
Detecting Stack Layout Corruptions
with Robust Stack Unwinding

Yangchun Fu1,2, Junghwan Rhee1(B), Zhiqiang Lin2, Zhichun Li1,
Hui Zhang1, and Guofei Jiang1

1 NEC Laboratories America, Princeton, USA
{rhee,zhichun,huizhang,gfj}@nec-labs.com

2 University of Texas at Dallas, Richardson, USA
{yangchun.fu,zhiqiang.lin}@utdallas.edu

Abstract. The stack is a critical memory structure to ensure the correct
execution of programs because control flow changes through the data
stored in it, such as return addresses and function pointers. Thus the
stack has been a popular target by many attacks and exploits like stack
smashing attacks and return-oriented programming (ROP). We present
a novel system to detect the corruption of the stack layout using a robust
stack unwinding technique and detailed stack layouts extracted from the
stack unwinding information for exception handling widely available in
off-the-shelf binaries. Our evaluation with real-world ROP exploits has
demonstrated successful detection of them with performance overhead of
only 3.93 % on average transparently without accessing any source code
or debugging symbols of a protected binary.

Keywords: Stack layout corruption · Stack layout invariants · Stack
unwinding information · Return oriented programming

1 Introduction

The stack is a critical memory structure to ensure the correct execution of pro-
grams since control flow changes through the values stored in it (e.g., return
addresses and function pointers). Therefore, the stack has been a popular tar-
get of many attacks and exploits [9,33,36,46,48,51] in the security domain. For
instance, the stack smashing attack [33,36,48,51] is a traditional technique that
has been used to compromise programs. Recently return oriented programming
(ROP) [9,46] has gained significant attention due to its strong capability of com-
promising vulnerable programs in spite of up-to-date defense mechanisms, such
as canaries [17], data execution prevention (DEP) [32], and address space layout
randomization (ASLR) [54] under certain conditions (e.g., memory disclosure
vulnerabilities, and the low entropy of ASLR).

Such attacks manipulate one aspect of the stack regarding return addresses
to hijack execution. However, the stack not only contains return addresses but

Y. Fu—Work done during an internship at NEC Laboratories America, Princeton.

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 71–94, 2016.
DOI: 10.1007/978-3-319-45719-2 4

72 Y. Fu et al.

also stores many other data, such as local variables and frame pointers, with
specific rules on its layout for a correct execution state. These rules are stati-
cally constructed by a compiler precisely for each function. Unfortunately such
constraints on the stack layout are not strictly checked by the CPU as evidenced
by the aforementioned attacks allowed, but a correct program execution strictly
follows such constraints and they are in fact parsed and checked when needed
(e.g., exception handling, backtrace in debug). Our intuition is that the current
ROP attacks are not aimed to follow these stack layout constraints. Thus the
inspection of the stack layout could be an effective inspection method to detect
ROP attacks based on the manipulation and the side-effects in the stack layout.
Our method is applicable to multiple stack-based attacks that tamper with the
stack layout (Sect. 3), but we focus on ROP attacks in this paper since it is one
of the most sophisticated and challenging attacks to date.

While many approaches have been proposed to detect and prevent ROP
attacks [16,19,38], they are not without limitations. In particular, many of them
heavily rely on the patterns of ROP gadgets, e.g., the length of a gadget, and
the number of consequent gadgets. As such, attacks violating these patterns keep
emerging, as witnessed by the recent attacks [12,25].

An early exploration toward this direction, ROPGuard [21], detects ROP
attacks by unwinding stack frames using a heuristic approach, based on the
stack frame pointer [3] (i.e., ebp-based stack unwinding in Windows). This is
one way to check the sanity of the stack with an assumption on the compiler’s
practice. Unfortunately, its detection policy is not general in many operating
systems causing a failure to protect the programs compiled without the stack
frame pointers. For instance, from the version 4.6 of GCC (the GNU Compiler
Collection), the frame pointer option (-fomit-frame-pointer) is omitted by
default for the 32-bit Linux making this approach unreliable.

In this paper we present a novel systematic approach called SLIck1 to verify
the stack layout structure at runtime with accurate and detailed information,
which is generated by a compiler for exception handling [1,2] and available inside
the binaries. From this information, we extract stack layout invariants that must
hold at all times. We show verifying these invariants is effective for detecting
the stack manipulation caused by ROP attacks overcoming the limitations of
previous approaches based on stack unwinding. For our approach to be practical,
this information should not be optional during compilation, or require source
code since in many environments a program is deployed in the binary format.
A pleasant surprise is that the stack frame layout information is widely available
in Linux ELF binaries stored in the .eh frame section due to the support of
exception handling (even for C code). Moreover, this binary section is required
in the x86 64 application binary interface (ABI) [6].

The contribution of this paper is summarized as follows:

– We present two novel security invariants of the stack regarding legitimate
return address chains and legitimate code addresses based on the data stored

1 SLIck represents Stack Layout Invariants Checker similar to fsck.

Detecting Stack Layout Corruptions with Robust Stack Unwinding 73

in the .eh frame. While the .eh frame provides the information regarding
the stack layout, it is not directly applicable to ROP detection. The invariants
proposed in this paper fill this gap.

– We present a novel ROP detection technique based on stack layout invariants
and a robust stack unwinding. This mechanism improves the robustness of
a prior heuristic-based stack unwinding (e.g., ebp-based [21]), which fails to
inspect the binaries that are not compiled with frame pointer support.

– We propose flexible stack unwinding algorithm to overcome a general and
practical challenge in stack unwinding approaches which fail to unwind the
entire stack due to the incompleteness of stack frame information. Our evalu-
ation shows this instance is quite often, which leads to frequent false negative
cases of the stack inspections without addressing this issue.

2 Background

2.1 Return Oriented Programming

Return oriented programming (ROP) is an offensive technique that reuses pieces
of existing code chained together to create malicious logic. An attacker identifies
a set of instruction sequences called gadgets linked together using payloads, which
traditionally are placed in the stack [46] transferring control flow via the return
instructions. Recently the attack pattern became diverse involving the call or jump
instructions, which can trigger an indirect control flow [13] and the payloads can
be also placed in other places, such as the heap [49].

2.2 Stack Frame Information in Binaries for Exception Handling

When a program executes, many low level operations occur in the stack. When-
ever a function is called, its execution context (e.g., a return address) is pushed
to the stack. Also many operations, such as handling local variables, delivering
function call parameters, the flush of registers, occur on the stack exactly as they
are determined during the compilation time. The specific rules on how to use
each byte of each stack frame are predetermined and embedded in the program.

Figure 1 illustrates an example of this stack layout information taken from a
function (ngx pcalloc) of nginx, a high-performance HTTP server and reverse
proxy. The top of the figure shows a part of its disassembled code. The middle
part of the figure shows an example of the stack layout information, which is orga-
nized with the reference to the head of each stack frame. The memory address of
a stack frame is referred to as the Canonical Frame Address (CFA) [1,2], which
is the stack pointer address at the function call site.

The decoded information at the bottom illustrates the detailed stack lay-
out at each instruction. For instance, [40530c: cfa=32(rsp), rbx=-24(cfa),
rbp=-16(cfa), ret=-8(cfa)] shows the exact locations of the top of the cur-
rent stack frame (cfa=), the pushed register values (rbx=, rbp=), and the return
address (ret=) described in terms of the stack pointer address and the offsets at

74 Y. Fu et al.

Fig. 1. A detailed view of the stack layout information of the Nginx binary.

the instruction at 0x40530c. This information shows the detailed rules on the
stack usage which were not considered by the current ROP attacks to evade.

While we have found that the stack frame information is useful for the detec-
tion of ROP exploits, to be a practical solution, this information should be widely
available in binaries. Modern programming languages mostly support exception
handling. To do so, the runtime environment should be capable of interpret-
ing and unwinding stack frames such that the exception handler can correctly
respond to the exceptions. The ELF binary format, which is widely used in the
Linux and BSD operating systems, stores it in the .eh frame and .eh framehdr
sections [2]. Similar information is also available in other platforms to support
exception handling. For instance, the Windows OS has an exception handling
mechanism called Structured Exception Handling (SEH) [5,42]. The mach-O [4]
binary format used by Apple Macintosh programs has similar binary sections
(.eh frame, .cfi startproc, and .cfi def cfa offset).

Our investigation shows that the .eh frame section is included by default
in the compilation using the gcc and g++ compilers for C and C++ pro-
grams. According to the definition of the application binary interface (ABI) for
x86 64, it is a required section for a binary [6]. The strip utility with the most
strict option (e.g., strip --strip-all) does not affect this section. In addi-
tion, most binaries deployed in modern Linux distributions include this section.

Detecting Stack Layout Corruptions with Robust Stack Unwinding 75

For instance, in Ubuntu 12.04 64 bit version all binaries in the /bin directory
have a valid .eh frame section. Among the entire set of the program binaries
examined, over 97 % of around 1700 binaries have this information except special
binaries: the Linux kernel image (e.g., kernel.img) and the binaries compiled
with klibc, which is a special minimalistic version of the C library used for
producing kernel drivers or the code executed in the early stage of a booting.

3 Overview of SLIck

We use the stack layout information available from the binary section for excep-
tion handling to detect ROP exploits. As a research prototype, we present
SLIck, a robust stack unwinding based approach that does not rely on any
gadget patterns, such as a gadget sequence, or behavior. Previous approaches
(e.g., [16,19,38]) are based on the characteristics of ROP gadgets, such as call-
precedence or the length of gadget sequences, which make them vulnerable to
new attacks [12,25]. The overview of SLIck is illustrated in Fig. 2.

SLIck uses two invariants regarding the stack layout information (to be
shortly described in Sect. 4 in details) to detect an ROP attack.

– Stack Frame Chain Invariant (Sect. 4.1). The stack frame information
inside the binary describes how stack frames must be chained, and the unwind-
ing of the runtime stack information should not be different from it.

– Stack Frame Local Storage Invariant (Sect. 4.2). The accumulated stack
operations in a function are summarized as a constant because the memory
usage in each stack frame should be cleaned up when the function returns.

SLIck inspects the runtime status of the monitored program’s stack regard-
ing these two invariants transparently and efficiently so that ROP attacks can
be precisely detected. SLIck has two major system components.

– Derivation of stack layout invariants (Sect. 4). To achieve efficient run-
time checks, the necessary information is derived in an offline binary analysis.
Given a binary executable as an input, this component extracts the stack
frame information from the .eh frame section and constructs stack layout
invariants. Also, the table of valid instructions of this binary is derived to
verify the stack frame local storage invariant.

Fig. 2. System overview of SLIck.

76 Y. Fu et al.

– Runtime inspection of stack invariants (Sect. 5). This component veri-
fies whether stack invariants hold at runtime and detects any violation caused.
SLIck inspects the stack status when an OS event is triggered to avoid high
overhead of fine-grained techniques [14,19]. Diverse OS events with different
characteristics can be used to trigger the inspection as policies. For instance,
the inspection on all system calls will catch the ROP behavior that uses any
system services, such as a file access, and network usage. Using the timer inter-
rupts, which trigger the context switches, enables non-deterministic inspection
points that make it hard to accurately determine our inspection time and also
enables frequent inspections in the CPU intensive workload.

Adversary Model and Assumptions. We consider an adversary who is able
to launch a user-level stack-based return oriented programming (ROP) attack,
which modifies the stack to inject its payload using a native program in the
ELF format with the stack frame layout information widely available in the
Linux platform. There is no assumption on the characteristics of gadget content
(e.g., a sequence, a length, and the call-precedence of gadgets) which can be used
in the attack.

The techniques in this paper are in the context of Linux and the ELF binary
format because the mechanism and the implementation of the stack layout infor-
mation is specific to each OS platform due to the distinct underlying structures
of OSes. However, we believe a similar direction can be explored in other OS
platforms which are described in the discussion section.

We assume that the integrity of the operating system kernel is not compromised
and the ROP attack is not towards the vulnerability and the compromise of the
kernel.While such attack scenarios ofROPexploits are realistic, in this paperwedo
not focus on the countermeasures for such attacks because of the existing detection
and prevention mechanisms on OS kernel integrity [22,23,27,39–41,45]. We rely on
such approaches to ensure the integrity of OS kernel and SLIck, which is designed
to be a module of it.

Finally, we mainly focus on native programs for the detection of ROP
exploits. The programs based on dynamically generated code running on virtual
machines, interpreters, and dynamic binary translators have their own unique
structures on their runtime and the stack layout. Currently, we do not focus on
ROP defense for these binaries.

4 Derivation of Stack Layout Invariants

Rich stack layout information of the .eh frame section can be used to derive
potentially many invariants regarding the layout of the stack. In this paper, we
focus on two invariants that are motivated by the following challenges.

First, ROP attacks can manipulate the valid chains of the function calls of
the original program, and determining such manipulation robustly and trans-
parently is a remaining challenge. Recent approaches on control-flow integrity
have made substantial progress particularly when they can access or transform

Detecting Stack Layout Corruptions with Robust Stack Unwinding 77

source code [18,56]. Some approaches attempted to achieve a practical control-
flow integrity by relaxing strict control-flow [60,61]. However, they still introduce
new attacks [24]. Second, ROP gadgets popularly utilize unintended instructions
and it is non-trivial to detect such usage efficiently. We introduce two stack lay-
out invariants to solve these challenges.

4.1 Stack Frame Chain Invariant (FCI)

Observation. The description regarding the head of a stack frame (CFA), can
validate how far a previous stack frame should be apart from the current one.
For instance, the information [40530c: cfa=32(rsp), ..., ret=-8(cfa)] in
Fig. 1 shows that the CFA is at the address stored in the rsp register plus 32,
and the return address is at ret = −8(cfa) which is resolved as rsp + 32 − 8
using the location of the CFA. This information enables the validation of the
linkage of stack frames.

Invariant. For an instruction c in a function, let us define the accumulation
of stack operations between the function prologue and c in terms of a stack
distance as BL(c) (Backward stack frame Layout). This information generated
by a compiler for the instruction c is retrieved from the CFA of .eh frame. For
instance, the return address at B6 in Fig. 3, BL(B6) is −12(SP) (i.e., stack
pointer + 12 bytes) due to three decrements of the stack pointer (each by 4
bytes) for local variables. A runtime version, BL′(c), is subject to manipulation
under attacks requiring the verification whether it conforms to BL(c) for all
stack frames in a chain. This invariant is presented as BL(c) = BL′(c) called
the Stack F rame Chain Invariant (FCI).

Verification. SLIck checks this invariant using a stack unwinding algorithm
(Sect. 5) iteratively over all stack frames validating the integrity of the BLs as a
chain. Any inconsistency in one of the BLs in the chain causes cascading effects in
the following stack frames, therefore, breaking the BL sequence in the unwinding

Fig. 3. Illustration of stack layout invariants.

78 Y. Fu et al.

procedure. SLIck determines this invariant is satisfied if the unwinding proce-
dure over all stack frames is successful. To perform this runtime verification
efficiently, we precompute the BLs using the CFAs from the .eh frame section.

4.2 Stack Frame Local Storage Invariant (FSI)
Observation. Programs use the stack to store data (e.g., for local variables
and register spills). To limit the impact across stack frames, the allocation and
deallocation of local stack memory in a frame should be paired up so that the
stack memory usage for a function could be cleaned up when the function returns.

Invariant. This observation regarding the gross sum of local stack operations is
summarized as follows. Let us define the accumulated stack operations between
the code c and the function epilogue in terms of a stack distance as FL(c)
(Forward stack frame Layout). The observation on the stack local storage is
represented as BL(c)+FL(c) = k, which we call the Stack F rame Local S torage
Invariant (FSI). In the right figure of Fig. 3, BL(B6) is −12(SP), and FL(B6)
is 12(SP) leading to k = 0. Typically k should be zero except the special corner
cases where functions do not properly return such as the exit. This invariant
allows to determine the usage of unintended code popularly used in ROP attacks
because such code may not follow the original code’s semantic.

Verification. To efficiently check whether the executed code conforms to this
invariant, we precompute a table of instructions originally intended in the pro-
gram, named as a table of valid code addresses (TVC). Its rows show all possible
code addresses (i.e., every byte offset of the code including unintended code in
the program) and the column indicates a boolean state whether the code is valid
(T) or invalid (F) depending on the BL(c) + FL(c).

We use the .eh frame and a binary analysis for the computation of this
table. The instructions derived from the stack frame information are marked
as valid. However, due to its compressed structure, which mainly describes the
instructions involving stack operations, not every instruction is covered. For such
cases, we use a binary analysis to simulate the instructions and determine the
validity. SLIck applies this check as part of a stack unwinding algorithm.

SLIck considers that a program is compromised if either or both of these
two invariants are violated. We present more specific details on how to check
them at runtime in Sect. 5.

5 Runtime Inspection of Stack Invariants

In this section, we present how SLIck inspects stack invariants and robustly
detects their violations.

Detecting Stack Layout Corruptions with Robust Stack Unwinding 79

5.1 Practical Challenges

After we use a traditional stack unwinding algorithm [3] to inspect the invariants,
we have identified the cases that frustrate the current algorithm and limit the
inspection of the full stack. There are two cases categorized.

Failure type Description Attributes of virtual memory pages Binary exist Unwind info

exist

Type Page permission

Type A Incomplete unwinding info Code Executable Yes No

Type B Invalid unwinding Not found Not executable * *

Type A: Incomplete Unwinding Information. We found that a rare por-
tion of code in terms of coverage has incomplete unwinding information mainly
in the low level libraries and the starting point of a program. It is important
to address this issue because such code stays in the stack during execution and
there is a high chance to face it during the unwinding. If this issue happens, the
vanilla stack unwinding algorithm cannot proceed the unwinding procedure due
to the missing location of the next stack frame.

Based on our experiments over 34 programs including widely used server
applications and benchmark, the cases that we identified are summarized into
mainly three cases. First, it is triggered by the entry point of ld, which is the
dynamic linker and loader in Linux. Second, the first stack frame which is the
start of the program can generate a type A error. The third case is the init
section of the pthread library.

Type B: Invalid Unwinding Status. Unlike type A, this case should not
occur in benign execution. However, this incorrect execution state is observed
when the stack layout is manipulated by attacks. The stack unwinding algorithm
strictly verifies the validity of the stack layout information formulated by the
compiler across all stack frames. Any single discrepancy due to stack manipula-
tion leads to invalid unwinding conditions. Specifically this case is characterized
as the state shown in the table: the return code address obtained from the stack
is not found from the executable memory area.

Type A failures can block the full inspection of all stack frames in stack
unwinding-based approaches. Therefore, this issue must be addressed to achieve
robust stack unwinding. We address it using flexible stack unwinding, which is a
novel variant of the stack unwinding algorithm that enables robust detection of
type B errors while addressing type A errors. Next, we present the details of our
algorithm that inspects stack invariants based on the flexible stack unwinding.

80 Y. Fu et al.

Fig. 4. Flexible unwinding. Fig. 5. Stack invariant violation.

5.2 Stack Invariant Inspection Algorithm

Figures 4 and 5 presents a high level illustration of our algorithm to inspect stack
invariants while addressing the practical stack unwinding challenges. When the
inspection is triggered, Algorithm 1 inspects stack frames starting from the top
to the bottom of the stack as shown in Fig. 4. The algorithm bypasses type A
failures while detecting type B errors caused by the violation of stack invari-
ants illustrated in Fig. 5. FCI and FSI violations are respectively caused by an
illegitimate chain of stack frames and return addresses.

The Algorithm 1 is triggered by an operating system event (e.g., a system
call, an interrupt) represented as the OsEvent function (Line 1). This function
executes the SIInspect function (Line 2), the main logic for stack inspection.
When this function detects either a type B error (FCI violation) or an invalid
return code instruction (FSI violation) during stack unwinding, it returns Fail.
Upon the detection of any violation, the PostProcess function is called (Line 4)
to stop the current process and store the current context for a forensic analysis.

Unwinding Library Code. A program executes the code for multiple libraries
as well as the main binary. Such libraries have separate stack frame information
in their binaries which are loaded into distinct virtual memory areas (VMA).
During the scan of the stack, our algorithm dynamically switches the VMA
structure for the return address (Line 11), which is implemented as two nested
loops in SIInspect; the outer while loop (Lines 10–38) switches different VMAs
while the return addresses in the same binary are efficiently handled by the inner
loop (Lines 17–27) without searching for another VMA.

For each VMA, the .eh frame information is retrieved from the binary
(Line 16). For each code address, the algorithm checks its validity (Line 20). If
it is valid and the return code stays in the same VMA, the GetNextRet function
is called to unwind one stack frame. Otherwise the algorithm returns a violation
of FSI at Line 21. This loop is repeated to unwind following stack frames as

Detecting Stack Layout Corruptions with Robust Stack Unwinding 81

Algorithm 1. Stack Invariant Inspection Algorithm
SZ = sizeof(UNSIGNED LONG)

1: function OSEvent(REGS)
2: Ret = SIInspect(UserStack, REGS)
3: if Ret == Fail then
4: PostProcess(REGS, UserStack)

5: return
6: function SIInspect(UserStack, REGS)
7: CFA = REGS → SP; VMA = GetVMA(CFA); UnwindDepth = 0
8: StackTop = REGS → SP; StackBot = GetStackStart(VMA, CFA)
9: InvalidInstr = False

10: while true do � Outer loop
11: VMA = GetVMA(REGS → IP)
12: if VMA is invalid or not executable then
13: return Fail � Type B, FCI violation

14: if VMA → VM FILE does not exist then � Dynamic code
15: Goto DoFlexibleSIInspect

16: EH = GetEHSection(VMA)
17: do � Inner loop
18: if REGS → SP < StackTop or REGS → SP >= StackBot then
19: return Fail � Type B, FCI violation, Stack Pivot Detection

20: if TVC [REGS → IP] == False then � FSI violation
21: return Fail
22: if REGS → IP > VMA → VM Start and REGS → IP < VMA → VM End then
23: UnwindDepth += 1
24: else
25: Ret = GotNext; break � Find another VMA

26: Ret = GetNextRET(CFA, REGS, EH, StackBot, StackTop)
27: while Ret == GotNext
28: if Ret is NoUnwindingInfo then � Type A
29: :DoFlexibleSIInspect

30: offset = FlexibleSIInspect(REGS → SP, StackBot)
31: if offset is EndOfStack then
32: return Success
33: else
34: REGS → SP += offset; REGS → IP = *(REGS → SP) of UserStack,
35: REGS → BP = *(REGS → SP - SZ) of UserStack; REGS → SP += SZ
36: CFA = REGS → SP
37: else if Ret is Invalid then
38: return Fail � Type B, FCI violation

39: return Success
40: function FlexibleSIInspect(Start SP, StackBot)
41: for SP = Start SP; SP < StackBot; SP += SZ do
42: IP = *SP; VMA = GetVMA(IP)
43: if VMA is valid and VMA → VM FILE is available then
44: return SP - Start SP
45: return EndOfStack

long as the function returns GotNext. For code c, its BL(c) is returned by the
GetNextRet function. If a return address is replaced by k, a manipulated value,
the divergence BL(k) =BL′(c) �= BL(c) will cause cascading effects on unwind-
ing of the following stack frames. Any mismatch of a single stack frame with its
unwinding information causes a violation of FCI at Line 13, 19, or 38.

Stack Pivot Detection. During stack unwinding, Algorithm 1 performs var-
ious checks to ensure precise unwinding and detect anomaly cases. A popular
technique in recent ROP attacks is stack pivoting [49,62] that changes the loca-
tion of stack to the manipulated content (e.g., heap). This attack is trivially
detected by our algorithm (Line 18) because SLIck can distinguish an invalid
stack memory address.

82 Y. Fu et al.

Flexible Stack Unwinding. To handle type A failures, we provide flexible
stack unwinding algorithm (Lines 40–45). When a type A case happens, the
FlexibleSIInspect function advances the stack pointer in a brute force way
and checks whether a legitimate stack frame appears next. If the return address
found in this search belongs to a code section based on its memory address
range and the corresponding file, this function returns the offset of the stack.
And then the algorithm goes back to the outer loop (Line 10), and the stack
layout information of the new stack frame is examined. If it is a type B case,
the GetNextRET function will return Invalid in the next loop. If it turns out
to be a type A case again, it will go back to the FlexibleSIInspect function
by returning NoUnwindingInfo. Lastly, if it is a valid frame, it will be unwound
and takes a following loop iteration.

5.3 Stack Inspection Policies

SLIck inspects the runtime status of a program stack based on the policies
regarding which types of OS events trigger the inspection. Here we present two
policies used for our evaluation (Sect. 6.3) and our framework allows user defined
policies as well.

System Call Inspection (SYS). This policy checks the stack on all system
calls which provide lower level services to the program, such as memory alloca-
tion, file operations, network operations, and a change of memory permission.
They are the typical targets of ROP exploits to achieve functionality beyond
the original program, and this policy provides a cost-effective inspection at the
intermediary points of OS operations to observe high impact system activities.

System Call and Non-deterministic Inspection (SYS+INT). This pol-
icy achieves finer-grained inspection by narrowing down the gaps between the
inspections and making inspection intervals non-deterministic by using non-
deterministic OS events, such as interrupts. As an attack scenario against SLIck,
an ROP exploit may attempt to predict SLIck’s inspection time and clean up the
stack manipulation to hide its evidence. Since this scheme uses non-deterministic
OS events to perform inspections, this attack becomes significantly hard to be
successful. This scheme can be further strengthened by increasing the random-
ness, e.g., by performing additional inspections with random intervals.

6 Evaluation

In this section, we present the evaluation of SLIck in the following perspectives.

– How effective is SLIck at detecting real-world ROP exploits?
– What is the impact of SLIck on benign programs?
– How efficient is SLIck for inspecting stack invariants?

Detecting Stack Layout Corruptions with Robust Stack Unwinding 83

We have implemented SLIck for 32 bit and 64 bit Ubuntu 12.04 LTS Linux
systems as a kernel module and user level tools for offline analyses.

6.1 Detection of ROP Attacks

We applied SLIck on 7 real-world ROP exploits available in Linux of 32 bit and
64 bit architectures. Table 1 presents the details of the program’s runtime status
and the detection results by SLIck.

Table 1. Detection of stack invariant violations of ROP exploits. The number of
unwinding failures (#F-unwind) is generally correlated with the number of events (#
Events), but it can be higher if multiple stack frames have failures.

Program Syscall inspection policy Invariant violation Attack description

Name Ver Env #Events ||S|| #F-unwind Detection Type Exploit info Syscall

Nginx 1.4 64 bit 100452 22 96895 � FSI CVE-2013-2028 sys write

Mysql 5.0.45 64 bit 2128 13 2156 � FCI & FSI CVE-2008-0226 sys execve

Nginx 1.4 32 bit 42937 22 40231 � FCI & FSI CVE-2013-2028 sys write

Mysql 5.0.45 32 bit 2027 12 1792 � FCI CVE-2008-0226 sys rt sigaction

Unrar 4.0 32 bit 141 10 142 � FCI CVE-2007-0855 sys write

HT Editor 2.0.20 32 bit 292 13 326 � FCI CVE-2012-5867 sys lstat64

MiniUPnPd 1.0 32 bit 56 8 50 � FCI CVE-2013-0230 sys time

The first three columns show the description of the program, its name
(Name), version (Ver.), and the architecture that it runs on (Env). For this
experiment, we use the system call inspection policy. The 4th, 5th, and 6th
columns show the runtime status: the number of system call events (# Events),
the average stack depth (||S||) during the execution, and the number of type
A stack unwinding errors (# F-unwind) that flexible stack unwinding algorithm
successfully addressed. The next two columns show the detection of ROP exploits
based on stack invariant inspection: the “Detection” column shows whether the
violation of an invariant is detected. Our algorithm stops a program on the first
violation of an invariant which could be either an FCI or an FSI. If both of them
occur in the same iteration of algorithm, it is presented as FCI & FSI. The type
of violation is presented in the “Type” column. Exploit information (Exploit
Info) and the system call at the time of detection (Syscall) are presented in the
next columns.

We experimented with real-world exploits against widely used server and
desktop software: Nginx, Mysql, Unrar, HT Editor, and MiniUPnPd. These
software and the ROP exploits have different characteristics shown as various
numbers of system calls and the depths of the stack. All tested ROP exploits
are successfully detected due to violations of stack invariants.

84 Y. Fu et al.

6.2 Impact on Benign Programs

For a practical usage of SLIck, it should have low false positives in benign
programs. For this evaluation, we used total 34 programs from popular open
source projects and benchmarks: 3 widely used server programs (Nginx, Apache,
Mysql), a CPU benchmark for Linux (NBench), a data compression utility (7zip),
and 29 programs from the SPEC 2006 benchmark. The stack invariants are
inspected with two inspection policies: the system call inspection policy (SYS),
and the system call and non-deterministic inspection policy (SYS+INT).

Table 2 summarizes our results. The first column describes the program name.
We present the data for two inspection policies in different groups of columns.
The next three columns describe the evaluation using the SYS inspection policy.
The following three columns show the result using the SYS+INT policy. The
SYS+INT inspection policy increases the number of inspection events in the
CPU intensive benchmarks more significantly (e.g., 434.zeusmp has over 28 times
higher events because of timer interrupts). I/O intensive programs get most
timer interrupts from the kernel code, such as another interrupts or system
calls. Such cases are not additionally inspected because the programs are already
checked on the transition from the user mode to the kernel mode. This policy
can harden the inspection of CPU intensive programs that have a low number
of system calls. Timer interrupts capture a program call stack at arbitrary non-
deterministic execution points. Therefore, the average call stack depth (||S||) is
different between two experiments in many cases of the SPEC benchmark.

In general the number of type A failures that flexible unwinding addresses
(#F-unwind) is highly correlatedwith the number of inspection events (#Events).
One reason for this behavior is that the first stack frame created on the start of the
programstays in the stack and triggers a typeA failure on each systemcall.Another
reason is the pthread library; large programs using multiple threads get additional
type A errors due to this library.

While most of programs triggered non-trivial number of type A failures, in
all cases, no violation of stack invariants is detected causing zero false positives
of our approach.

6.3 Performance Analysis

We evaluate the runtime performance impact of SLIck on the protected pro-
grams in the prior evaluation. The overhead is related to the frequency of the
inspections and the depth of stack unwinding. SLIck is configured to scan the
full stack. We used the apache bench with the load of a thousand requests to
generate the workload for Apache and Nginx webservers. The performance of
the Mysql database and the 7zip tool are measured using the packaged bench-
marking suites. The Nbench and SPEC 2006 benchmarks are executed using
the standard setting. Performance numbers from different types of benchmarks
are normalized in a relative way so that the performance of native execution
becomes 1. Our measurement data are presented in Fig. 6. We present SLIck’s
performance in two inspection policies.

Detecting Stack Layout Corruptions with Robust Stack Unwinding 85

Table 2. Stack invariant inspection of benign applications. No violation is detected.

Program name SYS SYS+INT

#Events ||S|| #F-unwind #Events ||S|| #F-unwind

Nginx 16164 16 16171 16183 16 16190

Apache 24466 15 24472 24481 15 24488

Mysql 40347778 12 40377139 40451780 12 40481318

Nbench 87371 7 87371 163973 7 163973

7zip 59922 8 74874 68516 8 82650

400.perlbench 35361 12 35361 35666 12 35666

401.bzip 450 7 450 4649 8 4649

403.gcc 714 15 714 1578 13 1568

410.bwaves 993 9 993 9048 9 9048

416.gamess 16848 17 16848 17057 17 17057

429.mcf 1023 8 1023 2945 7 2945

433.milc 19092 11 19092 26020 10 26020

434.zeusmp 258 8 258 7422 6 7422

435.gromacs 3009 15 3009 3651 14 3651

436.cactusADM 2115 16 2115 3869 14 3869

437.leslie3d 303 9 303 7646 5 7646

444.namd 6159 9 6159 14018 7 14018

445.gobmk 8799 12 8799 21492 23 21492

450.soplex 360 9 360 372 9 372

453.povray 5040 21 5040 5386 21 5386

454.calculix 537 9 537 568 9 568

456.hmmer 207 9 207 2168 5 2168

458.sjeng 1671 12 1671 4511 15 4511

459.GemsFDTD 1626 9 1626 2825 7 2825

462.libquantum 120 8 120 149 8 149

464.h264ref 1236 8 1236 9909 11 9909

465.tonto 6303 16 6303 6743 16 6743

470.lbm 2091 8 2091 3280 6 3280

471.omnetpp 570 12 570 829 11 829

473.astar 783 9 783 7371 6 7371

481.wrf 5598 17 5598 7666 15 7666

482.sphinx3 9213 12 9231 10510 11 10510

988.specrand 378 10 378 384 9 384

999.sperand 378 10 378 385 9 385

86 Y. Fu et al.

 0%

 20%

 40%

 60%

 80%

 100%
N

gi
nx

A
pa

ch
e

M
ys

ql
N

be
nc

h
7z

ip
40

0.
pe

rl
be

nc
h

40
1.

bz
ip

40
3.

gc
c

41
0.

bw
av

es
41

6.
ga

m
es

s
42

9.
m

cf
43

3.
m

ilc
43

4.
ze

us
m

p
43

5.
gr

om
ac

s
43

6.
ca

ct
us

A
D

M
43

7.
le

sl
ie

3d
44

4.
na

m
d

44
5.

go
bm

k
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
45

6.
hm

m
er

45
8.

sj
en

g
45

9.
G

em
sF

D
T

D
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

46
5.

to
nt

o
47

0.
lb

m
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
1.

w
rf

48
2.

sp
hi

nx
3

98
8.

sp
ec

ra
nd

99
9.

sp
er

an
dN
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Vanilla
SYS
SYS+INT

Fig. 6. Runtime performance of SLIck.

Runtime Impact for the SYS Policy. With this policy, the average overhead
of SLIck in 34 evaluated programs is 3.09 % with the maximum overhead of
22.8 % in Mysql. High overhead of Mysql is due to very intensive stress tests for
a database in I/O and low level services. As an evidence, the second column of
Table 2 which is the system call count shows that Mysql benchmark generates a
significantly higher number of system calls over 40 millions compared to other
programs having under 164 thousands system calls.

Runtime Impact for the SYS+INT Policy. A finer-grained inspection
based on system calls and timer interrupts is offered with a slightly higher per-
formance cost of 3.93 % on average and with the maximum overhead of 22.8 % in
Mysql. This policy causes increased overhead on CPU intensive workloads due
to additional inspections introduced by timer interrupts.

7 Discussion

Comparison with ROPGuard/EMET. Our work is closely related to an
early exploration based on stack unwinding, ROPGuard/EMET [21]. How-
ever, there are several major differences that distinguish SLIck from ROP-
Guard/EMET as follows.

– Our approach has a higher and reliable inspection coverage compared to ROP-
Guard: SLIck inspects the user stack with the full depth on all system calls
and timer interrupts. In contrast, ROPGuard inspects the stack only on a
selective set of critical user level APIs with a limited depth of the stack. Thus
ROPGuard/EMET cannot detect the attacks that directly trigger system
calls without using the APIs. Also if the binary is built statically, ROPGuard
cannot be applied due to its base on the library interposition technique.

– ROPGuard operates in the same user level as the monitored program. There-
fore, it is subject to manipulation by the attacker. However, SLIck is isolated
from the user space due to its implementation in the OS kernel.

– SLIck’s inspections are performed with a higher frequency compared to ROP-
Guard: SLIck inspects the stack on all system calls and non-deterministic

Detecting Stack Layout Corruptions with Robust Stack Unwinding 87

timer interrupts. ROPGuard, however, only checks the stack on a set of
critical API functions.

– SLIck achieves a reliable stack walking and improved ROP detection by using
precise stack layout information extracted from the unwinding data while
ROPGuard uses a heuristic based on the frame pointer which is not reliable.

– This work proposes two stack layout invariants which are derived from the
unwinding information, and these invariants are verified by using an improved
and reliable stack walking mechanism.

– We discovered that a small number of binaries have incomplete unwinding
information which affects the current stack walking mechanisms. We propose
flexible stack unwinding algorithm to overcome this issue and enable a reliable
and high quality inspection of the entire stack.

Stack Pivoting Attacks. A stack pivoting attack [49,62] manipulates the
stack pointer to point to the data controlled by ROP gadgets. This attack is
trivially detected by our approach because SLIck uses the valid stack memory
address ranges assigned by the OS. When an unexpected memory area is used
for the stack pointer, SLIck detects it as a FCI violation (Sect. 5.2). A related
work [43] achieves this feature using a compiler approach and source code while
SLIck can prevent this attack transparently for existing binaries.

Stack Manipulation Detection. Traditional buffer overflow attacks [36,48,51]
attempting to overwrite the return addresses in the stack are likely to violate the
invariants. Thus such attacks can be transparently detected by SLIckwithout any
recompilation, or instrumentation of the program.

Support of Dynamic Code. Dynamically generated code is used by several
platforms such as virtual machines, interpreters, dynamic binary translators,
and emulators. While they are out of the scope of this paper, we believe our
approach can be extended to support them with engineering efforts because
these platforms also provide ways to unwind stack frames for dynamic code. For
instance, Java has a tool called jstack that can dump the whole stack frames
including both of the Java code and the underlying native code and libraries.
If such a platform-specific logic is integrated into our stack unwinding algorithm,
we should be able to support such dynamic code as well as native code.

Integrity of a Kernel Monitor. SLIck resides in the OS kernel. While the
attack scenarios of ROP exploits against the kernel is certainly possible, in this
paper we do not focus on the countermeasures for such attacks because of existing
detection or prevention mechanisms on OS kernel integrity [22,23,27,39–41,45].
We rely on such approaches to ensure the integrity of SLIck.

Control-Flow Integrity. Our approach raises the bar for ROP exploits by
introducing new security invariants on the layout of the stack. Essentially code

88 Y. Fu et al.

and the stack status have correspondence generated by compilers, but it is not
strictly enforced at runtime. SLIck verifies this loose correspondence by using
a novel variant of a stack unwinding [3] inspecting stack layout invariants.

Control-flow integrity (CFI) [8] provides strong measures to defeat ROP
attacks by strictly checking the control-flow of programs. Recent approaches made
a significant progress in the compiler-based techniques [18,56] and achieved practi-
cal solutions by relaxing strict control-flows [60,61]. When only program binaries
are available, the stack frame chain invariant of SLIck provides a practical and
transparent alternative to verify the backward chain of control flow while provid-
ing a performance benefit and high applicability without requiring source code,
program transformation, or a complete control flow.

User-Space-Only Self-hiding ROP Attacks. ROP gadgets are typically
used to achieve a new logic which may not exist in the original program. Most
real exploits typically make use of the OS level services [57], such as allocating
memory and changing its permissions. Technically it is possible to execute ROP
gadgets and recover the manipulation of the stack before the transition to the OS
to hide the evidence from SLIck. Such user-space-only ROP attacks in practice
would be non-trivial to keep track of the manipulated states and implement a
clean up logic without stack pivoting which SLIck detects. The inspections on
system calls will capture any such attempt on system related activities. Non-
deterministic OS events, such as timer interrupts (varying between 4–20 ms in
our experiments), and the inspection events with random intervals will make
it further difficult for the exploit to precisely predict the inspection time. This
advanced attack to hide itself is an aspect that needs further study which is our
future work.

Integrity of Stack Frame Information. For a robust detection of ROP
attacks, SLIck ensures the integrity of stack frame information as follows. The
integrity of this information inside a binary is verified using a file integrity checker
[30]. Given the file integrity, SLIck makes its own shadow copy of the .eh frame
section copied directly from the binary to prevent any manipulation. However,
its copy loaded into the program’s memory for exception handling is subject to
potential attacks [34]. The OS kernel makes it read-only, but it is not immutable.
Thus SLIck enforces the read-only permission on the program’s copy to prevent
the attack [34].

Attacks Using Binaries Without Stack Frame Information. Our study
presented in Sect. 2 shows that most Linux ELF binaries except special binaries,
such as a Linux kernel image and kernel drivers, have stack frame information.
A typical compilation of programs includes stack frame information to support
exceptions and debugging by default. Binaries without stack frame information
are not supported by SLIck due to the lack of required information for stack
walking. Such unusual binaries can be prevented from running using system wide

Detecting Stack Layout Corruptions with Robust Stack Unwinding 89

program execution policies. For instance, SLIck can prevent the execution of
such binaries when stack frame information is lacking.

Implementing SLIck on Other Platforms. This work focuses on the stack
layout information in the ELF binary format, which is popular in Linux and
BSD environments. However, other OS environments have similar informa-
tion for exception handling and debugging. For instance, Windows has the
RtlVirtualUnwind API that can unwind the stack by using the unwind descrip-
tors of the structured exception handling (SEH) tables in the program images,
which can be dumped using the dumpbin utility with the /UNWINDINFO option [7].
Mac OS’ main binary format, Mach-O [4], has similar binary sections, such as
.eh frame, .cfi startproc, .cfi def cfa offset etc. These information can
be used to implement a similar function as SLIck in those OS platforms.

Attacks Using Type A Cases for ROP Gadgets. Based on our study
of diverse binaries, a very small number of common libraries have the missing
unwinding information in a rare portion of their code: the entry point of the
dynamic linker and loader, the first stack frame which is the start of the program,
and the init section of the pthread library. Although the portion of code is
small and its capability could be limited, it is possible for the attacker to use
this code for gadgets. While we have not presented a specific mechanism to
defeat this attack, it can be easily prevented by supplementing the incomplete
unwinding information because the scope of such code is very limited. Similar to
the technique that we used for constructing the TVC, the unwinding information
can be generated by emulating the stack operations of the binary code.

8 Related Work

ROP and Related Attacks. Return oriented programming (ROP) [46] is an
offensive technique that reuses pieces of existing program code to compromise
a vulnerable program and bypass modern security mechanisms, such as DEP
and some ASLR implementations [9] under certain conditions (e.g., memory
disclosure vulnerabilities or low entropy ASLRs). It has also been applied in
other attack vectors, such as rootkits [15,29]. In addition to the local application
of this technique, Bittau et al. proposed the blind ROP (BROP) [9] which can
remotely find ROP gadgets to fetch the vulnerable binary over network.

Similar to ROP, another type of control-flow transfer attack based on gadget-
reuse is jump oriented programming (JOP) [10], which uses jumps instead of
returns. Bosman et al. [11] proposed another type of ROP based on the signal
handling function which is universal in UNIX systems. This technique called
SigReturn Oriented Programming (SROP) is triggered by the manipulated signal
frames stored on a user stack.

90 Y. Fu et al.

ROP Defense. Several mitigation techniques were proposed to defend against
ROP attacks such as ASLR [26,28,37,44,53,59,60], compiler techniques [31,35],
runtime instrumentation techniques [14,19], and hardware techniques [16,38].

ASLR has been used to block code reuse attacks by dynamically assigning
the memory addresses of the code and data sections such that the predeter-
mined memory addresses can be illegal. However, in practice some code may
not be compatible with this scheme, thereby leaving attack vectors. Also sev-
eral approaches have shown that it is possible to bypass this scheme based on
information leakage or brute-force attacks [20,47,49,50,52,58].

When source code is available, it is possible to remove attack gadgets through
a compiler transformation as shown in [31,35]. If source code is not available,
dynamic binary instrumentation can be used to monitor the execution and detect
ROP attacks. Drop [14] used the length of gadgets and the contiguous length
of gadget chains to characterize and detect ROP attacks. ROPdefender [19]
uses binary instrumentation to manage a shadow stack which is not tampered by
stack manipulation. These approaches in general have a low runtime efficiency
due to a high cost of dynamic binary translation.

RoPecker [16] and kBouncer [38] proposed to utilize the Last Branch
Record (LBR) registers to efficiently inspect the runtime history. These
approaches are established on the assumptions of gadget patterns, such as the
short length of gadgets and a long sequence of consecutive gadgets. Unfortu-
nately, new ROP attack techniques showed such gadget-pattern based schemes
can be bypassed [12,25]. ROPGuard [21] (later integrated into the Microsoft
EMET [55]) performs stack inspections for a limited depth at selective critical
Windows APIs. This inspection unwinds the user stack using the heuristic on
the frame pointer which would be limited based on the build conditions; unless
programs are compiled to use the frame pointers, they could not be reliably
inspected. In contrast, the stack frame information in the .eh frame enables a
precise and reliable unwinding regardless of the requirement of the frame pointer.

The comparison between SLIck and related work in Table 3 highlights that
SLIck does not have assumptions on the characterization of ROP gadgets. Hence
it is not affected by recent attacks [12,25]. Also its stack unwinding technique

Table 3. Comparison of ROP detection approaches. CL: without using a chain length,
GL: without using a gadget length. SC: without using source code. RW: without rewrit-
ing. RE: Runtime efficiency. RU: Reliable unwinding.

ROP detector CL GL SC RW RE RU Main techniques

Returnless [31] � � ✗ ✗ � - Gadget removal based on a compiler technique

GFree [35] � � ✗ ✗ � - Gadget removal based on a compiler technique

Drop [14] ✗ ✗ � ✗ ✗ - ROP detection based on gadget characteristics

ROPdefender [19] � � � ✗ ✗ - Shadow stack and dynamic instrumentation

kBouncer [38] ✗ ✗ � ✗ � - Last branch recording and gadget characteristics

RoPecker [16] ✗ ✗ � � � - Last branch recording and sliding window

ROPGuard [21] � � � ✗ � ✗ Stack unwinding based on the frame pointer

SLIck � � � � � � Stack invariants verified by a reliable stack unwinding

Detecting Stack Layout Corruptions with Robust Stack Unwinding 91

is more reliable based on the precise stack frame information widely available in
the binaries of mainstream Linux distributions. These unique properties enable
SLIck to achieve a practical solution which does not require source code, or
rewriting of the program binaries for ROP detection.

9 Conclusion

We have presented SLIck, a robust and practical detection mechanism of ROP
exploits that is not affected by recent attacks based on the violation of previous
assumptions on gadget patterns [12,25]. SLIck detects ROP exploits by using
stack layout invariants derived from the stack unwinding information for excep-
tion handling widely available in Linux binaries. Our evaluation on real-world
ROP exploits shows robust and effective detection without any requirements on
source code or recompilation while it incurs low overhead.

Acknowledgments. We would like to thank our shepherd, Michalis Polychronakis,
and the anonymous reviewers for their insightful comments and feedback. Yangchun Fu
and Zhiqiang Lin were supported in part by the AFOSR grant no. FA9550-14-1-0173
and the NSF award no. 1453011. Any opinions, findings, conclusions, or recommenda-
tions expressed are those of the authors and do not necessarily reflect the views of any
organization.

References

1. Dwarf debugging information format, version 4. http://www.dwarfstd.org/doc/
DWARF4.pdf

2. Exception frames. https://refspecs.linuxfoundation.org/LSB 3.0.0/LSB-Core-
generic/LSB-Core-generic/ehframechpt.html

3. Exceptions and stack unwinding in C++. http://msdn.microsoft.com/en-us/
library/hh254939.aspx

4. Mach-o executables, issue 6 build tools. http://www.objc.io/issue-6/mach-o-
executables.html

5. Structured exception handling. http://msdn.microsoft.com/en-us/library/windows/
desktop/ms680657(v=vs.85).aspx

6. System V Application Binary Interface (ABI), AMD64 Architecture Processor Sup-
plement, Draft Version 0.98

7. x64 manual stack reconstruction and stack walking. https://blogs.msdn.
microsoft.com/ntdebugging/2010/05/12/x64-manual-stack-reconstruction-and-
stack-walking/

8. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of CCS (2005)

9. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D.: Hacking blind.
In: Proceedings of IEEE Security and Privacy (2014)

10. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: Proceedings of ASIACCS (2011)

11. Bosman, E., Bos, H.: Framing signals - a return to portable shellcode. In: Proceed-
ings of IEEE Security and Privacy (2014)

http://www.dwarfstd.org/doc/DWARF4.pdf
http://www.dwarfstd.org/doc/DWARF4.pdf
https://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
https://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
http://msdn.microsoft.com/en-us/library/hh254939.aspx
http://msdn.microsoft.com/en-us/library/hh254939.aspx
http://www.objc.io/issue-6/mach-o-executables.html
http://www.objc.io/issue-6/mach-o-executables.html
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680657(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680657(v=vs.85).aspx
https://blogs.msdn.microsoft.com/ntdebugging/2010/05/12/x64-manual-stack-reconstruction-and-stack-walking/
https://blogs.msdn.microsoft.com/ntdebugging/2010/05/12/x64-manual-stack-reconstruction-and-stack-walking/
https://blogs.msdn.microsoft.com/ntdebugging/2010/05/12/x64-manual-stack-reconstruction-and-stack-walking/

92 Y. Fu et al.

12. Carlini, N., Wagner, D.: ROP is still dangerous: breaking modern defenses. In:
Proceedings of USENIX Security (2014)

13. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of CCS (2010)

14. Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: DROP: detecting return-
oriented programming malicious code. In: Prakash, A., Sen Gupta, I. (eds.) ICISS
2009. LNCS, vol. 5905, pp. 163–177. Springer, Heidelberg (2009)

15. Chen, P., Xing, X., Mao, B., Xie, L.: Return-oriented rootkit without returns (on
the x86). In: Proceedings of ICICS (2010)

16. Cheng, Y., Zhou, Z., Yu, M., Ding, X., Deng, R.H.: ROPecker: a generic and
practical approach for defending against ROP attacks. In: Proceedings of NDSS
(2014)

17. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier,
A., Wagle, P., Zhang, Q.: Stackguard: automatic adaptive detection and prevention
of buffer-overflow attacks. In: Proceedings of USENIX Security (1998)

18. Criswell, J., Dautenhahn, N., Adve, V.: KCoFI: complete control-flow integrity for
commodity operating system kernels. In: Proceedings of the IEEE Security and
Privacy (2014)

19. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: a detection tool to defend
against return-oriented programming attacks. In: Proceedings of ASIACCS (2011)

20. Durden, T.: Bypassing PaX ASLR protection. Phrack Mag. 59(9), June 2002.
http://www.phrack.org/phrack/59/p59-0x09

21. Fratric, I.: ROPGuard: runtime prevention of return-oriented programming
attacks. https://code.google.com/p/ropguard/

22. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. In: Proceedings of SOSP (2003)

23. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of NDSS (2003)

24. Goktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: overcom-
ing control-flow integrity. In: Proceedings of IEEE Security and Privacy (2014)

25. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size
does matter: why using gadget-chain length to prevent code-reuse attacks is hard.
In: Proceedings of USENIX Security (2014)

26. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.W.: ILR: where’d my
gadgets go? In: Proceedings of IEEE Security and Privacy (2012)

27. Hofmann, O.S., Dunn, A.M., Kim, S., Roy, I., Witchel, E.: Ensuring operating
system kernel integrity with OSck. In: Proceedings of ASPLOS (2011)

28. Howard, M., Thomlinson, M.: Windows ISV software security defenses. http://
msdn.microsoft.com/en-us/library/bb430720.aspx

29. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: bypassing kernel code
integrity protection mechanisms. In: Proceedings of USENIX Security (2009)

30. Kim, G.H., Spafford, E.H.: The design and implementation of tripwire: a file system
integrity checker. In: Proceedings of CCS (1994)

31. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootk-
its with “return-less” kernels. In: Proceedings of EuroSys (2010)

32. Microsoft: A detailed description of the Data Execution Prevention (DEP) feature
in Windows XP Service Pack 2 (2008). http://support.microsoft.com/kb/875352

33. Mudge: How to Write Buffer Overflows (1997). http://l0pht.com/advisories/
bufero.html

34. Oakley, J., Bratus, S.: Exploiting the hard-working DWARF: trojan and exploit
techniques with no native executable code. In: Proceedings of WOOT (2011)

http://www.phrack.org/phrack/59/p59-0x09
https://code.google.com/p/ropguard/
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://support.microsoft.com/kb/875352
http://l0pht.com/advisories/bufero.html
http://l0pht.com/advisories/bufero.html

Detecting Stack Layout Corruptions with Robust Stack Unwinding 93

35. Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-free: defeat-
ing return-oriented programming through gadget-less binaries. In: Proceedings of
ACSAC (2010)

36. Aleph One: Smashing the stack for fun and profit. Phrack 7(49), November 1996.
http://www.phrack.com/issues.html?issue=49&id=14

37. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: hindering
return-oriented programming using in-place code randomization. In: Proceedings
of IEEE Security and Privacy (2012)

38. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit miti-
gation using indirect branch tracing. In: Proceedings of USENIX Security (2013)

39. Petroni Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a coprocessor-
based kernel runtime integrity monitor. In: Proceedings of USENIX Security (2004)

40. Petroni Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An architecture for
specification-based detection of semantic integrity violations in kernel dynamic
data. In: Proceedings of USENIX Security (2006)

41. Petroni Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: Proceedings of CCS (2007)

42. Pietrek, M.: A crash course on the depths of win32 structured exception handling.
Microsoft Syst. J. 12(1), January 1997

43. Prakash, A., Yin, H.: Defeating ROP through denial of stack pivot. In: ACSAC
(2015)

44. Roglia, G.F., Martignoni, L., Paleari, R., Bruschi, D.: Surgically returning to ran-
domized lib(c). In: Proceedings of ACSAC (2009)

45. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: Proceedings of SOSP (2007)

46. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: Proceedings of CCS (2007)

47. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of CCS (2004)

48. Smith, N.P.: Stack Smashing Vulnerabilities in the UNIX Operating System (2000)
49. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.:

Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: Proceedings of IEEE Security and Privacy (2013)

50. Sotirov, A., Dowd, M.: Bypassing browser memory protections in windows vista.
http://www.phreedom.org/research/bypassing-browser-memory-protections/

51. Spafford, E.H.: The internet worm program: an analysis. SIGCOMM Comput.
Commun. Rev. 19, 17–57 (1989)

52. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.:
Breaking the memory secrecy assumption. In: Proceedings of EuroSec (2009)

53. PaX Team: http://pax.grsecurity.net/
54. PaX Team: Pax address space layout randomization (ASLR) (2003). http://pax.

grsecurity.net/docs/aslr.txt
55. The Enhanced Mitigation Experience Toolkit, Microsoft. http://technet.microsoft.

com/en-us/security/
56. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano,

L., Pike, G.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
Proceedings of USENIX Security (2014)

57. Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the expres-
siveness of return-into-libc attacks. In: Proceedings of RAID (2011)

58. Vreugdenhil, P.: Pwn2own 2010: Windows 7 internet explorer 8 exploit. http://
vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf

http://www.phrack.com/issues.html?issue=49&id=14
http://www.phreedom.org/research/bypassing-browser-memory-protections/
http://pax.grsecurity.net/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://technet.microsoft.com/en-us/security/
http://technet.microsoft.com/en-us/security/
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf

94 Y. Fu et al.

59. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: Proceedings of CCS (2012)

60. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
Proceedings of IEEE Security and Privacy (2013)

61. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Proceedings of
the USENIX Security (2013)

62. Zovi, D.A.D.: Return oriented exploitation. In: Blackhat (2010)

	Detecting Stack Layout Corruptions with Robust Stack Unwinding
	1 Introduction
	2 Background
	2.1 Return Oriented Programming
	2.2 Stack Frame Information in Binaries for Exception Handling

	3 Overview of SLIck
	4 Derivation of Stack Layout Invariants
	4.1 Stack Frame Chain Invariant (FCI)
	4.2 Stack Frame Local Storage Invariant (FSI)

	5 Runtime Inspection of Stack Invariants
	5.1 Practical Challenges
	5.2 Stack Invariant Inspection Algorithm
	5.3 Stack Inspection Policies

	6 Evaluation
	6.1 Detection of ROP Attacks
	6.2 Impact on Benign Programs
	6.3 Performance Analysis

	7 Discussion
	8 Related Work
	9 Conclusion
	References

