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Abstract. To make outsourcing computing more practical, Intel recently intro-
duced SGX, a hardware extension that creates secure enclaves for the execution
of client applications. With SGX, instruction execution and data access inside
an enclave are invisible to the underlying OS, thereby achieving both confiden-
tiality and integrity for outsourced computing. However, since SGX excludes the
OS from its trusted computing base, now a malicious OS can attack SGX appli-
cations, particularly through controlled side channel attacks, which can extract
application secrets through page fault patterns. This paper presents SGX-LAPD,
a novel defense that uses compiler instrumentation and enclave verifiable page
fault to thwart malicious OS from launching page fault attacks. We have imple-
mented SGX-LAPD atop Linux kernel 4.2.0 and LLVM 3.6.2. Our experimental
results show that it introduces reasonable overhead for SGX-nbench, a set of SGX
benchmark programs that we developed.
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1 Introduction

Trusted computing, or Trusted Execution Environment (TEE), is a foundational tech-
nology to ensure confidentiality and integrity of modern computing. Over the past few
decades, a considerable amount of research has been carried out to search for prac-
tical ways for trusted computing, e.g., by using a formally verified operating system
(OS) [16], or using a virtual machine monitor (VMM), hypervisor [25,9], system man-
agement mode (SMM) [30], and even BIOS [28] to monitor the kernel and application
integrity, or with hardware support [17]. Increasingly, hardware based technologies for
TEE (e.g., TPM [20], TrustZone [23]) have rapidly matured. The most recent advance-
ment in this direction is the Intel Software Guard eXtensions (SGX) [18,13].

At a high level, SGX allows an application or part of an application to run inside a
secure enclave, which is an isolated execution environment. SGX hardware, as a part of
the CPU, prevents malicious software, including the OS, hypervisor, or even low-level
firmware (e.g., SMM) from compromising its integrity and secrecy. SGX provides op-
portunities for securing many types of software such as system logs [15] and computer
games [5]. The isolation enabled by SGX is particularly useful in cloud computing,
where customers cannot control the infrastructure owned by cloud providers. Haven [6]
pioneered the idea of enabling unmodified application binaries to run on SGX in a cloud



by utilizing a library OS [22]. VC3 [24] demonstrated privacy-aware data analytics in
the cloud. Ohrimenko et al. [19] presented a number of privacy preserving multi-party
machine learning algorithms running in SGX machines for cloud users, while Chandra
et al. [7] provide a more scalable solution on larger models using randomization.

Unfortunately, since SGX excludes the OS kernel from its trusted computing base,
SGX enclave programs can certainly be attacked by the underlying OS. A powerful
demonstration of this is controlled channel attacks, which can extract application secrets
using the page fault patterns of an enclave’s execution [31]. In particular, by controlling
the page table mappings of an enclave program, a malicious OS can observe a number
of patterns regarding an application’s page access footprint, such as the number of page
faults, the base virtual address of the faulting pages, the sequence of page faults, and
even the timing of page faults. If an attacker also has the binary code of the enclave
program, he or she can recover a lot of secrets (e.g., text documents, outlines of JPEG
images) based exclusively on the page access patterns.

Given such a significant threat from page-fault side channel attacks, it is impera-
tive to design new defenses. Thus in this paper we present SGX-LAPD, a system built
atop both OS kernel and compilers to ensure that the LArge Pages are verifieD by the
enclave (LAPD) and attacker triggered page faults are detectable by the enclave itself.
The key insight is that page-fault side channel attacks are very effective when the OS
uses 4KB pages; if we can enlarge the page size, most programs will trigger few code
page faults—and data page faults can also be significantly reduced (by three orders of
magnitude if we use MB level pages). Thus, the challenge lies in how to make sure that
the OS has cooperated and really provided large pages to the enclave programs.

Since the only trust for SGX programs is the underlying hardware and the enclave
code itself, we have to rely on the enclave program itself to verify whether an OS in-
deed has provided large pages. As a page-fault attack often incurs significant delays
during cross-page control flow transfers, an intuitive approach would be to detect the
latency at each cross small-page control flow transfer point. However, there is no reli-
able way of retrieving the hardware timing information inside the enclave (e.g, RDTSC
instruction is not supported in SGX v1 [14]), and meanwhile it can also be attacked
by the OS. Note that RDTSC reads the Time-Stamp Counter from the TSC MSR which
can be modified by WRMSR instruction [3]. Also, the API sgx_get_trusted_time
provided by Intel SGX SDK is also only available in simulation mode.

Interestingly, we notice that each enclave contains a data structure, EXINFO, that
tracks the page fault address if a page fault causes the enclave exit [14]. Therefore,
we can detect whether an OS has indeed provided large pages by traversing this data
structure when there is a page fault. However, when to incur a page fault is decided
by the OS, and the enclave program has to deliberately trigger a page fault for such
a verification. Therefore„ if we can instrument the enclave program to automatically
inject a page access and then verify whether a page fault was triggered by checking the
EXINFO data structure, we can then detect whether the underlying OS has cooperated.
SGX-LAPD is designed exactly based on this idea.

We have implemented SGX-LAPD atop a recent Linux kernel 4.2.0 and LLVM
3.6.2. Specifically, we implemented an OS kernel module to enable the OS to sup-
port large page tables, and we implemented a compiler pass in LLVM to recognize the
cross small-page control flow transfer points and insert the self-verification code. We



have evaluated our system using a number of benchmarks. In order to test SGX-LAPD
on actual SGX hardware, we had to port a benchmark, since there are no existing SGX
programs to test. We therefore manually created SGX-nbench, a modified version of
nbench 2.2.3 running on real SGX hardware. Our experimental results show that SGX-
LAPD introduces reasonable performance overhead for the tested benchmarks.

In short, we make the following contributions:
– We present SGX-LAPD, a system that uses large paging via kernel module and self-

verifiable page faults through compiler instrumented code to defeat the controlled
side channel attacks.

– We have also developed a new SGX benchmark suite SGX-nbench, for measuring
the performance overhead of real SGX programs.

– We have evaluated SGX-LAPD with SGX-nbench and showed that it introduces
reasonable overhead for detecting both non-present and non-executable page fault
attacks.

2 Background and Related Work

In this section, we provide the background on the page fault side channel attacks using
a running example in §2.1, and then discuss the possible defenses and related work
in §2.2. Finally, we reveal how an enclave program handles exceptions in §2.3, which
comprises the basic knowledge in order to understand our defense.

2.1 The Page-Fault Side Channel Attack

An SGX enclave program is executed in user mode (ring-3), and it has to ask the un-
derlying OS to provide resources such as memory, CPU, and I/O. As such, this gives
a hostile OS (ring-0) the opportunity to attack enclave programs from various vectors,
such as manipulating system call execution (e.g., Iago [8] attacks) or controlling page
fault access patterns to infer the secrets inside enclave programs [31].

The virtual memory pages of a process are managed by the underlying OS. Specifi-
cally, when launching a new process, the OS first creates the page tables and initializes
the page table entries for virtual addresses specified in the application binary. When a
process is executed, if the corresponding virtual page has not been mapped in the page
table yet, a page fault exception will occur, and the CPU will report the faulting address
as well as the type of page access (read or write) to the page fault handler, which will
be responsible for mapping the missing pages. When a process terminates, the OS will
delete the virtual to physical mappings and reclaims all the virtual pages.

Page faults for SGX processes are treated in the same way as regular processes, with
the only difference that the page fault handler can observe just the base address of the
faulting address. Therefore, by controlling the page table mappings, a hostile OS can
observe all of the page access patterns of a victim SGX process. If the attacker also has
the detailed virtual address mappings (e.g., when owning a copy of the SGX enclave
binary), such a page fault attack is extremely powerful as demonstrated by Xu et al [31].
A Running Example. To understand clearly the nature of the page fault side channel
attack, we use example code from [31] as a running example to explain how SGX-LAPD



402000 <WelcomeMessageForMale>:
402000: 55               push   %rbp
402001: 48 89 e5        mov    %rsp,%rbp
...

402012: c3               retq
...
403000 <WelcomeMessageForFemale>:
403000: 55               push   %rbp
403001: 48 89 e5       mov    %rsp,%rbp
...
403012: c3               retq
...
404000 <WelcomeMessage>:
404000: 55               push   %rbp
404001: 48 89 e5        mov    %rsp,%rbp
404004: 48 83 ec 10      sub    $0x10,%rsp
404008: 89 7d fc        mov    %edi,-0x4(%rbp)
40400b: 85 ff           test   %edi,%edi
40400d: 74 07           je     404016 <WelcomeMessage+0x16>
40400f: e8 ec ef ff ff  callq  403000 <WelcomeMessageForFemale>
404014: eb 05           jmp    40401b <WelcomeMessage+0x1b>
404016: e8 e5 df ff ff  callq  402000 <WelcomeMessageForMale>
40401b: 48 89 45 f0     mov    %rax,-0x10(%rbp)
40401f: 48 8b 45 f0     mov    -0x10(%rbp),%rax
404023: 48 83 c4 10     add    $0x10,%rsp
404027: 5d               pop    %rbp
404028: c3               retq

const char* WelcomeMessageForMale()
{

char* mesg = "Hello sir!";
return mesg;

}
const char* WelcomeMessageForFemale()
{

char* mesg = "Hello madam!";
return mesg;

}
const char* WelcomeMessage(GENDER s)
{

const char* mesg;
if (s == MALE) { //MALE

mesg = WelcomeMessageForMale();
} else { //FEMALE

mesg = WelcomeMessageForFemale();
}
return mesg;

}

(a) Source Code

(b) Disassembled Code

Fig. 1. Our Running Example.

works to defeat this attack. The source code of this example is shown in Figure 1(a). At a
high level, this enclave program takes user input GENDER and returns a welcome string
based on whether the GENDER is MALE or FEMALE. To show this program is vulnerable
to the page fault attack, we compile its source code using LLVM deliberately with the
option “align-all-function=12” that aligns each function at a 4KB boundary.
The resulting disassembled code for this example is presented in Figure 1(b), where five
control flow transfer instructions inside WelcomeMessage are highlighted.

We can notice that a hostile OS can infer whether a user enters MALE or FEMALE to
the program by observing the page fault profiles. Specifically, when all other pages ex-
cept 0x404000 are marked unmapped: if a subsequent page fault accesses page 0x403000
(for control flow transfer “callq WelcomeMessageForFemale”), then an at-
tacker can infer GENDER is FEMALE; otherwise an attacker can conclude GENDER
is MALE when page 0x402000 is accessed.



2.2 Possible Defenses and Related Work

In the following, we examine various possible defenses. At a high level, we categorize
them into hardware assisted and software based defenses.
Hardware-Assisted Defenses. As the hardware of a system is usually in the TCB, it
can be helpful to utilize the hardware to enforce security.

– Enclave Managed Paging. A very intuitive approach is to allow the enclave itself
to manage the paging (i.e., self-paging [12]). Once the enclave has been granted
this capability, it can disable paging out sensitive pages, or enforce large pages, etc.

– Hardware Enforced Contractual Execution. Recently, Shinde et al. [27] pro-
posed having the hardware enforce a contract between the application and the OS.
Such a contract states that the OS will leave a certain number of pages in mem-
ory; if a page fault that violates the contract does occur, the hardware reports the
violation to the secure application.
While the hardware-assisted approaches sound appealing, they have to modify the

hardware to add new mechanisms, such as securely delivering the page fault address
to the application page fault handler without relying on the OS. In addition, hardware
modifications require significant time before widespread adoption is possible.
Software-Based Defenses. Software defenses have significant advantages over hard-
ware modifications, one of which is that they can work on existing platform. We focus
more on software defenses due to this. Note that software approaches can have the
freedom of rewriting the binary code or recompiling the program source to add new
capabilities on the enclave program. A number of defenses can be designed:

– ORAM. ORAM [11,21] is a technique for hiding the memory contents and access
patterns of a trusted component from an untrusted component. Initially it was a
software obfuscation technique, but recently there has been increasing interest in
applying ORAM to build practical cloud storage. Theoretically, ORAM can be ap-
plied to protect the page fault patterns, but ORAM has large space requirements
and high overhead.

– Normalization. Another approach is to make sensitive portions of the code behave
identically for all possible inputs. However, this is difficult because not only must
all page accesses be identical, but also each execution branch should take the same
time to execute. Meanwhile, as demonstrated by Shinde et al. [27] in their use of
deterministic multiplexing to execute the sensitive code, such an approach runs the
risk of imposing extremely high overhead (up to 4000X), as the execution of any
path must also perform all the page faults that every other path might make.

– Randomization and Noise Injection. Alternatively, if the code is hard to normal-
ize, then we can introduce randomization and noise to make attacks harder. For in-
stance, we can apply the same principle as ASLR [29] by performing fine-grained
randomization (e.g., [10,4]) of code and data locations to hide from an attacker
what code or data is actually being accessed, or inject noise into normal program
behavior to hide legitimate page accesses among random fake ones. However, the
challenge lies in how to make the randomization or noise indistinguishable from
the normal page fault patterns.

– Detection. If an application is able to detect a controlled page fault attack, then it
has the ability to abort execution before an attacker can extract the secret. How-



ever, the challenge lies in extracting the unique signatures for this attack. Recently,
T-SGX [26] leverages code instrumentation and Transactional Synchronization Ex-
tensions (TSX) mechanism to detect whether there is any exception occurs inside a
transaction. Similar to T-SGX, we also take a detection approach and we both use
compiler instrumentation to insert the detection logic. However, the difference is
that T-SGX relies on TSX whereas SGX-LAPD does not depend on this hardware
feature and instead it uses large pages.

2.3 Exception Handling Inside SGX

Since a page fault is an exception and SGX-LAPD needs to use some internal enclave
data structures for the defense, we would like to examine in greater detail how SGX
handles exceptions. The following study is based on the trace from a real SGX platform
by executing our instrumented running example and confirmed with the description
from the SGX programming reference [14].

GS:0x20: GPRSGXbase

SSA EXINFO
XSAVE    

SSA 
0x0: MADDR

0x8: ERRCD

EXINFO
Page 
Fault 

Address

...

EXINFO

0xC: RESERVED

...

GPRSGX
‐16 EXINFO

GPRSGX

...

0x88: RIP

...0

0xA0: EXITINFO.VECTOR

0xA1: EXITINFO.EXIT_TYPE

...

Fig. 2. The Layout of Involved Enclave Data
Structures.

By design, an exception will trig-
ger an asynchronous enclave exit (AEX),
and the CPU execution has to leave
the enclave and come back through
an ENTER or ERESUME instruction. In
general, there are 10 exceptions [14]
an SGX enclave can capture, and the
type of the exception is stored in the
EXITINFO.VECTOR field, which is at
offset 0xA0 in the GPRSGX region, as
illustrated in Figure 2. Note that the
4 bytes of EXITINFO contain the in-
formation that reports the exit reasons
(i.e., which exception) to the software
inside the enclave, and the first byte is
the VECTOR field. The GPRSGX region
holds the processor general purpose reg-
isters as well as the AEX information.
Among the 10 exceptions, we are inter-
ested in GP, general protection fault, which is caused by illegal access, e.g., accessing
thread control structure (TCS) inside an enclave and PF, the page fault exception. Ex-
ceptions such as DV (divide by zero), BP (int 3 for debugging), and UD (undefined
instruction, e.g., executing CPUID inside enclave) etc., are out of our interest, though
they are all handled similarly as GP by the CPU.
Page Fault Exceptions. An exception is handled by system software first, and then
by the application defined code. A page fault exception can be entirely handled by the
system software (only requires 3 steps of execution), but other exceptions such as GP,
DV, or UD require 8 steps, as illustrated in Figure 3.

Specifically, when an exception occurs, SGX hardware will automatically store the
fault instruction address in the GPRSGX.RIP field and the exception vector in the
GPRS.EXITINFO.VECTOR field (Step ¶), and meanwhile inform the CPU of the in-
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Fig. 3. Detailed CPU Control Flow Transfers in SGX Enclave Exception Handling.

struction to be executed next, which is defined as the Asynchronous Exit Pointer (AEP,
which is normally just an ERESUME instruction). This is because an exception needs to
be handled by system software, and the enclave internal address should not be exposed
to the system software; the CPU will just execute AEP after handling the exception, so
the address is not exposed. Also note that there are only two instructions that can enter
an enclave: EENTER and ERESUME. EENTER always starts the execution execution at
the enclave_entry address whereas ERESUME will use the internally maintained
GPRSGX.RIP as the starting address.

For a page fault exception, SGX hardware will also store the fault address in MADDR
as well as the corresponding error code (ERRCD) in the EXINFO structure, whose lay-
out is presented in Figure 2. Note that EXINFO and EXITINFO are two different data
structures, and EXINFO is only used for PF and GP exceptions, though both of them
are stored in the State Save Area (SSA) page.

After the system software maps the missing page (Step ·) for the page fault excep-
tion, the CPU will continue the execution in user space to execute the ERESUME in-
struction, which restores registers and returns control to where the exception occurred.
Again, the ERESUME instruction is stored at address called AEP, which is defined by the
EENTER instruction. After executing ERESUME (Step ¸), the CPU will continue the
execution at the fault address that is captured by GPRSGX.RIP. For other exceptions
such as GP, the CPU has to execute 8 steps to eventually resolve that exception.



Non-Page Fault Exceptions. Some exceptions cannot be completely resolved by the
system software. In this case, the event will be triggered again if the enclave is re-
entered using ERESUME to the same fault instruction (e.g., a divide by 0 instruction).
Therefore, SGX supports resuming execution at a different location (to skip the fault
instruction for instance). However, the fault instruction address is internally stored in
GPRSGX.RIP field by the hardware inside enclave, and we must rely on the enclave
code to update GPRSGX.RIP to a different instruction location, and then ERESUME
to this new location. To tell the enclave and update GPRSGX.RIP, we have to use the
EENTER instruction and then EEXIT.

Take a GP exception as an example, as illustrated in Figure 3: when enclave code
accesses data in TCS (thread control structure, which is not supposed to be accessed
by the enclave code), it triggers a GP exception (Step À). The hardware stores the
fault instruction address at GPRSGX.RIP and the exception number, namely #GP, in
EXITINFO.VECTOR. Meanwhile, the hardware also passes the AEP address to the
system software, which is the next instruction to be executed after handling the excep-
tion. The system exception handler processes this exception as SIGSEGV, which cannot
be completely resolved without collaboration with the enclave code. Therefore, the con-
trol flow goes to the user space sig_handler (Step Á), which works together with
the trts_handle_exception function inside the enclave to resolve the exception.
More specifically, after learning more details about this exception, sig_handler ex-
ecutes EENTER at Step Â and then the execution goes to the enclave_entry point.

Note that enclave_entry is defined in the enclave binary and initialized by
EINIT, and EENTER will start to execute enclave code at enclave_entry, which
normally contains a dispatch table. In our exception handling case, it will call trusted ex-
ception handling function trts_handle_exception (Step Ã) to reset GPRSGX.
RIP to the address of the internal_handle_exception function, and then it
executes EEXIT at Step Ä to continue the execution of signal_handler, which
further executes system call sigreturn (Step Å) to trap to the kernel. Then at Step
Æ, the sigreturn system call will return to AEP, which will execute ERESUME in-
struction (Step Ç). Having set up the GPRSGX.RIP value with internal_handle_
exception, enclave code will execute this function, call the corresponding user de-
fined handler if there is one, and continue the execution.

To Capture Page Fault Exceptions. SGX hardware will not automatically report a
page fault exception to EXINFO and EXITINFO unless the EXINFO-bit (namely SECS.
MISCSELECT[0]) is set, and this bit can be controlled in SGX-v2, not in the current
market available SGX v1. We have verified this observation in a real SGX-v2 machine
with the help from the Intel SGX team. Note that SECS is the enclave control structure,
which contains meta-data used by the hardware to protect the enclave and is created by
the ECREATE instruction. Enclave developers can set the SECS.MISCSELECT field
before invoking ECREATE to create the enclave. Once the EXINFO-bit is set, both GP
and PF will be reported in the EXINFO structure. Therefore, an enclave can inject a GP
exception to probe whether EXINFO-bit has been set, as we have demonstrated in the
SGXLAPD_probe code in Figure 3.



3 System Overview

3.1 Scope and Assumptions

The focus of this paper is on defending the controlled channel attacks, which can be
more specifically termed as page fault attacks. There are two types of page fault at-
tacks: code page fault and data page fault. As a first step, we focus on the code page
fault attacks and leave the protection of data page fault attacks to future work. Also, we
focus on the Linux platform.

We assume the SGX hardware and the enclave program itself are trusted. While we
wish for the OS to provide large pages, the OS may not cooperate and may cheat the
enclave programs. Therefore, we will verify whether an OS indeed provides large pages
from the application itself. Regarding the SGX hardware, the market available one is
Skylake, and we focus on the x86-64 architecture. Typically, under this architecture, the
CPU supports 4K and 2M page sizes [2]. We use 2M large pages. Also, we assume an
attacker has a binary code copy of our enclave code, the same threat model as in [31].

3.2 Challenges and Approaches

Key Idea. The goal of SGX-LAPD is to minimize page fault occurrence by using large
pages (i.e., 2MB). However, an OS may not provide large pages to the enclave program,
and therefore the key idea of SGX-LAPD is to verify from the enclave itself whether an
OS provides it 2MB or 4KB size pages. To perform the verification, fortunately we have
another observation: if the OS is hostile and only provides 4KB size pages, but if there is
no controlled page fault attack, the execution will still be normal; but if there is such an
attack, then a cross 4KB page control flow transfer will trigger a page fault. If we have
set the enclave to report page fault exceptions to EXINFO, we can detect this attack by
checking the MADDR field in this data structure. Also, another reason to use 2MB pages
is to minimize the page fault occurrences for enclave code, since most programs have
less than 2MB code. If we do not use large pages, we cannot differentiate whether the
page fault is malicious or benign when a real page fault occurs.
Challenges. However, there are still two major challenges we have to solve:

– How to insert the verification code. We certainly cannot manually insert the veri-
fication code into the enclave binary, as that would be error-prone and not scalable.
Instead, we must resort to either binary code rewriting or compilers to automatically
insert our code. Meanwhile, not all control flow transfers need the verification; we
only need to check those that cross 4KB page boundaries and we must identify
them to insert our code.

– How to perform the verification. At each cross 4KB page control flow transfer,
we need to know how to traverse the EXITINFO and EXINFO structures inside the
enclave in order to retrieve data such as the fault address. Meanwhile, we also have
to decide whether the fault is legal or not since there could exist enclaves that have
more than 2MB code.

Approaches. To address the first challenge, we decide to modify a mainstream com-
piler, LLVM, to automatically insert the large page verification code, which will be
executed at run-time inside an enclave to make sure the OS really cooperates. The rea-
son why we selected a compiler approach is because SGX essentially comes with a set



of new instructions, and it requires an ecosystem change for applications to really take
advantage of its security features (unless one is directly running a legacy application
inside the enclave using a library OS).

We use the insight we learned in §2.3 to address the second challenge. Specifi-
cally, we notice that inside the enclave, %gs:0x20 always points to the GPRSGX re-
gion (as illustrated in Figure 2), from which we can easily reach EXINFO, which is
at (%gs:0x20)-16, and EXITINFO, which is at (%gs:0x20)+ 0xA0. To allow
legal control flow transfers across 2M page boundaries, our instrumented code will also
collect the source address of the control flow transfer in addition to the target fault ad-
dress. If this transfer crosses to another 2MB page, it will be considered legal. Next, we
present our detailed verification algorithm using our running example.

3.3 The Verification Algorithm

0000000000404000 <WelcomeMessage>:
404000: 55 push %rbp
404001: 48 89 e5 mov %rsp,%rbp
404004: 48 83 ec 10 sub $0x10,%rsp
404008: 89 7d fc mov %edi,-0x4(%rbp)
40400b: 85 ff test %edi,%edi
40400d: eb 2f jmp 40403e <WelcomeMessage+0x3e>

...
40403e: 74 69 je 4040a9 <WelcomeMessage+0xa9>
404040: 9c pushfq
404041: 50 push %rax
404042: 56 push %rsi
404043: 52 push %rdx
404044: 48 8d 35 b5 ef ff ff lea -0x104b(%rip),%rsi 
40404b: 65 48 8b 04 25 20 00 mov %gs:0x20,%rax
404052: 00 00
404054: c6 80 a0 00 00 00 00 movb $0x0,0xa0(%rax)
40405b: 8a 16 mov (%rsi),%dl
40405d: 8a 90 a0 00 00 00 mov 0xa0(%rax),%dl
404063: 80 fa 0e cmp $0xe,%dl
404066: 75 05 jne 40406d <WelcomeMessage+0x6d>
404068: e8 a3 c4 ff ff callq 400510 <abort@plt>
40406d: 5a pop %rdx
40406e: 5e pop %rsi
40406f: 58 pop %rax
404070: 9d popfq
404071: e8 8a ef ff ff callq 403000 <WelcomeMessageForFemale>
404076: eb 2f jmp 4040a7 <WelcomeMessage+0xa7>

...
4040a7: eb 36 jmp 4040df <WelcomeMessage+0xdf>
4040a9: 9c pushfq

...
4040da: e8 21 df ff ff callq 402000 <WelcomeMessageForMale>
4040df: 48 89 45 f0 mov %rax,-0x10(%rbp)
4040e3: 48 8b 45 f0 mov -0x10(%rbp),%rax
4040e7: 48 83 c4 10 add $0x10,%rsp
4040eb: 5d pop %rbp
4040ec: 9c pushfq

...
40411b: c3 retq

Fig. 4. Final Disassembled Code For Function
WelcomeMessage After SGX-LAPD Instrumenta-
tion for Non-Present Page Fault Detection.

The page fault exception attack
can be triggered in two ways.
The first and most straightfor-
ward way is to manipulate the
page mapping (i.e., the P-bit in
the page table) and make the tar-
get page unmapped. Then any
code execution access will trig-
ger a non-present (NP) page
fault. This approach has been
used by Xu et. al. [31]. However,
we also determined that there is
a second way to perform the at-
tack by making the page non-
executable when CPU paging
mode is PAE or IA-32e to trig-
ger a non-executable (NX) page
fault. Therefore, we provide two
strategies to detect these faults.

We note that in terms of
detection capability, the NX
page fault approach can de-
tect all attacks including both
non-present and non-executable
faults. However, the NP page
fault approach cannot detect non-executable page faults. Therefore, in practice we rec-
ommend the use of the NX approach. Only when the CPU is set in non PAE nor IA-32e
mode will the NP approach be useful. We provide both approaches just for the com-
pleteness of the defense.
(I). Detecting NP Page Faults. Since we have instrumented our verification code in
the enclave binary at each cross 4KB-page control flow transfer point, we just need to
invoke a target page read (basically inject an explicit page fault) and check whether



indeed there is a page fault. If so, a page fault attack is confirmed by checking field
EXITINFO.VECTOR. To show how SGX-LAPD really performs this, we illustrate the
final disassembly of function WelcomeMessage in our running example in Figure 4.

We can notice that for the four direct control flow transfers in WelcomeMessage
(Figure 1), we each instrumented 49 bytes of code right before them. The last control
flow transfer instruction retq has 47 bytes of instrumented code. More specifically,
for the first (“je 404049”) and third (“jmp 4040df”) control flow transfers, our
instrumented code directly performs a within-page jump (i.e., “jmp 40403e” and
“jmp 4040a7”) because there is no need for the verification, whereas for the second
(“callq 403000”), and forth (“callq 402000”) direct function call, and fifth
(“retq”) function return, our instrumented code first injects a target page read, and
then traverses EXITINFO in SSA to detect whether there is a real page fault.

The full disassembly of our page fault verification code for the second control flow
transfer “callq 403000” is presented in Figure 4 from 0x404040 to 0x404070.
In particular, our instrumented code will first save the flag register via pushfq, rax,
rsi, and rdx in the stack, and then load the target address into rsi, i.e., “lea
-0x104b(%rip), %rsi”. After that, it loads the base address of GPRSGX into
%rax, and assigns a zero to the field EXITINFO.VECTOR (to clear any prior ex-
ceptions recorded in the vector). Then it performs a one-byte memory read access at
the target address, i.e., “mov (%rsi), %dl”, to inject a page fault to test if there
is any controlled side channel on the target page. After that, the enclave code checks
the EXITINFO.VECTOR field. If it is set to be 0xe, a page fault is detected (because
there is a page fault for the three just executed instructions, and it must come from
attack since enclave memory is not supposed to be swapped out) and we abort the
execution; otherwise, we pop those saved registers and continue the execution.
Detecting NX Page Faults. Instead of using “mov (%rsi), %dl” to inject a read
page fault, we need to really execute the target page in order to detect the NX page fault
if there is any. The verification can be performed at either the destination page or the
source page (if we inject a callq *%rsi and retq pair in the source and target).

If we perform the verification at the destination page, we need to track the source
address (because we need to allow cross 2MB transfers) because a target page can be
invoked by many different sources. On the other hand, since at each control flow trans-
fer point we already know the source address, we decide to take the second approach,
namely inject a callq *%rsi in the source page, and a retq in the target page to
quickly return. To this end, we need to inject a retq in the beginning of each deter-
mined basic block, and probe the page fault by quickly returning from the target. We
omit the details for brevity here since most of the code is similar to those in Figure 4.

4 Detailed Design

An overview of SGX-LAPD is illustrated in Figure 5. There are three key components:
an SGX-LAPD-compiler and SGX-LAPD-linker that work together to produce the en-
clave code that contains large page verification code at any cross-small page control
flow transfer points, and an SGX-LAPD kernel module that runs in kernel space to pro-
vide the 2MB pages for enclave code. In this section, we provide the detailed design for
these three components.



Disassembly of section .text:
0000000000000000 <WelcomeMessageForMale>:      

0:   55                      push   %rbp
...

0000000000001000 <WelcomeMessageForFemale>:    
1000:   55                      push   %rbp
...

0000000000002000 <WelcomeMessage>:     
2000:   55                      push   %rbp
2001:   48 89 e5                mov %rsp,%rbp
2004:   48 83 ec 10             sub $0x10,%rsp    
2008:   89 7d fc mov %edi,-0x4(%rbp)    
200b:   85 ff                   test %edi,%edi

.LINST2_0_12:
200d:   9c                      pushfq
...

.LINST2_0_11:
203e:   74 69                   je     20a9 <WelcomeMessage+0xa9>

.LINST2_2_6:
2040:   9c                      pushfq
...
2044:   48 8d 35 b5 ef ff ff    lea WelcomeMessageForFemale(%rip),%rsi
...

.LINST2_2_1:
2071:   e8 8a ef ff ff          callq 1000 <WelcomeMessageForFemale>

.LINST2_2_25:
2076:   9c                      pushfq
...

.LINST2_2_5:
20a7:   eb 36                   jmp 20df <WelcomeMessage+0xdf>

.LINST2_1_8:
20a9:   9c                      pushfq
...

.LINST2_1_1:
20da:   e8 21 df ff ff          callq 0 <WelcomeMessageForMale>

.LBB2_3:
20df:   48 89 45 f0             mov %rax,-0x10(%rbp) 
...
20ec:   9c                      pushfq
...
211b:   c3                      retq

//In object file
Contents of section .SgxLapdCodeLabel :
OFFSET                                VALUE
0000000000000000                      .LINST2_0_12:
0000000000000008                      .LINST2_0_11
0000000000000010                      .LINST2_1_8
0000000000000018                      .LINST2_2_6
0000000000000020                      .LINST2_2_1
0000000000000028                      WelcomeMessageForFemale
0000000000000030                      .LINST2_2_25
0000000000000038                      .LINST2_2_5
0000000000000040                      .LBB2_3
0000000000000048                      .LINST2_1_8
0000000000000050                      .LINST2_1_1
0000000000000058                      WelcomeMessageForMale

RELOCATION RECORDS FOR [.SgxLapdCodeLabel]:
OFFSET           TYPE              VALUE
0000000000000000 R_X86_64_64       .text+0x000000000000200d
0000000000000008 R_X86_64_64       .text+0x000000000000203e
0000000000000010 R_X86_64_64       .text+0x00000000000020a9
0000000000000018 R_X86_64_64       .text+0x0000000000002040
0000000000000020 R_X86_64_64       .text+0x0000000000002071
0000000000000028 R_X86_64_64       .text+0x0000000000001000
0000000000000030 R_X86_64_64       .text+0x0000000000002076
0000000000000038 R_X86_64_64       .text+0x00000000000020a7
0000000000000040 R_X86_64_64       .text+0x00000000000020df
0000000000000048 R_X86_64_64       .text+0x00000000000020a9
0000000000000050 R_X86_64_64       .text+0x00000000000020da
0000000000000058 R_X86_64_64       .text+0x0000000000000000

//In final executable
Contents of section .SgxLapdCodeLabel :
OFFSET                                VALUE
0000000000000000                      0x40400d
0000000000000008                      0x40403e
0000000000000010                      0x4040a9
0000000000000018                      0x404040
0000000000000020                      0x404071
0000000000000028                      0x403000
...

Fig. 6. Examples of SGX-LAPD Instrumented Code Label and the Corresponding Meta-Data.
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Fig. 5. SGX-LAPD Overview.

The goal of SGX-LAPD-compiler is to au-
tomatically insert the 4KB page fault detec-
tion code into each cross page control flow
transfer (CFT) at various instructions such
as call/jmp/jcc/ret. In particular, our
compiler needs to track the source and tar-
get addresses for the CFTs, and also needs to
keep the starting address of the inserted code
such that we can later patch our instrumented
code to NOP instructions (or other semanti-
cally equivalent ones) if the CFT is within a
page. Note that only after the code is gener-
ated can this patching be performed (by our
SGX-LAPD-linker) because we do not know
the final concrete address before that.
The Meta-Data Used by Our Compiler.
We define a data structure that tracks (1)
the starting address of the inserted code, (2)
the source, and (3) the target address, for
each encountered CFT (except retq since we do not know its target address stati-
cally). We store this information in a special data section we created and we call it
.SgxLapdCodeLabel. An example of these code labels is presented in Figure 6. In
particular, for the first CFT “je 20c4”, we store the starting address of the inserted



code at offset 0, which is the symbolic code label .LINST2_0_12. Then at offset 8
(recall that we are working on a 64-bit architecture), we store the source address of this
CFT, which is .LINST2_0_11. Finally, at offset 0x10, we store the target address,
which is .LINST2_1_8.

Meanwhile, during the compilation phase, we only know the symbol addresses for
the code labels and the final concrete address is resolved during the linking phase. We
have to thus create relocation entries to store these code label addresses and let the
linker eventually resolve them. To this end, we also create relocation entries for each
.SgxLapdCodeLabel item. After compilation, the value for these relocation entries
will be the logic address within that particular object file. For instance, for the first entry
.LINST2_0_12, whose value is .text+0x0200d, its final concrete address will be
resolved by the linker (once the base address of .text is resolved). Also, mainstream
compilers typically maintain the labels for each basic block starting address and CFT
target address. We just need to parse the meta-data provided by compilers and use them
for our purposes.
The Instrumentation Algorithm. At a high level, to perform the instrumentation,
our compiler will iterate through each compiled function right after the code genera-
tion phase. For each basic block within a function, we will look for the CFT instruc-
tions (i.e., call/jmp/ret and conditional jumps jcc). For each CFT instruction,
we get its source address and destination address and store them in the correspond-
ing .SgxLapdCodeLabel section. Note for retq, since we do not know its target
address statically, no target address meta data is needed for this instruction.

Since there are different types of CFTs, we have to instrument slightly different
verification code. Note that the size difference is due to the different instructions used
to fetch the target address for different CFT. Specifically, to detect NP page faults, we
insert 49 bytes of assembly code if it is a direct CFT, and this assembly code is formed
from a macro template with symbols as macro parameters. For indirect CFT, we insert
50 bytes of assembly if it is an indirect CFT through memory (e.g., “call (%rax)”),
otherwise 45 bytes if it uses register (e.g., “call %rax”), right before the CFT in-
structions. For return CFT, we insert 47 bytes of assembly. For NX page fault detection,
we insert 56 bytes, 57 bytes, 52 bytes, and 53 bytes respectively each for direct CFT,
indirect CFT through memory, indirect CFT through register, and return CFT. We also
store the starting address of the inserted code into .SgxLapdCodeLabel for direct
CFTs. Note that the inserted assembly code will use the destination address symbol for
the direct CFTs, and these symbol addresses will be automatically resolved during the
linking phase. For all indirect CFTs (e.g., “callq %rax” and retq), we will directly
use the correspondingly run-time value to access the target page in the inserted assem-
bly code. In other words, we do not need to generate any meta-data for indirect CFTs
as their target addresses are computed at runtime, and they also do not need patching.

4.2 SGX-LAPD-Linker

Symbol Address Resolution. The compiler generates the object file for each input
source file using a logic address starting at offset 0. The function or global variable ref-
erences are all through symbols. Their concrete addresses are not known until linking
time, when the linker combines the same section (e.g., .text, .data) from each



object file. To assist the linker in calculating the address for each symbol, there is
a relocation entry specifying the relative address to its section. SGX-LAPD leverages
this mechanism, and generates symbols for each label that we want to know the final
address of into the .SgxLapdCodeLabel section and the corresponding relocation
record into the .RELOCATION section. Later, in the linking phase, the linker can re-
solve the concrete address for each label. For example, .LINST2_0_12 is resolved as
0x40400d, as shown in Figure 6.
Code Optimization. Our SGX-LAPD-compiler has instrumented each CFT due to the
fact that we do not know whether any of these transfers will cross a 4KB page boundary
in the final executable. Once the code is finally linked, we can scan the final executable
to patch the overly instrumented code.

Thanks to our tracked meta-data, it becomes extremely simple to patch this code.
Specifically, we know where to start the patching because our .SgxNypdCodeLabel
section tracks the starting address of the instrumented code. We also know whether
an instrumented CFT crosses a 4KB page boundary or not because we also know the
source and destination addresses of this transfer from .SgxNypdCodeLabel. Note
that retq is not included in this optimization since its destination address is unknown
statically.

While we could patch all the inserted bytes to NOP instructions, we can just insert
an unconditional jump to directly skip the unnecessary code instead. We also know
how many bytes our instrumented code occupies (e.g., 49 bytes for direct CFT for non-
present page fault detection). As such, we can directly rewrite the first two bytes in
the beginning of the instrumented code to an unconditional jump instruction (e.g., “eb
2f” to skip the remaining 47 bytes of the 49 bytes of inserted code), as shown in the
example code for the first and third CFT instructions in Figure 4.

4.3 SGX-LAPD-Kernel Module

The last component of SGX-LAPD is the kernel module that is responsible for providing
2MB pages for enclave code. While we can rewrite the OS kernel to provide 2MB pages
for all processes, such a design would waste page resources for many other non-SGX
processes. Therefore, we design a kernel module to exclusively manage the page tables
for enclave code.

Meanwhile, to really use SGX, Intel provides a number of hardware level data struc-
tures such as the Enclave Page Cache Map (EPCM) to manage the enclave page cache
(EPC), a secure storage used by the CPU to store the enclave pages [14]. An enclave
must run from the EPC, which is protected from non-enclave memory accesses. The
EPC is initialized by the BIOS during boot time, and later each enclave process can use
privileged instructions such as ENCLS[EADD] to add a page. In other words, we can
directly instrument the corresponding SGX kernel code to manage the enclave process
page tables.

In particular, the SGX kernel module is responsible for the management of enclave
memory allocation and virtual-to-physical mapping. Each enclave page is allocated
from a pool of EPC pages, and each EPC page has a size of 4KB. The process of adding
an EPC page into an enclave is by first mapping a 4KB virtual page to a 4KB EPC page,
then copying the corresponding contents to that EPC page via the EADD instruction.



While our SGX-LAPD-kernel module cannot directly add a 2MB EPC, it groups 512
small pages into a 2MB page. Note that those 512 smaller pages need to be contiguous
in the physical address space, and the physical address of the first page is 2MB aligned.
The SGX kernel module manages all the EPC pages and knows the physical address for
each EPC page. We can control which physical pages are mapped to EPC pages.

5 Implementation

We have implemented SGX-LAPD for X86-64 Linux. We did not implement anything
from scratch; instead we implemented SGX-LAPD-compiler atop LLVM 3.6.2, SGX-
LAPD-linker atop ld-2.24, and SGX-LAPD-kernel module atop the Intel SGX kernel
driver. Below we share some implementation details of interest.

Specifically, we modified the LLVM compilation framework to add a new Machine
Function pass into the LLVM backend. This new pass operates on LLVM’s machine-
dependent representation code. Note that our pass is running in the end of the compi-
lation phase, so the code is ready to be emitted into assembly code. This also ensures
that our inserted code is not optimized out by other passes. Inside this pass, we iterate
each instruction within each basic block in order to identify all CFT instructions. For
each CFT, the page fault detection code is inserted into the same basic block before
the CFT instruction. We also add a new data section named .SgxLapdCodeLabel
inside MCObject FileInfo class during the initialization phase. The .SgxLapd
CodeLabel section is like the debug info section and can be removed by using the
“strip -R .SgxLapdCodeLabel” command. Later in AsmPrinter, where the
object file is created, we emit the meta data into the .SgxLapdCodeLabel section.
In total, we added 1, 500 LOC to the LLVM framework.

To perform the linking of our compiled code, we modified the linker script to make
sure the binary will be loaded into a 2MB-aligned starting address. Our linker also
needs to use the meta-data inside the final ELF to optimize our instrumented code. We
implemented our own optimization pass and integrated with linker ld. Basically, we
parse the ELF header to locate the .SgxLapd CodeLabel section. Then the meta-
data is used to decide whether each control flow transfer crosses a 4KB page boundary.
Control flow transfers that happen inside the same page or cross a 2MB page boundary
are considered valid (no verification check) and thus we insert unconditional jump to
skip the verification code for those CFTs. In total, we added 150 LOC into ld.

Finally, we modified the Linux SGX kernel driver (initially provided by Intel) to
support 2MB paging, which is only applied to the code pages of an enclave binary.
Note that the data pages are still 4KB. We first instrumented enclave_create in
the SGX kernel driver to record the base loading address and size of an enclave binary.
We also make sure the EPC pages allocated to the enclave binary are contiguous and
starting at a 2MB aligned physical address. Until an EINIT is executed, the enclave is
not permitted to execute any enclave code, so before the execution of EINIT, all the
enclave pages have been assigned and initialized. We can group each block of 512 small
pages into a 2MB page by modifying the page table for the enclave process. In total, we
added 200 LOC into the SGX kernel driver.



6 Evaluation

In this section, we present our evaluation result. We first describe how we create the
benchmark programs and set up the experiment in §6.1, and then describe detailed
result in §6.2.

6.1 The Benchmark and Experiment Setup

We have tested SGX-LAPD using two set of benchmarks: one is a manually ported
nbench 2.2.3, which we call SGX-nbench, that runs atop a real SGX platform, and
the other is the SPEC2006 benchmark that was not ported to SGX. It is important to note
that no SGX applications currently exist that we can directly test, but we want to test the
results of real SGX performance imposed by our solution. We therefore manually ported
nbench into our SGX-nbench, which can be used to measure the true performance for
any real SGX solutions. Meanwhile, since porting program to SGX platform requires
non-trivial effort, SPEC2006 is in not running atop SGX enclave. We used SPEC2006
to exclusively measure how heavy of code instrumentation is for real programs.
SGX-nbench. We ported nbench 2.2.3, which contains 10 tests, to SGX-nbench. Specif-
ically, we ported each benchmark to run inside an enclave in order to measure actual
enclave performance. The difficulty of this task is that porting an application to run in
SGX is nontrivial; libraries will not be available unless they are statically linked, and
all system calls must be made outside the enclave. In addition, enclaves cannot exe-
cute certain instructions. Therefore, much of the code must be restructured in order to
run inside an enclave. Porting a benchmark of the size and complexity of SPEC is a
formidable task, so we focused on porting the more reasonably-sized nbench to mea-
sure real enclave performance.

In order to minimize the modifications to nbench, we moved only the minimal code
required to run the timed portion of each benchmark into an enclave, and we left the rest
of the benchmark code on the host application side. Specifically, we created an enclave
application that we linked with modified nbench code; all the timing code stays outside
the enclave, and the modified nbench code performs enclave calls to run the initializa-
tion code and timed code. The enclave contains the benchmark initialization functions
(each benchmark needs to allocate one or more buffers and initialize them with start-
ing data before the benchmark) and iteration functions (each benchmark performs n
iterations until n is large enough that the elapsed time is greater than min seconds).

Our port added 5, 279 LOC, modified 150 LOC, and removed 447 LOC from nbench
2.2.3. About half of the added LOC comprised enclave code or host application enclave
initialization code, while the other added LOC were added to call the enclave functions
for each of the benchmarks.
SPEC2006. We directly compiled SPEC2006 by using clang compiled from our mod-
ified LLVM framework. There are 31 benchmarks provided by SPEC2006, but only 21
are written in C/C++. We selected those 21 benchmarks to evaluate SGX-LAPD. In to-
tal, there are 12 integer benchmarks and 7 floating-point benchmarks. 998.specrand
and 999.specrand are the common random number generator for integer suite and
floating-point suite respectively.



Table 1. The building results for SPEC2006 and SGX-nbench

Benchmark w/o Instrumentation w/ NPD w/ NXD
Size(KB) #Direct CFT #InDirect CFT #Patch Size(KB) Increase(%) #Patch Size(KB) Increase(%)

400.perlbench 1086 50152 1881 33375 5266 384.9 34651 5818 435.7
401.bzip 90 2029 120 1454 262 191.1 1572 286 217.8
403.gcc 3218 143634 5190 95564 15170 371.4 101562 16738 420.1
429.mcf 19 338 32 265 47 147.4 296 51 168.4
433.milc 132 3665 234 1497 440 233.3 2341 484 266.7
444.namd 327 6527 113 4653 863 163.9 5675 935 185.9

445.gobmk 3382 26701 2369 15185 5642 66.8 15838 5962 76.3
447.dealII 3240 101938 5722 70494 11596 257.9 80068 12856 296.8
450.soplex 375 13867 1467 7719 1551 313.6 9742 1723 359.5
453.povray 1027 32399 1747 16508 3739 264.1 21304 4107 299.9
456.hmmer 303 11108 478 6117 1227 305 8048 1355 347.2
458.sjeng 136 4541 189 2686 516 279.4 3118 564 314.7

462.libquantum 47 1113 104 592 139 195.7 727 155 229.8
464.h264ref 653 12533 875 8466 1721 163.6 9492 1869 186.2

470.lbm 19 140 20 71 31 63.2 110 31 63.2
471.omnetpp 655 25196 2503 6234 2819 330.4 11028 3175 384.7

473.astar 43 1062 90 647 135 214 888 147 241.9
482.sphinx3 186 6186 299 3315 702 277.4 3926 774 316.1

483.xalancbmk 4250 140253 9892 92143 16522 288.8 95686 18538 336.2
988.specrand 7 19 10 19 11 57.1 19 13 85.7
999.specrand 7 19 10 19 11 57.1 19 13 85.7
SGX-nbench 273 848 91 615 408 49.5 732 412 50.9

Average 885 26558 1520 16711 3128 212.5 18493 3455 244.1

Experiment Setup. All the benchmarks are compiled with Clang. Our tested platform
is Ubuntu 14.04 with Linux Kernel 4.2.0, and our hardware is a 4-core Intel Core i5-
6200U Skylake CPU running SGX-v1 at 2.3GhZ with 4G DDR3 RAM.

6.2 Results

We complied the benchmarks with three settings: without Instrumentation, with Non-
Present page fault Detection (NPD) and with Non-eXecutable page fault Detection
(NXD). The evaluation tries to measure the overhead added to the compiler and pro-
grams caused by the instrumentation.
SGX-LAPD Compiler. Table 1 presents the building details for the SPEC2006 and
SGX-nbench. To show how much code we needed to insert for each program, we re-
ported the number of CFTs for each benchmark. We report the number of direct CFTs
in the 3rd colume and the number of indirect CFTs in the 4th column. We also show
the static binary size for each benchmark after compilation. The number of CFTs cor-
relates with the size of the binary code; a larger code size will have more CFTs. Space
overhead is due to the inserted code, so a program with more CFTs will have a higher
space overhead. Table 1 shows that 400.perlbench and 403.gcc have the largest
space overhead. Note that 445.gobmk is as large as 403.gcc, but only one-third is
code. Hence, its space overhead is small. For SGX-nbench, we only report the size
of code inside the enclave. On average, SGX-LAPD increases the static binary size by
213% with NPD and 244% with NXD.

In terms of compilation time, SGX-LAPD only introduces small overhead to the
compiler. The building time for SPEC2006 is increased from 5672s to 5745s, with only
additional 73 seconds more time. The building time for SGX-nbench is increased from
1.4s to 1.6s.
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SGX-LAPD Linker. In the linking phase, SGX-LAPD will optimize out the unneces-
sary instrumentation code. To show the efficiency of our optimization, we reported the
number of patches for each benchmark in Table 1. As mentioned in §4.1, each direct
CFT is associated with one piece of meta-data to record the instrumented code infor-
mation. SGX-LAPD Linker scans that information to find all the direct CFTs for which
the verification code does not need to be run and patches them with an unconditional
branch. The patch number for NXD approach is larger. Currently, SGX-LAPD does not
instrument the library code. We cannot use call-ret pair to check page fault, and
thus verification code of CFT to library call need to be skipped. Note that this should
not be a limitation of SGX-LAPD since in real application, the enclave code is built in
static linked binary [1]. SGX-LAPD can instrument all the enclave code.

Runtime Performance. SGX-LAPD slows down the program execution time, which
is caused by the additional page fault detection code inserted before each cross-page
CFT. We evaluated the slowdown in both SPEC2006 and our own SGX-nbench. For
SPEC2006, we measured the execution time overhead for each benchmark by running
the instrumented benchmarks on their reference data sets 10 times, with a maximum



variance of 2%. In Figure 7, we present the execution time overhead for each SPEC2006
benchmark, shown as a percent increase over the normalized baseline performance of
the non-instrumented version of each benchmark. Similar to space overhead, the NXD
approach has a larger execution time overhead than NPD. In general, benchmarks with
a larger number of CFTs will have higher overhead. As shown in Table 1, most of
the verification code in 483.xalancbmk cannot be skipped, which is why it has the
largest overhead. On average, NPD introduces 120% overhead on SPEC2006, while
NXD introduces 183% overhead.

For SGX-nbench, we used the performance result reported by the benchmark it-
self. In particular, SGX-nbench runs its benchmarks multiple times, taking the mean
and standard deviation until it reaches a confidence threshold such that the results are
95% statistically certain. In Figure 8, we present the execution time overhead for each
SGX-nbench benchmark, shown as a percent increase over the normalized baseline of
the non-instrumented version. The average overhead of SGX-nbench is only 60% with
NPD and 42% with NXD, smaller than SPEC2006. This is because SGX-LAPD only
instruments the code inside the enclave. The host application code is not instrumented
and has no overhead. This demonstrates the true performance of SGX-LAPD in real
SGX programs.

7 Discussion

SGX-LAPD relies on the enclave code itself to detect page faults and verify whether an
OS indeed provides large pages. All the code outside the enclave is not trusted, which
means both the user level sig_handler and the kernel level system exception han-
dler can be malicious. According to the detailed steps in exception handling described
in Figure 3, we can notice that an attacker can execute the eight step exception handling
instead of the three step page fault handling to reset the GPRSGX.RIP to some other
instructions. But this relies on collaboration from the enclave code, which is trusted.
Therefore, we have to note that such an attack is impossible unless the enclave code
itself is compromised.

Meanwhile, we note that there might exist a race condition for a malicious OS to
reset the EXITINFO.VECTOR right after entering the enclave as illustrated in Fig-
ure 4. More specifically, a malicious OS can first launch the page fault attack, causing
EXITINFO.VECTOR to be set. When control returns to the enclave again but before
our verification code, the malicious OS injects another interrupt (e.g., timer interrupt or
other faults such as GP) and makes the enclave exit again (to reset EXITINFO.VECTOR
and evade our detection). Fortunately, such an attack is challenging to launch. In par-
ticular, to launch this attack, attackers have to execute the enclave program using single
step execution; otherwise it will be very challenging for them to control the timing.
However, there is no way to execute enclave program using single step in the deploy-
ment mode (only debugging mode can), and attackers must rely on the extremely low
probability to inject the interrupt or exception right after entering the enclave and before
our checking code. But this time window is extremely short (just a few instructions).

In addition, there is a lot of room for further improvement of SGX-LAPD, particu-
larly on where to instrument our detection code. For instance, our current design overly
inserts a lot of intra-page control flow transfer page fault detection code in the enclave



binary, though we have patched the binary to skip executing that code. While our cur-
rent design can be acceptable for small enclave binaries, especially considering the fact
that we already ask the SGX to provide 2MB pages for the enclave code (such a design
already wastes a large volume of space), we certainly would like to further eliminate
this unnecessary code. We believe this would require iterative processing and instruc-
tion relocation. We leave this to one of our future works. On the other hand, if we were
able to precisely identify the input-dependent CFTs, we would not have to insert exces-
sive amounts of detection code. Therefore, the second avenue for future improvement
is to identify the input-dependent CFTs. However, this is also a non-trivial task for a
compiler since it would require a static input taint analysis. We leave this to another of
our future works.

Finally, SGX-LAPD only stops code page fault attacks; attackers can still trigger
data page faults. As mentioned in §3.1, we leave the defense for data page fault attacks
to future work. We also would like to note that practical controlled channel attacks
often require two kinds of page fault patterns, as demonstrated by Xu et. al. [31]. The
first is the code page pattern which indicates the start or end of a specific function. The
second can be either a code page fault pattern or a data page fault pattern, but it critically
depends on the first code page fault pattern to be effective. By removing only code page
fault patterns, SGX-LAPD can still make data page fault attacks much harder.

8 Conclusion

We have presented SGX-LAPD, a system that leverages enclave verifiable large pag-
ing to defeat controlled page fault side channel attacks based on the insight that large
pages can significantly reduce benign page fault occurrence. A key contribution of SGX-
LAPD is a technique that explicitly verifies whether an OS has provided large pages by
intentionally triggering a page fault at each cross small page control flow transfer in-
struction and validating with the internal SGX data structure updated by the hardware.
We have implemented SGX-LAPD with a modified LLVM compiler and an SGX Linux
kernel module. Our evaluation with a ported real SGX benchmark SGX-nbench shows
that, while space and runtime overhead can be somewhat high, as a first step solution
SGX-LAPD can still be acceptable especially considering the difficulties in fighting for
the controlled side channel attacks. Finally, the source code of SGX-LAPD is available
at https://github.com/utds3lab/sgx-lapd, and the source code of SGX-
nbench is available at https://github.com/utds3lab/sgx-nbench.
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