
Towards Automatic Inference of Kernel Object
Semantics from Binary Code

Junyuan Zeng Zhiqiang Lin

The University of Texas at Dallas
800 W. Campbell Rd, Richardson, TX 75080

{firstname.lastname}@utdallas.edu

Abstract. This paper presents ARGOS, the first system that can automatically
uncover the semantics of kernel objects directly from a kernel binary. Based on
the principle of data use reveals data semantics, it starts from the execution of
system calls (i.e., the user level application interface) and exported kernel APIs
(i.e., the kernel module development interface), and automatically tracks how an
instruction accesses the kernel object and assigns a bit-vector for each observed
kernel object. This bit-vector encodes which system call accesses the object and
how the object is accessed (e.g., read, write, create, destroy), from which we de-
rive the meaning of the kernel object based on a set of rules developed according
to the general understanding of OS kernels. The experimental results with Linux
kernels show that ARGOS is able to recognize the semantics of kernel objects of
our interest, and can even directly pinpoint the important kernel data structures
such as the process descriptor and memory descriptor across different kernels. We
have applied ARGOS to recognize internal kernel functions by using the kernel
objects we inferred, and we demonstrate that with ARGOS we can build a more
precise kernel event tracking system by hooking these internal functions.

1 Introduction

Uncovering the semantics (i.e., the meanings) of kernel objects is important to a wide
range of security applications, such as virtual machine introspection (VMI) [11], mem-
ory forensics (e.g., [24,13]), and kernel internal function inference. For example, know-
ing the meaning of the task_struct kernel object in the Linux kernel can allow
VMI tools to detect hidden processes by tracking the creation and deletion of this
data structure. In addition, knowing the semantics of task_struct enables security
analysts to understand the set of functions (e.g., the functions that are responsible for
the creation, deletion, and traversal of task_struct) that operate on this particular
data structure.

However, uncovering the semantics of kernel objects is challenging for a couple
of reasons. First, an OS kernel tends to have a large number of objects (up to tens of
thousands of dynamically created ones with hundreds of different semantic types). It
is difficult to associate the meanings to each kernel object when given such a large
number. Second, semantics are often related to meaning, which is very vague even
to human beings. It is consequently difficult to precisely define semantics that can be
reasoned by a machine. In light of these challenges, current practice is to merely rely on



human beings to manually inspect kernel source code, kernel symbols, or kernel APIs
to derive and annotate the semantics of the kernel objects.

To advance the state-of-the-art, this paper presents ARGOS, the first system for
Automatic Reverse enGineering of kernel Object Semantics. To have a wider applica-
bility and practicality, ARGOS works directly on the kernel binary code without looking
at any kernel source code or debugging symbols. Similar to many other data structure
(or network protocol) reverse engineering systems (e.g., [5,7,17,4,18,23]), it is based
on the principle of data uses tell data types. Specifically, it uses a dynamic binary code
analysis approach with the kernel binary code and the test suites as input, and outputs
the semantics for each observed kernel object based on how the object is used.

There are two key insights behind ARGOS. One is that different kernel objects
are usually accessed in different kernel execution contexts (otherwise, they should be
classified into the same type of object). Consequently, we can use different kernel
execution contexts to classify each object. The other is that we can further derive the
semantics by using well-accepted public knowledge, such as the user level system call
(syscall for brevity henceforth) interface, which is used when developing user level
applications; the kernel level exported API interface, which is used when developing
kernel modules; and the different memory operations such as memory read and write,
which we can use to track and associate the execution context with each kernel object.

To address the challenge of precisely defining the kernel object semantics, we intro-
duce a bit vector to each kernel object. This bit vector encodes which syscalls accessed
the object (one syscall per bit), and using what kind of access (e.g., create, read, write,
and destroy). In total, given an N number of syscalls for a given OS kernel, our bit
vector has 4N bits in length for each distinctive kernel object. This 4N bit vector
captures all the involved syscalls during the lifetime of a particular kernel object, which
can be understood as a piece of information contributed by the accessing syscalls.
Consequently, the meaning for each object is represented by the syscalls that accessed
it and the different ways that it was accessed. Such information can uniquely represent
each kernel object and its meaning.

Since syscalls are usually compatible across different kernels for the same OS
family, this would allow ARGOS to directly reason about the kernel objects for a large
set of OSes. More importantly, it would also allow ARGOS to interpret the meaning
of kernel objects in a unified way. For instance, there could be different names for
certain kernel objects even though they have the same semantic type. By using the same
encoding across different OSes, we can uniformly identify the common important data
structures such as process descriptor, memory descriptor, file descriptor, etc., regardless
of their symbol names.

There will be many valuable applications enabled by ARGOS. One use case, as we
will demonstrate in this paper, is that we can use the uncovered object semantics to
infer the internal kernel functions. The knowledge of the internal kernel functions is
extremely useful for kernel malware defense. Other applications include kernel data
structure reverse engineering, virtual machine introspection, and memory forensics. In
particular, ARGOS will complement the existing data structure reverse engineering work
that previously only focused on recovering the syntactic information (i.e., the layout and
shape) of data structures by adding the semantic information.



In summary, we make the following contributions in this paper:

– We present ARGOS, the first system that is able to automatically uncover the se-
mantics of kernel objects from kernel binary code.

– We introduce a bit-vector representation to encode the kernel object semantics.
Such representation separates the semantic encoding and semantic presentation,
and makes ARGOS work for a variety of syscall compatible OSes.

– We have built a proof-of-concept prototype of ARGOS. Our evaluation results show
that our system can directly recognize a number of important kernel data structures
with correct semantics, even across different kernels.

– We show a new application by applying ARGOS to discover the internal kernel
functions, and demonstrate that a better kernel event tracking system can be built
by hooking these internal kernel functions.

2 System Overview

While the principle of “data uses tell data types” is simple, we still face several chal-
lenges when applying it for the reverse engineering of kernel object semantics. In this
section, we walk through these challenges and give an overview of our system.

Challenges. Since ARGOS aims to uncover kernel object semantics, we have to first
define what the semantics are and how a machine can represent and reason about them.
Unfortunately, this is challenging not just because the semantics themselves are vague
but also because it is hard to encode.

Second, where should we start from? Given kernel binary code, we can inspect
all of its instructions (using static analysis) or the execution traces (using dynamic
analysis). While static analysis is complete, it is often an over approximation and may
lead to imprecise results. Dynamic analysis is the opposite. Therefore, we have to make
a balance and select an appropriate approach.

Third, there are various ways and heuristics to perform the reverse engineering, e.g.,
blackbox approaches by feeding different inputs and observing the output differences,
or whitebox approaches by comparing the instruction level differences (e.g., [14]). It is
unclear which approach we should use, and we have to select an appropriate one for our
problem.

Insights. To address these challenges, we propose the following key ideas to reverse
engineer the kernel object semantics:

– Starting from well-known public knowledge. Similar to many other reverse en-
gineering systems, ARGOS must start from a well-known knowledge base to infer
unknown knowledge. For a given OS kernel, there are two pieces of well-known
public knowledge: (1) the syscall specification that is used by application program-
mers when developing user level programs, and (2) the public exported kernel API
specification that is used by kernel module programmers when developing kernel
drivers. Therefore, in addition to the kernel test cases, ARGOS will take syscall and
kernel API specifications as input to infer the kernel object semantics.



– Using execution context differencing. In general, different kernel objects are usu-
ally accessed in different execution contexts (otherwise, they should be classified as
the same object). Consequently, we can use different execution contexts to classify
each object, and we call this approach execution context differencing.

– Encoding the semantics with a bit-vector. To keep a record of the different ac-
cesses by different syscalls, we use a bit-vector associated with each distinctive
object. This bit-vector captures which syscall, under what kind of context, accessed
the object. Through this approach, we can separate the semantic encoding and
presentation.

Guest OSKernel space

User space
Test cases

Syscall Kernel API 

Syscall
Execution

Object Creation, 
Deletion

y
Specification Specification

Syscall Context 
Identification

Object 
Tracking

Bit VectorBit‐Vector 
Generation

VMM

Bit V t
Bit‐vectors

Bit‐Vector
Interpretation Result

Fig. 1. An Overview of ARGOS.

Overview. To make ARGOS work with a variety of OS kernels, we design it atop a
virtual machine monitor (VMM), through which we observe and trace each kernel
instruction execution. As shown in Fig. 1, there are four key components inside ARGOS:
object tracking, syscall context identification, bit-vector generation, and bit-vector in-
terpretation. They work as follows: starting from kernel object creation, object tracking
tracks the dynamically created kernel objects and indexes them based on the calling
context during object creation; whenever there is an access, which is defined as a 4-
tuple (create, read, write, destroy), syscall context identification resolves the current
context and tracks which syscall is accessing the object and under what kind of context.
This information will be recorded by bit-vector generation during the lifetime for each
observed object. Finally, we use bit-vector interpretation to interpret the final semantics
based on the encoded bit vector.



Scope and Assumptions. We focus on the reverse engineering of the object semantics
of the OS kernels that are executed atop the 32-bit x86 architecture. To validate our
experimental results with the ground truth, we use open source Linux kernels as the
testing software. Note that even though the source code of Linux kernel is open, it is ac-
tually non-trivial to retrieve the semantic information for each kernel object. Currently,
we use a manual approach to reconstruct the semantic knowledge based on our best
understanding of Linux kernels, and compare with the results generated by ARGOS.

While we can integrate other techniques (e.g., REWARDS [18] and Howard [23])
to recover the kernel object syntax (i.e., the fields and layout information), we treat each
kernel object as a whole in this paper and focus on the uncovering of the kernel object
semantics, an important step to enable many other applications.

In addition, we assume the users of our tool will provide a syscall specification
that includes each syscall number and syscall name, as well as an exported kernel
API specification that includes the instruction addresses of kernel object allocation
functions (e.g., kmalloc) such that ARGOS can hook and track kernel object creation
and deletion. Meanwhile, since ARGOS needs to watch each instruction execution,
we build our tool atop PEMU [26], which is a dynamic binary code instrumentation
framework based on QEMU [2]. Also, we do not attempt to uncover the semantics for
all kernel data, but rather focus on dynamically accessed kernel objects.

3 Design and Implementation

In this section, we present the detailed design and implementation of each component of
ARGOS. Based on the flow of how ARGOS works, we first describe how we track each
kernel object in §3.1; then describe how we resolve the corresponding syscall execution
context when an object is accessed in §3.2; next, we present the bit-vector generation
component in §3.3, followed by the bit-vector interpretation component in §3.4.

3.1 Object Tracking

Since the key idea of ARGOS is based on the object use to infer the object semantics
and kernel objects are usually dynamically allocated, we have to (1) track object alloca-
tion/deallocation, (2) track the size of each object, and (3) index each object such that
when given a dynamic access of the kernel object, we are able to know to which object
the address belongs. In the following, we describe how we achieve these goals.

1). Tracking the Object Allocation and Deallocation. A widely used approach to
track a kernel object is to hook its creation and deletion APIs. These APIs are usu-
ally publicly accessible for kernel developers (even in closed source OSes such as
Microsoft Windows). In our implementation, we just hook the kernel object alloca-
tion and deallocation functions such as kmem_cache_alloc/kmem_cache_free,
kmalloc/kfree, vmalloc/vfree at the VMM layer for the Linux kernel. To sup-
port efficient look up, we use a red-black (RB) tree indexed by their starting address
and size to track the allocated object.



2). Tracking the Object Size. Unlike at user level, we can intercept the argument
to malloc-family functions to identify the object size (while this is still true for
kmalloc), but there is no size argument to many other kernel object allocation func-
tions (e.g., kmem_cache_alloc). The reason is that the kernel memory allocator
(e.g., the slab or slub allocator) usually caches similar size type objects and organizes
them into clusters. For example, when allocating a kernel object (e.g., task_struct),
kernel developers will just pass a flag argument and a pointer argument that points to
kmem_cache structure, which is the descriptor of the cluster that contains the objects
with similar size. This descriptor is created by the kernel API kmem_cache_create
and the size of the object is passed to this descriptor’s creation function. Then one may
wonder why the size argument passed to kmem_cache_create cannot be used as
the object size. This is because this size is actually an over approximation and the size of
the real kernel object can be smaller than the one specified in the descriptor. Meanwhile,
the pointer argument of kmem_cache_alloc can point to the kmem_cache that has
entirely different types of objects. For instance, our trace with the slab allocator in Linux
2.6.32 shows that the kernel objects of the file and vfs_mount data structures are
stored in the same kmem_cache even though they have different types and different
sizes.

Therefore, we have to look for new techniques to recognize the kernel object size.
Since we use dynamic analysis, we can in fact track the allocated object size at run
time based on the object use. While this is still an approximate approach, it is at least
sound and we will not make any mistakes when determining to which object a given
virtual address belongs. Specifically, to access any dynamically created object, there
must be a base address. Right after executing a kernel object allocation function, a base
address is returned, which we shall refer to as v. Any further access to the field of the
object must start from v, or the propagation of v. As such, we can infer the object size
by monitoring the instruction execution and checking whether there is any memory
address that is derived from the virtual address v as well as its propagation.

A Heap Object

p

…

m

A Heap Objecteax

… p

…

m

…

q

… n

…

q

…

…

r

n

(a) (b)

Fig. 2. An Example Illustrating How to Track the
Object Size. Note that Taint (eax) = Taint (p) = Taint
(q) = Taint (*r) = Ti, and Taint (r) = Tj .

Without loss of generality, as
shown in Fig. 2 (a), when an object
Oi is created, we will have its start-
ing (i.e., base) address v (suppose it
is stored in eax). To access the fields
ofOi, there must be a data arithmetic
operation of the base pointer (or its
derivations), and we can therefore
infer the size based on the offset of
the access. For instance, as shown
in Fig. 2 (a), assume the kernel uses
eax+m to access a field p of Oi,
then we can get the size of Oi as
m+4 from this particular operation.
Then, assume the kernel inserts Oi

to some other data structures (e.g., a
linked list); it must compute a deref-



erenced address of Oi such that traversing other objects can reach Oi. Assume this
address is q, which is computed from p + n, then we can infer the Size(Oi) as
(m + n + 4) according to the execution of these accesses. Next, assume we assign
the address of q to r (Fig. 2 (b)). Then all future dereferences will use ∗r as a base
address to access Oi (instead of v, the starting address), and we can similarly derive the
size based on the pointer arithmetic. Note that when dereferencing a kernel object, the
kernel can start from its middle instead of the starting address, which is very common
in both the Windows and Linux kernels.

Therefore, in order to resolve the size, we have to know that eax, p, q, and ∗r
actually all reference the same allocated object (i.e., they belong to the same closure).
If we assign a unique taint tag for each Oi using Ti, namely Taint(eax)=Taint(v)=Ti,
then we can propagate Ti to p, q, ∗r based on the pointer data movement and arithmetic
operations. Thus, this eventually leads to a dynamic taint analysis [19] approach to
decide whether eax, p, q, and ∗r belong to the same Ti. Since taint analysis is a well
established approach, we omit its details for brevity in this paper. Basically, in our taint
analysis, we capture how a memory access address is computed from the base address
v and its propagations (e.g., eax), from which we resolve the object size. This size is
the one being observed at run time.

Meanwhile, kernel objects usually point to each other. Looking at the point-to graph
can facilitate the inference of the important kernel data structures based on their re-
lations. Since we have assigned a unique taint tag Ti for each kernel object, we can
now track the dependence between kernel objects by looking at their taint tags during
memory write operations. Specifically, whenever there is a memory write, we will check
the taint tags of both its source and destination operand. If they belong to our tracked
objects, we will connect these two objects using their point-to relation and store this
information in their static object types. The particular offset for the two objects of the
point-to relation will also be resolved. This information, namely object Oi at offset k
points to Oj at offset l, will be recorded.

3). Indexing the Dynamic Kernel Objects with Static Representation. Since kernel
data structure semantics are static attributes, they should be applied to all of the same
type of a kernel object. However, when we use dynamic analysis, what we observe is
instances of kernel objects. Therefore, we need to translate these dynamic instances
into static representations such that our bit-vector can just associate with the static
representation instead of the dynamic object instances.

In general, there are two basic approaches when converting dynamic object in-
stances into static forms: (1) using the concatenation of all the call-site addresses from
the top callers to the callee, or (2) using the program counter of the instruction that calls
a kernel object allocation function. The first approach can capture all the distinctive
object allocations, but it may over classify the object types since the same type can be
allocated in different program calling contexts. While the second approach mitigates
this problem, it cannot handle the case where an allocation function is wrapped. There-
fore, the solution is always domain-specific and somewhere in-between of these two
approaches.

In our design, we adopt the second approach because we observe that a single kernel
object can often be allocated in different calling contexts (e.g., we observe that the



task_struct in Linux can be allocated in syscalls such as vfork, clone, etc). If
we assign the call-site chain as the static type, we could over classify the kernel object
(having an N-to-one mapping). Also, our analysis with a ground-truth labeled Linux
kernel 2.6.32 shows that when we use the call site PC of the allocation function (denoted
as PCkmalloc) to assign the static type, 80.3% of the kernel objects have a one-to-one
mapping. In contrast, when we tried the call-site chain approach, we found 97.5% of the
objects had N-to-one mapping. Therefore, eventually, in our current design, we decided
to take the second approach.

Summary. In short, our object tracking component will track the lifetime of the dy-
namically allocated object using an RB-tree, which we call an RBtype tree. It is used to
store <v, s, Ti, PCkmalloc>, which is indexed by v, where v is the starting address, s
is the current resolved size (subject to be updated during run-time), Ti is the taint tag
for Oi, and PCkmalloc is the static type of the allocated object. The reason to use the
RBtype-tree is to speed up locating the static type (encoded by PCkmalloc) when given
a virtual address, and we maintain an RBtype-tree to track these dynamically allocated
objects.The basic algorithm is to check whether a given virtual address α falls into
[v, v + s] of our RB-tree node; if so, we return its PCkmalloc as the type. Also, we
maintain a hash table (HT) that uses PCkmalloc as the index key. This HT will be used
to store the bit-vectors of the kernel objects based on their assigned static types as well
as the point-to relations between objects.

3.2 Syscall Context Identification

To associate the execution context with each dynamically accessed kernel object, we
must resolve the execution context when an instruction is accessing our monitored
object. The execution context in this paper is defined as the information that captures
how and when a piece of data gets accessed. More specifically, as our starting point
of the known knowledge is the syscall, we need to first resolve which syscall is cur-
rently accessing a given piece of data. Also, since we need to capture the different
data accesses in order to identify the internal functions (e.g., the internal function that
creates the process descriptor structure), we have to further classify the data access into
different categories such as whether it is a read access or a write access.

Precisely Identifying the Syscall Execution Context. When a given kernel object is
accessed, we need to first determine which syscall is accessing it. Since an execution
context must involve a stack (to track the return addresses for instance), we can use
each kernel stack to differentiate each execution context. Whenever there is a kernel
stack change, there must be an execution context change.

Then how many kernel stacks are inside an OS kernel at any given moment? This
depends on how many user level processes and kernel level threads are running. In par-
ticular, each user level process (including user level threads) will have a corresponding
kernel stack. This kernel stack is used to store the local variables and return addresses
when a particular syscall is executed inside the kernel. Besides the kernel stack for user
level processes to execute syscalls, there are also kernel threads that are responsible for
handling background tasks such as asynchronous event daemons (e.g., ksoftirqd)



or worker threads (e.g., pdflush, which flushes dirty pages from the page cache).
The difference between kernel threads and user level processes is that kernel threads do
not have any user level process context and will not use the syscall interface to request
kernel services (instead they can directly access all kernel functions and data structures).

Therefore, by tracking each syscall entry and exit (e.g., sysenter/sysexit,
int 0x80/iret) and stack change (e.g., mov stack_pointer, %esp), we can
identify the syscall execution context, as demonstrated in our earlier work VMST [10].
Note that the execution of the top half of an interrupt handler may use the current
process’ or kernel thread’s kernel stack, and we have to exclude this interrupt handler’s
execution context. Fortunately, the starting of the interrupt handler’s execution can be
observed by our VMM, and these handlers always exit via iret. As such, we can
precisely identify the interrupt execution contexts and exclude them from the syscall
context.

To resolve to which syscall the current execution context belongs, we will track the
syscall number based on the eax value when the syscall traps to the kernel for this
particular process. The corresponding process is indexed by the base address of each
kernel stack (not the CR3 approach as suggested by Antfarm [15] because threads can
share the same CR3). We use the 19 most significant bits (MSB) of the kernel esp,
i.e., the base address of the stack pointer (note that the size of Linux kernel stack is
8192=213 bytes), to uniquely identify a process. The base address of the stack pointer
is computed by monitoring the memory write to the kernel esp. We also use an RB-
tree, which we call RBsys tree, to dynamically keep the MSB19(esp) and the syscall
number from eax for this process such that we can quickly return the syscall number
when given a kernel esp.

Tracking Syscall Arguments of Interest. The majority of syscalls are designed for
a single semantic goal such as to return a pid (getpid) or to close a file descrip-
tor. However, there are syscalls that have rich semantics—namely having different
behaviors according to their arguments. One such a syscall is sys_socketcall,
which is a common kernel entry point for the socket syscall. Its detailed argument de-
cides which particular socket function to be executed (e.g., socket, bind, listen,
setsockopt, etc.). Therefore, we have to parse its arguments and associate the argu-
ments to the syscall context such that we can infer the exercised kernel object semantics
under this syscall.

Besides sys_socketcall, in which we have to track its arguments, we find
two other syscalls (sys_clone and sys_ unshare) that also have strong argument
controlled behavior. In particular, sys_clone can associate certain important kernel
objects with the new child process when certain flags are set (e.g., CLONE_FS flag
will make the caller and the child process share the same file system information),
and sys_unshare can reverse the effect of sys_clone by disassociating parts
of the process execution context (e.g., when CLONE_FS is set, it will unshare file
system attributes such that the calling process no longer shares its root directory, current
directory, or umask attributes with any other processes). Therefore, we will track these
three syscalls, and associate their arguments with the exercised kernel objects, because
these arguments specify the distinctive kernel behavior of the corresponding syscall.



3.3 Bit-Vector Generation

Having tracked all dynamically allocated objects that are executed under each specific
syscall execution context, we will then attach this context using a bit-vector to the object
type we resolved in object tracking. The length of our bit-vector is 4*N bits, where N
is the number of syscalls provided by the guest OS kernel. Meanwhile, for each syscall,
we will track and assign the following bits in the bit-vector to 1 or 0 based on:

– C-bit: whether this syscall created the object;
– R-bit: whether this syscall read the object;
– W -bit: whether this syscall wrote the object ;
– D-bit: whether this syscall destroyed the object.

Algorithm 1: Bit-vector Generation
Procedure BvG () :1
Output: Hash Table HT that contains bit vector of the
observed kernel object type and their point-to relations.
HT ← CreatSemanticTypeBitVectorHashTable() ;2
for each executed instruction I do3

op← Operand(I);4
if PointerArithmeticOrPropagation(op) then5

TaintOPAndUpdateTrackedSize(op);6

switch I do7

case sysenter/int0x808
UpdateRBsysNode(Ex, eax) ;9
// Ex represents the process context10

case syscall(exit_group) SUCCESS11
RemoveRBsysNode(Ex)12

case mov op, esp13
Ex←MSB19(esp);14
InsertRBsysNodeIfNotExist(Ex)15

case PCkmalloc: eax ← call {kmalloc}16
t← PCkmalloc;17
Ti← GetUniqueTaintTag();18
InsertRBtypeNode(eax, 4, Ti, t);19
InsertHTifNotExist(t);20
if I ∈ SyscallContext then21

sysnum← QueryRBsysNum(Ex);22
HT [t][sysnum][C-bit]← 1;23

case PCkfree: call {kfree}(v)24
t← QueryRBtype(v);25
RemoveRBtypeNode(v);26
if I ∈ SyscallContext then27

sysnum← QueryRBsysNum(Ex);28
HT [t][sysnum][D-bit]← 1;29

case MemoryAccess(op)30
if I /∈ SyscallContext then31

continue;32

switch access do33
src← Source(op);34
t← QueryRBtype(src);35
sysnum← QueryRBsysNum(Ex);36

case READ37
HT [t][sysnum][R-bit]← 1;38

case WRITE39
HT [t][sysnum][W-bit]← 1;40
dst← Destination(op);41
TrackingObjectPointToRelation(HT,42

src, dst);43

return HT ;44

kernel object (line 29), and it is under syscall execution
context (line 30-41), we update the corresponding R-bit and
W -bit based on the access (line 37, 39). Besides, we also
track the object point-to relation if there is a memory write
that involves two monitored kernel objects (line 41). All the
involved data structures are presented in Figure 4.

D. Bit-Vector Interpreter

After having generated the bit-vector for each observed
object type, we need to output the meanings for the object of
security interest. Since our bit-vector has 4*N bits in length,
it contains a very large amount of information, sufficiently
distinguishing each different semantic type.

Specifically, our bit-vector captures how a syscall accessed
the object during the life time of the object. Such an access

ti
tj RB RBk l

…

Rbit Dbit…

…

tj RBtype RBsys<k, l>

<v, s, Ti, ti> <MSB19(esp), eax>HT

Figure 4. The Data Structures Used in ARGOS.

denotes the connection between the object and the syscall.
At a high level, we can view the bit-vector as (1) what are
these syscalls that have contributed to the meaning of the
object, (2) how these syscalls contributed (recorded in our
R,W ,C,D-bits). Given such rich information, there could
be many different approaches to derive the semantics and
interpret the meanings.

One possible approach is to simply transform the bit-vector
to a large integer value (using a deterministic algorithm), and
map the integer value to the kernel object acquired from the
ground truth. If there is always a one-to-one mapping, then
this approach would work. For instance, from the general OS
kernel knowledge, we know that a process descriptor (i.e.,
task_struct in Linux), is usually the root of the kernel
data structure when accessing all other objects inside OS ker-
nel for a particular process. Many of the syscalls would have
accessed this object. Therefore, process descriptor would
have a larger value than many other data structures when
translating these bits into integers. Based on such values, we
could possibly determine the semantic types.

In our current ARGOS design, we present another simple
approach: instead of checking all bit-vectors (normalizing
them to integer value), we check certain syscalls for the object
of our interest from the bit-vector, by manually writing the
rules based on the general syscall and kernel knowledge.
Again, take task_struct as an example, we know that
this data structure must be created by fork-family syscall,
and destroyed by exit_group syscall. When there is a
getpid syscall executed, it must first fetch this data struc-
ture, from which to traverse other data structures to reach the
pid field. Therefore, we can develop data structure specific
rules to derive the semantics by checking the bit-vectors.
We have developed a number of such rules to recognize
the important kernel data structures as presented in the next
section.

8

These bits together form an entropy of how
a syscall uses the object, from which we can
derive the meanings.

Since our bit-vector generation is the core
component in our system and it connects the
object tracking and syscall context identifica-
tion components, in the following we present
a detailed algorithm to illustrate how it ex-
actly works. At a high level, we use an online
algorithm to resolve the object’s static type,
syscall context, and different ways of access,
and generate the bit vector, which is stored in
a hash table indexed by the object’s static type
(i.e., PCkmalloc). As presented in Algorithm
1, each kernel instruction execution is moni-
tored in order to resolve and generate our bit
vector.

In particular, before beginning our anal-
ysis, we will first create a hash table (HT)
at line 2 that stores the bit vector of the ac-
cessed kernel object. Then we iterate through
each kernel instruction (line 3-43). We first
check whether the current instruction in-
volves pointer data arithmetic (line 5-6), if so,
we will track the dependences of the involved
pointers and infer their sizes. Next, we check
if the instruction is sysenter/int0x80
(line 8-10). If so, we update the syscall con-
text tracking data structure RBsys-tree that
stores the syscall number for the current pro-
cess, which is determined by variable Ex.
This Ex is a global variable, which keeps the
MSB19(esp) and gets updated when kernel



stack switches (line 13-15). The node of the RBsys-tree will be deleted when the process
exits (line 11-12).

Next, when the kernel execution is to create an object (line 16-23), we then insert
the created instance into the RBtype-tree that keeps the type and size information about
the object (line 19). We also insert the static type assigned for this object (namely
PCkmalloc) into the HT if this type has not been inserted before (line 20). In addition,
we update the bit vector with a C-bit for this particular object if the object is created
under the syscall execution context (line 21-23), neither in top-half nor bottom-half.
Similarly, we remove the dynamic instance from the RBtype-tree, and update the D-bit
in the corresponding HT entry if the necessary, when the object is deallocated (line
24-29). Then, if the instruction is accessing the memory address that belongs to our
tracked kernel object (line 30) and is under a syscall execution context (line 31-42), we
update the corresponding R-bit and W -bit based on the access (line 38, 40). We also
track the object point-to relation if there is a memory write that involves two monitored
kernel objects (line 42). All the involved data structures are presented in Fig. 3.

3.4 Bit-Vector Interpretation

ti
tj RB RBk l

…

Rbit Dbit…

…

tj RBtype RBsys<k, l>

<v, s, Ti, ti> <MSB19(esp), eax>HT

Fig. 3. The Data Structures Used in AR-
GOS.

Having generated the bit-vector for each ob-
served object type, ARGOS is then ready
to finally output the meanings (i.e., seman-
tics) of the observed objects. Since our bit-
vector has 4*N bits in length, it contains a
very large amount of information, sufficiently
distinguishing each different semantic type.
In particular, our bit-vector captures how a
syscall accessed the object during the life
time of the object. Such an access denotes
the connection between the object and the
syscall. At a high level, we can view the
bit-vector as representing (1) which of the
syscalls have contributed to the meaning of
the object, (2) how these syscalls contributed (recorded in our R,W ,C,D-bits). Given
such rich information, there could be many different approaches to derive the semantics
and interpret the meanings.

One possible approach is to simply transform the bit-vector to a large integer value
(using a deterministic algorithm), and map the integer value to a kernel object acquired
from the ground truth. If there is always a one-to-one mapping, then this approach
would work. For instance, from the general OS kernel knowledge, we know that a
process descriptor (i.e., task_struct in Linux), is usually the root of the kernel data
structure when accessing all other objects inside OS kernel for a particular process.
Many of the syscalls would have accessed this object. Therefore, a process descriptor
would have a larger value than many other data structures when translating these bits
into integers. Based on such values, we could possibly determine the semantic types.

In our current ARGOS design, we present another simple approach: instead of check-
ing all bit-vectors (normalizing them to an integer value), we check certain syscalls



for the object of our interest from the bit-vector, by using the manually derived rules
based on general syscall and kernel knowledge. Again, taking task_struct as an
example, we know that this data structure must be created by a fork-family syscall,
and destroyed by a exit_group syscall. When there is a getpid syscall executed,
it must first fetch this data structure, from which to traverse other data structures to
reach the pid field. Therefore, we can develop data structure specific rules to derive
the semantics by checking the bit-vectors. We have developed a number of such rules
to recognize the important kernel data structures as presented in §4.

4 Evaluation

In this section, we present how we evaluate ARGOS to uncover the object semantics.
We first describe how we set up the experiment in §4.1, and then present our detailed
results in §4.2.

4.1 Experiment Setup

Since we focus on the reverse engineering of the kernel object semantics, we have to
compare our result with the ground truth. To this end, we took two recently released
Linux kernels: Linux-2.6.32 and Linux-3.2.58, running in debian-6.0 and
debian-7, respectively, as the guest OS for ARGOS to test. Each guest OS is config-
ured with 2G physical memory. The main reason to use the open source Linux kernel
is because we can have the ground truth. Therefore, in our object tracking, we also
keep the truth type when the object is created in our object tracking. The truth type
is acquired through a manual analysis of the corresponding kernel source code. The
host OS is ubuntu-12.04 with kernel 3.5.0-51-generic. The evaluation was
performed on a machine with an Intel Core i-7 CPU and 8GB physical memory.

An end user needs to provide three pieces of information to ARGOS as input: a
syscall specification, a kernel API specification, and the test cases.

– Syscall Specification. Basically, it just needs the syscall number and the corre-
sponding syscall name. In addition, it also requires an understanding of the argu-
ments and corresponding semantic behavior of three syscalls (sys_socketcall,
sys_clone and sys_unshare), which are used to derive the semantics of the
objects accessed in these syscalls.

– Kernel API Specification. To track the dynamic object creation and deletion, we
need the Kernel API specification of the kmalloc family of functions. Similar to
the syscall specification, we just need the name of each function, its starting virtual
address, and its arguments such that we can intercept these function executions.

– Test Cases. ARGOS is a dynamic analysis based system. We need to drive the
kernel execution through running the test cases. Ideally, we would like to use ex-
isting test cases. To this end, we collected several user level benchmarks including
ltp-20140115 and lmbench-2alpha8. We also used all the test cases from
the Linux-test-project [1].

4.2 Detailed Result



Rule Num Detailed Rules Data Structure
I sys_clone[C] ∩ sys_getpid[R] task_struct, pid
II ((sys_clone[C] - sys_vfork[C]) ∩ sys_brk[RW ]) ∩ sys_munmap[D] vm_area_struct
III ((sys_clone[C] - sys_vfork[C]) ∩ sys_brk[RW ]) - sys_munmap[D] mm_struct

IV sys_open[C] ∩ sys_lseek[W ] ∩ sys_dup[R] file
V sys_clone[C] - sys_clone[C](CLONE_FS) fs_struct
VI sys_clone[C] - sys_clone[C](CLONE_FILES) files_struct
VII sys_mount[C] ∩ sys_umount[D] vfs_mount
VIII sys_socketcall[C](SYS_SOCKET) ∩ sys_socketcall[W ] (SYS_SETSOCKOPT) sock

IX sys_clone[C] - sys_clone[C](CLONE_SIGHAND) sighand_struct

X sys_capget[R] ∩ sys_capset[W ] credential

Table 2. The Inference Rules We Developed to Recognize The Semantics of Important Kernel
Data Structures.

Syscall Type Short Name #Syscalls
Linux-2.6.32 Linux-3.2.58

Process P 90 92
File F 152 156

Memory M 19 21
Time T 13 13
Signal G 25 25

Security S 3 3
Network N 2 4

IPC I 7 7
Module D 4 4
Other O 3 3
Total - 317 328

Table 1. Syscall Classification

In total, it took ARGOS 14 hours1 each to
run all the test programs (the most time
consuming part is the LTP test cases) for
the testing guest OS, with a peak memory
overhead of 4.5G at the host level for the
2G guest OS. Specifically, we observed 105
static types for Linux-2.6.32, and 125 for
Linux-3.2.58. Due to space limitations,
we cannot present the detailed representation
of the bit-vectors for all these objects, and
instead we just present the statistics of their
bit vectors.

We first categorized the syscalls into
groups based on the different type of resources (e.g., processes, files, memory, etc.)
that the syscalls aim to manage. The classification result is presented in Table 1. We
can notice that these two kernels do not have the exact same number of syscalls,
and Linux-3.2.58 introduces 11 additional syscalls to Linux-2.6.32. Conse-
quently, the length of their bit-vectors are different. We present a number of bit-vector
statistics in the last 10 columns of Table 3. The statistics of these bit vectors show the
distributions of the sycalls that have read and write access of each corresponding object.
For instance, for the pid data structure presented in the first row, its P=25 means there
are 25 process related syscalls that have accessed this object.

Next, we present how we would discover the semantics of each kernel object. As
discussed in §3.4, there could be several different ways of identifying the kernel objects
and their semantics. In the following, we demonstrate a general way of identifying
the kernel objects that are of security interest (such as process descriptor, memory
descriptor, etc.) by manually developing rules based on the semantics of the syscalls
(which is generally known to the public) and also using execution context differencing.
In total we developed 10 rules, which are presented in Table 2.

1 Note that ARGOS is an automated offline system. Performance is not a big issue as long as we
produce the result in a reasonable amount of time.



Statistics of the R/W Bit Vector
Rule Num Kernel Version Static Type Symbol Name Traced Size P F M T G S N I D O

I
2.6.32

c10414e8 pid 44 25 16 4 0 3 0 1 3 1 0
c102db48 task_struct 1072 47 48 5 0 12 0 1 1 2 0

3.2.58
c104bb18 pid 64 28 24 3 0 3 0 1 3 1 0
c10371e3 task_struct 1072 73 109 13 6 19 1 2 7 2 0

II 2.6.32 c102d8af vm_area_struct 88 4 17 12 0 3 0 0 1 1 0
3.2.58 c1036f6a vm_area_struct 88 3 5 12 0 0 0 1 1 1 0

III 2.6.32 c102d762 mm_struct 420 15 6 5 0 0 0 0 1 1 0
3.2.58 c1036dc8 mm_struct 448 15 9 6 0 0 0 1 1 1 0

IV 2.6.32 c10b23ae file 128 41 93 12 0 10 0 1 7 2 0
3.2.58 c10ceea4 file 160 35 97 12 0 11 0 1 7 2 0

V 2.6.32 c10cac66 fs_struct 32 4 50 0 0 0 0 1 1 1 0
3.2.58 c10eaad7 fs_struct 64 4 51 0 0 0 0 1 1 1 0

VI 2.6.32 c10c185c files_struct 224 11 73 3 0 4 0 1 6 1 0
3.2.58 c10df2cd files_struct 256 39 84 5 0 6 0 1 6 1 0

VII 2.6.32 c10c3a4c vfs_mount 128 1 17 0 0 0 0 0 0 1 0
3.2.58 c10dfd37 vfs_mount 160 3 4 0 0 0 0 0 0 1 0

VIII 2.6.32 c11cd7c8 sock 1216 19 55 8 0 9 1 6 6 2 0
3.2.58 c11cd7c8 sock 1248 28 74 7 0 9 1 1 6 2 0

IX 2.6.32 c102dfd8 sighand_struct 1288 15 5 0 0 12 0 1 1 1 0
3.2.58 c10376a7 sighand_struct 1312 15 7 0 0 12 0 1 1 1 0

X 2.6.32 c1047938 cred 128 51 72 8 3 3 1 2 4 2 0
3.2.58 c1052611 cred 128 53 75 7 3 2 1 2 4 2 0

Table 3. The Inference of the Selected Kernel Data Structures and The Statistics of Their Bit-
Vector.

We tested our rules against both Linux-2.6.32 and Linux-3.2.58, for which
we have the manually obtained ground truth. We show that we can successfully pinpoint
11 kernel objects (presented in the 3rd-column with the ground truth shown in the 4th-
column in Table 3) and their meanings. By using the rules we derived, there is not
even a need to train for each kernel and we just use them to scan the bit-vector. In the
following, we describe how we derived these rules, and how we applied them in finding
the semantics of kernel objects of our interest.

Process Related. The most important process related data structure is the process
descriptor (i.e., task_struct in Linux), which keeps a lot of information regarding
the resources a process is using, and how to reach these resources. Surprisingly, by
looking at the bit-vectors of all the kernel objects, it is actually quite simple to identify
the process descriptor.

Specifically, since task_struct must be created by process creation related
syscalls (e.g., sys_clone, sys_vfork), we can in fact scan the C-bit of the ob-
jects and check the ones that are created under these syscalls (e.g.,sys_clone[C]);
task_struct must exist in this set. However, during the process creation, it will
also create many other data structures such as the memory descriptor for this process.
Consequently, we have to exclude these data structures. Our insight is that we can
perform a set intersection (basically execution context differencing) to identify the
desired object. Back to the process descriptor example, from a general understanding
of the syscall semantics, we know that sys_getpid must access the task_struct
in order to get the pid. As such, we can then check the sys_getpid[R] bit.



task_struct

sigqueue

signal_struct

pid

fs_struct

file

cred

mm_struct

nsproxy

task_delay_infoio_context files_struct task_xstate sighand_struct

user_struct

k_itimer taskstats

vfsmount

dentry mnt_namespace

super_blockinode

sysfs_dirent

seq_file

key thread_group_cred proc_maps_privateseq_operations buf_c10c50cb

vm_area_struct sock

anon_vma socket_allocrtable

pipe_inode_info

cfq_io_context fdtable

arp_cache

cfq_queue

Fig. 4. The reverse engineered data structure type graph with task_struct as the root of Linux
Kernel 2.6.32. Each node represents a reverse engineered data structure (the symbol name is just
for better readability), and each edge represents the point-to relation between the data structures.
There can be multiple point-to edges between two nodes at different offsets. They are merged for
better readability.

Therefore, through the intersection of sys_clone[C] ∩ sys_getpid[R] (as
illustrated in the first rule of Table 2), we can get two objects with static types of
c10414e8 and c102db48. Then the next question is how to get the task_struct.
In fact, we can look at the relation between the data structure (i.e., the type graph we
extracted). As illustrated in Fig. 4, we can see clearly that c10414e82 is reached from
c102db48. Therefore, we can conclude that c102db48 is the task_struct based
on general OS kernel knowledge, and c10414e8 is the pid descriptor. This rule also
applies to Linux-3.2.58, and we can correctly recognize its task_struct and
pid descriptor without any training.

Memory Related. There are two important data structures that describe the memory
usage for a particular process. One is the memory descriptor (mm_struct in Linux)
that contains all the information related to the process address space, such as the base
address of the page table and the starting address of process code and data. Also,
since memory is often divided into regions to store different types of process data
(e.g., memory mapped files, stacks, heaps, etc.), the kernel uses the other important
data structure called virtual memory area descriptor (vm_area_struct) to describe
a single memory area over a contiguous interval in a given address space. Certainly,
vm_area_struct can be reached from the mm_struct.

2 Note that we show the symbol name instead of the address in Fig. 4 just for the readability of
the type graph.



To recognize these two data structures, we again use general OS and syscall knowl-
edge. In particular, we know that all the child threads share the same virtual space.
Therefore, mm_struct and some vm_area_struct should not be created when a
new thread is forked. We can then scan theC-bit of the object bit-vector of sys_clone,
which is used to create the process, and sys_vfork, which is used to create threads.
Then we can find a set of objects. Then, from general knowledge we know sys_brk
(which changes program data segment size) will access mm_struct and some vm_
area_struct. Meanwhile, sys_munmap, which aims to delete a memory region,
will certainly delete vm_area_struct (then we look at its D-bit). As such, we have
developed Rule-II and Rule-III presented in Table 2 to successfully identify vm_area_
struct and mm_struct, respectively. Meanwhile, as illustrated in Fig. 4, we can
also observe the type graph to infer the vm_area_struct because it has to be reached
from mm_structwhen we only look at these two data structures, which are in {(sys_
clone[C] - sys_vfork[C]) ∩ sys_brk[RW ]}.

File Related. There are several important file related data structures of our interest.
Specifically, we are interested in the (1) file descriptor (file structure in Linux) that
describes a file’s properties, such as its opening mode, the position of the current file
cursor, etc., (2) file system descriptor (fs_struct) that describes the file system
related information including such as the root path of the file system, and the current
working directory, (3) files_struct that describes the opening file table (e.g., the
file descriptor array), (4) vfs_mount that describes the mounted file systems, and (5)
sock structure that describes a network communication point in the OS kernel. In the
following, we discuss how we recognize these data structures.

– File Descriptor. From general OS knowledge, we know that a file descriptor is
created by the open syscall. However, open will create many other objects as
well (e.g., we found 43 different types of objects by scanning sys_open[C]
bits). Fortunately, we also know that lseek will definitely modify file (i.e,
sys_lseek[W ] will be set). Meanwhile, sys_dup will also absolutely read
and write to the file structure. Therefore, we developed our Rule-IV by using
sys_open[C] ∩ sys_lseek[W ] ∩ sys_dup[R] to directly pinpoint the file
structure.

– File System Data Structure. From the syscall specification, we know that when
a child process is created, it will inherit many important kernel objects from its
parent process. File system structure is definitely one of them. Also, sys_clone
will provide flags to allow programmers to control whether to inherit or not. Recall
in §3.2, we have tracked the flag of sys_clone, and we can therefore trivially
identify the fs_struct. In particular, flag CLONE_FS will let the child process
clone from its parent FS (it means no new fs_struct will be created). By per-
forming sys_clone [C] - sys_clone[C](CLONE_FS), we directly pinpoint
fs_struct.

– Open File Table Structure. Each process has its own opened file set. This is main-
tained by its files_struct in the Linux kernel. Similar to fs_struct iden-
tification, we check the flag CLONE_FILES of sys_clone to identify this struc-
ture, as presented in the Rule-VI in Table 2.



– Mounting Point Descriptor. When a file system is mounted, the OS uses a mounting
point descriptor to track the mounted file system. There are two syscalls (sys_
mount and sys_umount) involved in the mouting and unmouting operation. Ba-
sically, sys_mount creates a mouting structure and sys_umount removes it. To
identify vfs_mount is actually quite simple, and we just perform a sys_mount
[C] ∩ sys_umount[D], which directly produces the desired data structure.

– Socket. By associating the argument with the syscall context for sys_socket
call, we can easily identify the socket data structure in the OS kernel. For in-
stance, we can check the created object in sys_socketcall[C](SYS_SOCKET),
and check the updated object in sys_socketcall[W][SYS_SETSOCKOPT].
An intersection of these two sets will directly identify the socket data structure.

Signal Related. Among the signal related data structures, the signal handler is of our
interest since it can be subverted. To identify this data structure, it is also quite simple,
especially if we check the flags of sys_clone. In particular, there is a CLONE_ SIG-
HAND flag, and if it is set, the calling process and the child process will share the same
table of signal handlers. Thus, sys_clone[C] - sys_clone[C](CLONE_ SIG-
HAND) directly identifies the signal handler data structure. There are also other ways to
identify this data structure. For instance, sys_alarm will set an alarm clock for deliv-
ery of a signal, which will modify the signal handler. By looking at sys_alarm[W]
as well as the type graph, we can also easily tell the sighand_struct.

Credential Related. Each process in a modern OS has certain credentials, such as its
uid, gid, euid, and capabilities used for access control. The Linux kernel uses a
cred data structure to store this information. To identify this data structure, we found
that sys_capget and sys_capset will set and get the cred field of a process.
Both syscalls will read and write the credential objects and we can use set intersection
to find this data structure (i.e., sys_capget[R] ∩ sys_capset[W ]). Also, this data
structure is reachable from task_struct as well.

5 Applications

Uncovering the semantics of kernel objects will be useful in many applications. For
example, it allows us to understand what the created objects are in an OS kernel when
performing introspection, and we can also use data structure knowledge to recognize
the internal kernel functions. In the following, we demonstrate how we can use ARGOS
to identify the internal kernel functions, especially the object creation and deletion
functions, which is important to both kernel rootkit offense and defense.

Recently, kernel malware has been increasingly using internal functions to perform
malicious actions. This is no surprise since kernel malware can call any internal kernel
function because they share the same address space. For instance, prior studies have
shown that instead of calling NtCreateProcess, kernel malware will directly call
PspCreateProcess. Therefore, hooking these internal functions is very important
to detect malware attacks. Note that PspCreateProcess is for the Windows kernel;
the corresponding one in Linux is actually copy_process [9]. Then can we auto-
matically identify these internal functions, such as copy_process?



Creation Function Deletion Function
Type Version PC Symbol PC Symbol

pid
2.6.32 c10414d0 alloc_pid c10413de put_pid
3.2.58 c104bb02 alloc_pid c104b969 put_pid

task_struct
2.6.32 c102daaf copy_process c102da55 free_task
3.2.58 c103719d copy_process c10368a7 free_task

vm_area_struct
2.6.32 c102d730 dup_mm c109d387 remove_vma
3.2.58 c1036d97 dup_mm c10b13d7 remove_vma

mm_struct
2.6.32 c102d730 dup_mm c102d3dc __mmdrop
3.2.58 c1036d97 dup_mm c1036a58 __mmdrop

file
2.6.32 c10b230d get_empty_filp c10b2030 file_free_rcu
3.2.58 c10cee78 get_empty_filp c10ceba0 file_free_rcu

fs_struct
2.6.32 c10cac50 copy_fs_struct c10cae5b free_fs_struct
3.2.58 c10eaac4 copy_fs_struct c10eaa55 free_fs_struct

files_struct
2.6.32 c10c1839 dup_fd c1030a32 put_files_struct
3.2.58 c10df2ab dup_fd c103b16d put_files_struct

vfs_mount
2.6.32 c10c3a35 alloc_vfsmnt c10c30ba free_vfsmnt
3.2.58 c10dfd23 alloc_vfsmnt c10dfe36 free_vfsmnt

sighand_struct
2.6.32 c102daaf copy_process c102d148 __cleanup_sighand
3.2.58 c103719d copy_process c103717b __cleanup_sighand

sock
2.6.32 c11cd7a5 sk_prot_alloc c11cc884 __sk_free
3.2.58 c12146e5 sk_prot_alloc c1214d46 __sk_free

cred
2.6.32 c1047923 prepare_creds c1047d00 put_cred_rcu
3.2.58 c10525fe prepare_creds c105239b put_cred_rcu

Table 4. Internal Kernel Function Recognization for the Testing Linux Kernels.

Fortunately, it is quite straightforward to identify some of the internal functions
given the semantics of the identified kernel data structure. Take task_struct as an
example: once we have understood a dynamically allocated object is a task_struct,
we can check which function calls the object allocation for task_struct, and the
caller is usually the one that is responsible for the object creation. Interestingly, while
this is a simple heuristic, we tested with the two kernels and found it works well.
Therefore, for this experiment, we also instrumented the kernel execution and tracked
the call-stacks such that we can identify the parent function of our interest.

Based on the above heuristic, we have applied ARGOS to recognize the creation
and deletion functions for the objects we identified in Table 3. This result is presented
in Table 4. Again, there is no false positive while using this very simple caller-callee
heuristic, and we correctly identified these functions when compared with the ground
truth result in the kernel source code. For readability, we present the corresponding
symbols of these functions, in addition to the PCs that denote their starting addresses.

For proof-of-concept, we then developed a virtual machine introspection [11] tool
atop QEMU to track and interpret the kernel object creation and deletion events related
to the object we reverse engineered by hooking the internal kernel functions listed in
Table 4. Without any surprise, our tool can successfully track the corresponding events
for all process creations, including even a hidden process that is created with the internal
function by a rootkit we developed.

6 Limitations and Future Work

While we have demonstrated we can infer the kernel object semantics from the object
use, there are still a number of avenues to improve our techniques. In the following, we
discuss each of the limitations of our system and shed light on our future work.



First and foremost, we need to develop more rules or other approaches to derive the
kernel object semantics based on the bit-vectors. Currently, we just illustrated we can
recognize some of the kernel data structures through syscall execution context diffing
and general OS knowledge. As discussed earlier in §3.4, there could be many other
alternatives, such as assigning different weights to the bit of interest and then converting
the bit-vector into a numeric value, from which semantics could be mapped. Meanwhile,
there might also be an interesting solution of only tracking a certain number of syscalls
instead all of them. We leave the validation of these alternative approaches to one of
our future works.

Second, currently ARGOS only aims to reveal the semantics of the kernel data
structures; it does not make any effort to reveal the syntax (especially the layout of
each data structure) or meaning for each field of each data structure. Since there are
several existing efforts (e.g., [18,16,23,27]) focusing on user level data structure reverse
engineering, especially on field layout and syntax, we plan to integrate these techniques
into ARGOS to give it more capabilities.

Third, ARGOS will have false negatives because of the nature of dynamic analysis.
In addition, it will not be able to track an object if its allocation functions are inlined
since it uses the dynamic hooking mechanism to intercept kmalloc family functions.
To identify these inlined kernel object allocation and deallocation functions would
require a static analysis of the kernel binary code, and we leave it to another of our
future works. Also, our current design uses PCkmalloc to type the kernel object, but
there are still a number of kernel objects (e.g., 20% in Linux 2.6.32) with an N-to-one
mapping. We plan to address this issue in our future work as well.

Forth, there might be some execution contexts that are asynchronized. Consequently,
we might miss the exact syscall context for the objects that are accessed in the asyn-
chronized code. We have encountered a few cases in Linux (e.g., kernel worker threads,
which are processed usually in the bottom-half of the interrupt context), and our current
solution is to ignore tracking the context for these objects. Thus, an immediate future
effort is to propose techniques that can also resolve the execution context of asynchro-
nized execution code.

Finally, while we have demonstrated our techniques working for the Linux kernel,
we would like to validate the generality of ARGOS with other kernels. We plan to extend
our analysis to FreeBSD, since it is also open source and we can compare our result with
its ground truth. Eventually, we would like to test our system with closed source OSes
such as Microsoft Windows.

7 Related Work

Our work is closely related to data structure reverse engineering. More broadly, it is also
related to virtual machine introspection and memory forensics. In this section, we com-
pare ARGOS with the most closely related work—data structure reverse engineering.

Being an important component of a program, data structures play a significant role
in many aspects of modern computing, such as software design and implementation,
program analysis, program understanding [20], and computer security. However, once
a program has been compiled, the definition of the data structure is gone. In the past



decade, a considerate amount of research has been carried out to recover data structure
knowledge from binary code, and they are all based on the same principle of “from data
use infer the data types”. In general, these existing approaches can be classified into
two categories: static analysis based and dynamic analysis based.

Static Analysis. An early attempt of using static analysis to recover data structure
is aggregate structure identification (ASI) [21]. Basically, it leverages the program’s
access patterns and the type information from well-known functions to recover the
structural information about the data structures. While it focused on Cobol programs,
its concepts can be applied to program binary code. By statically walking through the
binary code, value set analysis (VSA) [3,22] tracks the possible values of data objects,
from which it can build the point-to relation among addresses (which can help with
shape analysis), and also reason about the integer values an object can hold at each
program point. Most recently, TIE [16] infers both the primitive types and aggregate
types of the program’s variables from its binary code using the instruction type sinks
and a constraint solving approach.

Dynamic Analysis. Guo et al. [12] propose an algorithm for inferring the variables’
abstract types by partitioning them into equivalence classes through a data flow based
analysis. However, this approach requires the program to be compiled with debug-
ging symbols. A number of protocol reverse engineering efforts have been developed
(e.g., [5,25,17,7]) to infer the format of network protocol messages—essentially the
data structure type information of network packets—from program execution. The key
idea of these approaches is to monitor the execution of network programs and use the
instruction access patterns (i.e., the data use) to infer the data structure layout and size.

Rather than focusing on the data structure of network packets, REWARDS [18]
shows an algorithm that can resolve the program’s internal data structures through type
recovery and type unification. Howard [23] recovers data structures and arrays using
pointer stride analysis. PointerScope [27] infers pointer and non-pointer types using a
constrained type unification [8]. Also, Laika [6] uses a machine learning approach to
identify data structures in a memory snapshot and cluster those of the same type, with
the applications of using data structures as program signatures.

Compared to all these existing works, ARGOS is the first system that focuses on the
semantic reverse engineering of data structures. Also, nearly all of the existing work
focused on the reverse engineering of user level data structures, and ARGOS makes the
first step towards reverse engineering of kernel data structures.

8 Conclusion

We have presented ARGOS, the first system that can automatically uncover the se-
mantics of kernel objects from kernel execution traces. Similar to many other data
structure reverse engineering systems, it is based on the very simple principle of data-
use implying data-semantics. Specifically, starting from the system call and the exported
kernel APIs, ARGOS automatically tracks the instruction execution and assigns a bit
vector for each observed kernel object. The bit vector encodes which syscall accesses
this object and how the object is accessed (e.g., whether the object is created, accessed,



updated, or destroyed under the execution of this syscall), and from this we derive the
meaning of the kernel object. The experimental results with Linux kernels show that
ARGOS can effectively recognize the semantics for a number of kernel objects that are
of security interest. We have applied ARGOS to recognize the internal kernel functions,
and we show that with ARGOS we can build a more precise kernel event tracking system
by hooking these internal functions.

Acknowledgement

We thank our shepherd William Robertson and other anonymous reviewers for their in-
sightful comments. This research was partially supported by an AFOSR grant FA9550-
14-1-0119, and an NSF grant 1453011. Any opinions, findings, conclusions, or recom-
mendations expressed are those of the authors and not necessarily of the AFOSR and
NSF.

References

1. Linux test project. https://github.com/linux-test-project.
2. QEMU: an open source processor emulator. http://www.qemu.org/ .
3. BALAKRISHNAN, G., AND REPS, T. Analyzing memory accesses in x86 executables. In

CC (Mar. 2004).
4. CABALLERO, J., POOSANKAM, P., KREIBICH, C., AND SONG, D. Dispatcher: Enabling

active botnet infiltration using automatic protocol reverse-engineering. In Proceedings of the
16th ACM Conference on Computer and and Communications Security (CCS’09) (Chicago,
Illinois, USA, 2009), pp. 621–634.

5. CABALLERO, J., AND SONG, D. Polyglot: Automatic extraction of protocol format using
dynamic binary analysis. In Proceedings of the 14th ACM Conference on Computer and and
Communications Security (CCS’07) (Alexandria, Virginia, USA, 2007), pp. 317–329.

6. COZZIE, A., STRATTON, F., XUE, H., AND KING, S. T. Digging for data structures. In
Proceeding of 8th Symposium on Operating System Design and Implementation (OSDI’08)
(San Diego, CA, December, 2008), pp. 231–244.

7. CUI, W., PEINADO, M., CHEN, K., WANG, H. J., AND IRUN-BRIZ, L. Tupni: Automatic
reverse engineering of input formats. In Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS’08) (Alexandria, Virginia, USA, October
2008), pp. 391–402.

8. DAMAS, L., AND MILNER, R. Principal type-schemes for functional programs. In
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (Jan. 1982), pp. 207–212.

9. DENG, Z., ZHANG, X., AND XU, D. Spider: Stealthy binary program instrumentation and
debugging via hardware virtualization. In Proceedings of the 29th Annual Computer Security
Applications Conference (New Orleans, Louisiana, 2013), ACSAC ’13, pp. 289–298.

10. FU, Y., AND LIN, Z. Space traveling across vm: Automatically bridging the semantic gap
in virtual machine introspection via online kernel data redirection. In Proceedings of 33rd

IEEE Symposium on Security and Privacy (May 2012).
11. GARFINKEL, T., AND ROSENBLUM, M. A virtual machine introspection based architecture

for intrusion detection. In Proceedings Network and Distributed Systems Security Sympo-
sium (NDSS’03) (February 2003), pp. 38–53.



12. GUO, P. J., PERKINS, J. H., MCCAMANT, S., AND ERNST, M. D. Dynamic inference of
abstract types. In ISSTA (July 2006), pp. 255–265.

13. HAY, B., AND NANCE, K. Forensics examination of volatile system data using virtual
introspection. SIGOPS Operating System Review 42 (April 2008), 74–82.

14. JOHNSON, N., CABALLERO, J., CHEN, K., MCCAMANT, S., POOSANKAM, P., REY-
NAUD, D., AND SONG, D. Differential slicing: Identifying causal execution differences
for security applications. In Proceedings of 32nd IEEE Symposium on Security and Privacy
(may 2011), pp. 347 –362.

15. JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Antfarm: tracking
processes in a virtual machine environment. In Proceedings of the annual conference on
USENIX ’06 Annual Technical Conference (Boston, MA, 2006), USENIX Association.

16. LEE, J., AVGERINOS, T., AND BRUMLEY, D. Tie: Principled reverse engineering of types
in binary programs. In Proceedings of the 18th Annual Network and Distributed System
Security Symposium (NDSS’11) (San Diego, CA, February 2011).

17. LIN, Z., JIANG, X., XU, D., AND ZHANG, X. Automatic protocol format reverse
engineering through context-aware monitored execution. In Proceedings of the 15th Annual
Network and Distributed System Security Symposium (NDSS’08) (San Diego, CA, February
2008).

18. LIN, Z., ZHANG, X., AND XU, D. Automatic reverse engineering of data structures from
binary execution. In Proceedings of the 17th Annual Network and Distributed System
Security Symposium (NDSS’10) (San Diego, CA, February 2010).

19. NEWSOME, J., AND SONG, D. Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software. In Proceedings of the 14th Annual
Network and Distributed System Security Symposium (NDSS’05) (San Diego, CA, February
2005).

20. O’CALLAHAN, R., AND JACKSON, D. Lackwit: A program understanding tool based on
type inference. In Proceedings of the 19th International Conference on Software Engineering
(Boston, Massachusetts, USA, 1997), ICSE ’97, pp. 338–348.

21. RAMALINGAM, G., FIELD, J., AND TIP, F. Aggregate structure identification and its
application to program analysis. In Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of programming languages (POPL’99) (San Antonio, Texas,
1999), ACM, pp. 119–132.

22. REPS, T. W., AND BALAKRISHNAN, G. Improved memory-access analysis for x86
executables. In Proceedings of International Conference on Compiler Construction (CC’08)
(2008), pp. 16–35.

23. SLOWINSKA, A., STANCESCU, T., AND BOS, H. Howard: A dynamic excavator for reverse
engineering data structures. In Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS’11) (San Diego, CA, February 2011).

24. WALTERS, A. The volatility framework: Volatile memory artifact extraction utility
framework. https://www.volatilesystems.com/default/volatility.

25. WONDRACEK, G., MILANI, P., KRUEGEL, C., AND KIRDA, E. Automatic network
protocol analysis. In Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS’08) (San Diego, CA, February 2008).

26. ZENG, J., FU, Y., AND LIN, Z. Pemu: A pin highly compatible out-of-vm dynamic binary
instrumentation framework. In Proceedings of the 11th Annual International Conference on
Virtual Execution Environments (Istanbul, Turkey, March 2015), pp. 147–160.

27. ZHANG, M., PRAKASH, A., LI, X., LIANG, Z., AND YIN, H. Identifying and analyzing
pointer misuses for sophisticated memory-corruption exploit diagnosis. In Proceedings of the
19th Annual Network and Distributed System Security Symposium (NDSS’12) (San Diego,
CA, February 2012).


