
Repurposing Neural Networks for Efficient
Cryptographic Computation

Xin Jin
The Ohio State University

jin.967@osu.edu

Shiqing Ma
University of Massachusetts Amherst

shiqingma@cs.umass.edu

Zhiqiang Lin
The Ohio State University

zlin@cse.ohio-state.edu

Abstract—While neural networks (NNs) are traditionally asso-
ciated with tasks such as image recognition and natural language
processing, this paper presents a novel application of NNs
for efficient cryptographic computations. Leveraging the Turing
completeness and inherent adaptability of NN models, we propose
a transformative approach that efficiently accelerates crypto-
graphic computations on various platforms. More specifically,
with a program translation framework that converts traditional
cryptographic algorithms into NN models, our proof-of-concept
implementations in TensorFlow demonstrate substantial perfor-
mance improvements: encryption speeds for AES, Chacha20, and
Salsa20 show increases of up to 4.09×, 5.44×, and 5.06×, respec-
tively, compared to existing GPU-based cryptographic solutions
written by human experts. These enhancements are achieved
without compromising the security of the original cryptographic
algorithms, ensuring that our neural network-based approach
maintains robust security standards. This repurposing of NNs
opens new pathways for the development of scalable, efficient,
and secure cryptographic systems that can adapt to the evolving
demands of modern computing environments.

I. INTRODUCTION

Modern technical innovations, e.g., cloud computing, auto-
driving, and virtual reality, generate massive private user data
daily. For instance, over 90% of data in the world was gener-
ated in the past two years [1]. With such massive data, efficient
cryptographic computations are more important than ever for
various tasks, including cloud storage with cryptographic file
system [2], 3D data protection [3], and data services for
streaming, bank and other financial institutions [4]. Zoom, for
instance, provides end-to-end encryption to safeguard meeting
conversations by utilizing AES and TLS [5]. The encryption
and decryption of Zoom meetings with 50 attendees entail of
4MB data, i.e., 262,144 AES blocks, per second [6]. However,
traditional cryptographic implementations are known to be
slow [7], which cannot match this emerging need for efficient
cryptographic computations.

Deep Neural Network (DNN) is a key enabler for a lot of
Artificial Intelligence (AI) tasks. Numerous research efforts [8]
have been trying to accelerate the computation of DNNs,
from architecture designs to engineering better hardware and

software stacks. Prior work has demonstrated that DNNs,
e.g., RNN — Recurrent Neural Network, can be Turing-
complete [9, 10], which potentially enable other applications
to leverage the recent advances in modern DNN acceleration.
Although this has been known for years, limited exploration
has been done to explore diverse applications. In this paper, we
explore the possibility of accelerating cryptographic algorithm
computation by repurposing DNNs, and demonstrate the supe-
riority of this approach compared with existing state-of-the-art.
To assist the transition, we also introduce a novel approach
to automatically translate existing cryptographic algorithm
implementations to NN implementations.

Besides the Turing-complete capability of DNNs, the
potential of repurposing NN is further bolstered by a vibrant
ecosystem of AI frameworks that can accelerate computing
with better resource (e.g., memory) scheduling and manage-
ment, nurtured collaboratively by both software and hardware
communities. This approach streamlines programming across
various hardware accelerators with popular and easy-to-
use development tool sets. Recent years have witnessed
a proliferation of hardware accelerators integrated into
various platforms, such as Google Tensor Processing Units
(TPUs) [11] on cloud servers and Apple A16 [12] on mobile
devices. In tandem, providers of deep learning frameworks,
including Google’s TensorFlow [13] and Meta’s PyTorch [14],
have introduced user-friendly interfaces applicable to an array
of hardware and platforms [13]. Additionally, established
AI compiling frameworks like TVM [15] and XLA [16]
support diverse hardware and software platforms, performing
software optimizations. This collective progress empowers us
to seamlessly program a wide range of hardware accelerators
without being encumbered by engineering details.

Our system, TENSORCRYPT, leverages DL frameworks as
out-of-the-box computing acceleration tools for more efficient
cryptographic computation. It initiates the process by ab-
stracting two distinct domain-specific languages (DSLs): one
dedicated to cryptography and the other tailored for NN. These
DSLs serve as representations for the transformation source
and target, respectively. Leveraging these DSLs, we introduce
a program transformation framework that is capable of con-
verting programs written in the cryptographic DSL (CRYPT)
into equivalent programs in the neural network (NN) DSL.
This transformation is designed to uphold trace and bisim-
ulation equivalence between the two programs. In simpler

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240955
www.ndss-symposium.org

terms, for a given input, both the overall program output and
the internal states (such as internal memory values) of these
programs remain identical. This critical property ensures that
the transformed program does not reveal any new information
to potential analyzers, even if an adversary were to observe
the internal program execution. Consequently, the security
level achieved by the transformed program matches that of the
original. Following the transformation, we embark on further
optimization of the NN. This process commences with the
implementation of operator fusion, involving the definition of
a set of fusion rules based on operator types. Simultaneously,
we enhance the data transmission process through the adoption
of load-on-use memory management. This combined approach
empowers our NN-based cryptographic algorithms to operate
with remarkable efficiency, particularly when complemented
by hardware accelerators and optimization techniques.
Significantly, these algorithms are designed for broad
deployability across diverse hardware and software systems.

Our TENSORCRYPT prototype has undergone rigorous test-
ing across AES, Chacha20, and Salsa20 implementations.
Notably, AES and Chacha20 serve as the recommended ci-
phers for encrypting large-volume data in TLS 1.3 [17, 18].
The experimental findings demonstrate the superior efficiency
of TENSORCRYPT models when compared to baseline ap-
proaches. Specifically, the TENSORCRYPT AES, Chacha20,
and Salsa20 models exhibit remarkable speed advantages,
achieving up to 4.09×, 5.04×, and 5.44× faster execution
rates, respectively, compared to their baseline counterparts.
Furthermore, the versatility of TENSORCRYPT models is a
striking feature. They demonstrate compatibility with a wide
array of hardware and software stacks. This encompasses
diverse hardware configurations, ranging from mobile and IoT
devices like the Google Pixel XL and Raspberry Pi 3, to hard-
ware accelerators including Nvidia GPUs and Google TPUs.
Likewise, the software landscape covered multiple operating
systems such as Linux, Windows, and MacOS, and deploy-
ment languages spanning Java and Python. The integration of
proposed optimizations significantly enhances the efficiency of
TENSORCRYPT models. Operator fusion, for instance, leads
to a reduction in latency of up to 79.79×, while load-on-use
memory management accelerates encryption speeds by up to
92.5×. These optimizations further underline the substantial
gains in performance achieved through our approach.

In summary, this paper introduces an innovative appli-
cation of NNs to accelerate cryptographic algorithms, re-
purposing neural computation, employing a combination of
program transformation and optimization techniques. While
the challenge of cryptographic algorithm acceleration is well-
established, we highlight the limitations of existing approaches
that predominantly lean on hardware accelerators. These solu-
tions often exhibit hardware specificity, achieving only subop-
timal performance despite substantial engineering investments.
The unique strength of our approach lies in harnessing both
hardware and software capabilities, fully maximizing the po-
tential of accelerators while significantly reducing engineer-
ing complexities. This novel approach leads to demonstrably

superior empirical results in terms of efficiency, comple-
mented by an intuitive and user-friendly programming inter-
face. Additionally, we introduce domain-specific languages,
novel program transformation methods, and domain-specific
optimizations, enhancing the overall comprehensiveness of our
solution. By tackling this longstanding problem, we establish
a new paradigm for accelerating cryptographic algorithms.
Scope. This paper focuses on symmetric ciphers using parallel
modes like ECB/CTR of AES, which benefit from GPU
acceleration. We do not anticipate TENSORCRYPT’s use in
sequential modes like CBC whose performance bottleneck is
caused by dependencies. Currently, as a prototype, TENSOR-
CRYPT transformation does not cover the broader class of
ciphers, e.g., ECC and post-quantum cryptography [19], or
general-purpose computations.

II. BACKGROUND AND RELATED WORKS

Cryptographic Implementation Acceleration. Recently, se-
cure transmission of large-scale data has become increasingly
important and has gained significant attention [2, 20]. In the
esteemed protocol TLS 1.3, ChaCha20 and Advanced Encryp-
tion Standard (AES) algorithms are recommended for large-
scale data encryption and decryption [18]. AES is a widely
used block cipher with parallelizable modes of operation [21].
Chacha20 and its variant, Salsa20, are stream ciphers, specifi-
cally designed for secure and efficient encryption of large-scale
data [22, 23]. In response to the growing need for accelerated
cryptographic implementations, numerous solutions have been
proposed for different hardware [24, 25]. For instance, Intel
introduces AES-NI to accelerate AES on Intel processors [24].

Moreover, there has been a substantial research focus on
GPU-based cryptographic implementations [2, 18, 20, 26–31]
due to the prevalence of graphic cards. Notably, these GPU-
based implementations have shown superior performance. For
example, GPU-based solutions are up to 13.60 times faster
than AES-NI and FPGA-based implementations [20, 28].
Apart from AES, GPU-based acceleration solutions are also
introduced to Salsa20 [31] and Chacha20 [18, 27]. In addition
to pioneering new designs, researchers have also utilized these
efficient cryptographic implementations in various applica-
tions, such as cryptographic file systems [2], random number
generation [32], and software memory encryption [27].
Deep Neural Network. As of now, the most powerful AI
models are in the deep neural network (DNN) architecture,
which simulates the layered structure of human brains, and
each layer performs certain operations that benefit the final
task [33]. Recently, it has achieved wide-range success in
modeling complicated data, e.g., images, natural languages,
and code [33–36]. The success of DNNs is largely attributed
to their ability to automatically engineer features. Such great
power comes with a price which is the black box nature
of DNNs [37]. Specifically, DNNs function as end-to-end
systems but it’s hard to understand their internal components
(e.g., weights and bias). Despite recent efforts in Explainable
AI (XAI) [38], interpreting general DNNs remains challenging
and unresolved.

2

From the computational perspective, recurrent neural
networks (RNNs) have been proven to be Turing-complete [9].
Recent work has also designed other types of DNNs that are
Turing-complete [10]. This property indicates that DNNs can
theoretically simulate any procedures. For example, an RNN
iterates over computational cells to process data, and each cell
consists of pre-defined operations. Some operations maintain
the system state (i.e., context information) while others evalu-
ate the input [39]. Specifically, unlike common learning-based
DNNs that derive weights from data, non-statistical DNNs
can be constructed without relying on data-driven pattern
mining [38, 40]. For instance, DeepMind’s Tracer translates
human-readable programs into weights of transformer models,
enhancing their interpretability [38]. Similarly, in this paper,
we build TENSORCRYPT models in a non-statistical manner.

III. DESIGN

In this section, we present the design of our transformation
framework. We first present our threat model in §III-A. In
§III-B, we introduce two domain-specific languages (DSLs)
for cryptography and neural networks (NNs), then define
transformation rules, and finally provide an example of this
transformation process by demonstrating the application of
TENSORCRYPT to AES. In §III-C, we introduce optimizations
of TENSORCRYPT transformed NN models, i.e., operator
fusion and load-on-use memory management. Finally, we
provide an analysis of the transformation, rigorously proving
its property of trace and bisimulation equivalence, in §III-D.

A. Threat Model

In line with the conventional threat model employed in
cryptographic analysis, the primary objective of the adversary
is to ascertain the secret key [41, 42]. The distinctive feature of
our system, as opposed to existing ones, lies in the implemen-
tation of the same algorithm. Consequently, we operate under
the assumption that the adversary possesses the capability to
observe the system, akin to existing implementations. Our
security objective is to ensure that our implementation does not
divulge any more information than its existing counterparts.

B. Program Transformation

1) Domain Specific Languages: Cryptographic algorithms
are mathematical operations that take byte/integer sequences,
e.g., plaintext or ciphertext, as input and convert them into dif-
ferent representations. These algorithms are composed of arith-
metic operations (e.g., addition), bit operations (e.g., shift) and
array operations (e.g., slice). We formalize a simplified lan-
guage representation, denoted as CRYPT DSL in Fig. 1, which
contains all these operations as well as control flow statements
(e.g., conditional statements). In this language, a program
processes the input by a sequence of statements and generates
ciphertext or plaintext as encryption or decryption results.

Unlike cryptographic programs, neural networks (NNs)
are usually represented as computational graphs [43]. In the
bottom-up view, the computational graph nodes are usually
defined as operators (or operations), e.g., add operator

⟨program⟩ P ::= input(arg); s∗; output(v)
⟨statement⟩ s ::= x := e | x := y ⟨op⟩ z

| if (v) : s∗1 else : s∗2
| while (x>0) : s∗

⟨expr⟩ e ::= v | x | x[v] | x[vi:vj]
⟨operator⟩ op ::= + | − | ∗ | / | XOR | . . .
⟨⟩ v ∈ Value
⟨⟩ x,y,z ∈ Identifier;

Fig. 1: Language Abstraction of CRYPT DSL

⟨NN⟩ M ::= input(arg); l∗; output(v)
⟨layer⟩ l ::= x := add(·) | sub(·) | mul(·)

| bitShift(·) | bitAnd(·)
| slice(·) | lookup(·)
| cond(v, l∗1, l∗2) | loop(x>0, l∗)

⟨layer-add⟩ add(v) ::= (+ v)
⟨layer-loop⟩ loop(x>0, l∗) ::= (l[0] ◦ l[1] ◦ . . .)
⟨⟩ arg, x, v ∈ Tensor;

Fig. 2: Language Abstraction of NN DSL

can sum two tensors together. The same operators are then
aggregated as layers. That is, a neural network layer is a
collection of operators that perform a specific functionality
together. In NN models, the first and last layers are input
and output layers. And the hidden layers take inputs from
previous layers and produce outputs to following layers.

In Fig. 2, we define a neural network as a sequence of con-
nected layers, starting from the input layer to the output layer.
Each layer essentially is a function, performing arithmetic op-
erations (e.g., add), tensor manipulations (e.g., slice), bitwise
operations1 (e.g., bitShift), etc. In Fig. 2, we list two special
layers. The add layer performs value addition operations. The
loop layer creates a sub-computational graph, representing a
loop. Other special layers can be layers for random or pseudo-
random number generation, which is useful in cryptographic
applications. In most deep learning frameworks, a layer
can be customized by defining a lambda function, which
makes TENSORCRYPT extendable and generalizable to new
layers that are not defined in Fig. 2. For example, a lambda
layer [13] can be customized for various functionalities using
Python lambda functions or any user-defined functions. AI
frameworks will also automatically handle data transmission
between layers, and we omit such details in our discussion.

Additionally, we define the semantics of CRYPT and
NN DSLs in Fig. 3. These DSLs are subsets of existing
programming languages (e.g., C and Python), extendable to
other languages.

2) Transformation Rules: Fig. 4 presents the rules for trans-
forming programs in CRYPT DSL into NN DSL, including:
Statement transformation rules — transforming program
statements into NN layers as follows.
• [T-LOOKUP]. In cryptography algorithms, table lookup op-

erations are very important to perform nonlinear mapping,
e.g., element lookup. These statements can be defined as

1Bitwise NNs are popular with better robustness, interpretability, and
efficiency [44]. Therefore, bitwise operations are supported in major DNN
frameworks, e.g., Tensorflow [13], ONNX [45] and Pytorch [46].

3

Definitions: σ, ϕ ∈ Store: V ariable → V alue; σ for cryptography (CRYPT) DSL, ϕ for neural network (NN) DSL.

Evaluation context rules:

Es ::= Es;s | [·]s | x:=[·]e | x:=[[·]e] | x:=[[·]e : e] | x:=[v : [·]e] | x:=[·]e ⟨op⟩ e

| x:=v ⟨op⟩ [·]e | if [·]e : s1 else : s2 | while [·]e : s∗,

El ::= El;l | [·]l | x:=[·]e | x:=[[·]e] | x:=[[·]e:e] x:=[e:[·]e] | x:=l([·]e, e) | x:=l(v, [·]e)

Expression Rule: σ : e
e−→ v [E-CRYPT] ϕ : e

e−→ v [E-NN]

σ : v
e−→ v [E-CONST-CRYPT] ϕ : v

e−→ v [E-CONST-NN]

σ : x
e−→ σ(x) [E-VAR-CRYPT] ϕ : x

e−→ ϕ(x) [E-VAR-NN]

Statement/Layer Rule: σ, s
s−→ σ′, s′ [STMT-CRYPT] ϕ, l

l−→ ϕ′, l′ [STMT-NN]

σ : x := y [v]
s−→ σ[x → σ(y[v])], skip [LOOKUP-CRYPT] ϕ : x := lookup(y, v)

l−→ ϕ[x → ϕ(y[v])], skip [LOOKUP-NN]

σ : x := y [vi : vj]
s−→ σ[x → [σ(y[vi]), ..., σ(y[vj])]], skip [SLICE-CRYPT] ϕ : x := slice(y, [vi : vj])

l−→
ϕ[x → [ϕ(y[vi]), ..., ϕ(y[vj])]], skip [SLICE-NN]

σ : x := y + z
s−→ σ[x → σ(y) + σ(z)], skip [OP-ADD-CRYPT] ϕ : x := add(y, z)

l−→ ϕ[x → ϕ(y) + ϕ(z)], skip [OP-ADD-NN]

σ : if(v) : s1 : else : s2
s−→ σ, s1 , if v = true [IF-T-CRYPT] ϕ : cond(v, l1, l2)

l−→ ϕ, l1 , if v = true [IF-T-NN]

σ : while (x > 0) : s∗x
s−→ s∗x, s, if x > 0 [LOOP-E-T-CRYPT] ϕ : loop(x > 0, l∗x)

l−→ l∗x, s , if x > 0 [LOOP-T-NN]

Global Rules:

σ : e
e−→ v

σ,E[e]e → σ,E[v]e
[G-EXPR-CRYPT]

ϕ : e
l−→ v

ϕ,E[e]e → ϕ,E[v]e
[G-EXPR-NN]

σ : s
s−→ σ′, s′

σ,E[s]s → σ′, E[s′]s
[G-STMT-CRYPT]

ϕ : l
l−→ ϕ′, l′

ϕ,E[l]l → ϕ′, E[l′]l
[G-STMT-NN]

Fig. 3: Semantics of CRYPT DSL and NN DSL

Statement Transformation: s
ctx−−→ l

x := y [v]
ctx−−→ x := lookup(y, v) [T-LOOKUP] x := y [vi : vj]

ctx−−→ x := slice(y, [vi : vj]) [T-SLICE]

x := y + z
ctx−−→ x := add(y, z) [T-OP-ADD] x := yˆz

ctx−−→ x := bitXOR(y, z) [T-OP-XOR]

s1
ctx−−→ l1 s2

ctx−−→ l2

if(v) : s∗1 else : s∗2
ctx−−→ cond(v, l

∗
1 , l

∗
2)

[T-IF]
sx

ctx−−→ lx

while(x > 0) : s∗x
ctx−−→ loop(x > 0, l

∗
x)

[T-LOOP]

Program Transformation: P
ctx−−→ M

s
ctx−−→ l

input(arg); s∗; output(v)
ctx−−→ input(arg); l∗; output(v)

[T-INPUT-ASGN]

Fig. 4: Transformation Rules. We skip listing some rules due to space limitations, e.g., [T-OP-SUB] for substitution operations.

x := y [v], where v-th element of y is looked up. This rule
transforms lookup statements into x = lookup(y, v) layers.

• [T-SLICE]. The slice statement is defined in many lan-
guages to obtain elements from the start index to the end
index from arrays. It can be formally defined as x :=
y [vi : vj], where y is sliced from vi to vj With this rule,
we transform this statement into the slice(y, [vi : vj]) layer.

• [T-OP]. Arithmetic statements and bitwise operations are
fundamental building blocks for cryptographic algorithms.
To incorporate these computations into TENSORCRYPT
models, we propose this rule for transforming arithmetic
and bitwise statements. Moreover, we define a set of
sub-rules for basic operations, e.g., [T-OP-ADD] and
[T-OP-XOR], for addition and bit XOR operations.

• [T-IF]. We formalize the basic control flow
statement if-else as if(v) : s∗1 else : s∗2

′. Accordingly,
this rule transforms if-else statements into cond(v,

l∗1, l∗2
′) layers. The execution branches (l∗1 and l∗2) are

determined by the condition tensor v.
• [T-LOOP]. The loop statements are commonly utilized to

iterate through encryption or decryption rounds. In this
rule, (x > 0), x, and s∗x are the loop condition, iterator,
and body. The loop condition can be expressed in different
ways, e.g., (x in [1, N]). This statement repeatedly executes
the loop body s∗x when its condition holds true. [T-LOOP]
transforms this statement to a loop(x > 0, l∗x) layer.

Program transformation rules transform the whole programs
into NN models. In [T-INPUT-ASGN], a program P can be
formalized as input(arg); s∗; output(v), where P sequen-
tially executes a list of statements s∗ based on input arguments
arg to produce output v. We define an NN model M as
input(arg); l∗; output(v), where arg, l∗, and v are input ten-
sors, hidden layers, and output tensors. With TENSORCRYPT,
each statement of s∗ is transformed into one layer of l∗.

4

1 # encrypt function definition
2 input(msg, key, Nr);
3 # AddRoundKey: expanded key slicing and XOR bytes
4 k = key[0:15];
5 # byte-wise XOR of k and msg
6 msg = [k[0] ^ msg[0], …, k[15] ^ msg[15]];
7 # iterate Nr-1 rounds
8 for r in [1, 2, …, Nr-1]:
9 # SubBytes: S-box lookup

10 msg = Sbox[msg[0], …, msg[15]];
11 # ShiftRows: row index array lookup
12 msg = msg[0, 5, 10, 15, …, 12, 1, 6, 11];
13 # MixColumn: gf_mul table lookup and XOR
14 # msg[0] multiplies with 02 in GF(28)
15 mul0_2 = gf_mul2[msg[0]];
16 # msg[1] multiplies with 03 in GF(28)
17 mul1_3 = gf_mul3[msg[1]];
18 xor2_3 = msg[2] ^ msg[3];
19 msg[0] = mul0_2 ^ mul1_3 ^ xor2_3;
20 … # similar steps for msg[1, 2, 3] and other columns
21 … # skip similar steps for AddRoundKey
22
23 # last round: SubBytes, ShiftRows, and AddRoundKey
24 … # skip similar steps
25 output(msg);

(a) AES Implementation in CRYPT DSL

encrypt model transformed
input(msg, key, Nr);
AddRoundKey: expanded key slicing and XOR bytes
k = slice(key, [0:15]);
byte-wise XOR of k and msg
msg = bitXOR(k, msg);
iterate Nr-1 rounds
loop(r = [1, 2, …, Nr-1], [

SubBytes: S-box lookup
msg = lookup(Sbox, [msg[0], …, msg[15]]);
ShiftRows: row index array lookup
msg = lookup(msg, [0, 5, 10, 15, …, 12, 1, 6, 11]);
MixColumn: gf_mul table lookup and XOR
msg[0] multiplies with 02 in GF(28)
mul0_2 = lookup(gf_mul2, msg[0]);
msg[1] multiplies with 03 in GF(28)
mul1_3 = lookup(gf_mul3, msg[1]);
xor2_3 = bitXOR(msg[2], msg[3]);
msg[0] = bitXOR(mul0_2, bitXOR(mul1_3, xor2_3));
… # similar steps for msg[1, 2, 3] and other columns
… # skip similar steps for AddRoundKey

]);
last round: SubBytes, ShiftRows, and AddRoundKey
… # skip similar steps
output(msg);

①

②

③

④

⑤

⑥

⑦

⑧

⑨

(b) AES Implementation in NN DSL

Fig. 5: AES Implementations. The code blocks in NN DSL are transformed from those of CRYPT DSL with the same colors.

Note that the design and implementation of DSLs (e.g.,
Python vs. PyPy) are different and vary in complexity.
TENSORCRYPT DSLs are based on existing C++ (for CRYPT
DSL) and TensorFlow (for NN DSL), because of their
widespread adoption in respective domains in the real world.
Additionally, both platforms boast mature ecosystems that
support a wide range of hardware platforms with accelerators
and software stacks. We prioritized clear and simplified
interfaces, aligning with established principles of software
engineering [47], to enhance readability and usability. The
memory models of our DSLs align with C++ memory
model [48] for the CRYPT DSL and a TensorFlow model for
the NN DSL as well.

3) A Transformation Example Based on AES: To facilitate
readers’ comprehension of TENSORCRYPT, we provide a
concrete example of how the transformation works using AES.
Specifically, Fig. 5a presents an AES program in CRYPT DSL,
abstracted from an existing AES implementation. Addition-
ally, Fig. 5b shows a transformed AES model in NN DSL,
abstracted from an NN model.

Advanced Encryption Standard. Advanced Encryption Stan-
dard (AES) is a symmetric block cipher that maps 16-byte
input blocks to 16-byte output blocks through the use of
multiple rounds. Each AES round (except for the final round)
comprises four fundamental operations.

• AddRoundKey adds round-specific keys to the intermedi-
ate ciphertext state by bitwise XOR operations.

• SubBytes performs non-linear substitution by replac-
ing state bytes with substitution box (S-box) elements.

• ShiftRows shifts rows of state by a predefined order.
• MixColumn maps each byte of a column of state into

a new byte by matrix multiplication of state column
matrices and a MixColumn matrix (MC).

AES Implementation in CRYPT DSL. Fig. 5a shows an AES
implementation in CRYPT DSL, where we group the program
lines based on their functionalities into blocks. Block 1
defines the input of encrypt function with three arguments,
i.e., a 16-byte plaintext block msg, the round key, and round
number Nr. Block 2 defines the process of AddRoundKey,
where the first round-specific key k is obtained by slicing key
and then k is XOR’ed with msg at the byte level. Block 3
iterates over (Nr−1) encryption rounds with a loop. Block 4
performs the SubBytes operation by looking up S-box with
msg bytes. Next, block 5 defines the ShiftRows operation
by looking up a predefined index array. Block 6 and 7
show the MixColumn operation, where every column of msg
is operated with four fixed polynomials over GF (28) [49].
While the calculations over the 16 bytes are similar, we only
list these for the first byte for simplicity. In common practice,
multiplication over GF (28) can be performed by looking up
the pre-calculated tables for efficiency purposes. Therefore,
block 6 defines the table lookup operations on gf_mul2 and
gf_mul3 for multiplications with 0x02 and 0x03. Block 7
performs XOR operations over the bytes. In each encryption
round, the last operation is AddRoundKey, which is similar to
block 2 . The last encryption round of AES is different from
the other rounds, e.g., without the MixColumn operation. In
block 8 , we skip such details as the operations have been
introduced. Ultimately, block 9 specifies the output statement
that will produce the ciphertext msg as the end result.

Transformed AES Implementation in NN DSL. Fig. 5b
presents the AES model transformed from the implementation
in Fig. 5a. Since there are mainly four types of statements
in Fig. 5a, i.e., slice, XOR, lookup, and loop, we focus on
demonstrating transformation on these statements.

• Slice Statement. For the slice statement in block 2 , we
first map variables into identifiers in [T-SLICE]: x = k and

5

y = key. Afterwards, we evaluate slicing indices [0:15]
by applying the execution context rule x:=[[·]e : e] and
x:=[v : [·]e] to iteratively evaluate the expressions. The
same process applies to other slice statements.

• XOR Statement. Block 2 also declares a XOR statement,
in which we have omitted the intermediate steps: msg[0]
= k[0] ∧ msg[0], . . . , msg[15] = k[15] ∧ msg[15]. To
transform this XOR statement, we first need to transform
these intermediate steps. Thus, we apply [T-OP-XOR]
with mapping variables and identifiers, e.g., msg[0] =
bitXOR(k[0], msg[0]). Next, we merge the layers, trans-
formed from intermediate steps, into the bitXOR layer
because many deep learning frameworks have element-
wise layers, e.g., TensorFlow tf.bitwise.bitwise_xor.
Other XOR statements can be transformed by applying
[T-OP-XOR].

• Lookup Statement. In block 5 , msg is looked up by a row
index array. Similar to XOR statement transformation, we
have omitted the intermediate steps msg[0] = Sbox(msg[0]),
..., msg[11] = Sbox(msg[11]) for simplicity. By applying
[T-LOOKUP], lookup layers are generated, which are
further merged as an element-wise lookup layer, similar
to XOR statement transformation. The remaining lookup
layers undergo the same transformation process.

• Loop Statement. At block 3 , there is a for-loop
statement. To apply [T-LOOP], we first identify the
loop condition (r in [1, 2, .., Nr-1]) and the iterator
r. The statements from lines 9 to 21 in the loop body
correspond to s∗x, which can be transformed into layers
using the same approaches mentioned earlier. Similarly,
the skipped statements are successfully transformed into
layers, although their details have been omitted.

• Program Transformation To transform the encrypt func-
tion into a model, we apply the [T-INPUT-ASGN] rule. In
particular, we utilize the mappings arg = (msg, key, Nr)
and v = msg to transform the input and output statements.
The function body statements s∗ are transformed in a
similar way to the transformation of loop body statements.

To this end, we successfully transform the AES implementa-
tion from CRYPT DSL to NN DSL in Fig. 5. In this figure, we
omitted details of SubBytes, ShiftRows, and AddRoundKey
operations in the last round for better readability. The omitted
code follows the same implementation (but with different
indices and variables) with the detailed code of the earlier
steps we show, e.g., lines 3-–6 for AddRoundKey and lines
9—10 for SubBytes.

C. TENSORCRYPT Model Optimizations

Hardware accelerators are introduced for high-performance
computing, but there is a trade-off in using these accelerators.
On the one hand, these devices are designed to enhance
performance and achieve parallelism for some computations,
e.g., floating-point computations. On the other hand, they
are slower devices, which introduce extra management (e.g.,
scheduling) and data movement (e.g., through PCIe bus),

Add+Mul+Sum

Initial Graph
𝑤! 𝑤" 𝑤# 𝑤! 𝑤" 𝑤#

𝑤! 𝑤" 𝑤#

Add+MulAdd Mul

𝑤$ 𝑤%

Sum

𝑤$&

Sum

Fusion Intermediate Graph Final Graph

Many-to-one
Fusion

One-to-one
Fusion

(a) Operator Fusion Steps

TimelineAdd

Add+Mul+Sum

Add+Mul+Sum

𝑤! 𝑤" Add

𝑤! 𝑤" 𝑤#

Mul 𝑤" 𝑤# Mul Sum 𝑤$ 𝑤% Sum

Timeline

Initial Graph

Final Graph

Operator
Scheduling

Data
Transmission

Kernel
Execution

(b) Overhead Analysis

Fig. 6: Operator Fusion Workflow. In sub-figure (a), rectangles,
cycles, and arrows are tensors, operators, and data transmis-
sion, respectively. In sub-figure (b), dashed lines denote equal
kernel execution overhead.

compared to using main memory. Existing works [7, 50]
leveraged the parallelization capabilities of these devices
but failed to reduce the overhead introduced by unnecessary
management and data movement. In light of this observation,
we optimize models to address these limitations.

1) Operator Fusion: As discussed in §III-B1, neural net-
works can be represented as computational graphs. Fig. 6a
presents an example, where the input tensors w1, w2, and w3

are processed by three operators, i.e., Add, Mul, and Sum. To
execute them, there are three main steps, i.e., operator schedul-
ing, data transmission, and operator kernel execution [51]. For
example, to perform the calculation with the Add operator, the
host first schedules and picks up this operator to be executed
based on the graph structure (step 1). Then, tensors w1 and w2

are loaded and moved to the GPU memory (step 2). Finally,
the kernel of Add is executed (step 3).

Non-optimized computational graphs have redundant man-
agement and data movement operations. Fig. 6a gives an
example of computing w1 + w2 + w2 × w3. The initial
computational graph contains three operators, i.e., Add, Mul,
and Sum. Fig. 6b shows its execution process: the host first
schedules the Add operator, then transfers the input tensors
w1 and w2 to the GPU memory, and finally executes the
Add operator. Then, the host schedules the Mul operator,
transfers the input tensors w2 and w3 to the GPU memory,
and executes the Mul operator. Finally, the host schedules
the Sum operator, transfers the input tensors w4 and w5 to
the GPU memory, and executes the Sum operator. In this
execution process, all inputs and internal results have to be
frequently loaded to (or offload from) the GPU memory, which
leads to high overhead. Furthermore, despite its simplicity,
this graph necessitates multiple rounds of scheduling (i.e.,

6

GPU Memory Grid GPU Memory Grid

Low High

GPU Execution Status
(b)

Waiting
Busy

Timeline

Timeline

(a) Eager Loading (b) Load-on-use

Memory Hit Rate:

0

(a)

Fig. 7: GPU Memory Usage and Execution Status Difference
between Common Practice (Eager Loading) and Our Opti-
mization (Load-on-use).

positively correlated to the number of operators), introducing
more overhead. The key idea of reducing such overhead is to
fuse graph operators, which is known to be challenging [52].
While existing methods are search or heuristic-based, our key
observation is that most cryptographic operators are many-to-
one (e.g., addition) and one-to-one (e.g., slice), which allows
us to perform easy rule-based operator fusion to reduce the
scheduling and data movement overhead. Similar to Fig. 5,
we omitted unoptimized operations for readability in Fig. 6.
Many-to-one Operator Fusion. For many-to-one operators,
our fusion rule looks for operators that depend on the same in-
puts and simply merge these operations into one by appending
one after the other. If these operators do not have dependen-
cies, the order of operations does not matter. Otherwise, we
follow the dependency order to maintain the correctness of
the computation. For example, in Fig. 6a, the Add and Mul
operators can be fused into one Add-Mul operator because
they share the same input tensor w2.
One-to-one Operator Fusion. For the one-to-one operator,
we can simply merge it with its predecessor or successor by
prefixing or appending the operator logic, respectively. For
the Fig. 6a example, after fusing the Add and Mul operators,
the Sum operator can be fused with the Add-Mul operator by
appending the Sum logic to the Add-Mul operator. As such,
we reduce the total number of operators to one, reducing the
scheduling overhead by removing two operators and avoiding
loading w2, w4, and w5 (as shown in Fig. 6b).
Fusion Order. One-to-one operators do not have dependencies
on other operators, thus the fusion order for them does not
matter. Many-to-one operators can lead to the creation of
one-to-one operators. As such, we first perform many-to-one
operator fusion and then perform one-to-one operator fusion.

2) Load-on-use Memory Management: Another key factor
that affects GPU computation performance is memory man-
agement. Similar to the CPU main memory, the GPU memory
is also a shared resource and has limited capacity. If the
GPU memory is full, the host has to evict some data from
the GPU memory to make room for new data. This process
is called memory swapping and is time-consuming. GPU

memory management is more challenging. Firstly, unlike the
main memory, which is controlled by the kernel, GPU memory
is managed by users. Namely, a user can determine when to
load data to the GPU memory and when to evict data from the
GPU memory. A poorly programmed application may use the
GPU memory inefficiently, leading to poor performance. We
profiled the GPU memory usage of a popular cryptographic
implementation [26]. For profiling, we used the NVIDIA
GeForce GTX 1080 Ti GPUs that have 11 GB GDDR5X
memory and fed the ciphers with over 107 input plaintext
blocks. It took 0.0368 and 0.141 seconds to perform data
transmission and encryption, respectively.

Fig. 7 (a) shows the hit-rate heatmap of the GPU memory.
As we can see from the figure, the GPU memory is not
fully utilized. Most of the GPU memory has very low
hit rates and only a small portion of the GPU memory is
frequently used. This is because the implementations loaded
the large bulk of plaintext data to the GPU memory at the
beginning of the encryption process, which is a common
practice [26, 53], known as eager loading. The plaintext data
is usually large and occupies most of the GPU memory. As
such, the more frequently used values have to be frequently
loaded and evicted from the GPU memory, which leads to
poor encryption performance. Moreover, operator fusion is
a typical optimization strategy that trades space for time: it
reduces the number of operators but increases the number of
inputs in each operator. For example, in the Fig. 6a, the final
operator Add-Mul-Sum has three inputs, i.e., w1, w2, and w3,
more than any of the original operators. In the real world, if an
operator has too many inputs, it can lead to inefficient memory
usage and execution, similar to the presented case above.

While observing such a performance bottleneck, we propose
to optimize the data transmission process with load-on-use,
a lazy loading strategy. Namely, we would postpone the data
loading as much as possible until the data is actually needed.
To do this, we cluster computations requiring the same inputs
and reorder the statements to ensure that statements using
the same inputs are close to each other while maintaining the
dependencies unchanged. Meanwhile, many ciphers employ a
technique where plaintext is not directly encrypted but instead
combined with intermediate ciphertext [22]. This approach is
commonly used in many block and stream ciphers, e.g., AES
(CTR mode), Salsa20, Chacha20, RC4, HC-128, etc [22]. We
optimize such ciphers and only transfer plaintext from CPU
to GPU when it is needed, rather than loading it into GPU
memory from the very beginning. As shown in Fig. 7 (b),
with our optimization, all the GPU memory is available and
dedicated to cipher execution.

D. Transformation Analysis

In this subsection, we show that our program transformation
guarantees the correctness of the generated program by
showing its bisimulation equivalence to the original program.
Moreover, we also prove that the transformed program is trace
equivalent to the original program, achieving the same level
of security as the original program under our threat model

7

(§III-A). To begin with, we first introduce the definitions of
bisimulation equivalence and trace equivalence:

Definition 1 (Trace Equivalence). Given programs P and M ,
SP
i,t represents the program execution state of program P at

execution step t for a given input i. We use TP and TM

to denote all possible execution steps for program P and M .
Programs P and M are trace equivalent (P ≃T M) when all
their execution states are equivalent, i.e., ∀i, SP

i,TP = SM
i,TM .

Definition 2 (Trace Equivalent Transformation). Given a pro-
gram transformation Γ and programs P and M , M = Γ(P),
Γ is a trace equivalent transformation ⇐⇒ P ≃T M .

Definition 3 (Bisimulation Equivalence). Given two programs
P and M , they are bisimulation equivalent (P ≃B M) if
∀i, P (i) = M(i) where i is any input.

Intuitively, two programs are trace equivalent when their
internal execution states are the same during the whole execu-
tion for the same input. Program transformation that preserves
such a property is a trace equivalent transformation (Defini-
tion 1). Meanwhile, we refer to two programs as bisimulation
equivalent as they implement the same functionality, i.e., two
programs generate the same output for the same input, which
guarantees the correctness of two implementations but does
not guarantee the same security. For example, merge sort and
quick sort algorithms can give the same output for the same
input (i.e., bisimulation equivalent), but they are not trace
equivalent. Bisimulation equivalent transformation can also be
defined in this way, and we omit such details. For a cryp-
tography algorithm, we require the transformation to be trace
equivalent to ensure that the transformed program achieves the
same level of security as the original program. This is to avoid
the possibility that inner variables of the transformed program
leak critical information (e.g., the secret key).

Based on the definitions, we have:

Corollary 1 (Functionality Guarantee). Programs P and M
are trace equivalent ⇒ P and M are bisimulation equivalent,
i.e., P ≃T M ⇒ P ≃B M .

Proof. We have P ≃T M . Based on its definition, we have
∀i, SP

i,TP = SM
i,TM . When tP and tM are the terminal states of

program P and M , respectively, ∀i, SP
i,tP = SM

i,tM ⇒ P (i) =
M(i). Thus, P ≃T M ⇒ P ≃B M .

To show the security of our transformation, we first intro-
duce a few lemmas.

Lemma 2. Our proposed program transformation is a trace
equivalent transformation.

This lemma can be proven by induction. Details can be
found in §A.

Based on Corollary 1 and Lemma 2, we can make the fol-
lowing claim about the correctness guarantee of our program
transformation:

Corollary 3 (Correctness Guarantee). DNN M generated
by the proposed program transformation provides the same
functionality as its original implementation P .

Proof. We use Γ to denote our program transformation, thus
M = Γ(P). According to Lemma 2, our program trans-
formation Γ is a trace equivalent transformation. According
to Corollary 1, ∀i,M(i) = P (i) where i is an input. Thus, M
provides the same functionality as P .

Lemma 4. Under the threat model where the adversary can
observe all internal execution states, cryptographic programs
M and P have the same security guarantees when P ≃T M .

Proof. Under the threat model, the goal of the adversary is
to recover the key K from the program source code or its
super set, the program execution states. We use P(K|SP) and
P(K|SM) to denote the probability of the adversary guessing
the correct key. The attack process is to make new observations
on program states S and update this probability P(K|S), and
when P(K|S) is high enough (can be solved under given
time and computing resources constraints), the adversary wins.
When P and M are trace equivalent, ∀i,∀k, SP

i,k = SM
i.k.

Namely, the adversary will make the same observations at any
given time. Thus, ∀i,∀k,P(K|SP

i,k) = P(K|SM
i,k).

In conclusion, trace equivalent programs M and P have the
same security guarantees under this white-box setting.

With this, we can confirm the security guarantee of our
method by proving the following proposition:

Proposition 5 (Security Guarantee). DNN M generated by
our proposed program transformation provides the same se-
curity guarantees as its original implementation P under the
threat model.

Proof. We use Γ to denote our program transformation,
thus M = Γ(P). According to Lemma 2, our program
transformation Γ is a trace equivalent transformation.
Thus, programs P and M are trace equivalent. According
to Lemma 4, M and P provide the same security guarantee
under the threat model.

Now, we have proved that our program transformation
guarantees the correctness of the transformed program and the
same security as the original implementation under our threat
model. Notice that such correctness and security guarantees
abstract the compiling and optimization of the program con-
ducted by the compiling framework. That is, if the compiling
framework contains malicious behaviors [54], the proof is
potentially not valid. Also, our transformation analysis is
performed on DSLs instead of implementations. While the
implementation adheres to the transformation framework and
DSL, our optimizations enhance implementation efficiency
without affecting the program transformation itself. We also
want to point out that this security is consistent with existing
cryptanalysis, which views the compiling framework (and
lower-level computing infrastructures) as part of the trust base.
In practice, we can also verify that the compiler intermediate

8

representation (IR) or compiled binary code is trace equivalent.
In Appendix §B, we provide such an example. For other po-
tential threats (e.g., side channels), we have discussed security
implications and side channel attacks in §III-A.

IV. IMPLEMENTATION

With TENSORCRYPT, we seek to transform existing cryp-
tographic programs into NN models. To achieve this, we
leveraged TENSORCRYPT to transform the C/C++ crypto-
graphic programs (CRYPT DSL) into TensorFlow [13] models
(NN DSL). Moreover, our transformation source programs
are venerated C/C++ implementations, i.e., the OpenSSL
AES/Chacha ciphers [55] and the official Salsa implemen-
tation [22]. Next, we transform these source programs into
Tensorflow Models with TENSORCRYPT. Specifically, TEN-
SORCRYPT utilizes the mappings outlined in Table II (Ap-
pendix §C) to build concrete TensorFlow models and layers.
For TENSORCRYPT model optimizations (§III-C), we imple-
mented load-on-use memory management with Tensorflow
APIs (e.g., tf.device and tf.constant and directly lever-
aged XLA [16] for operator fusion.

Correctness. To verify the correctness of all implementations,
we use NIST/RFC test vectors [56, 57] for AES and cipher
specifications [22] for Salsa20 and Chacha20 on TENSOR-
CRYPT models (as well as our baselines). Specifically, after
building TENSORCRYPT models, we perform encryption on
given input vectors and compare the cipertext with given test
vectors to ensure exact match. The same process is applied on
decryption with the TENSORCRYPT models.

V. EVALUATION

We aim to answer the following research questions:
• RQ1: For effectiveness and efficiency, how do

TENSORCRYPT models compare to state-of-the-art
cryptographic implementations?

• RQ2: How general is our technique? Namely, is it limited
to specific ciphers, hardware (e.g., mobile and IoT devices)
or software (e.g., operating systems)?

• RQ3: How can our proposed optimization methods help
reduce the overhead of TENSORCRYPT models?

• RQ4: To what extent can other factors, such as cipher
modes, key sizes, and encryption/decryption options,
impact the performance of TENSORCRYPT models?

A. Evaluation Setup

In this paper, we evaluate AES, Salsa20, and Chacha20. We
use them for evaluations because they are recommended for
large-volume data encryption in TLS 1.3 [58]. For AES, we
follow previous studies [2, 59] and focus on the CTR mode
due to its parallelism and superior security guarantee. Since
different key sizes do not give notable performance differences
(see §V-E for more details), we mainly report results on 128-
bit keys for simplicity. In addition, our evaluation results are
presented primarily on the encryption process because AES,
Chacha20, and Salsa20 are symmetric ciphers [41], while it’s

worth noting that we also assess the decryption process, which
is discussed in more detail in §V-E.

Baselines. To show how effective and efficient TENSORCRYPT
models are, we compare them with current GPU-based cryp-
tographic implementations that have achieved state-of-the-art
performance [20, 26, 27]. But as far as we know, there are
no such implementations available from reputable vendors,
e.g., OpenSSL. Therefore, we concentrate on GPU-based
cryptographic implementations found in literature and public
repositories for baseline selection. We skip evaluating the
implementations based on the other acceleration methods due
to their lower performance, e.g., the AES-NI [24] are 6.52x-
13.60x slower than GPU-based AES implementations [20, 28].

Despite many prior works proposing to accelerate cryp-
tographic implementations using GPUs, most of them have
not released their implementations. Moreover, some of the
open-source implementations are incorrect [53]. For instance,
the bugs are found in the existing research, e.g., hard-coded
keys during compilation for implementations by Hajihassani et
al. [7]. Therefore, we adopt a 3-step approach to select base-
lines considering availability, correctness, and state-of-the-
art performance. First, we identify recent GPU-based crypto-
graphic implementations and literature. Next, we test the open-
source implementations to verify their correctness. Finally,
we select implementations with state-of-the-art performance.
Note that, we observe that baseline methods were evaluated
using outdated GPUs in their original research, different from
ours. Therefore, we use the same evaluation setup as TENSOR-
CRYPT on all baselines for fair comparisons. We have chosen
the GPU-based Chacha20/Salsa20 implementations [27] and
AES benchmarks [20] as our baselines. (see Appendix §E).

Maintenance and Optimization Costs. During evaluations,
we observe some one-time costs for both TENSORCRYPT
models and baselines (e.g., model saving and loading for
TENSORCRYPT models), which can be amortized in cipher ex-
ecution processes (discussion in §F). For example, TensorFlow
models undergo the time-consuming tracing process [60],
which can be amortized by pre-loading the model in memory
and reusing the traced model. Moreover, TENSORCRYPT
models are first transformed from source programs, optimized
using our proposed methods, and saved as .pb and .tflite
files. For maintenance, TENSORCRYPT models and baselines
involve minimal storage. Specifically, after transformation,
TENSORCRYPT models are first stored in .pb files, whose
sizes are comparable to baseline binaries, e.g., AES models
and baselines have file sizes of 704 KB and 646 KB, respec-
tively. TENSORCRYPT model sizes can be further reduced as
.tflite models, e.g., the AES .tflite model is 149 KB,
which is portable for mobile/IoT devices.

Test Environments and Methods. The specifications of the
machines and devices used for evaluations are presented in
Table I of §D. For performance testing, we process input mes-
sages into plaintext/ciphertext blocks (the block sizes for AES,
Salsa20, and Chacha20 are 16-byte, 64-byte, and 64-byte) and

9

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

0.00

0.05

0.10

La
te

nc
y

(s
ec

)

(a)

AES Encryption Latency on GPU

Baseline-AES
TensorCrypt-AES

104.5 105
105.5

106
106.5 107

Input Blocks

10 3

10 2

10 1

La
te

nc
y

(s
ec

)

(b)

AES Latency Profiling

Cipher-Baseline
Cipher-TensorCrypt
Memcpy-Baseline
Memcpy-TensorCrypt

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5

Input Blocks

0.00

0.02

0.04

La
te

nc
y

(s
ec

)

(c)

Salsa20 Encryption Latency on GPU

Baseline-Salsa20
TensorCrypt-Salsa20

104
104.5 105

105.5
106

106.5

Input Blocks

10 4

10 3

10 2
La

te
nc

y
(s

ec
)

(d)

Salsa20 Latency Profiling

Cipher-Baseline
Cipher-TensorCrypt
Memcpy-Baseline
Memcpy-TensorCrypt

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5

Input Blocks

0.00

0.02

0.04

La
te

nc
y

(s
ec

)

(e)

Chacha20 Encryption Latency on GPU

Baseline-Chacha20
TensorCrypt-Chacha20

104
104.5 105

105.5
106

106.5

Input Blocks

10 4

10 3

10 2

La
te

nc
y

(s
ec

)

(f)

Chacha20 Latency Profiling

Cipher-Baseline
Cipher-TensorCrypt
Memcpy-Baseline
Memcpy-TensorCrypt

Fig. 8: Latency and Profiling of TENSORCRYPT Models and
Baselines for AES, Salsa20, and Chacha20 on GPUs

run ciphers multiple (> 30) times. All steps are guaranteed to
be the same for the baselines and TENSORCRYPT models.

B. RQ1: Effectiveness and Efficiency

To answer RQ1, we first evaluate both baselines and TEN-
SORCRYPT models with GPUs and then perform an in-depth
overhead analysis to comprehend the underlying reasons.

Overall Performance and Baseline Comparison. We
evaluate the performance of TENSORCRYPT models and
baselines on a GPU server, i.e., Lambda workstation in
Table I, which has 4 NVIDIA GeForce GTX 1080 Ti
graphics cards and NVIDIA CUDA Toolkit 11.4 as GPU
driver. To fully utilize the GPU resources, we configure
models and baselines as follows. For TENSORCRYPT
models, we use the best-practice TensorFlow GPU computing
strategy tf.distribute.Strategy. For baselines, we
experiment with multiple thread numbers per block (i.e.,
dimBlock) and choose the one that yielded the best
performance. We dynamically set the number of blocks per
grid (i.e., dimGrid) based on the input size. In order to
replicate the exponential data growth trend described in §I,
we increase the size of plaintext and ciphertext exponentially
based on number of input blocks2.

Fig. 8 (a) presents the latency of AES models and baselines
on GPU. Our overall results indicate that both TENSORCRYPT

2We round some block numbers to integers, such as 31 for 101.5

models and baselines exhibit an increasing trend in encryption
latency. For small input (# blocks ≤ 104), our baselines
and TENSORCRYPT models exhibit similar performance. For
large input (> 104), TENSORCRYPT models are 2.33× faster
than the baselines on average. This performance gap becomes
more significant when block number > 106 with our models
achieving a speedup of 4.09× compared to the baselines.
The 106 input blocks correspond to the data required for
encryption and decryption in a Zoom meeting with 200
attendees, the application scenarios of TENSORCRYPT as
elucidated in §I. Meanwhile, in Fig. 8 (c) and (e), Salsa20 and
Chacha20 TENSORCRYPT models outperform the baselines as
well, i.e., they are 5.44× and 5.06× faster than baselines on
average. Our main objective for developing TENSORCRYPT
was to enable efficient cryptographic computations, and the
significant outperformance of our models compared to the
baselines demonstrates the effectiveness of our approach.

Performance Analysis. To gain a better understanding of the
reasons behind the superior performance of TENSORCRYPT
models, we profiled both our models and the baselines. This
analysis reveals three primary steps that cause the overhead: (i)
key generation and input padding, (ii) cipher execution on the
GPU, and (iii) data transmission between the CPU and GPU
devices. Step (i) is found to be very efficient, taking less than
0.00001 seconds for both the baselines and TENSORCRYPT
models. Therefore, we focused our performance profiling
on the remaining two steps, (ii) and (iii), particularly for
large input sizes where we observed significant performance
differences between the models and baselines.

Fig. 8 (b) presents the profiling results for AES models and
baselines. AES TENSORCRYPT models surpass baselines in
both cipher execution and memory copy operations. Specifi-
cally, when with > 105 input blocks, TENSORCRYPT models
(Cipher-TENSORCRYPT) exhibit an average cipher execution
speed 1.93× faster than baselines (Cipher-Baseline). Simi-
larly, TENSORCRYPT models (Memcpy-TENSORCRYPT) out-
perform baselines (Memcpy-Baseline) in data transmission op-
erations. Fig. 8 (d) and (f) present profiling results for Salsa20
and Chacha20, where TENSORCRYPT models also exhibit
better performance. As an illustration, on average, Salsa20 and
Chacha20 models (Cipher-TENSORCRYPT) demonstrate ci-
pher execution speeds that are 9.50× and 8.09× faster than the
baseline (Cipher-Baseline), respectively. In data transmission,
the Salsa20 model (Memcpy-TENSORCRYPT) demonstrates
2.29×, 5.61×, and 12.44× faster performance than the base-
line (Memcpy-Baseline), given 104, 105, and 106 input blocks.

RQ1 Answer: TENSORCRYPT models are more efficient
than baselines (e.g., up to 4.09× faster for AES en-
cryption). Our profiling results demonstrate their superior
efficiency in cipher execution and data transmission, e.g.,
up to 12.44× improvement for Salsa20.

C. RQ2: Generalizability

To answer RQ2, we evaluate TENSORCRYPT models on
multiple platforms with various software and hardware stacks.

10

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

10 2

100

La
te

nc
y

(s
ec

)

(a)

AES Latency on TPU & CPU

TPU-AES
CPU-AES

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5

Input Blocks

10 2

100

La
te

nc
y

(s
ec

)

(b)

Salsa20/Chacha20 Latency on TPU & CPU

TPU-Salsa20
TPU-Chacha20
CPU-Salsa20
CPU-Chacha20

101.5
102

102.5 103
103.5 104

104.5 105
105.5

Input Blocks

10 1

101

La
te

nc
y

(s
ec

)

(c)

AES Latency on Mobile & IoT Devices

Google Pixel-AES
Raspberry Pi-AES

101.5
102

102.5 103
103.5 104

104.5 105

Input Blocks

10 1

100

101

La
te

nc
y

(s
ec

)

(d)

Salsa20/Chacha20 Latency on Mobile & IoT Devices

Google Pixel-Salsa20
Google Pixel-Chacha20
Raspberry Pi-Salsa20
Raspberry Pi-Chacha20

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

10 2

100

La
te

nc
y

(s
ec

)

(e)

AES Latency on MacOS & Windows

MacOS-AES
Windows-AES

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5

Input Blocks

10 2

100

La
te

nc
y

(s
ec

)

(f)

Salsa20/Chacha20 Latency on MacOS & Windows

MacOS-Salsa20
MacOS-Chacha20
Windows-Salsa20
Windows-Chacha20

Fig. 9: Latency of TENSORCRYPT Models on Diverse Plat-
forms with Various Software and Hardware Stacks.

Other Hardware Accelerators. To assess the deployability
of TENSORCRYPT models on other hardware accelerators, we
create a virtual machine (VM) on Google Cloud (Table I) with
a Google Tensor Processing Unit (TPU) V2-8 node [11]. We
skip evaluating baselines since TPUs are specifically designed
for tensor operations and currently do not support CUDA GPU
programs. Instead, we opt to evaluate TENSORCRYPT models
on the CPU of the created VM, which enables us to showcase
the advantages of TENSORCRYPT. For model deployment, we
only need to change several lines of GPU deployment codes
to use TPUs with the tf.distribute.TPUStrategy API.

Fig. 9 (a) presents the encryption latency of AES
TENSORCRYPT models on TPU and CPU. Overall,
TENSORCRYPT models perform 10.53× faster on TPU
compared to CPU. With large input sizes (# blocks ≥ 104),
TPUs can significantly enhance the model’s performance. For
instance, with 105 input blocks, the model is 29.43× faster
when executed on TPU compared to CPU. Fig. 9 (b) shows
the latency of Salsa20 and Chacha20 models with TPU and
CPU devices (since both Salsa20 and Chacha20 have the
same block sizes, we present their performance on the same
figure). The Salsa20 and Chacha20 models are 13.87× and
15.60× faster on TPU than on CPU, respectively.

Mobile and IoT Devices. DNN models are widely used in
mobile and IoT applications [61], critical for IoT security [62].
We demonstrate the deployability of TENSORCRYPT models

on mobile devices by running them on a Google Pixel XL
smartphone with Android 8.1 installed. Although this device
has a graphics card, TensorFlow mobile GPU delegate [63]
only supports a very limited number of operators and tensor
types without allowing users to add customized ones at the
time of paper writing. Consequently, we build an Android ap-
plication to execute the models on the CPU with 4 threads. For
IoT devices, we deploy our models on a Raspberry Pi 3 board.
To support cross-platform deployment, we convert TENSOR-
CRYPT models into .tflite models with TensorFlow. We
compare the deployment performance of both .tflite mod-
els and .pb models for the IoT device and find that the models
in .pb format outperformed the others. Therefore, we report
the performance of .pb models for IoT devices.

Fig. 9 (c) and (d) present the latency of the AES, Salsa20,
and Chacha20 models on mobile and IoT devices. Overall,
we notice comparable upward trends in latency for all three
ciphers on both devices, e.g., it takes 150.1× more time to
encrypt the input message with 105 blocks than with 102

blocks. The AES, Salsa20, and Chacha20 TENSORCRYPT
models show respective speedups of 3.64×, 2.26×, and 2.13×
on the Google Pixel smartphone compared to the Raspberry Pi
3. This difference in performance is reasonable considering the
different CPU and memory capabilities of these two devices.

Operating Systems. In addition to evaluating the performance
of our models on Linux (on the Lambda workstation) and
Android (on the Google Pixel phone), we also assess their
performance on Windows and MacOS. It is worth noting that
Windows and MacOS constitute a significant share of the
desktop market, with Windows holding 75.2% and MacOS
holding 15.9% [64]. The test machines consist of a Windows
Desktop running Windows 10 and a MacBook Pro machine
running MacOS 12.5. We utilize the CPUs of these machines
for evaluations as TensorFlow requires NVIDIA GPU drivers
which are currently not compatible with Intel and AMD
graphics cards. Fig. 9 (e) and (f) present the latency of the
AES, Salsa20, and Chacha20 models running on Windows
and MacOS machines. Overall, the model execution is faster
on the Windows machine compared to the MacOS machine
due to the better Windows machine specifications. Moreover,
AES, Salsa20, and Chacha20 models exhibit respective
speedups of 3.25×, 4.07×, and 4.27× for large input
messages (> 103 blocks) on MacOS compared to Windows.

Programming Languages. To deploy TENSORCRYPT
models, it is required to write codes to load and execute them,
potentially using various programming languages. We have
previously shown examples of deploying models using Python
and Java in our evaluations (see Section V-B). Specifically,
we utilized the Python tensorflow and tflite_runtime
APIs to construct and import .pb and tflite files across
multiple platforms, e.g., the Google Cloud VM and IoT
devices. To deploy the models on mobile devices, we utilized
the Java org.tensorflow.lite APIs. In this process, we
have also demonstrated the ability of our models to utilize
various API sets for a single language, e.g., tensorflow

11

and tflite_runtime for Python. Moreover, developers have
the option to convert our TensorFlow models into models of
other deep learning frameworks using ONNX [65], providing
them with even greater deployment flexibility. Although
we have evaluated the two most popular DNN deployment
languages [66], there are still other languages, such as C and
C++. A more comprehensive study is left for future work.

RQ2 Answer: TENSORCRYPT is applicable to differ-
ent ciphers (i.e., AES/Salsa20/Chacha20). TENSORCRYPT
models can be deployed with diverse hardware and soft-
ware stacks, i.e., hardware accelerators (GPU/TPU), op-
erating systems (Linux/Windows/MacOS/Android), lan-
guages (Python/Java), and devices (mobile/IoT/desktop/-
cloud server).

D. RQ3: Effectiveness of Optimization

To answer RQ3, we assess the effectiveness of our proposed
optimizations, i.e., operator fusion and load-on-use memory
management. Based on our evaluations, these optimizations
have similar performance benefits for AES, Salsa20, and
Chacha20 models. For instance, operator fusion improves
the performance of AES, Salsa20, and Chacha20 models by
79.79×, 85.72×, and 74.69×, respectively. Therefore, in this
section, we focus on presenting the evaluation results for AES
to provide a detailed analysis.

Operator Fusion. We investigate the impact of operator fusion
on accelerating TENSORCRYPT models by enabling and dis-
abling it during experiments. Fig. 10 (a) presents the encryp-
tion latency of models with and without this optimization. In
general, we note a considerable performance improvement due
to this optimization. To be specific, on average, models with
operator fusion are 44.46× faster compared to those without
it. Furthermore, for messages with a small size (≤ 104 input
blocks), the performance gap is less than 27.30×. However,
for larger input sizes, the latency difference becomes much
more significant. For example, there is a 79.79× improvement
in performance for messages containing 106 input blocks.

Performance Improvement Analysis. Having observed a
significant performance improvement with operator fusion,
we aim to uncover its underlying cause. First, we examine the
changes in the computational graph of deep neural networks by
dumping DNN programs with and without enabling operator
fusion using the introspection flag [67]. Fig. 14 in Appendix
§G presents the DNN programs with operator fusion applied.
From line 3 to 13, multiple operators are fused into a single
operator (%fused_computation). Furthermore, operator
fusion reduces operators in the while loop (from line 17 to 28)
from 1,404 to 24, indicating a decrease of 98.3% in the number
of operators. Additionally, among these 24 operators, 12 are
fused operators that can be identified by their specific identifier
names, e.g., %fused_computation.3. We also profile the
overhead of data transmission and operator scheduling, which
we analyzed in §III-C1. Fig. 10 (b) presents the profiling
results. Compared to the small overhead with optimization (all
< 0.0025 seconds), the overhead without optimization exhibits

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

10 2

100

La
te

nc
y

(s
ec

)

(a)

Operator Fusion Effectiveness

w/o operator fusion
w/ operator fusion

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

0

2

4

La
te

nc
y

(s
ec

)

(b)

Latency of Op Scheduling and Data Transmission

w/o operator fusion
w/ operator fusion

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

10 2

100

La
te

nc
y

(s
ec

)

(c)

Load-on-use Memory Management Effectiveness

w/o load-on-use
w/ load-on-use

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

10 3

10 2

10 1

La
te

nc
y

(s
ec

)

(d)

Cipher Execution Profiling

w/o load-on-use
w/ load-on-use

Fig. 10: Effectiveness and Latency Profiling of Operator
Fusion and Load-on-use Memory Management Optimizations

an exponential incremental trend. In general, operator fusion
reduces overhead by 519.29×. For large input plaintexts,
the optimization proves to be even more effective, reducing
overhead by 1514.92× for 107 input blocks.
Load-on-use Memory Management. Fig. 10 (c) presents the
overall encryption latency of our models, comparing the per-
formance w/wo load-on-use memory management. According
to this figure, it significantly reduces latency with large input
(≥ 104 input blocks), e.g., 2.45× improvement with 104 input
blocks, and up to 4.92×. As discussed in §III-C2, load-one-
use memory management optimizes the GPU memory for the
encryption process. Therefore, we also profile this process.
Fig. 10 (d) presents the overhead of counter encryption with
and without this optimization. We find that the encryption
process is significantly accelerated. When the plaintext is large,
its overhead can be reduced by up to 92.5×.

RQ3 Answer: Our proposed optimizations make TENSOR-
CRYPT models more efficient, e.g., operator fusion reduces
the latency by up to 79.79× and load-one-use memory
management accelerates encryption by up to 92.5×.

E. RQ4: Impacts of Other Factors

Encryption and Decryption. In addition to demonstrating
high encryption performance in various scenarios in the above
sections, we also investigate the decryption performance of
TENSORCRYPT models. We skip evaluating the decryption
performance of Salsa20 and ChaCha20 since their encryption
and decryption processes are identical [23]. Fig. 11 (a) presents
the latency of AES models and baselines for encryption and
decryption. Overall, there are no notable latency differences
between encryption and decryption for both TENSORCRYPT
models and baselines, i.e., the average latency gaps for models
and baselines are 1.6% and 0.3%, respectively, which is to be
expected given that AES is a symmetric cipher [68].

12

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

0.00

0.05

0.10

La
te

nc
y

(s
ec

)

(a)

Latency of Encryption and Decryption

Baseline-Decryption
Baseline-Encryption
TensorCrypt-Decryption
TensorCrypt-Encryption

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

0

5

10

La
te

nc
y

(s
ec

)

(b)

Encryption Latency of AES Modes

OFB
CFB
CBC
CTR
ECB

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5 107

Input Blocks

0.00

0.05

0.10

0.15

La
te

nc
y

(s
ec

)

(c)

AES Latency with Various Key Sizes

Baseline-256
Baseline-192
Baseline-128
TensorCrypt-256
TensorCrypt-192
TensorCrypt-128

101.5
102

102.5 103
103.5 104

104.5 105
105.5

106
106.5

Input Blocks

0.00

0.02

0.04
La

te
nc

y
(s

ec
)

(d)

Salsa20/Chacha20 Latency with Various Key Sizes

Chacha20-Baseline-256
Salsa20-Baseline-256
Chacha20-Baseline-128
Salsa20-Baseline-128
Chacha20-TensorCrypt-256
Salsa20-TensorCrypt-256
Chacha20-TensorCrypt-128
Salsa20-TensorCrypt-128

Fig. 11: Latency of Models and Baselines in Encryption/De-
cryption, Different AES Modes and Various Key Sizes

Different AES Modes. While we mainly report evaluation
results of CTR mode because of its better security and paral-
lelism (see §V-A), we also report the performance of other
AES modes. Specifically, we execute AES TENSORCRYPT
models in the ECB, CBC, CFB, OFB, and CTR modes
using the Lambda workstation’s CPUs (Table I) to give a
fair comparison, since CBC, CFB, and OFB are sequential
modes that cannot be parallelized. Fig. 11 (b) presents the
latency of different AES modes. According to the results, the
parallel modes such as ECB and CTR are faster compared to
the sequential modes, e.g., the CTR mode is 1.05×, 1.06×,
and 1.12× faster than CBC, CFB, and OFB modes on average.

Various Key Sizes. AES, Salsa20, and Chacha20 support
multiple sizes of keys. Specifically, AES supports key sizes of
128, 192, and 256 bits, where different key sizes correspond
to different encryption rounds. In Fig. 11 (c), we present the
latency of the AES TENSORCRYPT models and baselines
with 128-bit, 192-bit, and 256-bit keys on GPUs. Notably, we
find that the key size has an impact on the encryption latency
of the baselines, but it does not notably affect TENSORCRYPT
models. For instance, the baseline with 128-bit keys is
1.18× faster than the baseline with 256-bit keys on average.
However, the TENSORCRYPT-128 model is 1.003× faster
than TENSORCRYPT-256, which is trivial enough to allow
users to freely switch between models with different key sizes.

Salsa20 and Chacha20 support 128-bit and 256-bit keys,
which result in different key streams as initial states. Fig. 11
(c) shows the latency of Salsa20 and Chacha20 models and
baselines in 128-bit and 256-bit keys. While TENSORCRYPT
models consistently outperform the baselines, we do not
observe notable performance differences among different key
sizes of Salsa20 and Chacha20 models. Specifically, the aver-
age latency gaps between the 128-bit and 256-bit Salsa20 and
Chacha20 models are only 0.9% and 0.7%, respectively. From

the efficiency perspective, the trivial performance differences
across various key sizes allow us to showcase TENSORCRYPT
models with one specific key size, such as the 128-bit key.

RQ4 Answer: TENSORCRYPT models have negligible
performance differences in encryption and decryption and
across various key sizes. AES latency varies on different
modes, e.g., ECB mode is 1.32× faster than CFB mode.

VI. DISCUSSION

Multi-GPU Parallelism. We do not include multi-GPU
evaluations because our baseline methods do not support such
configurations [2, 18, 20, 26–31]. To ensure a fair comparison,
we evaluate both TENSORCRYPT and the baselines under
the same single-device environment. Our goal is to demon-
strate that our superior performance stems from the design
of TENSORCRYPT itself, rather than the use of additional
hardware accelerators. That said, modern AI frameworks like
TensorFlow [69] have extensive support for multi-GPU setups,
enabling efficient execution of massive models. TENSOR-
CRYPT is implemented in TensorFlow and thus can leverage
multi-GPU configurations.

Implementation Effort Analysis. In §I, we introduced the
engineering challenges associated with harnessing hardware
accelerators. These challenges encompass a range of issues,
including but not limited to inadequate tool chain support,
steep learning curves, a scarcity of experts, and significant time
commitments [70]. The introduction of TENSORCRYPT offers
a transformative solution—a program translation framework
that necessitates only an existing cryptographic implementa-
tion. Since existing cryptographic experts are already well-
versed in their implementations, transitioning to AI frame-
works, characterized by their high-level abstractions, is rel-
atively straightforward. Furthermore, the tool chain utilized
for the development, maintenance, and deployment of our
models is both mature and widely adopted. Conducting a
comprehensive exploration of these factors, potentially through
human-centered studies, could pave the way for interesting
avenues in future research.

Security Implication Analysis. For the potential security im-
plications, we analyze TENSORCRYPT models from three as-
pects. First, TENSORCRYPT leverages hardware accelerators,
thus, it is potentially vulnerable to side-channel attacks, e.g.,
power side channels [71, 72] and time side channels [73] at-
tack, like other other GPU-based cipher implementations [74].
Instead, we focus on improving efficiency over baselines.
Second, deep neural networks are known to be vulnerable
to adversarial machine learning attacks, e.g., data poisoning
and backdoor attacks [75]. However, such attacks cannot be
applied to TENSORCRYPT models since they are not trained.
Instead, the weights are directly translated from a symbolic
program, which makes it possible to explain and interpret
the weights and execution. Finally, to support multi-platform
deployment (§V-C), TENSORCRYPT does not sacrifice security
but needs hardware resources for acceleration, e.g., GPUs,
same as existing solutions (see §III-D).

13

Other Platforms and Implementations. Our evaluations are
performed on diverse platforms listed in Table I. While there
can be other platforms for deployment and evaluations, the
performance observed on these platforms may differ from
the results reported in this paper. We believe the evaluations
on other platforms (e.g., other GPUs) will be interesting
for future research. Additionally, we selected the baseline
implementations to the best of our ability; however, more
advanced baseline implementations may emerge in the future.
For TENSORCRYPT models, we only implemented them on
TensorFlow, and we believe there are frameworks for im-
plementations. While our primary contributions focus on the
novel application of neural networks (NN) for cryptography,
we leave the exploration of alternative implementations as
future work.

VII. CONCLUSION

In summary, we present an approach to accelerate crypto-
graphic algorithms through the TENSORCRYPT system. This
addresses the escalating demand for efficient cryptographic
computations, facilitated by user-friendly programming in-
terfaces and optimal performance. TENSORCRYPT employs
DSL-guided transformations to seamlessly convert crypto-
graphic programs into AI models, guaranteeing trace and
bisimulation equivalence. Moreover, our introduced optimiza-
tion techniques substantially amplify model efficiency. Em-
pirical evaluations robustly demonstrate that TENSORCRYPT
models outperform existing solutions, underscoring their
adaptability across diverse platforms. TENSORCRYPT artifact
is available at: https://github.com/OSUSecLab/TensorCrypt.

ACKNOWLEDGMENT

We appreciate anonymous reviewers for their insightful
feedback. The authors have been supported in part by TrojAI
W911NF-19-S-0012, and NSF awards 2112471, 2207202,
2319944, and 2342250. Any opinions, findings, conclusions,
or recommendations presented are those of the authors and do
not necessarily reflect the views of the sponsors.

REFERENCES

[1] Bernard Marr, “How much data do we create every day? the mind-
blowing stats everyone should read,” https://www.forbes.com/sites/ber
nardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-min
d-blowing-stats-everyone-should-read/?sh=458cc54e60ba.

[2] V. Eduardo, L. C. E. De Bona, and W. M. N. Zola, “Speculative
encryption on {GPU} applied to cryptographic file systems,” in 17th
USENIX Conference on File and Storage Technologies (FAST 19), 2019,
pp. 93–105.

[3] H. Park, Y. Huo, and S.-E. Yoon, “Meshchain: Secure 3d model and
intellectual property management powered by blockchain technology,” in
Advances in Computer Graphics: 38th Computer Graphics International
Conference, CGI 2021, Virtual Event, September 6–10, 2021, Proceed-
ings 38. Springer, 2021, pp. 519–534.

[4] S. A. Manavski, “Cuda compatible gpu as an efficient hardware accel-
erator for aes cryptography,” in 2007 IEEE International Conference on
Signal Processing and Communications. IEEE, 2007, pp. 65–68.

[5] T. Isobe and R. Ito, “Security analysis of end-to-end encryption for zoom
meetings,” Ieee Access, vol. 9, pp. 90 677–90 689, 2021.

[6] “Zoom system requirements: Zoom web app and web client,”
https://support.zoom.us/hc/en-us/articles/11999201591949-Zoom-syste

m-requirements-PWA-and-web-client, accessed on 10-16-2023.

[7] O. Hajihassani, S. K. Monfared, S. H. Khasteh, and S. Gorgin, “Fast aes
implementation: A high-throughput bitsliced approach,” IEEE Transac-
tions on parallel and distributed systems, vol. 30, no. 10, pp. 2211–2222,
2019.

[8] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo, “A generic communication scheduler for distributed dnn training
acceleration,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019, pp. 16–29.

[9] H. T. Siegelmann and E. D. Sontag, “On the computational power of
neural nets,” Journal of computer and system sciences, vol. 50, no. 1,
pp. 132–150, 1995.

[10] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv
preprint arXiv:1410.5401, 2014.

[11] G. Cloud, “Cloud tpu,” https://cloud.google.com/tpu.
[12] Tom Brookes, “What is the apple a16?” https://nanoreview.net/en/soc/

apple-a16-bionic.
[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[14] A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds.
Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-p

erformance-deep-learning-library.pdf
[15] T. Chen, T. Moreau, Z. Jiang et al., “{TVM}: An automated end-to-end

optimizing compiler for deep learning,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 578–594.

[16] Tensorflow, “Xla: Optimizing compiler for machine learning,” https:
//www.tensorflow.org/xla.

[17] H. Böck, A. Zauner, S. Devlin, J. Somorovsky, and P. Jovanovic,
“Nonce-disrespecting adversaries: Practical forgery attacks on gcm in
tls.” IACR Cryptol. ePrint Arch., vol. 2016, p. 475, 2016.

[18] Z. Wang, H. Chen, and W. Cai, “A hybrid cpu/gpu scheme for opti-
mizing chacha20 stream cipher,” in 2021 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Big Data & Cloud Comput-
ing, Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2021, pp.
1171–1178.

[19] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol.
549, no. 7671, pp. 188–194, 2017.

[20] C. Tezcan, “Optimization of advanced encryption standard on graphics
processing units,” IEEE Access, vol. 9, pp. 67 315–67 326, 2021.

[21] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[22] D. J. Bernstein, “The salsa20 family of stream ciphers,” New stream

cipher designs: the eSTREAM finalists, pp. 84–97, 2008.
[23] D. J. Bernstein et al., “Chacha, a variant of salsa20,” in Workshop record

of SASC, vol. 8, no. 1. Citeseer, 2008, pp. 3–5.
[24] S. Gueron, “Intel(r) advanced encryption standard (aes) new instructions

set white paper,” https://www.intel.com/content/dam/doc/white-paper/a
dvanced-encryption-standard-new-instructions-set-paper.pdf.

[25] S. Ghaznavi, C. Gebotys, and R. Elbaz, “Efficient technique for the
fpga implementation of the aes mixcolumns transformation,” in 2009
International Conference on Reconfigurable Computing and FPGAs.
IEEE, 2009, pp. 219–224.

[26] C. Wang and X. Chu, “Gpu accelerated aes algorithm,” arXiv preprint
arXiv:1902.05234, 2019.

[27] P. Santucci, E. Ingrassia, G. Picierro, and M. Cesati, “Memshield: Gpu-
assisted software memory encryption,” in Applied Cryptography and
Network Security: 18th International Conference, ACNS 2020, Rome,
Italy, October 19–22, 2020, Proceedings, Part II. Springer, 2020, pp.
323–343.

[28] R. K. Lim, L. R. Petzold, and Ç. K. Koç, “Bitsliced high-performance
aes-ecb on gpus,” in The New Codebreakers. Springer, 2016, pp. 125–
133.

[29] J. W. Bos, D. A. Osvik, and D. Stefan, “Fast implementations of aes on
various platforms,” Cryptology ePrint Archive, 2009.

[30] C. Mei, H. Jiang, and J. Jenness, “Cuda-based aes parallelization
with fine-tuned gpu memory utilization,” in 2010 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd
Forum (IPDPSW). IEEE, 2010, pp. 1–7.

14

https://github.com/OSUSecLab/TensorCrypt
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=458cc54e60ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=458cc54e60ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=458cc54e60ba
https://support.zoom.us/hc/en-us/articles/11999201591949-Zoom-system-requirements-PWA-and-web-client
https://support.zoom.us/hc/en-us/articles/11999201591949-Zoom-system-requirements-PWA-and-web-client
https://cloud.google.com/tpu
https://nanoreview.net/en/soc/apple-a16-bionic
https://nanoreview.net/en/soc/apple-a16-bionic
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

[31] A. Khalid, G. Paul, and A. Chattopadhyay, “New speed records for
salsa20 stream cipher using an autotuning framework on gpus,” in
Progress in Cryptology–AFRICACRYPT 2013: 6th International Con-
ference on Cryptology in Africa, Cairo, Egypt, June 22-24, 2013.
Proceedings 6. Springer, 2013, pp. 189–207.

[32] S. K. Monfared, O. Hajihassani, M. S. Kiarostami, S. M. Zanjani,
D. Rahmati, and S. Gorgin, “Bsrng: a high throughput parallel bitsliced
approach for random number generators,” in 49th International Confer-
ence on Parallel Processing-ICPP: Workshops, 2020, pp. 1–10.

[33] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu,
S.-C. Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms,
techniques, and applications,” ACM Computing Surveys (CSUR), vol. 51,
no. 5, pp. 1–36, 2018.

[34] X. Jin, K. Pei, J. Y. Won, and Z. Lin, “Symlm: Predicting function
names in stripped binaries via context-sensitive execution-aware code
embeddings,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 1631–1645.

[35] X. Jin, J. Larson, W. Yang, and Z. Lin, “Binary code summarization:
Benchmarking chatgpt/gpt-4 and other large language models,” arXiv
preprint arXiv:2312.09601, 2023.

[36] X. Jin and Z. Lin, “Simllm: Calculating semantic similarity in code
summaries using a large language model-based approach,” Proceedings
of the ACM on Software Engineering, vol. 1, no. FSE, pp. 1376–1399,
2024.

[37] D. Castelvecchi, “Can we open the black box of ai?” Nature News, vol.
538, no. 7623, p. 20, 2016.

[38] D. Lindner, J. Kramár, M. Rahtz, T. McGrath, and V. Mikulik,
“Tracr: Compiled transformers as a laboratory for interpretability,” arXiv
preprint arXiv:2301.05062, 2023.

[39] L. Medsker and L. C. Jain, Recurrent neural networks: design and
applications. CRC press, 1999.

[40] Y. Weng, M. Zhu, F. Xia, B. Li, S. He, K. Liu, and J. Zhao, “Neural
comprehension: Language models with compiled neural networks,”
arXiv preprint arXiv:2304.01665, 2023.

[41] C. De Cannière, “Analysis and design of symmetric encryption algo-
rithms,” Doctoral Dissertaion, KULeuven, 2007.

[42] C. De Canniere, A. Biryukov, and B. Preneel, “An introduction to block
cipher cryptanalysis,” Proceedings of the IEEE, vol. 94, no. 2, pp. 346–
356, 2006.

[43] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” Journal of
machine learning research, vol. 18, 2018.

[44] M. Kim and P. Smaragdis, “Bitwise neural networks,” arXiv preprint
arXiv:1601.06071, 2016.

[45] “Onnx operator schemas,” https://github.com/onnx/onnx/blob/main/doc
s/Operators.md, accessed on 10-10-2023.

[46] “Torch operators,” https://pytorch.org/docs/stable/torch.html, accessed
on 10-10-2023.

[47] H. Van Vliet, H. Van Vliet, and J. Van Vliet, Software engineering:
principles and practice. John Wiley & Sons Hoboken, NJ, 2008, vol. 13.

[48] R. Morisset, P. Pawan, and F. Zappa Nardelli, “Compiler testing via a
theory of sound optimisations in the c11/c++ 11 memory model,” ACM
SIGPLAN Notices, vol. 48, no. 6, pp. 187–196, 2013.

[49] N. I. of Standards and Technology, “Advanced encryption standard,”
NIST FIPS PUB 197, 2001.

[50] T. Sanida, A. Sideris, and M. Dasygenis, “Accelerating the aes algorithm
using opencl,” in 2020 9th International Conference on Modern Circuits
and Systems Technologies (MOCAST). IEEE, 2020, pp. 1–4.

[51] TensorFlow, “Optimize tensorflow gpu performance with the tensorflow
profiler,” https://www.tensorflow.org/guide/gpu_performance_analysis.

[52] M. Li, Y. Liu, X. Liu et al., “The deep learning compiler: A compre-
hensive survey,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 3, pp. 708–727, 2020.

[53] W.-K. Lee, H. J. Seo, S. C. Seo, and S. O. Hwang, “Efficient implemen-
tation of aes-ctr and aes-ecb on gpus with applications for high-speed
frodokem and exhaustive key search,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 69, no. 6, pp. 2962–2966, 2022.

[54] K. Thompson, “Reflections on trusting trust,” Communications of the
ACM, vol. 27, no. 8, pp. 761–763, 1984.

[55] OpenSSL, “Openssl project,” https://github.com/openssl/openssl/tree/
master/crypto.

[56] M. Dworkin, “Recommendation for block cipher modes of operation.
methods and techniques,” National Inst of Standards and Technology
Gaithersburg MD Computer security Div, Tech. Rep., 2001.

[57] Y. Nir and A. Langley, “Chacha20 and poly1305 for ietf protocols,”
https://datatracker.ietf.org/doc/rfc7539/.

[58] E. Rescorla, “The transport layer security (tls) protocol version 1.3,”
Tech. Rep., 2018.

[59] H. Zhang, A. Anilkumar, M. Fredrikson, and Y. Agarwal, “Capture:
Centralized library management for heterogeneous {IoT} devices,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
4187–4204.

[60] “Tracing,” https://www.tensorflow.org/guide/function#tracing, accessed
on 11-29-2023.

[61] Z. Sun, R. Sun, L. Lu, and A. Mislove, “Mind your weight (s): A large-
scale study on insufficient machine learning model protection in mobile
apps,” in 30th USENIX security symposium (USENIX security 21), 2021,
pp. 1955–1972.

[62] X. Jin, S. Manandhar, K. Kafle, Z. Lin, and A. Nadkarni, “Understanding
iot security from a market-scale perspective,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 1615–1629.

[63] TensorFlow, “Gpu delegates for tensorflow lite,” https://www.tensorflo
w.org/lite/performance/gpu.

[64] StatCounter, “Desktop operating system market share worldwide,” https:
//gs.statcounter.com/os-market-share/desktop/worldwide.

[65] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,”
https://github.com/onnx/onnx, 2019.

[66] PwC, “Pwc’s global artificial intelligence study: Exploiting the ai
revolution,” https://www.pwc.com/gx/en/issues/data-and-analytics/publi
cations/artificial-intelligence-study.html.

[67] T. XLA, “Inspect compiled programs,” https://www.tensorflow.org/xla#
inspect_compiled_programs.

[68] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham,
E. Roback, J. F. Dray Jr et al., “Advanced encryption standard (aes),”
2001.

[69] M. Abadi, A. Agarwal, P. BarhamAmini et al., “Api documentation,”
https://www.tensorflow.org/api_docs.

[70] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing
techniques,” ACM Comput. Surv., vol. 47, no. 4, 2015.

[71] Z. Lin, U. Mathur, and H. Zhou, “Scatter-and-gather revisited: High-
performance side-channel-resistant aes on gpus,” in Proceedings of the
12th Workshop on General Purpose Processing Using GPUs, 2019, pp.
2–11.

[72] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen,
“X-deepsca: Cross-device deep learning side channel attack,” in Pro-
ceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1–6.

[73] C. Luo, Y. Fei, and D. Kaeli, “Side-channel timing attack of rsa on
a gpu,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 16, no. 3, pp. 1–18, 2019.

[74] Z. H. Jiang, Y. Fei, and D. Kaeli, “A novel side-channel timing
attack on gpus,” in Proceedings of the Great Lakes Symposium on
VLSI 2017, ser. GLSVLSI ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 167–172. [Online]. Available:
https://doi.org/10.1145/3060403.3060462

[75] M. Rigaki and S. Garcia, “A survey of privacy attacks in machine
learning,” arXiv preprint arXiv:2007.07646, 2020.

[76] C. Lattner, “Llvm and clang: Next generation compiler technology,” in
The BSD conference, vol. 5, 2008.

[77] T. Jin, A. Eichenberger et al., “Onnx mlir,” https://github.com/onnx/on
nx-mlir.

[78] C. Lattner, M. Amini, U. Bondhugula et al., “Llvm ir target,” https:
//mlir.llvm.org/docs/TargetLLVMIR/.

[79] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[80] G. Narayanan and N. Haneef, “Parallel aes cryptography,” https://gith
ub.com/jmarcao/Parallel-AES.

[81] D. Stefan, “Analysis and implementation of estream and sha-3 crypto-
graphic algorithms,” Ph.D. dissertation, 2011.

APPENDIX

A. Proof of Lemma 2

Lemma 2. Our proposed program transformation is a trace
equivalent transformation.

15

https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://pytorch.org/docs/stable/torch.html
https://www.tensorflow.org/guide/gpu_performance_analysis
https://github.com/openssl/openssl/tree/master/crypto
https://github.com/openssl/openssl/tree/master/crypto
https://datatracker.ietf.org/doc/rfc7539/
https://datatracker.ietf.org/doc/rfc7539/
https://www.tensorflow.org/guide/function#tracing
https://www.tensorflow.org/lite/performance/gpu
https://www.tensorflow.org/lite/performance/gpu
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://github.com/onnx/onnx
https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html
https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html
https://www.tensorflow.org/xla#inspect_compiled_programs
https://www.tensorflow.org/xla#inspect_compiled_programs
https://www.tensorflow.org/api_docs
https://www.tensorflow.org/api_docs
https://doi.org/10.1145/3060403.3060462
https://doi.org/10.1145/3060403.3060462
https://github.com/onnx/onnx-mlir
https://github.com/onnx/onnx-mlir
https://mlir.llvm.org/docs/TargetLLVMIR/
https://mlir.llvm.org/docs/TargetLLVMIR/
https://github.com/jmarcao/Parallel-AES
https://github.com/jmarcao/Parallel-AES

Proof. Proof by induction.
• t = 0: These two implementations do not initialize any
global variables, and thus, they start from the same initial state,
i.e., ∀i, SP

i,0 = SM
i,0.

• t = 1: The first action of two cryptographic implementations
is to read inputs based on given arguments, which is a system
provided function and only changes the variable representing
the input. Thus, ∀i, SP

i,1 = SM
i,1. Similarly, for the terminal

state, the two implementations both return the output value.
We emit the details in our discussion.
• t > 1: Suppose that when t = k, the execution states
of programs P and M are the same for any input i, i.e.,
SP
i,k = SM

i,k. Based on semantics of two DSLs in Fig. 3, their
execution states can be represented by all memory traces, i.e.,
σ for the CRYPT DSL implementation and ϕ for the NN DSL
implementation. In other words, SP = σ and SM = ϕ. When
t = k, ∀i, SP

i,k = SM
i,k, thus, σi,k = ϕi,k for any i. Here, we

aim to prove that ∀i, σi,k+1 = ϕi,k+1 which is equivalent to
∀i, SP

i,k+1 = SM
i,k+1.

The goal is to show that ∀i, σi,k+1 = ϕi,k+1 holds for the
next statements sk+1 (of the CRYPT DSL implementation)
and lk+1 (of the NN DSL implementation). For our program
transformation Γ, we have lk+1 = Γ(sk+1). Notice that sk+1

can be any type of statements defined in the CRYPT DSL
(Fig. 1). According to transformation rules of Γ (Fig. 4), for
each type of statement in the CRYPT DSL, there exists one
and only one rule to transform the statement into a single
statement in the NN DSL (Fig. 2). Proof by exhaustion solves
this problem.
– sk+1

ctx−−→ lk+1: x = y + z
ctx−−→ x = add(y, z) .

Based on rule [OP-ADD-CRYPT] (Fig. 3), statement sk+1

updates the execution state by σ[x → y+z]. Namely, it updates
the value of x to be the sum of y and z. Similarly, following
the rule [OP-ADD-NN] in Fig. 3, statement lk+1 updates the
execution state by ϕ[x → y + z].

Because σi,k = ϕi,k, we have σi,k[y] = ϕi,k[y] and
σi,k[z] = ϕi,k[z]. Thus, we have:

σi,k+1[x] = σi,k[y] + σi,k[z] = ϕi,k[y] + ϕi,k+1[z]
= ϕi,k+1[x]

Considering that both σ and ϕ only update the value of x, we
can get σi,k+1 = ϕi,k+1 is true. Thus, we prove that when
si,k+1 is x = y + z, ∀i, σi,k+1 = ϕi,k+1 if σi,k = ϕi,k.
– Similarly, when sk+1 are other types of statements, we
always have ∀i, σi,k+1 = ϕi,k+1 if σi,k = ϕi,k. Intuitively, our
transformation Γ ensures that there is a one-to-one mapping
between CRYPT DSL statements and NN DSL layers. Global
and semantic rules in Fig. 3 guarantee that corresponding
statements have the same evaluation order, and statement and
layer rules show that they preserve the same execution states.
Rules defined in Fig. 4 and Fig. 3 with the same sub-tokens are
corresponding rules, e.g., [T-OP-ADD], [OP-ADD-CRYPT] and
[OP-ADD-NN]. Due to space limit, we omit proof of others.

Thus, for t > 1, ∀i, SP
i,k+1 = SM

i,k+1 when SP
i,k = SM

i,k.
• In conclusion, we prove Lemma 2 using proof by induction.

1 define dso_local i32 @add(i32 %x, i32 %y) #0 { entry:
2 %x.addr = alloca i32, align 4 // memory allocation
3 %y.addr = alloca i32, align 4
4 store i32 %x, i32* %x.addr, align 4 // store inputs
5 store i32 %y, i32* %y.addr, align 4
6 %0 = load i32, i32* %x.addr, align 4 // load values
7 %1 = load i32, i32* %y.addr, align 4
8 %add = add nsw i32 %0, %1 // add operation
9 ret i32 %add

10 }

(a) IR of Integer Value Addition Program Function

1 func @add(%a0: ptr<i32>, %a1: ptr<i32>, %a2: i64, %a3:
ptr<i32>, %a4: ptr<i32>, %a5: i64) ->
struct<(ptr<i32>, ptr<i32>, i64)> {

2 // get a struct object (%3) for the 1st input tensor
3 %0 = undef : struct<(ptr<i32>, ptr<i32>, i64)>
4 %1 = insertvalue %a0, %0[0] : struct<(ptr<i32>,

ptr<i32>, i64)>
5 %2 = insertvalue %a1, %1[1] : struct<(ptr<i32>,

ptr<i32>, i64)>
6 %3 = insertvalue %a2, %2[2] : struct<(ptr<i32>,

ptr<i32>, i64)>
7 // make %20 point to the 1st input tensor value
8 %19 = extractvalue %3[1] : struct<(ptr<i32>,

ptr<i32>, i64)>
9 %20 = load %19 : ptr<i32>
10 // omit similar steps as line 3 to 8
11 // make %22 point to the 2nd input tensor value
12 %22 = load %21 : ptr<i32>
13 // add values of the 1st and 2nd input tensors
14 %23 = add %20, %22 : i32
15 // omit steps of storing %23 to %18
16 // return the result struct object (%18)
17 return %18 : struct<(ptr<i32>, ptr<i32>, i64)>
18 }

(b) IR of Integer Tensor Addition Neural Network Model

Fig. 12: An Example of Trace Equivalence.

1 from z3 import *
2 # create symbolic variables
3 x, y, x_addr, y_addr, v0, v1, v_add, a1, a4, v20, v22,

v23, v18 = BitVecs(“x y x_addr y_addr v0 v1
v_add a1 a4 v20 v22 v23 v18", 32)

4 # define function semantics
5 fCRYPT = And(x_addr==x, y_addr==y, v0==x_addr,

v1==y_addr, v_add==v0+v1)
6 fNN = And(a1==x, a4==y, v20==a1, v22==a4, v23==v20+v22,

v18==v23)
7 # create logic implication
8 G = Implies(And(fNN, fCRYPT), v_add == v18)
9 # get a satisfiable problem & solve constraints
10 solver = Solver()
11 solver.add(Not(G))
12 print(solver.check())

Fig. 13: Equivalence Proof with SMT Solver

B. Example of Trace Equivalence

Fig. 12 presents an example to demonstrate trace equiva-
lence of programs before and after transformation. To present
our analysis steps, we choose the [T-OP-ADD] rule (Fig. 4)
which is simple but non-trivial. As the transformation frame-
work requires a source program, we first create a function
(fcrypt) which takes two integer inputs (x, y) and returns
the output calculated by the z = x + y statement. With
the [T-OP-ADD] rule, we construct a model (fnn) performing
the operation of adding two integer tensors with the add layer.
For trace equivalence demonstration, we need to prove the
memory state updates are the same for executing the statement

16

TABLE I: Machine and Device Specifications

Device name Processor/CPU OS RAM Storage Accelerator
Lambda Workstation Intel Xeon E5-1650 Ubuntu 18.04 LTS 64 GB 4 TB NVIDIA GeForce GTX 1080 Ti
Google Cloud VM Intel Skylake Debian 10 104 GB 300 GB Google TPU V3-8 and V2-8
Windows Desktop AMD Ryzen 5600X Windows 10 16 GB 1 TB AMD Radeon RX 6600
MacBook Pro Intel I5-7360U MacOS 12.5 8 GB 256 GB Intel Iris Plus Graphics
Google Pixel XL Qualcomm Snapdragon 821 Android 8.1 4 GB 32 GB Qualcomm Adreno 530
Raspberry Pi 3 ARMv7 rev 4 Raspbian 10 (buster) 1 GB 16 GB N/A

and layer. Different from proof in §III-D, we prove this in
LLVM IR level. LLVM offers intermediate representations
(IR) that are language agnostic [76]. These representations
capture low-level memory operations while abstracting away
structural differences between programs and neural networks.
Therefore, we compile the program, generate its LLVM IR
(Fig. 12 (a)) with the clang compiler [76], and get model’s
LLVM (MLIR) IR (Fig. 12 (b)) with onnx-mlir [77].

In Fig. 12 (a), the inputs of @add function are stored into two
allocated memory addresses from line 2 to 5. To carry out an
addition operation, the inputs are retrieved from memory, and
the statement at line 8 performs the addition of the retrieved
values. Considering the memory state update, variable %add
is updated from its initial state to x + y. In Fig. 12 (b),
the @add layer takes 6 arguments, representing two input
tensors. According to the IR function type rule [78], the first
3 arguments belong to the first tensor, in which %a1 points
to the data buffer of the first tensor’s value (x), the %a0
pointer is for freeing memory, and %a2 is the address offset
of the aforementioned two pointers. For simplicity, we only
show the detailed memory address operations of the first input
tensor from line 3 to 9. Specifically, the undef operation
defines a struct object at line 3. The insertvalue operation
inserts arguments %a0, %a1, %a2 to this object and returns
the modified struct object. Therefore, variable %3 is an object
holding all pointers and offsets of the first input tensor after
executing lines 3 to 6, and the tensor value is stored at its
second pointer. Line 8 and 9 load the tensor value pointer
from %3 and make %20 point to the tensor value. With similar
steps, %22 will point to the second tensor’s value (y). The add
operation at line 14 adds the two input tensors’ values to %23.
We omit steps of storing %23 into another struct object %18,
which is finally returned. To this end, the memory state of %23
is updated from its initial state to x+ y.

By comprehending the fundamental operations and memory
state updates depicted in Fig. 12, we prove the addition
program function fcrypt and the addition model fnn are
equivalent. We prove this by using SMT solvers: we first
encode memory variables and then prove that they will hold
the same value after these instructions when initial values
are the same. In Fig. 12, we ignore pointer manipulation
operations as they will not change the memory states, and we
focus on the memory read and write operations. To encode
the semantics of fcrypt and fnn, we first introduce symbols to
represent intermediate variables. For fcrypt, the symbols are
xin, yin, xaddr, yaddr, v0, v1, and vadd. With these symbolic

TABLE II: TensorFlow Modules/Operators Used

NN DSL TensorFlow NN DSL TensorFlow

input tf.function sub tf.math.subtract
lookup tf.gather bitAnd tf.bitwise.bitwise_and
slice tf.slice bitShift tf.bitwise.shift
add tf.math.add bitXOR tf.bitwise.bitwise_xor
mul tf.math.mul loop tf.while_loop
M tf.Module cond tf.cond
output tf.function

variables, we formalize semantics of fcrypt as:
xaddr = xin ∧ yaddr = yin ∧ v0 = xaddr ∧ v1 = yaddr∧

vadd = v0 + v1
(1)

Similarly, we define symbolic variables a1, a4, v20, v22,
v23, v18 for fnn, and formalize its semantics as:

v20 = a1 ∧ v22 = a4 ∧ v23 = v20 + v22 ∧ v18 = v23 (2)
With the definitions of fcrypt and fnn in equations Equa-

tion 1 and Equation 2, the proof of their value equivalence
can be converted to whether the following proposition (F) to
be VALID given xin = a1, yin = a4:

fcrypt ∧ fnn ⇒ vadd = v18 (3)
To prove F to be VALID, we prove ¬F is unsatisfiable (UNSAT)
by getting negation of F : VALID(F) ≡ UNSAT(¬F).

Then, the problem is converted to the proof of satisfiability
of ¬F , which can be solved by a SMT solver. Fig. 13 presents
a satisfiability proof implementation for the equivalence of
fcrypt and fnn based on the Z3 SMT solver [79], which
successfully proved fcrypt and fnn to be trace equivalent.

C. TensorFlow Modules and Operations

Table II presents the mapping from NN DSL to Tensorflow
modules and operators for constructing our AES TENSOR-
CRYPT models.

D. Machine and Device Specifications

Table I presents the specifications of all machine and devices
that we used for evaluations.

E. Baseline Selection

To find the baselines, we follow the 3-step baseline
selection approach (§V-A) to evaluate various cryptographic
implementations for AES, Salsa20, and Chacha20. The
evaluation results are presented in Table III, in which the
selected baselines are highlighted. Note that, some baselines
are outdated/buggy or only accept fixed input in their initial

17

1 HloModule a_inference_call_1933__XlaMustCompile_true_config_proto_n_007_n_0...02_001_000__executor_type_.1508
2

3 %fused_computation (param_0: s32[10,16], param_1.1: s32[], param_2.2: s32[1,16], param_3.3: pred[]) -> s32[10,16] {
4 %param_0 = parameter(0)
5 %param_3.3 = pred[] parameter(3)
6 %broadcast.8120 = pred[1,16]{1,0} broadcast(pred[] %param_3.3), dimensions={}
7 %param_2.2 = parameter(2)
8 %param_1.1 = parameter(1)
9 %con.15264 = constant(0)

10 %dynamic-slice.3907 = dynamic-slice(%param_0, %param_1.1, %con.15264), dynamic_slice_sizes={1,16}
11 %select.9 = select(%broadcast.8120, %param_2.2, %dynamic-slice.3907)
12 ROOT %dynamic-update-slice.1306 = dynamic-update-slice(%param_0, %select.9, %param_1.1, %con.15264)
13 }
14

15 ...// skip declarations of other fused operators
16 %while_body_30_const_0__.61.clone (inputs.7 -> (s32[], s32[10,16], s32[1,16], s32[10,16], s32[176]) {
17 %inputs.7 = (s32[], s32[10,16]{1,0}, s32[1,16]{1,0}, s32[10,16]{1,0}, s32[176]{0}) parameter(0)
18 ... // skip 11 operations
19 %fusion.10 = fusion(%get.8478, %get.8476, %get.8477, %copy.4), kind=kLoop, calls=%fused_computation.10
20 %fusion.9 = fusion(%get.8478, %con.14946, %con.14944, %fusion.10), kind=kLoop, calls=%fused_computation.9
21 %fusion.8 = fusion(%get.8478, %con.14946, %con.14944, %fusion.9), kind=kLoop, calls=%fused_computation.8
22 ... // skip declarations for fusion.7 to fusion.2, which are defined similarly
23 %fusion.1 = fusion(%get.8478, %con.14946, %con.14944, %fusion.2), kind=kLoop, calls=%fused_computation.1
24 %fusion.11 = pred[] fusion(%copy.4), kind=kLoop, calls=%fused_computation.11
25 %fusion = fusion(%get.8475, %copy.4, %fusion.1, pred[] %fusion.11), kind=kLoop, calls=%fused_computation
26 ROOT %tuple.3503 = tuple(%add.1321, %fusion, %fusion.1, %get.8477, %get.8478)
27 }

Fig. 14: Dumped DNN Program with Operator Fusion. Some information, e.g., operations and shapes, are omitted for simplicity.

TABLE III: Evaluations for Baseline Selection

Implementation Availability Latency

AES [2, 7, 28, 50, 53, 71] ✗ -
AES [80] ✓ 0.015 (s)
AES [20] ✓ 0.013 (s)

Salsa20 [31] ✗ -
Chacha20 [18] ✗ -

Salsa20/Chacha20 [27] ✓ 0.016 (s)

prototypes, and we have updated and reproduced them to adapt
to outer testing configurations, e.g., dynamic input. Our evalu-
ations focus on implementations proposed after 2013, as older
implementations may not deliver state-of-the-art performance.
For instance, the Salsa20 implementation [81], proposed in
2011 and based on CUDA 4.0, is outdated and does not deliver
advanced performance. To assess popularity, we consider the
total number of stars, forks, and watchers of the repositories.
For performance comparison, we conduct tests across different
input sizes with the same evaluation environment. We report
the averaged latency for 106 input blocks in Table III.
Notably, for Salsa20 and Chacha20, the only open-sourced
implementations available are proposed by Santucci et. al [27],
with Chacha20 being the only one implemented initially. To
solve the problem, as discussed in §V-A, we extend it to
include Salsa20 strictly following its specification [22].

While the core ciphers have been implemented by baselines,
we extend them to different modes and key sizes following
the NIST standard [68]. For instance, the AES baseline only
implements Electronic Code Book (ECB) mode with 256-bit
keys. Since various AES modes and key sizes share the same
core cipher, we extend ECB cipher to Cipher Block Chaining
(CBC), Cipher Feedback (CFB), Output Feedback (OFB), and

Counter (CTR) modes. Our baselines are also subjected to the
same validation process (see §IV) as TENSORCRYPT models.

F. One-time Costs for Cipher Execution

We observe some one-time latency costs while evaluating
baselines and TENSORCRYPT models. For TENSORCRYPT
models, there are two one-time operations, including loading
models and model recompilation. For model loading, the
average latency is 0.148 seconds. For model recompilation,
the latency comes from the dynamic shape of plaintext (or
ciphertext) inputs. Specifically, given the different input size,
the DNN compiler has to perform recompilation as it currently
does not support dynamic shapes3. To avoid this, we compile
several models with different fixed input shapes, e.g., (10,
16), (100, 16), etc. To use them for encryption, we pad zeros
to plaintext inputs to match the fixed shapes. For instance,
we pad 16 zeros to the input with a shape of (9, 16) and
encrypt it with the (10, 16) model. After encryption, we
retrieve ciphertext results by removing the padded bytes. The
zero padding operation reduces latency cost and converts
model recompilation time as one-time cost. Note that, we
have considered and counted the latency of input padding
operations. For both TENSORCRYPT models and baselines,
all the one-time operation cost can be amortized in cipher
execution processes.

G. Example of Operator Fusion Optimization

Fig. 14 presents the DNN program that we dumped for
the TENSORCRYPT model with the operator fusion optimiza-
tion. The identifier names (e.g., %fused_computation and
%fusion.10) reveal the lines with operator fusion.

3 https://groups.google.com/g/xla-dev/c/WgQ-xyRj9ZQ/m/8WDs
XF0pDAAJ

18

https://groups.google.com/g/xla-dev/c/WgQ-xyRj9ZQ/m/8WDsXF0pDAAJ
https://groups.google.com/g/xla-dev/c/WgQ-xyRj9ZQ/m/8WDsXF0pDAAJ

	Introduction
	Background and Related Works
	Design
	Threat Model
	Program Transformation
	Domain Specific Languages
	Transformation Rules
	A Transformation Example Based on AES

	TensorCrypt Model Optimizations
	Operator Fusion
	Load-on-use Memory Management

	Transformation Analysis

	Implementation
	Evaluation
	Evaluation Setup
	RQ1: Effectiveness and Efficiency
	RQ2: Generalizability
	RQ3: Effectiveness of Optimization
	RQ4: Impacts of Other Factors

	Discussion
	Conclusion
	Appendix
	Proof of Lemma 2
	Example of Trace Equivalence
	TensorFlow Modules and Operations
	Machine and Device Specifications
	Baseline Selection
	One-time Costs for Cipher Execution
	Example of Operator Fusion Optimization

