends a Link Layer encryption request mes-
sage (LL_ENC_REQ) containing a session key diversifier
(SKDc) and initialization vector (IVc).

2) The Peripheral device receives the request, generates its
own SKDp and IVp and includes them in an encryption
response message (LL_ENC_RSP).

3) Both the central and peripheral combine parts of the
shared SKDc and SKDp to create the SK. (The exchanged
IV’s are used by each recipient to initialize encryption.)

4) The central sends an unencrypted message
(LL_START_ENC_REQ) and sets itself to receive
encrypted data using the generated SK.

Peripheral w/o LTK

LL_REJECT_IND 

Peripheral w/ LTK

SKD = SKDc || SKDp

SK = ENC(LTK || SKD)

LL_START_ENC_RSP(ENC(SK,m))

ADV_IND

SCAN_REQ

SCAN_RSP

CONNECT_REQ

LL_ENC_REQ(SKDc,IVc)

LL_ENC_RSP(SKDp,IVp)

LL_START_ENC_REQ(m)

Central Peripheral

Fig. 4: BLE Encryption Workflow

5) The peripheral responds with a message
(LL_START_ENC_RSP) encrypted using the SK
and sets itself to receive encrypted data. If a valid SK
cannot be generated due to missing a valid LTK shared
during initial pairing, it will send a rejection message
(LL_REJECT_IND) and may further terminate the the
connection, depending on the implementation.

6) If the central receives the encrypted response message
(LL_START_ENC_RSP) from the peripheral, the two
devices may begin transmitting and receiving encrypted
data using the previously exchanged initialization vectors
(IV = IVc || IVp).

Attack Workflow. We accurately model Table III in Figure 5
to demonstrate IDBLEED during BLE encryption initiation.

• Passive: Eve knows a peripheral (smartspeaker) is
exclusive-use and observes it responding to a central
(smartphone) with a LL_START_ENC_RSP message,
versus a LL_REJECT_IND message, they deanonymize
the central.

• Active: Supports relay and replay, modeled in Figure 5.
At time t1, Eve captures peripheral data packets,
forwards them to relay locations to rebroadcast
near an anonymized smartphone using MAC address
randomization. Eve observes the LL_START_ENC_RSP
message and deanonymizes the smartphone. Replay is
possible with BLE Secure Connections, as there is no
sequence number and the first few packets to initiate
encryption are not encrypted. To increase the attack’s
covertness, Eve doesn’t need to relay back the final
LL_START_ENC_RSP thus reducing a chance Alice is
alarmed by visual user interface notifications.

Evaluation. This vulnerability exists due to the trusted associ-
ation verification that uses an existing LTK and the communi-
cating devices’ MAC address. Therefore, all BLE devices that
use LTK for security are vulnerable to this attack—it is a flaw
in the BLE specification itself. We make two primary observa-
tions: First, all of the evaluated peripheral devices use a static
address—either a PA, which never changes, or an SRA, which
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Fig. 5: IDBLEED attacking BLE data encryption

only changes after a manual reset by the user. Second, we
observe different centrals may have different reactions when
they receive a peripheral’s LL_REJECT_IND message—some
peripherals terminate the connection after sending this mes-
sage, while others wait for new messages from the central.

Upon investigation we find both actions are acceptable
based on the Bluetooth Core Specification 5.3, page 2844:
“The Link Layer of the Peripheral shall finalize the sending
of the current Data Physical Channel PDU and may finalize
the sending of additional Data Physical Channel PDUs
queued in the Controller. After these Data Physical Channel
PDUs are acknowledged, until this procedure is complete or
specifies otherwise, the Link Layer of the Peripheral shall
only send Empty PDUs, LL_TERMINATE_IND PDUs, and
PDUs required by this procedure.” That is, the peripheral
decides to continue the session by either sending empty
PDUs to wait for responses from the central or terminate the
session by sending a LL_TERMINATE_IND message.

Finally, we observe devices vital to other systems, such as
keyboards, are more likely to terminate the connection.

B. IDBLEED via BLE Integrity

Although encryption offers stronger protection for data
confidentiality, not all BLE devices support it. The BLE
Connection Data Signing Procedure is an alternative to still
provide both integrity and authenticity verification. A digital

No. Time Source ID Destination ID PDU Type
t0 = 0 min, C0 = ad:d8:3e:a9:ba:52 (Passive attacker)

1 00:00:36 58:d7:8e:c7:8e:31 Broadcast ADV_IND
2 00:00:40 ad:d8:3e:a9:ba:52 58:d7:8e:c7:8e:31 SCAN_REQ
3 00:00:44 58:d7:8e:c7:8e:31 Broadcast SCAN_RSP
4 00:00:48 ad:d8:3e:a9:ba:52 58:d7:8e:c7:8e:31 CONNECT_REQ
5 00:01:00 ad:d8:3e:a9:ba:52 58:d7:8e:c7:8e:31 LL_ENC_REQ
6 00:01:04 58:d7:8e:c7:8e:31 ad:d8:3e:a9:ba:52 LL_ENC_RSP
7 00:01:12 ad:d8:3e:a9:ba:52 58:d7:8e:c7:8e:31 LL_START_ENC_REQ
8 00:01:16 58:d7:8e:c7:8e:31 ad:d8:3e:a9:ba:52 LL_START_ENC_RSP

t1 = 15 min, C1= be:a4:4e:dd:af:ee (Active Attacker Using Relaying)
101 00:15:36 58:d7:8e:c7:8e:31 Broadcast ADV_IND
102 00:15:40 be:a4:4e:dd:af:ee 58:d7:8e:c7:8e:31 SCAN_REQ
103 00:15:44 58:d7:8e:c7:8e:31 Broadcast SCAN_RSP
104 00:15:48 be:a4:4e:dd:af:ee 58:d7:8e:c7:8e:31 CONNECT_REQ
105 00:16:00 be:a4:4e:dd:af:ee 58:d7:8e:c7:8e:31 LL_ENC_REQ
106 00:16:04 58:d7:8e:c7:8e:31 be:a4:4e:dd:af:ee LL_ENC_RSP
107 00:16:12 be:a4:4e:dd:af:ee 58:d7:8e:c7:8e:31 LL_START_ENC_REQ
108 00:16:16 58:d7:8e:c7:8e:31 be:a4:4e:dd:af:ee LL_START_ENC_RSP

t1 = 30 min (Active Attacker Using Replaying)
C2= ae:f4:3f:d9:aa:12

201 00:30:36 58:d7:8e:c7:8e:31 Broadcast ADV_IND
202 00:30:40 ae:f4:3f:d9:aa:12 58:d7:8e:c7:8e:31 SCAN_REQ
203 00:30:44 58:d7:8e:c7:8e:31 Broadcast SCAN_RSP
204 00:30:48 ae:f4:3f:d9:aa:12 58:d7:8e:c7:8e:31 CONNECT_REQ
205 00:31:00 ae:f4:3f:d9:aa:12 58:d7:8e:c7:8e:31 LL_ENC_REQ
206 00:31:04 58:d7:8e:c7:8e:31 ae:f4:3f:d9:aa:12 LL_ENC_RSP
207 00:31:12 ae:f4:3f:d9:aa:12 58:d7:8e:c7:8e:31 LL_START_ENC_REQ
208 00:31:16 58:d7:8e:c7:8e:31 ae:f4:3f:d9:aa:12 LL_START_ENC_RSP

C3= cf:ad:34:fe:ab:ee
211 00:30:36 58:d7:8e:c7:8e:31 Broadcast ADV_IND
212 00:30:40 cf:ad:34:fe:ab:ee 58:d7:8e:c7:8e:31 SCAN_REQ
213 00:30:44 58:d7:8e:c7:8e:31 Broadcast SCAN_RSP
214 00:30:48 cf:ad:34:fe:ab:ee 58:d7:8e:c7:8e:31 CONNECT_REQ
215 00:31:00 cf:ad:34:fe:ab:ee 58:d7:8e:c7:8e:31 LL_ENC_REQ
216 00:31:04 58:d7:8e:c7:8e:31 cf:ad:34:fe:ab:ee LL_ENC_RSP
217 00:31:12 cf:ad:34:fe:ab:ee 58:d7:8e:c7:8e:31 LL_START_ENC_REQ
218 00:31:16 58:d7:8e:c7:8e:31 cf:ad:34:fe:ab:ee LL_REJECT_IND

TABLE III: Real-world BLE traces w/ encrypted
LL_START_ENC_RSP
.

signature consisting of a counter and Message Authentication
Code (MAC) is appended to the data payload. This allows one
device to authenticate data sent between trusted devices signed
with the unique CSRK originally shared during their pairing
and association.

Protocol Workflow. The BLE Connection Data Signing Pro-
cedure includes a generation and verification stage:

1) One of two communicating devices, assumed here to be
Central c, generates a data signature for a message (m)
by concatenating a 32-bit self-increasing counter (SC) to
produce a new message (M ) and determines its length L.

2) The Central inputs the CSRK shared with its target
Peripheral, M , and L into a message authentication code
generation algorithm (defined in NIST Special Publica-
tion 800-3B [36]) to produce a 64-bit data signature macc:

MAC64 = CMAC(CSRK128 || M || L64 )

= CMAC(CSRK128 || ( m || SC32 ) || L64 )

3) The Peripheral receives m and macc and performs sig-
nature verification to determine if m is from a trusted
Central by repeating steps 1-2 with its own locally stored
CSRK to generate its own macp and compare with macc.

Attack Workflow. We detail passive and active IDBLEED
attacks on BLE data integrity using Figure 6 and the following:

• Passive: Eve observes the protocol sequence at any time
and deanonymizes the devices by observing the commu-
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Fig. 6: Side channel exploiting BLE data verification

nication pattern due to the devices’ shared and unique
CSRK. For example, at time t1, the smartphone uses a
random BLE MAC address C1 (e.g., PRA or NPRA)
to initiate a request (macc) to the smartspeaker, which it
responds with ACK. Later, the smartphone changes its ad-
dress to C2 and initiates a request to the smartspeaker—
this traffic is again observable and Eve deanonymizes the
smartphone, regardless of the BLE address type.

• Active: With a relay node near the smartspeaker, Eve is
able to relay the macp. Devices near the target location
nodes are unaware of the relay and Eve observes the
ACK that deanonymizes the smartphone. Note, due to
the SC used in the mac generation in steps 1-2, replay
is not possible.

Evaluation. The nature of CSRK-based data integrity verifi-
cation leaves all BLE peripherals that use it, and by extension
their paired centrals, vulnerable to IDBLEED attacks. We
validated this observation on various Android devices and
found all are vulnerable, as highlighted in Table IV.

BLE peripherals are often firmware-defined, bare-metal IoT
devices, such as Apple AirTags. However, they can also
be software-defined, widening IDBLEED’s attack landscape
and applicability. One example is App-Defined Bluetooth
Peripherals (AdBP) [37], provided by operating system APIs
and used by mobile apps. A key feature of AdBP is ser-
vice protection via permissions—we have identified two that
use CSRK and signature verification, consequently leaking
the boolean side-channel: PERMISSION_ WRITE_SIGNED
and PERMISSION_ WRITE_SIGNED_MITM. Note, iOS is
spared as it doesn’t currently support CSRK in their AdBPs.

C. IDBLEED in Wi-Fi Authentication

We now look closely at authentication in Wi-Fi Direct
(also known as Wi-Fi P2P), a wireless networking protocol
that allows devices to directly connect and communicate with
each other without a separate, dedicated AP. Devices discover
each other, form a directly linked network, and assign roles
to orchestrate the temporary or persistent associations and
communicate with each other using EAP for authentication.

Smartphone Model Chip OS BLE Ver.
Samsung Galaxy S10 KM8D03042 Android 11.0 5.0
Google Pixel 4 SM8150 Android 12.0 5.0
Google Pixel 2 MSM8998 Android 9.0 5.0
Google Pixel 4 SM8150 Android 10.0 5.0
HUAWEI P10 BCM43455XKUBG Android 9.0 4.2

TABLE IV: Summary of tested Android devices

Protocol Workflow. The Wi-Fi Direct connection and au-
thentication protocol follows similarly to standard Wi-Fi with
Probe and Association requests and responses, but adds an
exchange of Invitation messages. One device initiates a con-
nection and, once established, the devices form a group with
one designated as the group owner (GO) that acts as a Soft-
AP and the other as a client. The GO may specify a long-
term configuration for the group, including a password for
connections, while temporary groups are one-time use and do
not have long-term configuration. The workflow is as follows:

1) A device broadcasts a probe request PROBE_REQ which
is responded PROBE_RSP by another Wi-Fi Direct en-
abled device.

2) The initiating device sends a unicast invitation
INVITATION_REQ to the responding device, which
responds INVITATION_RSP.

3) The devices authenticate and associate with each other to
form the group and assign roles.

4) The devices can now communicate with each other.

Attack Workflow. We provide Wi-Fi Direct packet traces with
Table V and expand on IDBLEED attacks below.

• Passive: Eve observes traffic at a location known to have
a Wi-Fi Direct device owned by Alice, such as a home or
office printer. Auto-connection may occur once a device
comes in range and deanonymizes Alice, if successful.

• Active: Eve captures and relays probe and authentication
packets to other locations. Upon observation of successful
authentication, Alice is deanonymized.

Evaluation. We observe that Wi-Fi Direct is vulnerable to
both passive and active IDBLEED attacks due to the inherent
pass/fail traffic patterns during authentication. While the
tested smartphones listed in Table IV change their MAC
addresses upon joining a Wi-Fi Direct group, we find that all
of them remain vulnerable to IDBLEED attacks. Note that as
of iOS 7.0, iPhones do not use Wi-Fi Direct but instead their
own direct link protocol known as MultipeerConnectivity.
However, similar connectivity resumption mechanisms exist
that reveal associations between devices [38].

D. IDBLEED in Wi-Fi Auto-Connection

Many devices send and receive probes to auto-connect
upon discovering an in-range, known Wi-Fi or Wi-Fi Direct
network. This feature can be exploited by attackers who
masquerade as previously associated networks with the same
SSID in order to trick devices into initiating a connection
request. While this is well known as the EvilTwin attack
[39], we provide a brief study and evaluation with a renewed
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No. Time Source ID Destination ID Type
t0 = 0 min, C0 = 0e:8d:ae:c7:1e:50 (Passive Attacker)

1 00:00:16 0e:8d:ae:c7:1e:50 ff:ff:ff:ff PROBE_REQ
2 00:00:40 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 PROBE_RSP
3 00:00:44 0e:8d:ae:c7:1e:50 12:df:a9:ef:fb:52 INVITATION_REQ
4 00:00:48 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 INVITATION_RSP
5 00:00:54 0e:8d:ae:c7:1e:50 12:df:a9:ef:fb:52 PROBE_REQ
6 00:00:58 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 PROBE_RSP
7 00:01:00 0e:8d:ae:c7:1e:50 12:df:a9:ef:fb:52 AUTH
8 00:01:04 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 AUTH
9 00:01:12 0e:8d:ae:c7:1e:50 12:df:a9:ef:fb:52 ASSOC_REQ
10 00:01:16 12:df:a9:ef:fb:52 0e:8d:ae:c7:1e:50 ASSOC_RSP

t1 = 15 min, C1 = 0f:9e:fe:c2:2e:23 (Active Attacker Using Relaying)
201 00:15:16 0f:9e:fe:c2:2e:23 ff:ff:ff:ff PROBE_REQ
202 00:15:40 12:df:a9:ef:fb:52 0f:9e:fe:c2:2e:23 PROBE_RSP
203 00:15:44 0f:9e:fe:c2:2e:23 12:df:a9:ef:fb:52 INVITATION_REQ
204 00:15:48 12:df:a9:ef:fb:52 0f:9e:fe:c2:2e:23 INVITATION_RSP
205 00:15:54 0f:9e:fe:c2:2e:23 12:df:a9:ef:fb:52 PROBE_REQ
206 00:15:58 12:df:a9:ef:fb:52 0f:9e:fe:c2:2e:23 PROBE_RSP
207 00:16:00 0f:9e:fe:c2:2e:23 12:df:a9:ef:fb:52 AUTH
208 00:16:04 12:df:a9:ef:fb:52 0f:9e:fe:c2:2e:23 AUTH

TABLE V: Real-world Wi-Fi packet traces. Colors represent
scanning, invitation, communication, and relayable

perspective that focuses only on deanonymization without
the goal for successful network connections that allow
eavesdropping or data injection.

Protocol Workflow. The auto-connect workflow follows the
standard Wi-Fi connection sequence as previously shown, but
actively sends or receives probe beacons for nearby networks.

Attack Workflow. This attack does not require relaying
packets between devices and is a hybrid of the passive and
active IDBLEED attacks. Eve creates a Wi-Fi network using
an SSID known to be previously used by Alice, easily observed
by capturing broadcast packets at a home or office. Eve
deanonymizes Alice upon observing a connection request.

Evaluation. The nuanced perspective we underscore is the
ability to clearly observe a boolean condition in the authenti-
cation protocol. Since devices are set to auto-connect in many
default cases, this process occurs in the background without
confirmation from Alice—the essence that EvilTwin is based.
While this attack can be easily executed using a configured
smartphone hotspot, Eve can also deploy nodes running cus-
tom software designed to stop the connection sequence once
the boolean leak is observed at the authentication stage for
more covert tracking.

V. MITIGATION DESIGN

Having introduced the threats of our IDBLEED attacks, we
now provide a generalized mitigation solution for implemen-
tation and integration with specific communication stacks.
More specifically, we have developed an anonymized protocol
to demonstrate technical feasibility and evaluate performance
impact of our solution’s key features as a privacy-enhancing
technology that addresses the core vulnerabilities in exclusive-
use communication. We introduce and propose ANONYMIZA-
TION LAYER (AL) with the following goals (G1 - G4).

G1: Remove Data Transmission Direction. A valid
mitigation must prevent Eve from determining packet direction
through flow analysis. This requires sending originally unicast

packets over a protocol’s broadcast channel while keeping
them addressable. Our solution generates, exchanges, and
transmits keys during pairing and communication, enabling
temporal source identifiers that Alice appends to data destined
for Bob. We propose two solutions for key resolution: Cache
and Hash—balancing performance with anonymous identifier
rotation frequency.

The Cache method allows Alice and Bob to use keys to
calculate N source identities for each other. Upon receiving a
packet, they linearly search pair records. If a match is found,
Bob knows the packet was intended for them, and from Alice,
as the key derives from their unique pre-shared secret, acting
as an implicit destination address, similar to the OKC in
802.11 [40]. A temporal or counter parameter (I) protects
against replay attacks and long-term tracking.

The Hash method requires Alice to calculate a new resolv-
able source address for each packet to Bob, who reproduces
the same address using any of its paired record keys, similar
to BLE’s RRPA/IRK approach [41].

For both, if no match is found, the packet is discarded to
conserve resources. These methods also provide ephemeral
address randomization for otherwise static addresses.

G2: Remove Observable Packet Context & Entropy. The
second goal removes observable packet context or fields that
indicate packet type. We propose counter-based encryption
with rotating keys, which change at set intervals to introduce
extra entropy and avoid repeating patterns in management or
data packets, as in [42]. Packets are padded with random bytes
or to full size, preventing size-based context inference [43].

G3: Add Pseudo-responses. Even with anonymized
transmission direction and packet context, boolean side-
channel patterns still exit in protocols with differing
success/failure responses. Our mitigation has Bob randomly
send pseudo-responses to untrusted packets using random
identifiers and data, creating uncertainty for Eve regarding
communication patterns. Additionally, since packet context
is unknown due to G2, Eve cannot determine with certainty
if their replayed or relayed packets align with the current
protocol steps and device state.

G4: No Modifications (i.e., Transparent). A generalized
privacy-enhancing solution should not require modifications
to existing protocols to avoid adoption challenges. Our AL
solution enhances communication protocol stacks with a new
layer, encapsulating all layers above it to provide anonymity.
This enables existing layers to operate without knowledge of
AL while preserving their functionality.

Defense Scope. AL aims to sufficiently achieve the above de-
sign goals, but the scope does not include replacing entire layer
functionality—it augments existing communication stacks ag-
nostically. It also does not shape traffic timing as the through-
put impact is specific to application timing requirements and
hardware capability. Further, since it is transparent to the other
layers, it does not aim to provide replay or relay defense.
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Formulas & Workflow. Alice and Bob begin pairing by
generating and exchanging keys KA and KB of size s using a
cryptographic random number generator (CRNG). They then
both create paired key PKAB by XOR’ing KA and KB .

KA ← CRNG(s),KB ← CRNG(s) (1)

PKAB ← XOR(KA, KB) (2)

Alice then uses an HMAC key derivation function (HKDF)
to generate source key, SKA, using PKAB , and KA, a static
string, and output length L. Bob does the same, using KB .
Similarly, PKAB and a different static string is used to create
a shared paired encryption key PEKAB . Note, this process is
one-time and secure using established encrypted connections
and/or common public-key exchange methods.

SKA ← HKDF(PKAB , KA, “ALsrc”, L) (3)

PEKAB ← HKDF(PKAB , NULL, “ALenc”, L) (4)

The Cache and Hash methods now differentiate from this
point. With the Cache method, Alice creates a set of N
transmission keys TKA ({TKA0 , TKA1 , ..., TKAN

}) using
SKA and a time or counter interval IAi as parameters to a
symmetric cryptographic function (SENC). The interval values
for I can vary. For instance, an interval can be based on a
time window if both devices have reasonably accurate system
time (such as proven by Google/Apple’s Exposure Notification
framework [44]). Otherwise, an initial seed value and counter
mechanism may be used. Similarly, Bob creates transmission
key set TKB . Both Alice and Bob also repeat this for the other’s
set, each ending with TKA and TKB . The same is done to
create a set of interval-based rotating encryption keys REKAB :

TKAi ← SENC(SKA, Ii) (5)

REKABi
← SENC(PEKAB , Ii) (6)

Alice encrypts a message M destined for Bob by combining
interval IAi and REKAi as input to a counter-based symmetric
encryption algorithm (CTR-SENC):

ME ← CTR-SENC (REKABi
, Ii, M) (7)

Alice now assembles an anonymized packet by concatenating
TKAi with ME and transmits it over the protocol’s broadcast
channel. Bob receives the packet and performs a lookup for
TKAi

. Upon successful match, Bob determines they are in fact
the packet’s intended destination and it was generated by Alice,
retrieving the TKAi

-paired REKAi
to decrypt ME .

Returning to the Hash method, Alice generates random bytes
Rx of size l and combines them with SKAB as arguments to
an HMAC function to produce TKHx. The Rx is concatenated

Bob CharlieAlice

BCAST(TKAi, ME1)

IDti = TKAi

BCAST(Ci, Mx)
BCAST(TKBi, ME2)

Eve

ti

BCAST(Bx, My)

KA ← CRNG(s)

     
Exchange KA, KB

PKAB ← XOR(KA, KB)

SKA ← HKDF(PKAB, KA, "ALsrc", L)

SKB ← HKDF(PKAB, KB, "ALsrc", L)

PEKAB ← HKDF(PKAB, NULL, "ALenc", L)

     

KB ← CRNG(s)

     

TKAi ← SENC(SKA, Ii)

TKBi ← SENC(SKB, Ii)

REKABi ← SENC(PEKAB, Ii)

     

ME1 ← CTR-SENC(REKABi, Ii, M1)

     

Lookup TKAi in SKA- Found

M1 ← CTR-SENC(REKABi, Ii, ME1)

ME2 ← CTR-SENC(REKABi, Ii, M2)

Lookup Ci - Not Found

Bx ← RAND(), My ← RAND()

IDti = TKbi IDti= Ci
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Fig. 7: Passive Deanonymization AL Mitigation

with TKXx to create the source transmission key TKx which
is appended to encrypted data like the Cache method. Bob
receives the packet and takes Rx from TKx and performs the
same HMAC operation with each of its paired keys, SKAB .
With each attempt, Bob checks their created TKHy against the
remaining bytes of TKx to potentially match TKHx.

Rx ← CRNG(l) (8)

TKx ← Rx || HMAC(Rx, SKAB) (9)

With both methods, if there is no match, Bob discards
the data and determines with probability P to reply with a
random generated identifier and data as a pseudo-response.
P can be tuned based on the broadcast channel’s utilization,
since there is no destination address, it is challenging to
determine the intended recipient of anonymized packets. The
mitigation provided by AL of passive IDBLEED attacks is
illustrated in Figure 7 and follows the Cache workflow above.

VI. MITIGATION EVALUATION

We implemented both Cache and Hash AL methods as
a C library and evaluated overhead impact using on-device
protocol simulations. The simulation baseline is an applica-
tion protocol which generates data, incurs one megabit/sec
transmission latency (simulating BLE 1M Phy/1Mbps), and
processes the data upon receipt that varies in time with data
size. We measured overhead impact from cryptographic and
lookup operations relative to baseline during operation over
varying sized packets. We executed each experiment ten times,
removing the lowest and highest values, and averaging the
remaining eight data points gathered from execution on a
laptop PC with Intel Core i7-12700H 14 core processor and
32 GB of RAM running Ubuntu 22.04.3 and a Google Pixel
7 smartphone running Android 14. Additionally, we measure
power consumption of the key resolution, encryption, and
pseudo-response impact relative to baseline on both devices.
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Size Enc. (ms) Dec. (ms) Total (ms) Base (ms) ∆
Pixel 7 Smartphone

16 0.00487 0.00506 0.00993 0.54841 1.81%
32 0.00551 0.00551 0.01102 0.68064 1.62%
64 0.00717 0.00736 0.01453 0.94310 1.54%
128 0.01074 0.01085 0.02159 1.46606 1.47%
256 0.01805 0.01852 0.03657 2.50955 1.46%
512 0.03887 0.03993 0.07880 4.62103 1.71%

1024 0.09839 0.10140 0.19979 8.86632 2.25%
2048 0.22943 0.24132 0.47076 17.33921 2.71%

PC Laptop
16 0.00330 0.00483 0.00814 0.49123 1.66%
32 0.00385 0.00622 0.01007 0.62184 1.62%
64 0.00543 0.00934 0.01477 0.88302 1.67%
128 0.00870 0.01576 0.02446 1.40463 1.74%
256 0.01495 0.02752 0.04247 2.44767 1.74%
512 0.02619 0.04943 0.07562 4.53251 1.67%

1024 0.04908 0.09395 0.14304 8.70166 1.64%
2048 0.08932 0.17213 0.26145 17.03093 1.54%

TABLE VI: Average encryption overhead per packet

Our source code for AL is available as a public GitHub repos-
itory at https://github.com/OSUSecLab/AnonymizationLayer.
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Fig. 8: Encryption & pair lookup overhead for Pixel 7 smart-
phone and PC laptop by packet size paired with a single device

Encryption. Table VI shows mean per-packet encryption
overhead for sending and receiving data with sizes doubling
from 16 to 2048 bytes (B) to account for a wide variety of
protocol maximum transmission unit sizes when considering
impact to effective throughput rate. Measuring across 10,000
packets, the mean overhead encryption per-packet across all
data sizes is 1.82% on the smartphone, and 1.66% on the PC.
The overhead is observed to be approximately linear relative
to the data size, as illustrated in Figure 8.

Key Resolution. Table VII shows the summary worst-case
key lookup and resolution overhead for send and receive
functions of both Cache and Hash methods as device pairs
doubles from 1 to 512 measured across 1 million total packets,
with overhead percentages relative to a 256B packet baseline.
Notably, our Cache method introduces approximately 0.02 ms
(< 0.86%) and 0.18 ms (7.3%) overhead for up to 16 and
512 paired devices, respectively on the smartphone. While
most smartphones may only have lower pair numbers, it
demonstrates the performance increase over existing methods
outperforming the Hash method by over 8x (16 pairs) and 30x

Hash (ms) Cache (ms)
Pairs Send Recv. ∆ Send Recv. ∆

Pixel 7 Smartphone
1 0.00117 0.02700 1.12% 0.00109 0.01742 0.74%
4 0.00139 0.05475 2.24% 0.00126 0.01842 0.78%
16 0.00188 0.17209 6.93% 0.00144 0.02014 0.86%

128 0.02821 1.32464 53.91% 0.00425 0.04013 1.77%
512 0.06770 5.57161 224.71% 0.03129 0.15183 7.30%

PC Laptop
1 0.00099 0.01677 0.73% 0.00095 0.00619 0.29%
4 0.00100 0.04178 1.75% 0.00100 0.00606 0.29%
16 0.00114 0.11065 4.57% 0.00121 0.00645 0.31%

128 0.00361 0.39888 16.44% 0.00358 0.01080 0.59%
512 0.00975 1.33669 55.01% 0.01050 0.02280 1.36%

TABLE VII: Key resolution overhead for packet of varied sizes
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Fig. 9: Transmission key lookup and resolution overhead. PC
in solid lines (—) and smartphone in dashed lines (- -)

(512 pairs). The PC performance of Cache is even greater, as
expected, with over a 40x improvement over Hash, illustrated
in Figure 9.

Power. As illustrated in Figure 10, the battery consumption
overhead for PC and Pixel 7 smartphone baseline is 12%
and 1%, respectively. Sending and receiving 20,000 packets
(high traffic) per minute at varying pseudo-response rates of
0%, 50%, and 100%, we observe a 1-2% increase in power
consumption for both devices over one hour. Notably, the
pseudo-response rate does not have a significant impact on
battery consumption at the measured integer precision.

Evaluation Summary. Our evaluation shows AL as a
viable IDBLEED countermeasure and real-world privacy-
enhancing technology. Using our Cache method to support
G1 introduces less than 0.022 ms (0.86%) on the smartphone
and 0.008 ms (0.31%) on the PC mean overhead for 16
device pairs. Encryption (G2) introduces 0.037 ms (1.46%)
and 0.042 ms (1.74%) on 256B packet sizes, on smartphone
and PC respectively. These equate to approximately 2%
communication overhead on both devices. Power consumption
overhead is negligible at 1-2% per hour across tested devices
with varying pseudo-response rates.

VII. DISCUSSION

IDBLEED Practicality. As first mentioned in threat model
(§III-C), we assume an attacker can setup relays and the
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Fig. 10: Battery consumption for PC and smartphone over one
hour, sending/receiving 20,000 packets/min, varying pseudo-
response rates

targeted devices are exclusive-use. With a known residence
or location, and therefore proximity to their IoT peripheral
devices, this becomes a practical exercise for a motivated
attacker with standard sniffing equipment. Note, the attacker
does not need to be present for initial pairing/bonding.

Alternatives to user tracking exist but come with technical
challenges absent in IDBLEED. For example, using cameras
to determine Alice’s presence requires high bandwidth and
power, along with either advanced computer vision models or
human oversight to identify individuals in video feeds. This
also sacrifices the programmatic packet processing and real-
time notifications that IDBLEED provides. Optical methods
have additional issues, such as requiring unobstructed views,
visual discrepancies, and quality loss over distance, leading
to unknown variability and loss of confidence. In contrast,
IDBLEED enables real-time, programmatic de-anonymization
with approximately and minimally 1/n confidence, where n is
the number of paired devices in an exclusive-use relationship.
We find exclusive-use is common among IoT devices. Even
if a device has multi-user support, it is often shared by small,
associated groups, such as family members. In this scenario,
IDBLEED can track family member locations, but could
not differentiate between them. However, if not solely, it
can contribute as a data point in a multi-factor approach to
device deanonymization, thanks to its precision as a single-bit
boolean that indicates a device’s presence with an extremely
low false-positive rate due to cryptographic and security
mechanisms from the vulnerable protocols that produce the
observable success traffic pattern.

The IDBLEED active attack offers the option of either relay-
ing or replaying traffic, depending on the specifics of the proto-
col. However, we argue that replay attacks are generally more
practical than relay, which requires that both targeted devices
process packets at the same time. It would be problematic if a
device disables its wireless interface in sleep mode to conserve
power, as is often the case with certain wireless keyboards and
a small percentage of other devices. Our research indicates that
many stages of wireless protocols remain susceptible to replay

attacks. For example, BLE devices that use an LTK to derive a
SK for encrypting packets. Although these encrypted packets
include a Message Integrity Check (MIC) value to authenticate
the sender and packet counters to prevent replay attacks,
the initial packets that establish encryption—LL_ENC_REQ
and LL_START_ENC_REQ—lack these protective measures
against replay attacks.

IDBLEED Limitations. Examining the details and limitations
of IDBLEED allows further understanding of how the
vulnerabilities have evaded previous research. First, as
mentioned in §III-C, a device must have at least one
exclusive-use, trusted relationship — devices without this
are not susceptible to IDBLEED without other ways to
identify success/failure communication patterns. These
limitations imply a level of apriori knowledge of the victim
— however, remains feasible for a motivated attacker and
certainly for nation-states. Indeed, IDBLEED attacks do not
directly identify users of an arbitrary device, discovering their
personally identifiable information. Therefore, IDBLEED is a
targeted attack and does not generally scale to deanonymize
arbitrary or mass populations of devices.

Second, our paper primarily demonstrates several IDBLEED
attack scenarios requiring close proximity (e.g., 10-30 me-
ters in indoor environments for BLE [4]), with the aim of
illustrating the wireless communication component of IoT.
However, the exclusive-use attack principle applies in broader
contexts, even devices controlled remotely via HTTPS, which
may exhibit an exclusive-use pattern. Meanwhile, IDBLEED
comes at a lower cost, stealth, and processing power than
other remote tracking methods that utilize other mediums
such as video or audio detection. IDBLEED effectively sniffs,
dissects, and relays packets compared to recording video,
audio, which requires high on-device storage and/or processing
using detection algorithms. These methods are limited simi-
larly by proximity, but additionally must consider obstruction
of view or audibly noisy environments, and data transmission
bandwidth or node/edge-device computation.

Third, we recognize target devices may need to be in
a specific protocol state for successful IDBLEED attacks.
For example, when LL_ENC_REQ is relayed from a trusted
smartphone to a BLE peripheral, the two devices are already
connected and in the communication stage. Despite this, the at-
tacker can capture and retransmit specific packets between the
devices or create packets that follow the protocol specification
to restart the connection process and begin the attack again.

IDBLEED Generality. Our primary focus, detailed in §III,
is on BLE and Wi-Fi. However, our findings show that
IDBLEED’s core concept of deanonymization applies to any
protocol with exclusive-use characteristics that leak a boolean
traffic pattern side-channel. Motivated by this, we explored
various IoT devices and companion apps at the user application
layer to demonstrate broader and real-world applicability,
provided in §A for additional reading.
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IDBLEED Impact & Consequences. IDBLEED introduces
a new form of tracking attack, exploiting a specification flaw
in widely-used protocols that leak a boolean side-channel.
Unlike vulnerabilities based on implementation flaws, the
IDBLEED exploitation window is prolonged, as specification
flaws are less likely to receive quick fixes. Tracking attacks
like IDBLEED pose significant privacy and safety risks,
diminishing a person’s freedom of movement and enabling
threats such as human trafficking, stalking, or pattern-of-life
analysis, especially for high-profile individuals. Knowing a
person’s location can be the starting point for more severe
digital or physical threats.

Anonymization Layer Practicality. An approximate 2%
mean increase measured on-device for both power consump-
tion and single-trip packet transmission/processing is neg-
ligible and greatly supports AL’s practicality for point-to-
point communication anonymization. Additional optimizations
can be done, for example, both Cache and Hash anonymity
methods can store recently communicated pair records to de-
crease lookup times, similar to Most Recently Used (MRU) in
memory management. Least Recently Used (LRU) or similar
methods can be utilized to evict source transmission keys
from pair records as a more dynamic, non-time based key
management mechanism. Encryption performance can be in-
creased through algorithm optimization or dedicated hardware.
Additional investigation is required into scalability in more
dynamic and autonomous IoT systems that may interact with
thousands of new nodes per day, such as smart vehicles. For
example, a public-key infrastructure paired with a real-time
hierarchical spatial index to effectively act as an anonymized
geo-fenced initial hash table lookup may decrease the number
of keys to check using Hash or Cache methods.

Anonymization Layer Security Analysis. AL design goals
(§V) were born by adopting an adversarial mindset and
ultimately aim to reduce the amount of meta and side-channel
information available via packet inspection and to remove
the observable boolean exclusive-use side-channel that
we’ve introduced as the core foundation of IDBLEED. We
accomplish this by removing transmission directionality to
remove association and precise data flow analysis; padding
data to maximum MTU to remove packet size analysis;
introducing entropy via encryption and counters to remove
data pattern analysis; and replying to untrusted entities with
pseudo-response packets indistinguishable from those sent to
trusted entities given the randomly rotating, ephemeral source
identifiers and entropy in payload. The brute-force success
probability is N

248 given N number of 6 byte transmission
keys, and 1

2256 for 256-bit encryption keys.
A mitigation analysis for active IDBLEED attacks is illus-

trated in Figure 11, omitting the workflow already introduced
in Figure 7 for brevity. At time ti, Eve captures a packet
at LocationA from anonymous Alice with identifier X and
relays it to Bob. Observing an encrypted response from Bob,
Eve may assume they are paired and thus X = Ai. However, at
the same time, Eve also captures a packet at LocationC from

BobAlice Eve

Location A Location B

IDti = X

BCAST(X, ME1)

Charlie

IDti= Ai

ti

IDti = Y

IDti = Bi

BCAST(Y, ME2)
BCAST(Y, ME2)

BCAST(By, Z)BCAST(By, Z)

IDti = Bi

BCAST(X, ME1)

BCAST(Bi, ME1)
BCAST(Bi, ME1)

IDti = Ai

Location C

Fig. 11: Active Deanonymization Mitigated by AL

anonymous Charlie with identifier Y and relays it to Bob.
Since Bob does not recognize identifier Y , they reply with
random bytes as pseudo-communication. Given the exclusive-
use characteristic, Eve must believe Alice is at both locations, a
logical contradiction, and therefore concludes Alice’s location
can not be accurately or confidently determined.

Anonymization Layer Limitations. Our defense is not per-
fect. Certain hardware throughput limitations may degrade
pseudo-responses effectiveness in order to maintain timing
and quality of service requirements, possibly rendering de-
vices vulnerable to statistical analysis, particularly in attacker-
controlled packet flooding. We discuss two scenarios based on
the number of nearby devices: (i), the attacker is near many de-
vices broadcasting with anonymized source addresses creating
a noisy environment, complicating identification of legitimate
responses from a victim device. (ii), the attacker operates in a
controlled environment where only the target device is present,
enabling precise statistical evaluation during packet flooding.
However, this scenario is beyond the scope of anonymous
communication solutions — if the attacker has controlled
the environment well enough to know the victim device’s
presence, determining its location is unnecessary because it is
already apparently known. Between these scenarios lies a spec-
trum of device numbers, where results would require advanced
statistical analysis, leading to ambiguous confidence metrics
influenced by various factors. Ultimately, the anonymization
layer discourages reliance on this method, prompting attackers
to likely seek more reliable but higher-cost tracking methods.

Anonymization Layer Generality. While AL was designed
to mitigate IDBLEED for IoT, we recognize its benefits gener-
alize to provide anonymity at any layer or point of integration
in a communication stack. This concept extends even more
abstractly to generalized information exchange, provided there
is a broadcast-like capability for the communication medium.

Ethics and Responsible Disclosure. We adhered to the
highest ethical standards performing our experiments, which
were conducted in a controlled laboratory environment
without targeting external devices. We disclosed technical
details of the BLE and Wi-Fi attacks, along with potential
countermeasures, to the tested device manufacturers and the
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Bluetooth Special Interest Group (SIG). Several companies
acknowledged our findings, successfully replicated the attack,
and plan further investigations.

VIII. RELATED WORKS

IoT Privacy Attacks. Previous efforts have discovered
various ways IoT devices can be tracked through their wireless
communication. These include using unique identifiers such as
MAC addresses and IP addresses, as well as analysis of side-
channel information such as network traffic and power usage
patterns. For example, leaked information in encrypted traffic,
such as network connection frequency and a device’s DNS
server connection, can be used to fingerprint IoT devices [14],
or machine learning algorithms analyzing network traces to
identify IoT devices [15], [16], [17]. Huang et al. [18] demon-
strated an attacker can infer user behavior and lifestyle based
on IoT device state changes and associated network traffic.

Numerous Bluetooth device tracking attacks have been
proposed, including those using sniffers to collect advertising
packets [19], [20], [21], [6], [2], [45], [22], [23], [46], [3], [24],
[5], [25], [13]. Previous approaches such as BlueTrack [3] and
BLEB [24] track devices using public addresses, while Marco
et al. [5] track classic Bluetooth devices that do not use address
randomization by exploiting information leaked from frame
encoding. Other attacks targeting specific implementations of
Bluetooth devices include those for Apple devices [21], [6],
[26], [27] and wearable fitness trackers [47]. Some attacks
rely on static payloads to track devices, such as manufacturer
identifiers [2], [20], information elements [28], [29], and
GATT attributes [48]. Serhan et al. [49] introduce a real-time
probabilistic framework for tracking BLE devices using a
hidden Markov model, which uses data-driven probabilistic
radio-frequency maps from received signal strength indicators
(RSSI). BLENDER [50] framework fingerprints BLE devices
by analyzing standard BLE interactions using machine
learning to predict device presence based on time and
location. Jianliang et al. [51] present a formal model for
assessing BLE untraceability, revealing vulnerabilities that
allow user tracking despite MAC address randomization.
Tingfeng et al. [52] examine security and privacy aspects
of Samsung’s Offline Finding (OF) protocol used to locate
BLE devices, including the potential for tracking OF devices,
tracking of individuals, and location de-anonymization.

Tracking attacks have also been developed for Wi-Fi
networks. Sapiezynski et al. [53] collected six months
of human mobility data, including Wi-Fi and GPS traces
recorded with high temporal resolution and found the time
series of Wi-Fi scans contained a strong latent location signal
that can be used for tracking. Scheuner et al. [30] developed
a passive tracking system, Probr, that manages various types
of Wi-Fi capture devices and processes collected traces. Petre
et al. [31] demonstrated the effectiveness of Wi-Fi tracking at
large events exceeding 100,000 people over three days. RF-
Track [54] is an indoor location attack on Wi-Fi devices, using
a Reinforcement Learning agent to analyze RSSI sequences

Attack Vectors/Impact IDBLEED BAT

Generalized ✓ ✗
Encryption ✓ ✗
Authentication ✓ ✗
Auto-Connection ✓ ✗
Data-Verification ✓ ✗
BLE ✓ ✓
Wi-Fi ✓ ✗
Replay ✓ ✓
Relay ✓ ✗
Hard to Patch ✓ ✗
Highly Practical ✓ ✗

TABLE VIII: Comparison between IDBLEED and BAT at-
tacks.

and build a fingerprint map. CSI-RFF [55] uses micro-signals
within Channel State Information to fingerprint Wi-Fi devices.

Our IDBLEED attack differs significantly from previous
studies for three reasons: First, it exploits patterns observable
from the trusted relationship between devices, rather than
relying on static patterns in network traffic ([21], [6], [26],
[27]) or power usage. Second, it can deanonymize and track
devices by sending a single packet, unlike previous research
requiring large volumes of packet collection. Third, attackers
can actively probe devices to gather data instead of passively
waiting for packets from inactive devices.

While BAT attacks [7] were inspirational, our study differs
significantly from theirs in the following ways. Highlighted
in Table VIII, BAT authors only examined BLE allowlists and
did not consider other side-channels such as authentication,
data integrity, and encryption. Second, their work focuses
solely on BLE, while we analyze attacks on BLE and Wi-Fi.
Third, their study relies on replay attacks to track BLE
devices, whereas we expand into relay attacks, an attack
method that works even when the protocol is not vulnerable
to replay attacks and is difficult to detect. Finally, our boolean
side-channel abstraction is applicable far beyond any single
protocol and extends to any communication protocol that has
observable pattern differences between trusted and untrusted
devices. While their mitigation focuses solely on a BLE
vulnerability, our mitigation is an entirely new communication
stack layer that enhances privacy.

Anonymization Defense. Various anonymous communication
solutions have been proposed for IoT networks. Palmieri et
al. [56] propose an anonymous routing framework between
subnetworks which uses destination identifiers that an
intermediary node uses to determine if the final hop has been
reached for a device prior to broadcast. The Google/Apple
Exposure Notification framework [44] uses random rotating
identifiers with payloads that are broadcasted and captured
by nearby participating devices, with other works proposing
privacy-enhancing modifications to safeguard against relay
and replay attacks [57], [58]. BLE-Guardian [20] allows a
user to customize the accessibility of advertising packets.
Hadi Givehchian et al. present [59], a method to obfuscate
physical-layer fingerprints in BLE devices, which attackers
exploit to bypass MAC address randomization and track
devices. Tor [60] uses onion routing for primarily TCP-based
applications to provide an anonymous communication service
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consisting of operator-maintained nodes. However, these
solutions require support from intermediate servers or gateway
nodes to provide their privacy preserving functions. In contrast,
our proposed AL exchanges keys and resolves communication
directly on devices without requiring additional infrastructure
or third-party configuration. Zhang et al. propose MASK for
mobile ad-hoc networks for anonymized single-hop commu-
nication [61] between grouped devices. It replaces traditional
source and destination addresses at the MAC layer with
ephemeral session and link keys, similar in concept to AL.

However, these solutions are different from ours in the fol-
lowing aspects. First, many require an explicit authentication
and key exchange prior to a new session of data communi-
cation. Consequently, they are susceptible to IDBLEED, as
this exclusive-use three-way handshake authentication mecha-
nism is observable to either succeed or fail given subsequent
communication. Our solution with AL is transparent to other
layers — there is no modification to existing layers and they
retain established roles, with authentication handled implicitly
at AL by a successful lookup of a pairing key using the
Hash or Cache method that is not observable to eavesdroppers.
Second, even solutions without additional key exchanges ([20],
[59]) still require the defender, which may be a centralized
device, to monitor the traffic to identify potentially vulnerable
or malicious devices. This approach can introduce additional
costs associated with continuous monitoring.

IX. CONCLUSION

We have shown ubiquitous wireless communication
protocols, such as BLE and Wi-Fi, are vulnerable to
deanonymization and tracking attacks, despite modern
countermeasures such as address randomization. The trusted
association between paired devices produces differences in
traffic patterns that leak an observable boolean side-channel, a
historically overlooked scenario we have termed exclusive-use.
This fundamental flaw and vulnerability used to deanonymize
devices is the key component to our practical IDBLEED
tracking attacks. We propose a generalized mitigation
featuring our ANONYMIZATION LAYER and observe its
on-device performance impact to be negligible as a viable
privacy-enhancing technology.
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APPENDIX

A. IDBLEED Attacks on User Applications

As additional reading, we present a sampling of six
companion smartphone apps for IoT devices found to be
vulnerable to IDBLEED. These include commonly used
household or smarthome IoT devices such as blood pressure
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monitors, smartlocks, smartplugs, and smartlights. Our reverse
engineering and manual analysis discovers that the exclusive-
use characteristic is present on all tested devices, leaving
their trusted smartphones vulnerable to deanonymization
and tracking attacks through IDBLEED, as summarized in
Table IX. Each case study introduces a high-level protocol
and attack workflow.

Device Type Channel Exclusive-Use Passive
Attacks

Active
Attacks

AppLights Standards Light BLE ❸ ❹ ✓ ✓
AppLights C9 Light BLE ❶ ❸ ❹ ✓ ✓
AppLights Strings Light BLE ❶ ❸ ❹ ✓ ✓
i-Health Labs Medical BLE ❸ ❹ ✓ ✓
Ultraloq Lock BLE ❶ ❷ ❸ ❹ ✓ ✓
Kasa Plug Plug Wi-Fi ❸ ❹ ✓ ✓

TABLE IX: Tested IoT devices. ❶ Verification, ❷ Encryption,
❸ Authentication, ❹ Auto-connection

IDBLEED in Blood Pressure Monitors. Our investigation
of blood pressure monitors from i-Health Labs first reveals
they broadcast basic information to nearby devices over BLE,
including manufacturer and device name. The smartphone
companion app receives these packets and verifies if the device
is recognized on its auto-connection list of trusted devices. If
so, the app and monitor device authenticate using a challenge-
response protocol with a fixed key and begin communicating
using encryption if successful.

Evaluation. The exclusive-use characteristic is present
at the trusted device verification stage of authentication,
leaving the smartphone vulnerable to both passive and active
IDBLEED attacks. Because a fixed key is used, we find this
communication method is also vulnerable to the active replay
variant. Further, we discover the encryption key is based on
the device specific hardware version number, and therefore
if unchanged, leaves any post-authentication communication
of measurements also vulnerable to replay. We also find the
companion app receives BLE beacons even in the background.
These findings widen susceptibility for deanonymization and
allow data poisoning of critical health information. The root
cause of the vulnerability is the presence of a trusted list of
blood monitor static MAC addresses stored by the companion
app that associates the two devices, allowing Eve to spoof a
previously observed trusted address.

IDBLEED in Smartlocks. For our next case study, we in-
vestigate Ultraloq smartlocks and find a secure workflow to
ensure secure communication between the lock and associated
companion app. This process begins with an initial setup that
requires a password to be set, stored on the smartphone, and
transmitted to share with the smartlock. For subsequent con-
nections, the smartlock initiates a challenge-response protocol
to authenticate the smartphone. The smartlock sends a random
key, which the companion app encrypts with a control com-
mand using the pre-shared password, and sends it back to the
smartlock. The smartlock decrypts the message and compares
the value to its original random key to determine authenticity.

Broadcast(R,Addr)

Connect

Smartphone w/o password

Terminate Connection

Smartphone w/ password

Auth(Password,R,Addr)

Waiting(~10s)

Communication

Smartphone Smartlights

Fig. 12: AppLights C9 & Strings smartlights workflow

Evaluation. We find the Ultraloq smartlock to be vulnerable to
both passive and active IDBLEED attacks during the authen-
tication stage when the smartphone replies to the smartlock
request with an encrypted message. The assumption is that Eve
is not present during the initial setup process and observes the
password. However, while the attack window to capture the
initial pairing is small, the active relay variant is still possible.

IDBLEED in Smartplugs. Investigating Kasa smartplugs, we
find the companion app receives IPv4 packets and uses the
address to determine if the device is trusted before initiating
a connection. The smartplug initially authenticates the app
using credentials pre-shared from the initial pairing process,
however, the credentials are not used in subsequent sessions.
Instead, the companion app uses an encoding function that
takes the key as input to encode commands to transmit to the
smartplug.

Evaluation. Once again, we discover the Kasa smartplugs are
vulnerable to both passive and active IDBLEED attacks. This
is due to the static IPv4 address being saved by the companion
app after initial pairing. Therefore, Eve can passively observe
exchanges with the IPv4 address if on the same network as
the two devices, or spoof the address if on the same network
as the smartphone to deanonymize Alice.

IDBLEED in Smartlights. Our final case study investigates
three versions of smartlights from AppLights: Standards,
C9, and Strings. All versions broadcast advertisements that
include its BLE address. With Standards, the companion
app receives the advertisement and simply checks for the
address on its auto-connection list, sending a connection
request if it exists. Once connected, the companion app sends
authentication data to the smartlights, generated using the
pre-shared password, the smartlight’s static BLE address, and
the smartlight’s static firmware information.

The workflow of the C9 and Strings versions are similar,
as shown in Figure 12, which accurately reflects the real-
world traces in Table X. Building off the Standards version,
their advertisements also contain a randomly generated byte
array in addition to the static BLE address to add a challenge-
response mechanism. The companion app includes a random
integer from the received array in its response. The smartlights
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No. Time Source ID Destination ID PDU Type PDU Playload
Smartphone w/o Password

1 00:36 98:7b:f3:78:d0:ad Broadcast ADV_IND ADDR
2 00:40 ad:d8:3e:a9:ba:52 98:7b:f3:78:d0:ad SCAN_REQ EMPTY
3 00:44 98:7b:f3:78:d0:ad Broadcast SCAN_RSP RAND
4 00:48 ad:d8:3e:a9:ba:52 98:7b:f3:78:d0:ad CONNECT_REQ EMPTY
5 01:00 ad:d8:3e:a9:ba:52 98:7b:f3:78:d0:ad ATT_WRITE DISCOVER_SERVICES
6 01:04 98:7b:f3:78:d0:ad ad:d8:3e:a9:ba:52 ATT_READ 0xFFF1
7 01:12 ad:d8:3e:a9:ba:52 98:7b:f3:78:d0:ad EMPTY_PDU EMPTY
8 01:22 98:7b:f3:78:d0:ad ad:d8:3e:a9:ba:52 LL_TERMINATE_IND EMPTY

Smartphone w/ Password
1 00:36 98:7b:f3:78:d0:ad Broadcast ADV_IND ADDR
2 00:40 ad:d8:3e:a9:ba:52 98:7b:f3:78:d0:ad SCAN_REQ EMPTY
3 00:44 98:7b:f3:78:d0:ad Broadcast SCAN_RSP RAND
4 00:48 ad:d8:3e:a9:ba:52 98:7b:f3:78:d0:ad CONNECT_REQ EMPTY
5 01:00 ad:d8:3e:a9:ba:52 98:7b:f3:78:d0:ad ATT_WRITE DISCOVER_SERVICES
6 01:04 98:7b:f3:78:d0:ad ad:d8:3e:a9:ba:52 ATT_READ 0xFFF1
7 01:12 ad:d8:3e:a9:ba:52 98:7b:f3:78:d0:ad ATT_WRITE AUTH(PASS, RAND, ADDR)
8 01:16 98:7b:f3:78:d0:ad ad:d8:3e:a9:ba:52 ATT_READ NOTIFY(OK)

TABLE X: Excerpt of AppLights packet traces.

verify the integer chosen by the companion app is indeed in
its original array and accepts commands if so.

Evaluation. While all three versions of the lights are sus-
ceptible to passive and active IDBLEED attacks, we observe
the addition of the challenge-response mechanism in the C9
and Strings versions is a defense against the replay variant.
However, the Standards version is vulnerable to replay, as the
authentication packet is the same every time. As a recurring
theme in companion apps, the deanonymization occurs when
the companion app verifies and responds to the trusted device
after it simply checks for the static MAC address in its auto-
connection list.
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