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Kernel Data Structure (or Object) Semantics

@ Concerning the meaning and the behavior of kernel data
structures
@ task_struct: process descriptor
e mm_struct: memory address space descriptor

@ Useful for a number of security applications.

e Virtual machine introspection [GR03]
e Kernel function reverse engineering




Why This is Challenging

Challenges

@ Semantics concern the meaning, which is even vague for
human beings.
© Kernel tends to have a large number of kernel objects.
e Up to tens of thousands of dynamically created kernel

objects.
e Hundreds of different semantics types.




Why This is Challenging

Challenges

@ Semantics concern the meaning, which is even vague for
human beings.
© Kernel tends to have a large number of kernel objects.
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objects.
e Hundreds of different semantics types.

Current Practice

Merely relying on human beings to manually inspect kernel
source code, kernel symbols, or kernel APls to derive and
annotate the semantics of the kernel objects.
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Key Principle
Data use tells data semantics
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Key Insights

@ Starting from well-known knowledge

e User level system call (syscall for short) specification
o Kernel level exported API specification

@ Using execution context differencing
@ e.g., task_struct vVS. mm_struct
© Encoding the semantics using a bit-vector

e Which syscall (e.g., fork, open, mmap) accessed
e How the object was accessed:
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Key Insights

@ Starting from well-known knowledge
e User level system call (syscall for short) specification
o Kernel level exported API specification

@ Using execution context differencing
@ e.g., task_struct vVS. mm_struct

© Encoding the semantics using a bit-vector

e Which syscall (e.g., fork, open, mmap) accessed
e How the object was accessed:

@ read

@ write

@ create

@ destroy
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Object Tracking

Test cases II
User space
Kernel . . .
syt | | < GuestOS | g @ Tracking the object life
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© Assigning a static type to
the dynamic object.
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Object Tracking: Object Life Time

An easy problem by hooking the corresponding kernel APIs
@ Creation

@ kmem_cache_alloc
@ kmalloc
@ vmalloc

@ Deletion
@ kmem_cache_free
@ kfree
@ vfree
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Object Tracking: Object Life Time

An easy problem by hooking the corresponding kernel APIs
@ Creation

@ kmem_cache_alloc
@ kmalloc
@ vmalloc

@ Deletion

@ kmem_cache_free
@ kfree
@ vfree

We will use kmalloc/kfree to denote these functions.



[e]e] le]e}

Object Tracking: Assigning a Static Type

The problem

@ What we observe: each dynamic data structure (object)
instance and their virtual addresses

@ What we want: a static type associated to each instance
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Object Tracking: Assigning a Static Type

The problem

@ What we observe: each dynamic data structure (object)
instance and their virtual addresses

@ What we want: a static type associated to each instance

v

Typical approaches

@ Using the call-site-chain from the top callers to kmalloc
(e.g., f - g — h — kmalloc)

e May over-classify an object type
@ Using the program counter (PC) that invokes kmalloc

(i.e., PCkmaiioc)
e May under-classify an object type (because of wrapper)

\
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Object Tracking: Assigning a Static Type

PCrmaioc approach

@ Assingle kernel object (e.g., task_struct) can often be
allocated in different calling contexts (e.g., vfork, clone)
— over-classify
© Experimental data
e 80.3% of the kernel objects have a direct mapping with
P Ckmz-zl/oc approaCh
e 97.5% of the objects over-classified with call-chain
approach
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Object Tracking: the Object Size

The problem

No size argument to many other kernel object allocation
functions (e.g., kmem_cache_alloc)
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Object Tracking: the Object Size

The problem

No size argument to many other kernel object allocation
functions (e.g., kmem_cache_alloc)

Our observation

@ Right after executing kmalloc, eax holds the base
address v of the allocated object

@ Further access to the field of the object must start from v,
or the propagation of v (e.g., mov eax, ebx) (Taint
Analysis)

@ By observing how v gets used, we infer the size
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Identify the specific syscall
execution context, when a
kernel object got accessed.

Challenges

@ Context switches

@ Interrupts (bottom half,
top half)
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Syscall Context Identification

@ Tracking sysenter/int 0x80/sysexit/iret, and the
eax

© Context switches lead to kernel stack (esp) exchange
© Interrupt handler

e Top half execution (of an interrupt handler) can be identified
by iret
e Bottom half execution also has (esp) exchange
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Syscall Context Identification

@ Tracking sysenter/int 0x80/sysexit/iret, and the
eax

© Context switches lead to kernel stack (esp) exchange
© Interrupt handler

e Top half execution (of an interrupt handler) can be identified
by iret
e Bottom half execution also has (esp) exchange

By tracking the sysenter/int 0x80/sysexit/iret
instructions, as well as kernel esp, we can uniquely identify
kernel syscall context [FL12, FL13]

13/29
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Bit-Vector Generation and Interpretation

Goal
est cases I . .
User sace Associate the kernel object

Kernel space Guest 05 semantics with the captured
Specification sca ject Creation, Specification .
e [ oo e execution context

v

Challenges

@ How to represent such
VMM information (Bit-Vector).

Bvecor | peut @ How to interpret it

(Bit-Vector Interpreter).

! |
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Bit-Vector Generation

What information does the Bit-Vector contain
@ Each object is associated with one bit-vector of length 4*N
where N is the number of syscall.
@ For each syscall, four bits are presented

e C-bit: whether this syscall created the object;
R-bit: whether this syscall read the object;
W-bit: whether this syscall wrote the object ;
D-bit: whether this syscall destroyed the object.
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Bit-Vector Generation - All Involved Data Structures

Rbit Dbit
—» [T T T T ][ T TTT]
PCimatioc i LTI 13T T T 111
Pckmalloc_j
HT
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Bit-Vector Generation - All Involved Data Structures

Rbit Dbit
——» [ T T T T Je-T_T T T 11
PCimaiioc i O LT I3+ CT T T TT1
PCkmaI/oc_j RBtype RBSys
HT <Vaddr, Size, T, PCymapioc

<MSB19(esp), eax>

e.0., mov %ecx, (%ebx) — resolve the vaddr of ebx, locate
the syscall context by using kernel esp.
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Bit-Vector Interpreter

How to interpret Bit-Vector

@ Bit-Vector can be viewed as:
e What are these syscalls that have contributed to the
meaning of the object.

e How these syscalls contributed (recorded in our
R, W, C, D-bits).
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Bit-Vector Interpreter

How to interpret Bit-Vector
@ Bit-Vector can be viewed as:
e What are these syscalls that have contributed to the
meaning of the object.

e How these syscalls contributed (recorded in our
R, W, C, D-bits).

v

Current Design

@ Deriving the rules based on the general syscall and kernel
knowledge.

@ e.g., task_struct must be created by fork-family
syscall, and accessed by getpid syscall.

A\
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Experiment Setup

Experiment Environment

@ Guest OS

@ Linux-2.6.32 with debian-6.0
@ Linux-3.2.58 with debian-7

@ Host OS: ubuntu-12.04 with 3.5.0-51-generic.

System Input

@ Syscall Specification
@ Kernel API Specification

© Test Suites:

@ Linux Kernel Test Suite: 1tp-20140115
o User Level: spec2006, lmbench-2alpha8

18/29
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the Semantics

[ Rule Num | Detailed Rules [ Data Structure |
[ | [ sys_clone[C] N sys_getpid[RA] [ task_struct, pid 1
1] ((sys_clone[C] - sys_vfork[C]) N sys_brk[RW]) N sys_munmap[D] vm_area_struct
1] ((sys_clone[C] - sys_vfork[C]) N sys_brk[RW]) - sys_munmap[D] mm_struct
[\ sys_open[C] N sys_lseek[W] N sys_dup[A] file
\" sys_clone[C] - sys_clone[C](CLONE_FS) fs_struct
\ sys_clone[C] - sys_clone[C](CLONE_FILES) files_struct
Vil sys_mount[C] N sys_umount[D] vEs_mount
VI sys_socketcall[C](SYS_SOCKET) N sys_socketcall[W] (SYS_SETSOCKOPT) sock
[ IX [ sys_clone[C]- sys_clone[C](CLONE_SIGHAND) [ sighand_struct |
[ X [ sys_capget[R] N sys_capset[W] [ credential 1
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Statistics of the Bit-Vector

Statistics of the R/W Bit Vector

’ Rule Num ‘ Kernel Version

Symbol Name Traced Size | P F M T G § N T D O]
5 6.32 pid 44 25 16 4 0 3 0 1 3 1 0
| T task_struct 1072 47 48 5 0 12 0 1T 1 2 0
5 .58 pid 64 28 24 3 0 3 0 1T 3 1 0
o task_struct 1072 73 109 13 6 19 1 2 7 2 0
I 2.6.32 vm_area_struct 88 4 17 12 0 3 0o 0 1 1 0
3.2.58 vm_area_struct 88 3 5 120 0 0 1 1 1 0
m 2.6.32 mm_struct 420 15 6 5 0 0 0 0 1 1 0
3.2.58 mm_struct 448 15 9 6 0 0 0 1 i 1 0
v 2.6.32 file 128 41 93 12 0 10 0 1 7 2 O
3.2.58 file 160 35 97 12 0 11 0 1 7 2 0
v 2.6.32 fs_struct 32 4 5 0 0 0 o0 1 1 1 0
3.2.58 fs_struct 64 4 51 0 0 0 o 1T 1T 1 0
VI 2.6.32 files_struct 224 11 73 3 0 4 0o 1 6 1 0
3.2.58 files_struct 256 39 8 5 0 6 0 1 6 1T 0
Vil 2.6.32 vfs_mount 128 1 17 0 0 0 0O 0 o0 1 0
3.2.58 vfs_mount 160 3 4 0 0 0 0 0 o0 1 0
Vil 2.6.32 sock 1216 19 55 8 0 9 1 6 6 2 0
3.2.58 sock 1248 286 74 7 0 9 1T 1T 6 2 0
X [ 2.6.32 [ sighand_struct | 1288 [15 5 0 0 12 0 1 1 1 0]
[ 3.2.58 | sighand_struct | 1312 [ 15 7 0 0 12 0 1T 1 1 0]
X [ 2.6.32 [ cred [ 128 [61 728 3 3 1 2 4 2 0|
[ 3.2.58 | cred | 128 [53 75 7 3 2 1T 2 4 2 0]
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The Syscall Classification

#Syscalls
Syscall Type | ShortName | ;.\, 5632 Linux-3.2.58
Process P 90 92
File F 152 156
Memory M 19 21
Time T 13 13
Signal G 25 25
Security S 3 3
Network N 2 4
IPC | 7 7
Module D 4 4
Other o) 3 3
Total - 317 328
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Application: Inference of Kernel Internal Functions

Creation Function Deletion Function
Type Version PC Symbol PC Symbol
. 2.6.32 | c10414d0 alloc_pid cl0413de put_pid
pid 3.2.58 | c104bb02 alloc_pid C104b969 put_pid
task struct 2.6.32 | cl02daaf copy_process cl02da55 free_task
- 3.2.58 [ c103719d copy_process cl0368a7 free_task
vm area struct 2.6.32 c102d730 dup_mm c109d387 remove_vma
- - 3.2.58 c1036d97 dup_mm c10b13d7 remove_vma
mm st ruct 2.6.32 | ¢c102d730 dup_mm cl02d3dc ___mmdrop
- 3.2.58 [ c1036d97 dup_mm cl036a58 ___mmdrop
file 2.6.32 c10b230d | get_empty_filp [ c10b2030 file_free_rcu
3.2.58 cl0cee78 get_empty_filp | clOcebal file_free_rcu
f£s struct 2.6.32 cl0cac50 copy_fs_struct cl0cae5b free_fs_struct
- 3.2.58 clOeaac4d copy_fs_struct cl0eaa55 free_fs_struct
files struct 2.6.32 c10c1839 dup_fd c1030a32 put_files_struct
- 3.2.58 cl0df2ab dup_fd cl03bled put_files_struct
Vs mount 2.6.32 | c10c3a35 alloc_vfsmnt c1l0c30ba free_vfsmnt
- 3.2.58 c10dfd23 alloc_vfsmnt cl0dfe36 free_vfsmnt
. 2.6.32 | cl02daaf COpy_process c102d148 | __cleanup_sighand
sighand_struct |———o——35o795g cogijrocess c103717b 7cleanug,sighand
sock 2.6.32 cllecd7a5 sk_prot_alloc cllcc884 __sk_free
3.2.58 cl2146e5 sk_prot_alloc cl214d46 __sk_free
cred 2.6.32 c1047923 prepare_creds c1047400 put_cred_rcu
3.2.58 cl0525fe prepare_creds c105239b put_cred_rcu
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Limitation and Future Work

@ Only semantics, no syntax (the layout, field)
© Unable to track the inlined kmalloc execution
© Only demonstrated our techniques for Linux Kernel
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Related Work on Data Structure Analysis

Static Analysis

@ Aggregate structure identification (ASI) [RFT99]
© Value set analysis (VSA) [BR04, RB08]
© TIE [LAB11]

4

Dynamic Analysis
@ Protocol Reverse Engineering: Polyglot [CS07],

AutoFormat [LJXZ08], ANP [WMKK08], Tupni [CPC*08],
ReFromat [WJC " 09], Dispatcher [CPKS09]

© Data Structure Reverse Engineering: Rewards [LZX10],
Howard [SSB11], PointerScope [ZPL"12], Laika [CSXKO08]
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Summary: ARGOS

[restcases |1 @ The first system to infer
Userspace T . R :
Kermel space Guest 05 | o kernel object semantics
@ Starting from syscall and
kernel API knowledge

Syscall
Specification

Syscall Object Creation,
Execution Deletion

Syscall Context
Identification

Object
Tracking

© Tracking the instruction
execution and using

Bit-Vector o
bit-vector

VMM

— © Evaluated w/ Linux
Inlt:r:rcetferr Result ke n el
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