Towards Automatic Inference of Kernel Object
Semantics from Binary Code

Junyuan Zeng, and Zhiqiang Lin

Department of Computer Science
University of Texas at Dallas

RAID 2015

Kernel Data Structure (or Object) Semantics

@ Concerning the meaning and the behavior of kernel data
structures
@ task_struct: process descriptor
e mm_struct: memory address space descriptor

Kernel Data Structure (or Object) Semantics

@ Concerning the meaning and the behavior of kernel data
structures
@ task_struct: process descriptor
e mm_struct: memory address space descriptor

@ Useful for a number of security applications.

e Virtual machine introspection [GR03]
e Kernel function reverse engineering

Why This is Challenging

Challenges

@ Semantics concern the meaning, which is even vague for
human beings.
© Kernel tends to have a large number of kernel objects.
e Up to tens of thousands of dynamically created kernel

objects.
e Hundreds of different semantics types.

Why This is Challenging

Challenges

@ Semantics concern the meaning, which is even vague for
human beings.
© Kernel tends to have a large number of kernel objects.
e Up to tens of thousands of dynamically created kernel

objects.
e Hundreds of different semantics types.

Current Practice

Merely relying on human beings to manually inspect kernel
source code, kernel symbols, or kernel APls to derive and
annotate the semantics of the kernel objects.

Introducing ARGOS

ARGOS: Automatic Reverse enGineering of kernel Object
Semantics J

Introducing ARGOS

ARGOS: Automatic Reverse enGineering of kernel Object
Semantics

| A

Key Features

@ Recognizing and uncovering important kernel data
structures with semantics, directly from binary code

© General, working with a variety of (Linux) operating system
kernels.

y

Introducing ARGOS

ARGOS: Automatic Reverse enGineering of kernel Object
Semantics

| A

Key Features

@ Recognizing and uncovering important kernel data
structures with semantics, directly from binary code

© General, working with a variety of (Linux) operating system
kernels.

y

Key Principle
Data use tells data semantics

o0

Key Insights

@ Starting from well-known knowledge

e User level system call (syscall for short) specification
o Kernel level exported API specification

@ Using execution context differencing
@ e.g., task_struct vVS. mm_struct
© Encoding the semantics using a bit-vector

e Which syscall (e.g., fork, open, mmap) accessed
e How the object was accessed:

o0

Key Insights

@ Starting from well-known knowledge
e User level system call (syscall for short) specification
o Kernel level exported API specification

@ Using execution context differencing
@ e.g., task_struct vVS. mm_struct

© Encoding the semantics using a bit-vector

e Which syscall (e.g., fork, open, mmap) accessed
e How the object was accessed:

@ read

@ write

@ create

@ destroy

oce

How ARGOS Works

User space

Kernel space Guest OS

VMM

oce

How ARGOS Works

User space

Kernel space Guest OS

VMM

oce

How ARGOS Works

Test cases II
User space

Kernel space
Syscall Guest OS Kernel API
Specification Specification

VMM

oce

How ARGOS Works

Syscall

Specification

Test cases I

User space
Kernel space Guest 0S pR—
Syscall Specification
Execution
y

| Syscall Context

Identification

VMM

oce

How ARGOS Works

Syscall

Specification

User space

Kernel space

Test cases I

Guest OS

Kernel API

Specification

Syscall Object Creation,
Execution Deletion
y 3
| Syscall Context Object
Identification Tracking

VMM

oce

How ARGOS Works

Syscall

Specification

User space

Kernel space

Test cases I

Guest OS

Kernel API

Specification

Syscall Object Creation,
Execution Deletion
y 3
| Syscall Context Object
Identification Tracking

v

Bit-Vector
Generation

VMM

oce

How ARGOS Works

Test cases I
User space
Kernel space
Syscall Guest OS Kernel API
Specification Syscall Object Creation, Specification
Execution Deletion
y 3
| Syscall Context Object
Identification Tracking
v
Bit-Vector "
Generation |
VMM
L 2

Bit-Vector
Bit-vectors I Interpreter Result
6/29

@0000

Object Tracking

Test cases II
User space

Kernel space Guest 0S

Syscall Kernel API
Specification Syscall Object Creation,
Execution Deletion
Syscall Context Object
Identification Tracking

lector
Generation

VMM

Bit-Vector
Interpreter

Bit-vectors Result

@0000

Object Tracking

Test cases II
User space
Kernel . . .
syt | | < GuestOS | g @ Tracking the object life
Specification Syscall Object Creation, Specification .
Execution | Deletion tl m e .

| |

Syscall Context Object
Identification Tracking

© Assigning a static type to
the dynamic object.

o o Track!ng ’[heT object STIZG.
@ Tracking object relations.

Bit-Vector v
Bit-vectors Interpreter Result

0@000

Object Tracking: Object Life Time

An easy problem by hooking the corresponding kernel APIs
@ Creation

@ kmem_cache_alloc
@ kmalloc
@ vmalloc

@ Deletion
@ kmem_cache_free
@ kfree
@ vfree

0@000

Object Tracking: Object Life Time

An easy problem by hooking the corresponding kernel APIs
@ Creation

@ kmem_cache_alloc
@ kmalloc
@ vmalloc

@ Deletion

@ kmem_cache_free
@ kfree
@ vfree

We will use kmalloc/kfree to denote these functions.

[e]e] le]e}

Object Tracking: Assigning a Static Type

The problem

@ What we observe: each dynamic data structure (object)
instance and their virtual addresses

@ What we want: a static type associated to each instance

[e]e] le]e}

Object Tracking: Assigning a Static Type

The problem

@ What we observe: each dynamic data structure (object)
instance and their virtual addresses

@ What we want: a static type associated to each instance

v

Typical approaches

@ Using the call-site-chain from the top callers to kmalloc
(e.g., f - g — h — kmalloc)

e May over-classify an object type
@ Using the program counter (PC) that invokes kmalloc

(i.e., PCkmaiioc)
e May under-classify an object type (because of wrapper)

\

29

[e]e]e] lo}

Object Tracking: Assigning a Static Type

PCrmaioc approach

@ Assingle kernel object (e.g., task_struct) can often be
allocated in different calling contexts (e.g., vfork, clone)
— over-classify
© Experimental data
e 80.3% of the kernel objects have a direct mapping with
P Ckmz-zl/oc approaCh
e 97.5% of the objects over-classified with call-chain
approach

10/29

[e]e]e]e] }

Object Tracking: the Object Size

The problem

No size argument to many other kernel object allocation
functions (e.g., kmem_cache_alloc)

11/29

[e]e]e]e] }

Object Tracking: the Object Size

The problem

No size argument to many other kernel object allocation
functions (e.g., kmem_cache_alloc)

Our observation

@ Right after executing kmalloc, eax holds the base
address v of the allocated object

@ Further access to the field of the object must start from v,
or the propagation of v (e.g., mov eax, ebx) (Taint
Analysis)

@ By observing how v gets used, we infer the size

11/29

[1]

Syscall Context Identification

Test cases I
User space
Kernel space
syscall Guest OS Kernel API
Specification Syscall Object Creation, Specification
Execution Deletion

l |

Syscall Context Object
Identification Tracking

Bit-Vector
Generation
VMM

Bit-Vector
Bit-vectors Interpreter Result

Identify the specific syscall
execution context, when a
kernel object got accessed.

Challenges

@ Context switches

@ Interrupts (bottom half,
top half)

12/29

(o] J

Syscall Context Identification

@ Tracking sysenter/int 0x80/sysexit/iret, and the
eax

© Context switches lead to kernel stack (esp) exchange
© Interrupt handler

e Top half execution (of an interrupt handler) can be identified
by iret
e Bottom half execution also has (esp) exchange

13/29

(o] J

Syscall Context Identification

@ Tracking sysenter/int 0x80/sysexit/iret, and the
eax

© Context switches lead to kernel stack (esp) exchange
© Interrupt handler

e Top half execution (of an interrupt handler) can be identified
by iret
e Bottom half execution also has (esp) exchange

By tracking the sysenter/int 0x80/sysexit/iret
instructions, as well as kernel esp, we can uniquely identify
kernel syscall context [FL12, FL13]

13/29

[Jole}

Bit-Vector Generation and Interpretation

Test cases II

User space

Kernel space
Syscall Guest 0S Kernel API
Specification Syscall Object Creation, Specification
Execution Deletion

Syscall Context
Identification

Bit-Vector
Generation

Object
Tracking

VMM

Bit-Vector
Interpreter

Result

14/29

[Jole}

Bit-Vector Generation and Interpretation

est cases II . .
User space Associate the kernel object

Kernel space Guest 05 semantics with the captured
Specification sca ject Creation, Specification .
e [oo e execution context

! |

Syscall Context Object
Identification Tracking

Bit-Vector
Generation

Bit-Vector
Bit-vectors Interpreter Result

VMM

14/29

[Jole}

Bit-Vector Generation and Interpretation

Goal
est cases I . .
User sace Associate the kernel object

Kernel space Guest 05 semantics with the captured
Specification sca ject Creation, Specification .
e [oo e execution context

v

Challenges

@ How to represent such
VMM information (Bit-Vector).

Bvecor | peut @ How to interpret it

(Bit-Vector Interpreter).

! |

Syscall Context Object
Identification Tracking

Bit-Vector
Generation

v

14/29

(o] lo}

Bit-Vector Generation

What information does the Bit-Vector contain
@ Each object is associated with one bit-vector of length 4*N
where N is the number of syscall.
@ For each syscall, four bits are presented

e C-bit: whether this syscall created the object;
R-bit: whether this syscall read the object;
W-bit: whether this syscall wrote the object ;
D-bit: whether this syscall destroyed the object.

15/29

ooe

Bit-Vector Generation - All Involved Data Structures

Rbit Dbit
—» [T T T T][T TTT]
PCimatioc i LTI 13T T T 111
Pckmalloc_j
HT

16/29

ooe

Bit-Vector Generation - All Involved Data Structures

Rbit Dbit
——» [T T T T Je-T_T T T 11
PCimaiioc i O LT I3+ CT T T TT1
PCkmaI/oc_j RBtype RBSys
HT <Vaddr, Size, T, PCymapioc

<MSB19(esp), eax>

e.0., mov %ecx, (%ebx) — resolve the vaddr of ebx, locate
the syscall context by using kernel esp.

16/29

Bit-Vector Interpreter

How to interpret Bit-Vector

@ Bit-Vector can be viewed as:
e What are these syscalls that have contributed to the
meaning of the object.

e How these syscalls contributed (recorded in our
R, W, C, D-bits).

17/29

Bit-Vector Interpreter

How to interpret Bit-Vector
@ Bit-Vector can be viewed as:
e What are these syscalls that have contributed to the
meaning of the object.

e How these syscalls contributed (recorded in our
R, W, C, D-bits).

v

Current Design

@ Deriving the rules based on the general syscall and kernel
knowledge.

@ e.g., task_struct must be created by fork-family
syscall, and accessed by getpid syscall.

A\

17/29

Experiment Setup

Experiment Environment

@ Guest OS

@ Linux-2.6.32 with debian-6.0
@ Linux-3.2.58 with debian-7

@ Host OS: ubuntu-12.04 with 3.5.0-51-generic.

System Input

@ Syscall Specification
@ Kernel API Specification

© Test Suites:

@ Linux Kernel Test Suite: 1tp-20140115
o User Level: spec2006, lmbench-2alpha8

18/29

000

the Semantics

[Rule Num | Detailed Rules [Data Structure |
[| [sys_clone[C] N sys_getpid[RA] [task_struct, pid 1
1] ((sys_clone[C] - sys_vfork[C]) N sys_brk[RW]) N sys_munmap[D] vm_area_struct
1] ((sys_clone[C] - sys_vfork[C]) N sys_brk[RW]) - sys_munmap[D] mm_struct
[\ sys_open[C] N sys_lseek[W] N sys_dup[A] file
\" sys_clone[C] - sys_clone[C](CLONE_FS) fs_struct
\ sys_clone[C] - sys_clone[C](CLONE_FILES) files_struct
Vil sys_mount[C] N sys_umount[D] vEs_mount
VI sys_socketcall[C](SYS_SOCKET) N sys_socketcall[W] (SYS_SETSOCKOPT) sock
[IX [sys_clone[C]- sys_clone[C](CLONE_SIGHAND) [sighand_struct |
[X [sys_capget[R] N sys_capset[W] [credential 1

19/29

000

the Semantics

[

[Rule Num | Detailed Rules [Data Structure |
I 1 [sys_clone[C] N sys_getpid[RA] [task_struct, pid |
1] ((sys_clone[C] - sys_vfork[C]) N sys_brk[RW]) N sys_munmap[D] vm_area_struct
1] ((sys_clone[C] - sys_vfork[C]) N sys_brk[RW]) - sys_munmap[D] mm_struct
[\ sys_open[C] N sys_lseek[W] N sys_dup[A] file
\" sys_clone[C] - sys_clone[C](CLONE_FS) fs_struct
\ sys_clone[C] - sys_clone[C](CLONE_FILES) files_struct
Vil sys_mount[C] N sys_umount[D] vEs_mount
VI sys_socketcall[C](SYS_SOCKET) N sys_socketcall[W] (SYS_SETSOCKOPT) sock
[IX [sys_clone[C]- sys_clone[C](CLONE_SIGHAND) [sighand_struct |
[X [sys_capget[R] N sys_capset[W]

credential 1

19/29

(o] le]

Statistics of the Bit-Vector

Statistics of the R/W Bit Vector

’ Rule Num ‘ Kernel Version

Symbol Name Traced Size | P F M T G § N T D O]
5 6.32 pid 44 25 16 4 0 3 0 1 3 1 0
| T task_struct 1072 47 48 5 0 12 0 1T 1 2 0
5 .58 pid 64 28 24 3 0 3 0 1T 3 1 0
o task_struct 1072 73 109 13 6 19 1 2 7 2 0
I 2.6.32 vm_area_struct 88 4 17 12 0 3 0o 0 1 1 0
3.2.58 vm_area_struct 88 3 5 120 0 0 1 1 1 0
m 2.6.32 mm_struct 420 15 6 5 0 0 0 0 1 1 0
3.2.58 mm_struct 448 15 9 6 0 0 0 1 i 1 0
v 2.6.32 file 128 41 93 12 0 10 0 1 7 2 O
3.2.58 file 160 35 97 12 0 11 0 1 7 2 0
v 2.6.32 fs_struct 32 4 5 0 0 0 o0 1 1 1 0
3.2.58 fs_struct 64 4 51 0 0 0 o 1T 1T 1 0
VI 2.6.32 files_struct 224 11 73 3 0 4 0o 1 6 1 0
3.2.58 files_struct 256 39 8 5 0 6 0 1 6 1T 0
Vil 2.6.32 vfs_mount 128 1 17 0 0 0 0O 0 o0 1 0
3.2.58 vfs_mount 160 3 4 0 0 0 0 0 o0 1 0
Vil 2.6.32 sock 1216 19 55 8 0 9 1 6 6 2 0
3.2.58 sock 1248 286 74 7 0 9 1T 1T 6 2 0
X [2.6.32 [sighand_struct | 1288 [15 5 0 0 12 0 1 1 1 0]
[3.2.58 | sighand_struct | 1312 [15 7 0 0 12 0 1T 1 1 0]
X [2.6.32 [cred [128 [61 728 3 3 1 2 4 2 0|
[3.2.58 | cred | 128 [53 75 7 3 2 1T 2 4 2 0]

20/29

(o] le]

Statistics of the Bit-Vector

Statistics of the R/W Bit Vector

’ Rule Num ‘ Kernel Version

Symbol Name Traced Size | P F M T G § N T D O]
D oan pid 44 25 16 4 0 3 0 1 3 1 0
task_struct 1072 47 48 5 0 12 0 1t 1 2 0
' 3.2.58 pid 64 28 24 3 0 3 0 1 3 1 0
o task_struct 1072 73 109 13 6 19 1 2 7 2 0
I 2.6.32 vm_area_struct 88 4 17 12 0 3 0o 0 1 1 0
3.2.58 vm_area_struct 88 3 5 120 0 0 1 1 1 0
m 2.6.32 mm_struct 420 15 6 5 0 0 0 0 1 1 0
3.2.58 mm_struct 448 15 9 6 0 0 0 1 i 1 0
Y, 2.6.32 file 128 41 93 12 0 10 0 1 7 2 O
3.2.58 file 160 35 97 12 0 11 0 1 7 2 0
v 2.6.32 fs_struct 32 4 5 0 0 0 o0 1 1 1 0
3.2.58 fs_struct 64 4 51 0 0 0 o 1T 1T 1 0
VI 2.6.32 files_struct 224 11 73 3 0 4 0o 1 6 1 0
3.2.58 files_struct 256 39 8 5 0 6 0 1 6 1T 0
Vil 2.6.32 vfs_mount 128 1 17 0 0 0 0O 0 o0 1 0
3.2.58 vfs_mount 160 3 4 0 0 0 0 0 o0 1 0
Vil 2.6.32 sock 1216 19 55 8 0 9 1 6 6 2 0
3.2.58 sock 1248 286 74 7 0 9 1T 1T 6 2 0
X [2.6.32 [sighand_struct | 1288 [15 5 0 0 12 0 1 1 1 0]
[3.2.58 | sighand_struct | 1312 [15 7 0 0 12 0 1T 1 1 0]
X [2.6.32 [cred [128 [61 728 3 3 1 2 4 2 0|
[3.2.58 | cred | 128 [53 75 7 3 2 1T 2 4 2 0]

20/29

ooe

The Syscall Classification

#Syscalls
Syscall Type | ShortName | ;.\, 5632 Linux-3.2.58
Process P 90 92
File F 152 156
Memory M 19 21
Time T 13 13
Signal G 25 25
Security S 3 3
Network N 2 4
IPC | 7 7
Module D 4 4
Other o) 3 3
Total - 317 328

21/29

ooe

The Syscall Classification

#Syscalls
Syscall Type | ShortName | ;.\, 5632 Linux-3.2.58
Process P 90 92
File F 152 156
Memory M 19 21
Time T 13 13
Signal G 25 25
Security S 3 3
Network N 2 4
IPC | 7 7
Module D 4 4
Other (0] 3 3
Total - 317 328

21/29

Application: Inference of Kernel Internal Functions

Creation Function Deletion Function
Type Version PC Symbol PC Symbol
. 2.6.32 | c10414d0 alloc_pid cl0413de put_pid
pid 3.2.58 | c104bb02 alloc_pid C104b969 put_pid
task struct 2.6.32 | cl02daaf copy_process cl02da55 free_task
- 3.2.58 [c103719d copy_process cl0368a7 free_task
vm area struct 2.6.32 c102d730 dup_mm c109d387 remove_vma
- - 3.2.58 c1036d97 dup_mm c10b13d7 remove_vma
mm st ruct 2.6.32 | ¢c102d730 dup_mm cl02d3dc ___mmdrop
- 3.2.58 [c1036d97 dup_mm cl036a58 ___mmdrop
file 2.6.32 c10b230d | get_empty_filp [c10b2030 file_free_rcu
3.2.58 cl0cee78 get_empty_filp | clOcebal file_free_rcu
f£s struct 2.6.32 cl0cac50 copy_fs_struct cl0cae5b free_fs_struct
- 3.2.58 clOeaac4d copy_fs_struct cl0eaa55 free_fs_struct
files struct 2.6.32 c10c1839 dup_fd c1030a32 put_files_struct
- 3.2.58 cl0df2ab dup_fd cl03bled put_files_struct
Vs mount 2.6.32 | c10c3a35 alloc_vfsmnt c1l0c30ba free_vfsmnt
- 3.2.58 c10dfd23 alloc_vfsmnt cl0dfe36 free_vfsmnt
. 2.6.32 | cl02daaf COpy_process c102d148 | __cleanup_sighand
sighand_struct |———o——35o795g cogijrocess c103717b 7cleanug,sighand
sock 2.6.32 cllecd7a5 sk_prot_alloc cllcc884 __sk_free
3.2.58 cl2146e5 sk_prot_alloc cl214d46 __sk_free
cred 2.6.32 c1047923 prepare_creds c1047400 put_cred_rcu
3.2.58 cl0525fe prepare_creds c105239b put_cred_rcu

22/29

Application: Inference of Kernel Internal Functions

Creation Function Deletion Function
Type Version PC Symbol PC Symbol
. 2.6.32 | c10414d0 alloc_pid cl0413de put_pid
pid 3.2.58 | c104bb02 alloc_pid C104b969 put_pid
el et 2.6.32 | cl02daaf copy_process cl02da55 free_task
3.2.58 | ¢c103719d copy_process cl0368a7 free_task
vm area struct 2.6.32 c102d730 dup_mm c109d387 remove_vma
- - 3.2.58 c1036d97 dup_mm c10b13d7 remove_vma
mm st ruct 2.6.32 | ¢c102d730 dup_mm cl02d3dc ___mmdrop
- 3.2.58 | c1036d97 dup_mm c1036a58 __nmmdrop
file 2.6.32 c10b230d | get_empty_filp [c10b2030 file_free_rcu
3.2.58 cl0cee78 get_empty_filp | clOcebal file_free_rcu
f£s struct 2.6.32 cl0cac50 copy_fs_struct cl0cae5b free_fs_struct
- 3.2.58 clOeaac4d copy_fs_struct cl0eaa55 free_fs_struct
files struct 2.6.32 c10c1839 dup_fd c1030a32 put_files_struct
- 3.2.58 cl0df2ab dup_fd cl03bled put_files_struct
Vs mount 2.6.32 | c10c3a35 alloc_vfsmnt c1l0c30ba free_vfsmnt
- 3.2.58 c10dfd23 alloc_vfsmnt cl0dfe36 free_vfsmnt
. 2.6.32 cl02daaf copy_process cl02d148 __cleanup_sighand
sighand_struct |———o——35o795g cogijrocess c103717b 7cleanug,sighand
sock 2.6.32 cllecd7a5 sk_prot_alloc cllcc884 __sk_free
3.2.58 cl2146e5 sk_prot_alloc cl214d46 __sk_free
cred 2.6.32 c1047923 prepare_creds c1047400 put_cred_rcu
3.2.58 cl0525fe prepare_creds c105239b put_cred_rcu

22/29

Limitation and Future Work

@ Only semantics, no syntax (the layout, field)
© Unable to track the inlined kmalloc execution
© Only demonstrated our techniques for Linux Kernel

23/29

Related Work on Data Structure Analysis

Static Analysis

@ Aggregate structure identification (ASI) [RFT99]
© Value set analysis (VSA) [BR04, RB08]
© TIE [LAB11]

4

Dynamic Analysis
@ Protocol Reverse Engineering: Polyglot [CS07],

AutoFormat [LJXZ08], ANP [WMKK08], Tupni [CPC*08],
ReFromat [WJC " 09], Dispatcher [CPKS09]

© Data Structure Reverse Engineering: Rewards [LZX10],
Howard [SSB11], PointerScope [ZPL"12], Laika [CSXKO08]

24/29

Summary: ARGOS

[restcases |1 @ The first system to infer
Userspace T . R :
Kermel space Guest 05 | o kernel object semantics
@ Starting from syscall and
kernel API knowledge

Syscall
Specification

Syscall Object Creation,
Execution Deletion

Syscall Context
Identification

Object
Tracking

© Tracking the instruction
execution and using

Bit-Vector o
bit-vector

VMM

— © Evaluated w/ Linux
Inlt:r:rcetferr Result ke n el

25/29

Thank you

26/29

References |

B
B
[
B
B
B
B

Gogul Balakrishnan and Thomas Reps, Analyzing memory accesses in x86 executables, CC, Mar. 2004.

Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis Irun-Briz, Tupni: Automatic reverse

engineering of input formats, Proceedings of the 15th ACM Conference on Computer and Communications
Security (CCS’08) (Alexandria, Virginia, USA), October 2008, pp. 391-402.

Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song, Dispatcher: Enabling active

botnet infiltration using automatic protocol reverse-engineering, Proceedings of the 16th ACM Conference on
Computer and and Communications Security (CCS’09) (Chicago, lllinois, USA), 2009, pp. 621-634.

Juan Caballero and Dawn Song, Polyglot: Automatic extraction of protocol format using dynamic binary

analysis, Proceedings of the 14th ACM Conference on Computer and and Communications Security
(CCS’07) (Alexandria, Virginia, USA), 2007, pp. 317-329.

Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King, Digging for data structures, Proceeding of 8th

Symposium on Operating System Design and Implementation (OSDI'08) (San Diego, CA), December, 2008,
pp. 231-244.

Yangchun Fu and Zhigiang Lin, Space traveling across vm: Automatically bridging the semantic gap in virtual

machine introspection via online kernel data redirection, Proceedings of 33 |EEE Symposium on Security
and Privacy, May 2012.

—, Exterior: Using a dual-vm based external shell for guest-os introspection, configuration, and

recovery, Proceedings of the Ninth Annual International Conference on Virtual Execution Environments
(Houston, TX), March 2013.

27/29

References Il

) &) & & &

Tal Garfinkel and Mendel Rosenblum,

A virtual machine introspection based architecture for intrusion detection, Proceedings Network and
Distributed Systems Security Symposium (NDSS’03), February 2003, pp. 38-53.

JongHyup Lee, Thanassis Avgerinos, and David Brumley, Tie: Principled reverse engineering of types in

binary programs, Proceedings of the 18th Annual Network and Distributed System Security Symposium
(NDSS’11) (San Diego, CA), February 2011.

Zhigiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang, Automatic protocol format reverse engineering

through context-aware monitored execution, Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08) (San Diego, CA), February 2008.

Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu, Automatic reverse engineering of data structures from binary

execution, Proceedings of the 17th Annual Network and Distributed System Security Symposium (NDSS’10)
(San Diego, CA), February 2010.

Thomas W. Reps and Gogul Balakrishnan, Improved memory-access analysis for x86 executables,
Proceedings of International Conference on Compiler Construction (CC’08), 2008, pp. 16-35.

G. Ramalingam, John Field, and Frank Tip, Aggregate structure identification and its application to program

analysis, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of programming
languages (POPL99) (San Antonio, Texas), ACM, 1999, pp. 119-132.

Asia Slowinska, Traian Stancescu, and Herbert Bos, Howard: A dynamic excavator for reverse engineering

data structures, Proceedings of the 18th Annual Network and Distributed System Security Symposium
(NDSS’11) (San Diego, CA), February 2011.

28/29

References llI

Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace, Reformat: Automatic reverse

engineering of encrypted messages, Proceedings of the 14th European Conference on Research in
Computer Security (Saint-Malo, France), ESORICS’09, Springer-Verlag, 2009, pp. 200-215.

@ Gilbert Wondracek, Paolo Milani, Christopher Kruegel, and Engin Kirda, Automatic network protocol

analysis, Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS’08)
(San Diego, CA), February 2008.

@ Mingwei Zhang, Aravind Prakash, Xiaolei Li, Zhenkai Liang, and Heng Yin, Identifying and analyzing pointer

misuses for sophisticated memory-corruption exploit diagnosis, Proceedings of the 19th Annual Network and
Distributed System Security Symposium (NDSS'12) (San Diego, CA), February 2012.

29/29

	Introduction
	Argos Design
	Experimental Results
	Discussions & Related Work
	Summary & References

