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Abstract. Programs aiming for low runtime overhead and high avail-
ability draw on several object-oriented features available in the C/C++
programming language, such as dynamic object dispatch. However, there
is an alarmingly high number of object dispatch (i.e., forward-edge) cor-
ruption vulnerabilities, which undercut security in significant ways and
are in need of a thorough solution. In this paper, we propose τCFI, an
extended control flow integrity (CFI) model that uses both the types and
numbers of function parameters to enforce forward- and backward-edge
control flow transfers. At a high level, it improves the precision of existing
forward-edge recognition approaches by considering the type information
of function parameters, which are directly extracted from the application
binaries. Therefore, τCFI can be used to harden legacy applications for
which source code may not be available. We have evaluated τCFI on real-
world binaries including Nginx, NodeJS, Lighttpd, MySql and the SPEC
CPU2006 benchmark and demonstrate that τCFI is able to effectively
protect these applications from forward- and backward-edge corruptions
with low runtime overhead. In direct comparison with state-of-the-art
tools, τCFI achieves higher forward-edge caller-callee matching precision.

Keywords: C++ object dispatch, indirect control flow transfer, code-reuse attack.

1 Introduction

The C++ programming language has been extensively used to build many large,
complex, and efficient software systems over the last decades. A key concept of
the C++ language is polymorphism. This concept is based on C++ virtual functions.
Virtual functions enable late binding and allow programmers to overwrite a
virtual function of the base-class with their own implementation. In order to
implement virtual functions, the compiler needs to generate virtual table meta-
data structures for all virtual functions and provide to each instance (object) of
such a class a (virtual) pointer (the value of which is computed during runtime)
to the aforementioned table. Unfortunately, this approach represents a main
source for exploitable program indirection (i.e., forward edges) along function
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returns (i.e., backward edges), as the C/C++ language provides no intrinsic security
guarantees (i.e., we consider Clang-CFI [29] and Clang’s SafeStack [28] optional).

In this paper, we present a new control flow integrity (CFI) tool called τCFI
used to secure C++ binaries by considering the type information from application
binaries. Our work targets applications, whose source code is unavailable and that
contain at least one exploitable memory corruption bug (e.g., a buffer overflow
bug). We assume such bugs can be used to enable the execution of sophisticated
Code-Reuse Attacks (CRAs) such as the COOP attack [39] and its extensions
[7,14,24,26], violating the program’s intended control flow graph (CFG) through
forward edges in the CFG and/or through attacks, that violate backward edges
such as Control Jujutsu [18]. A potential prerequisite for violating forward-edge
control flow transfers is the corruption of an object’s virtual pointer. In contrast,
backward edges can be corrupted by loading fake return addresses on the stack.

To address such object dispatch corruptions, and in general any type of indirect
program control flow transfer violations, CFI [1,2] was originally developed to
secure indirect control flow transfers, by adding runtime checks before forward-
edge and backward-edge control transfers. CFI-based techniques, that rely on
the construction of a precise CFG, are effective [11], if CFGs are carefully
constructed and sound [40]. However, these techniques still allow CRAs that
do not violate the enforced CFG. For example, the COOP family of CRAs
bypasses most deployed CFI-based enforcement policies, since these attacks do
not exploit indirect backward edges (i.e., function returns), but rather imprecision
in forward edges (i.e., object dispatches, indirect control flow transfers), which
in general cannot be statically (before runtime) and precisely determined as alias
analysis in program binaries is undecidable [38]. Source code based tools such as:
SafeDispatch [22], MCFI [32,33], ShrinkWrap [21], VTI [8], and IFCC/VTV [41]
can protect against forward-edge violations. However, they rely on source code
availability limiting their applicability (e.g., proprietary libraries cannot be
recompiled). In contrast, binary-based forward-edge protection tools, including
binCFI [45], vfGuard [37], vTint [44], VCI [17], Marx [35] and TypeArmor [43],
typically protect only forward edges through a CFI-based policy, and most of
the tools assume that a shadow stack [23] technique is used to protect backward
edges.

Unfortunately, the currently most precise binary-based forward-edge protec-
tion tools w.r.t. calltarget reduction, VCI and Marx, suffer from forward-edge
imprecision, since both are based on an approximated program class hierarchy
obtained through the usage of heuristics and assumptions. TypeArmor enforces
a forward-edge policy, which only takes into account the number of parameters
of caller-callee pairs without imposing any constraint on the parameters’ types.
Thus, these forward-edge protection tools are generally too permissive. CFI-based
forward-edge protection techniques without backward-edge protection are bro-
ken [13], thus these tools assume that a shadow stack protection policy is in place.
Unfortunately, shadow stack based techniques (backward-edge protection) were
recently bypassed [20] and add, on average, up to 10% runtime overhead [15].
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In this paper, we present τCFI, which is a fine-grained forward-edge and
backward-edge binary-level CFI protection mechanism, that neither relies on
shadow stack based techniques to protect backward edges, nor any runtime-type
information (RTTI) (i.e., metadata emitted by the compiler, which is most of
the time stripped in production binaries). Note that, in general, variable type
reconstruction on production binaries is a difficult task, as the required program
semantics are mostly removed through compilation.

At a high level, there are a number of analyses τCFI performs in order to
achieve its protection objective. In particular, it (1) uses its register width (ABI
dependent) as the type of the parameter for each function parameter, (2) when
determining whether an indirect call can target a function, it checks whether the
call and the target function use the same number of parameters and whether
the types (register width) match, (3) based on the provided forward-edge caller-
callee mapping it builds a mapping, back from each callee to the legitimate
addresses, located next to each caller. τCFI’s backward-edge policy is based on
the observation that backward edges of a program can be efficiently protected, if
there is a precise forward-edge mapping available between callers and callees.

We have implemented τCFI on top of DynInst [6], which is a binary rewriting
framework, that allows program binary instrumentation during loading or runtime.
Note that τCFI preserves the original code copy of an executable by instrumenting
all code of an executable shadow copy, which is later mapped to the original binary
after it was loaded and τCFI’s analysis finished. τCFI works with legacy programs
and can be used to protect both executables and libraries. τCFI performs per-file
analysis; as such each file is protected individually. We have evaluated τCFI with
several real-world open source programs (i.e., NodeJS, Lighttpd, MySql, etc.), as
well as the SPEC CPU2006 benchmarks and demonstrated that our forward-edge
policy is more precise than state-of-the-art tools. τCFI is applicable to program
binaries for which we assume source code is not available. τCFI significantly
reduces the number of valid forward edges compared to previous work and thus,
we are able to build a precise backward-edge policy, which represents an efficient
alternative to shadow stack based techniques.

In summary, we make the following contributions:

– We present τCFI, a new CFI system that improves the state-of-the-art CFI
with more precise forward-edge identification by using type information reverse-
engineered from stripped x86-64 binaries.

– We have implemented τCFI with a binary instrumentation framework to
enforce a fine-grained forward-edge and backward-edge protection.

– We have conducted a thorough evaluation, through which we show that τCFI
is more precise and effective than other state-of-the-art techniques.

2 Background

In this section, we provide the needed technical background to set the stage for
the remainder of this paper.
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2.1 Exploiting Object Dispatches in C++
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1 class nsMultiplexInputStream final
2 :public nsIMultiplexInputStream //A0
3 ,public nsISeekableStream //A1
4 ,public nsIIPCSerializableInputStream //A2
5 ,public nsICloneableInputStream{ //A3
6 nsTArray<nsCOMPtr<nsIInputStream>> mStreams;
7 NS_IMETHODIMP nsMultiplexInputStream::Close(){
8 MutexAutoLock lock(mLock);
9 mStatus = NS_BASE_STREAM_CLOSED;

10 //set NS_OK flag
11 nsresult rv = NS_OK;
12 //get array length
13 uint32_t len = mStreams.Length();
14 //array-based main loop gadget (ML-G)
15 for (uint32_t i = 0; i<len; ++i){
16 //(0)hijacked object dispatch
17 nsresult rv2=mStreams[i]->Close();
18 if (NS_FAILED(rv2)) {
19 rv = rv2;
20 }
21 }
22 return rv;
23 }

Fig. 1: COOP main loop gadget (ML-G) operation with the associated C++ code.

Figure 1 depicts a C++ code example (left) and how a COOP main-loop gadget
(right) (i.e., based either on ML-G (main-loop), REC-G (recursive) or UNR-G
(unrolled) COOP gadgets, see [14] for more details) is used to sequentially call
COOP gadgets by iterating through a loop (REC-G excluded) controlled by the
attacker.

First, the object dispatch (see line 17 depicted in Figure 1) is exploited by the
attacker in order to call different functions in the whole program by iterating on
an array of fake objects previously inserted in the array through, for example, a
buffer overflow. Second, in order to achieve this, the attacker previously exploits
an existing program memory corruption (e.g., buffer overflow), which is further
used to corrupt an object dispatch, ¶, by inserting fake objects into the array and
by changing the number of initial loop iterations. Next she invokes gadgets, ¶ and
¸ up to M , through the calls, · and ¹ up to N , contained in the loop. As it can
be observed in Figure 1, the attacker can invoke from the same callsite legitimate
functions (in total N ) residing in the virtual table (vTable) inheritance path (i.e.,
at the time of writing this paper this type of information is particularly hard to
recuperate from program binaries) for this particular callsite, indicated with green
color vTable entries. However, a real COOP attack invokes illegitimate vTable
entries residing in the entire initial program class hierarchy (or the extended
one) with little or no relationship to the initial callsite, indicated with red-color
vTable entries. Third, in this way different addresses contained in the program (1)
(vTable) hierarchy (contains only virtual members), (2) class hierarchy (contains
both virtual and non-virtual members) and (or) the whole program address space
can be called. For example, the attacker can call any entry in the: (1) class
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hierarchy of the whole program, (2) class hierarchy containing only legitimate
targets for this callsite, (3) virtual table hierarchy of the whole program, (4)
virtual table hierarchy containing only legitimate targets for this callsite, (5)
virtual table hierarchy and class hierarchy containing only legitimate targets
for this callsite, and (6) virtual table hierarchy and class hierarchy of the whole
program. Finally, because there are no intrinsic language semantics—such as
object cast checks—in the C++ programming language for object dispatches, the
loop gadget indicated in Figure 1 can be used without constraint to call any
possible entry in the whole program. Thus, making any program address the
start of a potential usable gadget.

2.2 Type-Inference on Executables

Recovering variable types from executable programs is generally considered
difficult for two main reasons. First, the quality of the disassembly can vary
considerably from one used underlying binary analysis framework to another
and w.r.t. the compiler flags which were used to compile the binary. Note that
production binaries can be more or less stripped (i.e., RTTI or other debugging
symbols may or may not be available etc.) from useful information, which can
be used during a type-recovering analysis. τCFI is based on DynInst and the
quality of the executable disassembly is sufficient for our needs. In contrast to
other approaches, the register width based type recuperation of τCFI is based on
a relatively simple analysis compared to other tools and provides similar results.
For a more comprehensive review on the capabilities of DynInst and other tools,
we advice the reader to review Andriesse et al. [3]. Second, if the type inference
analysis requires alias analysis, it is well known that alias analysis in binaries
is undecidable [38] in theory and intractable in practice [31]. Further, there are
several highly promising tools such as: Rewards [27], BAP [10], SmartDec [19],
and Divine [5]. These tools try more or less successfully to recover (or infer) type
information from binary programs with different goals. Typical goals are: (1)
full program reconstruction (i.e., binary to code conversion, reversing, etc.), (2)
checking for buffer overflows, and (3) checking for integer overflows and other
types of memory corruptions. For a comprehensive review of type inference
recovering tools in the context of binaries, we suggest consulting Caballero et
al. [12]. Finally, it is interesting to note that the code from only a few of the tools
mentioned in the previous review are actually available as open source.

2.3 Security Implications of Indirect Transfers

Indirect Forward-Edge Transfers. Illegal forward-edge indirect calls may
result from a virtual pointer (vPointer) corruption. A vPointer corruption is not
a vulnerability but rather a capability, which can be the result of a spatial or
temporal memory corruption triggered by: (1) bad-casting [25] of C++ objects,
(2) buffer overflow in a buffer adjacent to a C++ object, or (3) a use-after-
free condition [39]. A vPointer corruption can be exploited in several ways. A
manipulated vPointer can be exploited to make it point to any existing or added
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program virtual table entry or to a fake virtual table added by the attacker. For
example, an attacker can use the corruption to hijack the control flow of the
program and start a COOP attack [39]. vPointer corruptions are a real security
threat that can be exploited in many ways as for example if there is a memory
corruption (e.g., buffer overflow, use-after-free condition), which is adjacent in
memory to the C++ object. As a consequence, each memory corruption, which
can be used to reach the memory layout of an object (e.g., object type confusion),
can be potentially used to change the program control flow.

Indirect Backward-Edge Transfers. Program backward edges (i.e., jump,
ret, etc.) can be corrupted to assemble gadget chains such as follows. (1) No
CFI protection technique was applied: In this case, the binary is not protected
by any CFI policy. Obviously, the attacker can then hijack backward edges to
jump virtually anywhere in the binary in order to chain gadgets together. (2)
Coarse-grained CFI protected scenarios: In this scenario, if the attacker is aware
of what addresses are protected, the attacker may deviate the application flow
to legitimate locations in order to link gadgets together. (3) Fine-grained CFI
protection scenarios: In this case, the legitimate target set is stricter than in
(2). But, assuming that the attacker knows which addresses are protected and
which are not, she may be able to call legitimate targets through control flow
bending. (4) Fully precise CFI protected scenarios (i.e., SafeStack [23] based): In
this scenario, the legitimate target set is stricter than in (3). Even though we
have a one-to-one mapping between calltargets and legitimate return sites, the
attacker could use this one-to-one mapping to assemble gadget chains if at the
legitimate calltarget return site there is a useful gadget [13].

3 Threat Model

We follow the same basic assumptions stated in [43] w.r.t. forward edges. More
precisely, we assume a resourceful attacker that has read and write access to
the data sections of the attacked program binary. We assume that the protected
binary does not contain self-modifying code or any kind of obfuscation. We also
consider pages to be either writable or executable, but not both at the same
time. Further, we assume that the attacker has the ability to exploit an existing
memory corruption in order to hijack the program control flow. As such, we
consider a powerful yet realistic adversary model that is consistent with previous
work on CRAs and their mitigations [23]. The adversary is aware of the applied
defenses and has access to the source and non-hardened binary of the target
application. She can exploit (bend) any backward-edge based indirect program
transfer and has the capability to make arbitrary memory writes.

4 Design and Implementation

In this section, we present a brief overview of τCFI followed by its design and
implementation.
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4.1 Approach Overview
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Fig. 2: Main steps performed by τCFI when hardening a program binary.

Figure 2 depicts an overview of our approach. From left to right, the program
binary is analyzed by τCFI and the calltargets and callsite analysis are performed
for determining how many parameters are provided, how many are consumed,
and their register width. After this step, labels are inserted at each previously
identified callsite and at each calltarget. The enforced policy is schematically
represented by the black highlighted dots (addresses, e.g., cs1 ) in Figure 2 that
are allowed to call only legitimate red highlighted dots (addresses, e.g., ct1 ).
Next, to compute the set of addresses which a return instruction can target,
the address set determined by each address located after each legitimate callsite
is computed. This information is obtained by using the previously determined
callsite forward-edge mapping to derive a function return backward map that
uses return instructions as keys and return targets as values. This way, τCFI has
a set of addresses for each function to which the function return site is allowed
to transfer control. Finally, range or compare checks are inserted before each
function return site. These checks are used during runtime to check if the address,
where the function return wants to jump to, is contained in the legitimate set for
each particular return site. This is represented in Figure 2 by green highlighted
dots (addresses e.g., ctr2 ) that are allowed to call only legitimate blue highlighted
dots (addresses e.g., csn1 ). Finally, the result is a hardened program binary (see
right-hand side in Figure 2).

4.2 Parameter Count and Type Policy

Parameters can be passed through registers or the stack. In the Itanium C++
ABI, the first six parameters are passed through registers (i.e., rdi, rsi, rdx,
rcx, r8, and r9). Even when a 64-bit register is used to pass a parameter, the
actual number of bits used in the register might be smaller. Therefore, we treat
the used widths of parameter-storing registers as the types of the parameters.
There are four types of reading and writing access on registers. Therefore, our
set of possible types for parameters is {64, 32, 16, 8, 0}, where zero models the
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absence of a parameter. For the Itanium ABI, our analysis tracks the 6 registers
used in parameter passing and classifies callsites and calltargets according to how
these registers are used.

Our analysis overapproximates at callsites and underapproximates at call-
targets the parameter count and types, which is due to the general difficulty
of statically determining the exact number of arguments provided by a callsite
and the number of parameters required by a calltarget and w.r.t. the widths
of registers used in parameter passing. Specifically, at a callsite, the analysis
calculates an upper bound for the number of arguments and for the widths of
those registers that store arguments. For instance, for a function call that passes
one argument with a width of 32-bit, the analysis may estimate that there are two
arguments passed and the first one’s width is 64-bit. Furthermore, the analysis
on a calltarget (a callee function) calculates a lower bound for the number of
needed parameters and for the widths of those registers that store parameters.

Because of the approximations in our analysis, our policy for matching
callsites and calltargets allows a callsite to transfer to a calltarget if (1) the
number of estimated arguments at a callsite is greater than the number of
estimated parameters at a calltarget; and (2) for each argument at the callsite
and its corresponding parameter in the calltarget, the estimated width of the
argument is greater than the estimated width of the parameter. Part (1) is
about the parameter count and is the same as the parameter-count policy in
TypeArmor [43]; part (2) is about the parameter types and enables τCFI to
provide a finer-grained policy than just considering the parameter count.

4.3 Instruction Read-Write Effect

We first introduce some definitions and notation. The set I describes the set of
possible instructions; in our case, this is based on the instruction set for x86-64
processors. An instruction i ∈ I can perform two kinds of operations on registers:
(1) Read n-bit from a register with n ∈ {64, 32, 16, 8} and (2) Write n-bit to a
register with n ∈ {64, 32, 16, 8}. Note that there are instructions that can directly
access the higher 8 bits of the lower 16 bits of 64-bit registers. For our purpose,
we treat this access as a 16-bit access.

Next, the possible effect of an instruction on one register is described as
δ ∈ ∆ with ∆ = {w64, w32, w16, w8, 0} × {r64, r32, r16, r8, 0}. Note that 0
represents the absence of either a write or read access and (0, 0) represents
the absence of both. Meanwhile, wn with n ∈ {64, 32, 16, 8} implies all wm
with m ∈ {64, 32, 16, 8} and m < n (e.g., w64 implies w32); the same property
holds for rn. The Itanium C++ ABI specifies 16 general purpose integer registers.
Therefore, the read-write effect of an instruction on the set of registers can be
described as δp ∈ ∆16. Our analysis performs calculations based on the effect
of each instruction i ∈ I via the function regEffect : I 7→ ∆16. Note that this
function can be purely defined based on the semantics of instructions.
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4.4 Calltarget Analysis

Our calltarget static analysis classifies calltargets according to the parameters
they expect by taking into account the parameters’ count and types. Given a
set of address-taken functions4, the static analysis performs an interprocedural
analysis to determine the register states for the 6 argument registers.

Next, we present τCFI’s analysis, followed by a discussion of optimizations
and interprocedural analysis. The basic analysis determines, for each register and
at a particular program location, that it is in one of the following states:

– rn, where n ∈ {64, 32, 16, 8} represents that the lower n bits of the register
are read before written along all control flow paths starting from the location.

– ∗ represents that, along some control flow path, the register is either written
before read or there are no reads/writes on the register.

The basic analysis described above can be implemented as a classic backward-
liveness analysis, except that it needs to track widths in read operations. For
instance, for an instruction i, if the regEffect function shows that i reads the
lower 16-bits of rax, then the state of rax immediately before the instruction
is r16. For an instruction with multiple successors, the register states after the
instruction are calculated based on the states at the beginnings of the successors.
For instance, if an instruction has two successors, and the state of rax is r64
before the first successor and the state of rax is r32 before the second, then
the state of rax after the instruction is r32, essentially indicating that all paths
starting from the end of the instruction have a r32 read before write for rax.
Recall that the calltarget analysis performs an underapproximation; so using r32
is safe even though one of the paths performs a r64 read.

The backward-liveness analysis, however, is inefficient. Our implementation
actually follows TypeArmor [43] to perform a forward interprocedural analysis
(with some modification to consider widths of read operations). We refer readers
to the TypeArmor paper for details and give only a brief overview here.

First, note that τCFI’s analysis operates at the basic block level instead of
the instruction level. Second, the analysis further refines the ∗ state to be either
w or c, where w (write before read) refers to a register being written to before
read from along some control flow path and c (clear/untouched) represents that
the register is untouched along some control flow path. The reason for such a
refinement is that during forward analysis, if the states of all argument registers
before a basic block b are either rn or w (e.g., when b reads or writes all argument
registers), then there is no need to keep analyzing the successor basic blocks
since their operations would not change the state before b; this enables an early
termination of the forward analysis and is thus more efficient. On the other hand,
if the state of one of the argument registers is c, then the forward analysis has to
continue. This is because c indicates the register is untouched so far, but it can
4 Since an indirect call can target a function only if the function’s address is taken,
there is no need to analyze functions whose addresses are not taken; this is similar to
TypeArmor.
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be read or written in a future basic block. Further, the analysis is interprocedural
and maintains a stack to match direct function calls and returns during analysis.
Finally, for indirect calls, however, it does not follow to the targets, but performs
an underapproximation instead.

Parameter count and types Once the analysis finishes, we can calculate a
function’s parameter count and parameter types based on the state before the
entry basic block of the function. The argument count is determined using the
highest argument register that is marked rn. The type of an argument register is
directly given by the rn state of the register.

4.5 Callsite Analysis

Our callsite analysis classifies callsites according to the arguments they provide
by considering the argument count and their types. For callsite analysis, overesti-
mations are allowed: the callsite analysis overestimates the number of arguments
and the widths of arguments. As such a callsite is allowed to target a calltarget
that requires a smaller or equal number of parameters and that requires a smaller
or equal width for each parameter.

For callsite analysis, we employ a customized reaching-definition analysis. The
analysis determines the states of registers. At a particular program location, it
determines whether or not a register is in one of the following states:

– sn, where n ∈ {8, 16, 32, 64}: this represents a state in which the register’s
lower n bit is set in a control-flow path ending at the program location.

– t (trashed): this represents a state in which the register is not set on all
control flow paths ending at the program location.

τCFI’s reaching-definition analysis is implemented as an interprocedural
backward analysis similar to TypeArmor [43], the difference being that τCFI
also tracks the widths in write operations to infer sn states. Once the analysis
is finished, it uses the register state just before an indirect callsite to determine
its argument count and types: If an argument register is in state sn, then it is
considered an argument that uses n bits; the argument count is determined by
the highest argument register whose state is sn.

4.6 Return Values

Knowing more information about return values of functions increases CFI preci-
sion. For instance, an indirect callsite that expects a return value should not call
a function that does not return a value; similarly, an indirect callsite that expects
a 64-bit return value should not call a function that returns only a 32-bit value.
For calltarget analysis, τCFI traverses backwards from the return instruction of
a function and searches for uses of the RAX register to determine if a function has
a void or a non-void return type. In case there is a write operation on the RAX



τCFI: Type-Assisted Control Flow Integrity for x86-64 Binaries 11

register, τCFI infers that the function’s return type is non-void; furthermore, it
tracks the widths of write operations to infer the width of the return type. For
calltarget return-value type estimation, overapproximations are allowed.

At a callsite, τCFI traverses forward from the callsite to search for reads
before writes on the RAX register to determine if a callsite expects a return value
or not. In case there is such a read on the RAX register, τCFI infers that the
callsite expects a return value; furthermore, it tracks the widths of read operations
to infer the width of the expected return value. For callsite return-value type
estimation, underapproximation is allowed.

4.7 Backward-Edge Analysis

In order to protect backward edges, we have designed an analysis that can
determine possible legitimate return target addresses for each callee function.
Our algorithm used for computing the legitimate set of addresses for each callee
works as follows. First, a map is obtained after running the callsite and calltarget
analysis (see Section 4.4 and Section 4.5 for more details); it maps a callsite to
the set of legal calltargets where forward-edge indirect control-flow transfer is
allowed to jump. This map is then reversed to build a second map that maps
from the return instruction of a function (callee) to a set of addresses where the
return can transfer to.

The return target address set for a function return is determined by getting
the next address after each callsite address that is allowed to make the forward-
edge control flow transfer. The map is obtained by visiting a return instruction
address in a function and assigning to it the addresses next to callsites that
can call the function. At the end of the analysis, all callsites and all function
returns have been visited and a set of backward-edge addresses for each function
return address is obtained. Note that the function boundary address (i.e., ret)
is detected by a linear basic block search from the beginning of the function
(calltarget) until the first return instruction is encountered. We are aware that
other promising approaches for recovering function boundaries (e.g., [4]) exist,
and plan to experiment with them in future work.

4.8 Binary Instrumentation

Forward-Edge Policy Enforcement. The result of the callsite and calltarget
analysis is a mapping that maps a callsite to its allowed calltargets. In order to
enforce this mapping during runtime, callsites and calltargets are instrumented
inside the binary program with two labels. Additionally, each callsite is instru-
mented with CFI checks. At a callsite, the number of provided arguments is
encoded as a series of six bits. At a calltarget, the label contains six bits encoding
how many parameters the calltarget expects. Additionally, at a callsite 12 bits
encode the register-width types of the provided arguments (two bits for each
parameter), while at the calltarget another 12 bits are used to encode the types
of the parameters expected. Further, at a callsite, several bits are used to encode
if the function is expecting a void return type or not, and the width of the return
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type if it is nonvoid (similarly for a calltarget). All this information is written in
labels before callsites and calltargets. During runtime before a callsite, these labels
are compared by performing an XOR operation. In case the XOR operation returns
false (a zero value), the transfer is allowed; otherwise, the program execution is
terminated.

Backward-Edge Policy Enforcement. Based on the previously determined
reverse map, before each function return a randomly generated label value is
inserted. We decided to use these kinds of values as our main requirement is to
map a return to a potentially large number of return sites. The same label is
inserted before each legitimate target address (the next address after a legitimate
callsite). In this way, a function return is allowed to jump only to the instruction
that follows next to the address of a callsite.

For callsites that target a calltarget that is also allowed by another callsite,
τCFI performs a search in order to detect if the callsite already has a label
attached to the address after the callsite. If so, a new label is generated and
multiple labels are stored for the address following the callsite. In this way,
calltarget return labels are grouped together based on the reverse map. This
design allows the same number of function return sites as the forward-edge
policy enforces for each callsite. Finally, in case the comparison returns true, the
execution continues; otherwise, it is terminated.

4.9 Implementation

We have implemented τCFI using the DynInst [6] (v.9.2.0) instrumentation
framework with a total of 5,501 lines of C++ code. We currently restricted
our analysis and instrumentation to x86-64 executables in the ELF format
using the Itanium C++ ABI calling convention. τCFI can deal with the level of
executable obfuscation with which DynInst can deal. As such, we fully delegate
this responsibility to the used instrumentation framework underneath. We focused
on the Itanium C++ ABI convention as most C/C++ compilers on Linux implement
this ABI. However, the implementation separated the ABI-dependent code, so
we expect it to be possible to support other ABIs as well. We developed the main
part of our binary analysis pass in an instruction analyzer, which relies on the
DynamoRIO [9] library (v.6.6.1) to decode single instructions and provide access
to its information. The analyzer is then used to implement our version of the
reaching-definition and liveness analysis. Further, we implemented a Clang/LLVM
(v.4.0.0, trunk 283889) backend (machine instruction) pass (416 LOC) used for
collecting ground truth data in order to evaluate the effectiveness and performance
of our tool. The ground truth data is then used to verify the output of our tool
for several test targets. This is accomplished with the help of our Python-based
evaluation and test environment implemented in 3,239 lines of Python code.
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5 Evaluation

We have evaluated τCFI by instrumenting various open source applications and
conducting a thorough analysis in order to show its effectiveness and usefulness.
Our test applications include the following real-world programs: FTP servers
Vsftpd (v.1.1.0, C code), Pure-ftpd (v.1.0.36, C code) and Proftpd (v.1.3.3, C
code); Lighttpd web server (v.1.4.28, C code); two database server applications
Postgresql (v.9.0.10, C code) and Mysql (v.5.1.65, C++ code); the memory cache
application Memcached (v.1.4.20, C code); and the Node.js application server
(v.0.12.5, C++ code). We selected these applications to allow for a fair comparison
with other similar tools. In our evaluation, we addressed the following research
questions (RQs): RQ1: How effective is τCFI? (§5.1); RQ2: What security
protection is offered by τCFI? (§5.2); RQ3: Which attacks are mitigated by
τCFI? (§5.3) RQ4: Are other forward-edge tools better than τCFI? (§5.4)?
RQ5: Is τCFI effective against COOP? ( §5.5) RQ6: How does τCFI compare
with Clang’s Shadow Stack? (§5.6) RQ7: What runtime overhead does τCFI
impose? (§5.7) Our setup is based on Kubuntu 16.04 LTS (k.v.4.4.0) using 3GB
RAM and four hardware threads running on an i7-4170HQ CPU at 2.50 GHz.

5.1 Effectiveness

O2 CS CT AT count* count type* type
Target total total total limit (mean ± σ) median limit (mean ± σ) median limit (mean ± σ) median limit (mean ± σ) median

ProFTPD 157.0 1,011.0 396.0 349.3 ± 52.8 369.0 370.1 ± 43.3 382.0 338.2 ± 64.8 361.0 354.4 ± 85.1 390.0
Pure-FTPD 8.0 127.0 13.0 8.6 ± 4.6 8.0 10.1 ± 4.8 13.0 8.1 ± 4.0 5.0 10.0 ± 4.0 10.0
Vsftpd 2.0 391.0 10.0 8.0 ± 2.0 8.0 10.0 ± 0.0 10.0 6.0 ± 2.0 6.0 7.0 ± 3.0 7.0
Lighttpd 66.0 289.0 63.0 34.3 ± 15.1 21.0 43.7 ± 14.5 51.0 34.5 ± 14.7 23.0 45.4 ± 12.1 50.0
Nginx 270.0 914.0 1,111.0 316.8 ± 146.9 266.0 447.6 ± 124.0 528.0 317.5 ± 146.4 267.0 450.9 ± 110.2 528.0
MySQL 7,893.0 9,928.0 5,896.0 338.5 ± 189.5 179.0 490.6 ± 203.3 574.0 307.9 ± 163.6 186.0 519.6 ± 147.6 540.0
PostgreSQL 687.0 6,885.0 2,304.0 423.4 ± 176.7 471.0 497.0 ± 151.8 515.0 416.2 ± 188.1 541.0 476.9 ± 162.4 562.0
Memcached 48.0 134.0 14.0 12.3 ± 2.3 14.0 13.0 ± 1.4 14.0 12.7 ± 1.0 12.0 12.8 ± 1.0 12.0
NodeJS 10,215.0 20,196.0 7,230.0 763.1 ± 329.3 806.0 1,051.2 ± 293.2 1,169.0 683.2 ± 332.9 459.0 939.8 ± 314.0 1,022.0

geomean 170.1 1,104.8 259.8 89.0 ± 31.2 79.4 110.4 ± 27.0 123.1 83.7 ± 28.1 69.3 104.7 ± 27.8 111.6

Table 1: Allowed callsites per calltarget for τCFI’s count and type policies.

Table 1 depicts the average number of calltargets per callsite, the standard
deviation σ, and the median. In Table 1, the abbreviation CS refers to the callsites,
while CT means calltargets. Note that the restriction to address-taken functions
(see column AT) is present. The label count∗ denotes the best possible reduction
using the parameter count policy based on the ground truth collected by our
Clang/LLVM pass, while count denotes the results of our implementation of the
parameter count policy derived from binaries. The same applies to type∗ and type
regarding the parameter type policy. A lower number of calltargets per callsite
indicates better results. Note that our parameter type policy is superior to the
parameter count policy, as it allows for a stronger reduction of allowed calltargets.
We consider this an important result, which further improves the state-of-the-art.
Finally, we provide the median and the pair of mean and standard deviation to
allow for a better comparison with other state-of-the-art tools.
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Theoretical Limits. We explored the theoretical limits regarding the effec-
tiveness of the count and type policies by relying on the collected ground truth
data; essentially assuming perfect classification. Based on the type information
collected by our Clang/LLVM pass, we derived the available number of calltargets
for each callsite by applying the count and type policies. From the results, (1)
the theoretical limit of the count* policy has a geomean of 89 possible calltargets,
which is around 8% of the geomean of the total available calltargets (1104),
and (2) the theoretical limit of the type* policy has a geomean of 83 possible
calltargets, which is 7.5% of the geomean of the total available calltargets (1104).
In comparison, the theoretical limit of the type* policy allows about 13% less
available calltargets in geomean than the limit of the count* policy (i.e., 69.3 vs.
79.4).

Calltarget per Callsite Reduction. (1) The count policy has a geomean of
104 calltargets, which is around 9.4% of the geomean of all available calltargets
(1104). This is around 24% more than the theoretical limit of available calltargets
per callsite (see count* 89 vs. 110.4). (2) The type policy has a geomean of
104.7 calltargets, which is 9.48% of the geomean of total available calltargets
(1104). This is approximatively 25% more than the theoretical limit of available
calltargets per callsite (see type* 83.7 vs. 104.7). τCFI’s type policy allows around
9.4% less available calltargets in the geomean than our implementation of the
count policy (104.7 vs. 110.4), and a total reduction of more than 94% (104.7 vs.
1104) w.r.t. the total number of calltargets (CT) available once the count and
type policies are applied.

5.2 Forward-Edge Policy vs. Other Tools

Target IFCC TypeArmor AT τCFI τCFI
(CFI+CFC) (count) (type)

ProFTPD 3.0 376.0 396.0 382.0 390.0
Pure-FTPD 0.0 4.0 13.0 13.0 10.0
Vsftpd 1.0 12.0 10.0 10.0 7.0
Lighttpd 6.0 47.0 63.0 51.0 50.0
Nginx 25.0 254.0 1,111.0 528.0 528.0
MySQL 150.0 3,698.0 5,896.0 574.0 540.0
PostgreSQL 12.0 2,304.0 2,504.0 515.0 562.0
Memcached 1.0 14.0 14.0 14.0 12.0
NodeJS 341.0 4,714.0 7,230.0 1,169.0 1,022.0

geomean 8.7 170.4 259.8 123.1 111.6

Table 2: Legitimate calltargets/callsite for 5 tools.

Table 2 provides a compari-
son between τCFI, TypeAr-
mor and IFCC w.r.t. the me-
dian count of calltargets per
callsite. The values for Ty-
peArmor [43] and IFCC [41]
depicted in Table 2 have been
adopted from the correspond-
ing papers in order to en-
sure a fair comparison. Fur-
ther, Table 2 conveys the lim-
itations of binary-based type
analysis, as the median of the
possible target set size for
τCFI is several times larger than the corresponding set sizes for system us-
ing source-level analysis. Note that the smaller the geomean values are, the
better the technique is. AT is a technique that allows a callsite to target any
address-taken functions. IFCC is a compiler-based solution and is included here as
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a reference to show what is possible when the program’s source code is available.
TypeArmor and τCFI on the other hand are binary-based tools. τCFI reduces
the number of calltargets by up to 42.9% (geomean) when compared to the AT
technique, by more than seven times (7230 vs. 1022) for a single test program
w.r.t. AT, and by 65.49% (170.4 vs. 111.6) in geomean when compared with
TypeArmor, respectively. As such, τCFI represents a stronger improvement w.r.t.
calltarget per callsite reduction in binary programs compared to other approaches.

5.3 Effectiveness Against COOP

We investigated the effectiveness of τCFI against the COOP attack by looking
at the number of register arguments, which can be used to enable data flows
between gadgets. In order to determine how many arguments remain unprotected
after we apply the forward-edge policy of τCFI, we determined the number
of parameter overestimations and compared it with the ground truth obtained
during an LLVM compiler pass. Next, we used some heuristics to determine how
many ML-G and REC-G callsites exist in the C++ server applications. Finally,
we compared these results with the one obtained by TypeArmor.

Overestimation
Program #cs 0 +1 +2 +3 +4 +5
MySQL (ML-G) 192 184 3 1 0 1 3
Node.js (ML-G) 134 131 1 0 1 0 1
geomean 160 155 1 1 1 1 1
MySql (REC-G) 289 273 10 2 3 0 1
Node.js (REC-G) 72 69 2 0 0 0 1
geomean 144 137 4 1 1 1 1

Table 3: Parameter overestimation
for the ML-G and REC-G gadgets.

Table 3 presents the results obtained
after counting the number of perfectly esti-
mated and overestimated protected ML-G
and REC-G gadgets. As it can be observed,
τCFI obtained a 96% (184 out of 192) accu-
racy of perfectly protected ML-G callsites
for MySQL, while TypeArmor obtained a
94% accuracy for the same program. Fur-
ther, τCFI obtained a 97% (131 out of
134) accuracy for Node.js, while TypeAr-
mor obtained 95% accuracy on the same
program. Further, for the REC-G case, τCFI obtained an 94% (273 out of 289)
exact-parameter accuracy for MySQL, while TypeArmor had 86%. For Node.js,
τCFI obtained an accuracy of 95% (69 out of 72), while TypeArmor had 96%.
Overall τCFI’s forward-edge policy obtained a perfect accuracy of 95%, while
TypeArmor obtained 92%. While this is not a large difference, we want to point
out that the remaining overestimated parameters represent only 5% and thus do
not leave much wiggle room for the attacker.

5.4 Comparison with the Shadow-Stack

The shadow stack implementation of Abadi et al. [1] provides a strong security
protection [11] w.r.t. backward-edge protection. However, it: (1) has a high
runtime overhead (≥ 21%), (2) is not open source, (3) uses a proprietary binary
analysis framework (i.e., Vulcan), (4) loses precision due to equivalent class
merging. Hence, we propose an alternative backward-edge protection solution.
In order to show the precision of τCFI’s backward-edge protection, we provide
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the average number of legitimate return addresses for return instructions and
compare it to the total number of available addresses without any protection.

Program Total Total Total %RATs/RA
#RA #RATs #RATs/RA prog. binary

MySQL 5,896.0 3,792.0 0.6 0.014%
Node.js 7,230.0 3,864.0 0.53 0.011%
geomean 6,529.0 3,827.0 0.58 0.012%

Table 4: Backward-edge policy statistics.

Table 4 presents the statistics
w.r.t. the backward-edge policy le-
gitimate return targets. More specif-
ically, in Table 4, we use the follow-
ing abbreviations: total number of
return addresses (Total #RA), total
(median) number of return address
targets (Total #RATs), total (median) number of return address targets per
return instruction (Total. # RATs/RA), percentage of legitimate return address
targets per return addresses w.r.t. the total number of addresses in the program
binary (% RATs/RA w.r.t. program binary). By applying τCFI’s backward-edge
policy, we obtain a reduction of 0.43 (1−0.58) ratio (geomean) of the total number
of return address targets per return address over the total number of return
addresses. This means that only 43% of the total number of return addresses
are actual targets for the function returns. The results indicate a percentage of
0.012% (geomean) of the total addresses in the program binaries are legitimate
targets for the function returns. This means that our policy can eliminate 99.98%
(100% - 0.012%) of the addresses, which an attacker can use for his attack inside
the program binary. To put it differently, only 0.012% of the addresses inside the
binary can be used as return addresses by the attacker. Further, we assume that
the attacker cannot easily determine which addresses are still available for any
given program binary, which is stripped from debug information. Note that each
function return (callee) is allowed to return in geomean to around 111 legitimate
addresses (MySQL 519 and NodeJS 939) in all analyzed programs. Finally, we
assume that it is hard for the attacker to find out the exact set of legitimate
addresses per return site once the policy was applied.

5.5 Security Analysis

Fig. 3: CDF for the PostgreSQL program.
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Figure 3 depicts the cumulative distribution function (CDF) for the PostgreSQL
program compiled with the Clang -O2 flag. We selected this program randomly
from our test programs. The CDF depicts the relation between the ratio of
indirect callsites and the ratio of calltargets, for the type and the count policies.
While the CDFs for the count policies have only a few changes, the amount of
changes for the CDFs of the type policies is vastly higher. The reason for this is
fairly straightforward: the number of buckets (i.e., the number of equivalence
classes) that are used to classify the callsites and calltargets is simply higher for
the type policies. Finally, note that the results depend on the internal structure
of the particular program and may for this reason vary for other programs.

5.6 Mitigation of Advanced CRAs

Exploit Stopped Remark
COOP ML-G [39]
IE 32 bit × Out of scope
IE 1 64-bit X(FP) Arg. count mismatch
IE 2 64-bit X(FP) Arg. count mismatch
Firefox X(FP) Arg. count mismatch
COOP ML-
REC [14]
Chrome X(FP) Void target where

non-void was ex-
pected

Control Jujutsu [18]
Apache X(FP) Target function not

AT
Nginx X(FP) Void target where

non-void was ex-
pected

All Backward edge
violating attacks X(BP) (1)a or (2)b or (3)c.

a Jump to address /∈ in the max−min address range.
b Jump to address 6= then a legitimate address.
c Jump to address label 6= the calltarget return label.

Table 5: Stopped CRAs, forward-edge policy (FP) &
backward-edge policy (BP).

Table 5 presents sev-
eral attacks that can
be successfully stopped
by τCFI by deploying
only the forward-edge
or the backward-edge
policy. For checking if
the COOP attack can
be prevented, we instru-
mented the Firefox li-
brary (libxul.so), which
was used to perform the
original COOP attack as
presented in the original
paper. We observed that
due to the forward-edge
policy this attack was no
longer possible. For test-
ing if backward-edge at-
tacks are possible after
applying τCFI, we used
several open source ROP
attacks that are explic-
itly violating the control
flow of a C++ program
through backward-edge violations. Next, we instrumented the binaries of these
programs. Each attack that was using one of the protected function returns was
successfully stopped.

In summary, many forward-edge and backward-edge attacks can be successfully
mitigated by τCFI as long as these attacks are not aware of the policy in place and
thus cannot selectively use gadgets that have their start address in the allowed
set for the legitimate forward-edge and backward-edge transfers, respectively.
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5.7 Runtime Overhead
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Fig. 4: Runtime overhead.

Figure 4 presents
the runtime over-
head obtained by
applying τCFI’s
forward-edge pol-
icy (register type;
parameter count)
and backward-edge
policy on all C/C++
programs contained
in SPEC CPU2006.
Out of the eval-
uated programs:
xala- ncbmk, namd,
omnetpp, dealII,
astar, soplex, and
povray are C++
programs, while
the rest are pure C programs. After the programs were instrumented, we measured
the runtime overhead. The geomean of the instrumented programs is around
2.89% runtime overhead. One reason for the performance drop is cache misses
introduced by jumping between the old and the new executable section of the
binary generated by duplicating and patching. This is necessary, because when
outside of the compiler, it is difficult to relocate indirect control flow. Therefore,
every time an indirect control flow occurs, jumps into the old executable section
and from there back to the new executable section occur. Moreover, this is also
dependent on the actual structure of the target as the overhead depends on the
frequency of indirect control flow operations. Another reason for the slightly
higher (yet acceptable) performance overhead is our runtime policy, which is
more complex than that of other state-of-the-art tools.

6 Discussion

Limitations. First, τCFI is limited by the capabilities of the DynInst instru-
mentation environment, where non-returning functions like exit are not detected
reliably in some cases. As a result, we cannot test the Pure-FTP server, as
it heavily relies on these functions. The problem is that those non-returning
functions usually appear as a second branch within a function that occurs after
the normal control flow, causing basic blocks from the following function to be
attributed to the current function. This results in a malformed control flow graph
and erroneous attribution of callsites and problematic misclassifications for both
calltargets and callsites.

Second, parameter passing through floating point registers is currently not
supported by τCFI, similar to other state-of-the-art tools. Tail calls are also
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not supported for now as they lose the one-to-one matching between callers and
callees. Further, τCFI does not support self-modifying code as code pages become
writable at run-time. We plan to address this limitation in future work.

Third, τCFI is not intended to be more precise than source code based tools
such as IFCC/VTV [41]. However, τCFI is highly useful in situations when the
source code is typically not available (e.g., off-the-shelf binaries), where programs
rely on third-party libraries, and where the recompilation of all shared libraries
is not possible.

Finally, while a major step forward, τCFI cannot thwart all possible attacks,
as even solutions with access to source code are unable to protect against all
possible attacks [13]. In contrast, τCFI, our binary-based tool can stop all COOP
attacks published to date and significantly raises the bar for an adversary when
compared to other state-of-the-art tools. Moreover, τCFI provides a strong
mitigation for other types of code-reuse attacks as well as for attacks that violate
the caller-callee function calling convention.

Attacker Policy Discovery Trade-offs. In general, with usage of CFI
techniques, it is relatively unchallenging for an attacker to figure out where an
indirect program control flow may transfer during runtime. This is because the
indirect transfer targets (backward and forward) are labeled with IDs that have
to satisfy certain conditions, e.g., a bitwise XOR operation between the bits of the
start and target address of indirect control flow transfer should return a one or
zero in case the transfer is legal or illegal, respectively.

Thus, we note that in general it is not difficult for a resourceful attacker to
figure out which callees match to which calltargets or vice versa when these are
labeled with IDs for example. τCFI is not exempted from this. In general, if the
attacker knows where an indirect transfer is allowed to jump to, he may use this
wiggle space to craft his attack with the available (reachable) gadgets. The main
assumption on which CFI and τCFI are built upon is that the wiggle room is
sufficiently reduced for an attacker such that the likelihood for a successful attack
is greatly diminished.

7 Related Work

Mitigation of Forward-Edge Based Attacks with Binary-Based Tools.
τCFI is closely related to TypeArmor w.r.t. the forward edge analysis. TypeAr-
mor [43] (≈3% runtime overhead in geomean) enforces a CFI-policy based on the
parameter count policy. Compared to τCFI, TypeArmor does not use function
parameter types and assumes a backward-edge protection is in place. VCI [17]
and Marx [35] are both based on approximated program (quasi) class hierarchies;
they (1) do not recover the root class of the hierarchy, and (2) the edges between
the classes are not oriented; thus both tools enforce for each callsite the same
virtual table entry (i.e., index based) contained in one recovered class hierarchy
represented by father-child relationships between the recovered vtables. Finally,
both tools use up to six heuristics and simplifying assumptions in order to make
the problem of program class hierarchy reconstruction tractable. Compared to
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these tools, τCFI tries not to reconstruct a high-level metadata data structure
(class hierarchy), but rather performs analysis on the usage of provided and
consumed parameters at the callsites and calltargets.

Mitigation of Backward-Edge Based Attacks with Binary Based Tools.
According to a comprehensive survey by Burow et al. [11], tools that provide
backward-edge protection offer low, medium, and high levels of protection w.r.t.
backward edges. Further, this survey provides runtime overhead comparisons,
classifies the backward-edge protection techniques into binary-based, source code
based, and other types (e.g., with HW support, etc.). Due to page restriction,
we review only binary tools.

The original CFI implementation of Abadi et al. [1], MoCFI [16], kBouncer [34],
CCFIR [45], bin-CFI [46], O-CFI [30], PathArmor [42], LockDown [36] mostly
suffer from imprecision (high number of reused labels), have low runtime efficiency,
and most of them protect either forward edges or backward edges assuming a
perfect shadow stack implementation is in place. In contrast, τCFI makes no
assumptions on the presence of a backward-edge protection. Further, τCFI
provides a technique for protecting forward edges and does not rely on a shadow
stack approach for protecting backward edges.

8 Conclusion

In this paper, we have presented τCFI, a new control flow integrity (CFI)
technique, which can be used to protect program control flow graph (CFG) forward
edges and backward edges in executables during runtime. For the protected
stripped (i.e., no RTTI information) x86-64 binaries, we do not need to make any
assumptions on the presence of an auxiliary technique for protecting backward
edges (i.e., shadow stacks, etc.) as τCFI protects these transfers, too. We have
evaluated τCFI with real world open source programs and have shown that τCFI is
practical and effective when protecting program binaries. Further, our evaluation
reveals that τCFI can considerably reduce the forward-edge legal calltarget set,
provide high backward-edge precision, while maintaining low runtime overhead.

Acknowledgement

We thank the anonymous reviewers for their feedback, which helped to consider-
ably improve the quality of this paper. Jens Grossklags’ research is supported by
DIVSI. Gang Tan is supported by US NSF grants CCF-1723571 and CNS-1624126,
the Defense Advanced Research Projects Agency (DARPA) under agreement
number N6600117C4052, and Office of Naval Research (ONR) under agreement
number N00014-17-1-2539. Zhiqiang Lin is partially supported by US NSF grant
CNS-1812553 and CNS-1834215, AFOSR award FA9550-14-1-0119, and ONR
award N00014-17-1-2995.



τCFI: Type-Assisted Control Flow Integrity for x86-64 Binaries 21

References

1. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control Flow Integrity. In: CCS
(2005)

2. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control Flow Integrity Principles,
Implementations, and Applications. In: TISSEC (2009)

3. Andriesse, D., Chen, X., Veen, V.v.d., Slowinska, A., Bos, H.: An In-Depth Analysis
of Disassembly on Full-Scale x86/x64 Binaries. In: USENIX Security (2016)

4. Andriesse, D., Slowinska, A., Bos, H.: Compiler-Agnostic Function Detection in
Binaries. In: EuroS&P (2017)

5. Balakrishnan, G., Reps, T.: DIVINE: Discovering Variables in Executables. In:
VMCAI (2007)

6. Bernat, A.R., Miller, B.P.: Anywhere, Any-Time Binary Instrumentation. In:
PASTE (2011)

7. BlueLotus Team: Bctf challenge: Bypass vtable read-only checks (2015), ˙https:
//goo.gl/4RYDS2

8. Bounov, D., Gökhan K., R., Lerner, S.: Protecting C++ Dynamic Dispatch Through
VTable Interleaving. In: NDSS (2016)

9. Bruening, D.: DynamoRIO. ˙http://dynamorio.org/home.html
10. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.: BAP: A Binary Analysis

Platform. In: CAV (2011)
11. Burow, N., Carr, S., Nash, J., Larsen, P., Franz, M., Brunthaler, S., Payer, M.:

Control-Flow Integrity: Precision, Security, and Performance. In: CSUR (2017)
12. Caballero, J., Lin, Z.: Type Inference on Executables. In: CSUR (2016)
13. Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.: Control-Flow Bending:

On the Effectiveness of Control-Flow Integrity. In: USENIX Security (2015)
14. Crane, S., Volckaert, S., Schuster, F., Liebchen, C., Larsen, P., Davi, L., Sadeghi,

A.R., Holz, T., De Sutter, B., Franz, M.: It’s a TRaP: Table Randomization and
Protection against Function-Reuse Attacks. In: CCS (2015)

15. Dang, T., Maniatis, P., Wagner, D.: The Performance Cost of Shadow Stacks and
Stack Canaries. In: ASIACCS (2015)

16. Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T., Hund, R., Nurnberger,
S., Sadeghi, A.R.: MoCFI: A Framework to Mitigate Control-Flow Attacks on
Smartphones. In: NDSS (2012)

17. Elsabagh, M., Fleck, D., Stavrou, A.: Strict Virtual Call Integrity Checking for C
++ Binaries. In: ASIACCS (2017)

18. Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M., Okhravi, H., Sidiroglou-
Douskosr, S.: Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow
Integrity. In: CCS (2015)

19. Fokin, A., Derevenets, Y., Chernov, A., Troshina, K.: SmartDec: Approaching C++
decompilation. In: WCRE (2011)

20. Goktas, E., Oikonomopoulos, A., Gawlik, R., Kollenda, B., Athanasopoulos, E.,
Giuffrida, C., Portokalidis, G., Bos, H.: Bypassing Clang’s SafeStack for Fun and
Profit. In: Blackhat Europe (2016), ˙https://goo.gl/zKMHzs

21. Haller, I., Goktas, E., Athanasopoulos, E., Portokalidis, G., Bos, H.: ShrinkWrap:
VTable Protection Without Loose Ends. In: ACSAC (2015)

22. Jang, D., Tatlock, T., Lerner, S.: SafeDispatch: Securing C++ Virtual Calls from
Memory Corruption Attacks. In: NDSS (2014)

23. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
Pointer Integrity. In: OSDI (2014)

https://goo.gl/4RYDS2
https://goo.gl/4RYDS2
http://dynamorio.org/home.html
https://goo.gl/zKMHzs


22 Muntean, Fischer, Tan, Lin, Grossklags, and Eckert

24. Lan, B., Li, Y., Sun, H., Su, C., Liu, Y., Zeng, Q.: Loop-Oriented Programming:
A New Code Reuse Attack to Bypass Modern Defenses. In: IEEE Trustcom/Big-
DataSE/ISPA (2015)

25. Lee, B., Song, C., Kim, T., Lee, W.: Type Casting Verification: Stopping an
Emerging Attack Vector. In: USENIX Security (2015)

26. Lettner, J., Kollenda, B., Homescu, A., Larsen, P., Schuster, F., Davi, L., Sadeghi,
A.R., Holz, T., Franz, M.: Subversive-C: Abusing and Protecting Dynamic Message
Dispatch. In: USENIX ATC (2016)

27. Lin, Z., Zhang, X., Xu, D.: Automatic Reverse Engineering of Data Structures from
Binary Execution. In: NDSS (2010)

28. LLVM: Clang’s SafeStack. ˙https://clang.llvm.org/docs/SafeStack.html.
29. LLVM: Clang CFI (2017), ˙https://goo.gl/W7aMF9
30. Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K.W., Franz, M.: Opaque Control-

Flow Integrity. In: NDSS (2015)
31. Mycroft, A.: Lecture Notes (2007), ˙https://goo.gl/F7tUZj
32. Niu, B., Tan, G.: Modular Control-Flow Integrity. In: PLDI (2014)
33. Niu, B., Tan, G.: RockJIT: Securing Just-In-Time Compilation Using Modular

Control-Flow Inegrity. In: CCS (2014)
34. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP Exploit Mitiga-

tion Using Indirect Branch Tracing. In: USENIX Security (2013)
35. Pawlowski, A., Contag, M., van der Veen, V., Ouwehand, C., Holz, T., Bos, H.,

Athanasopoulos, E., Giuffrida, C.: MARX:Uncovering Class Hierarchies in C++
Programs. In: NDSS (2017)

36. Payer, M., Barresi, A., R. Gross, T.: Fine-Grained Control-Flow Integrity through
Binary Hardening. In: DIMVA (2015)

37. Prakash, A., Hu, X., Yin, H.: Strict Protection for Virtual Function Calls in COTS
C++ Binaries. In: NDSS (2015)

38. Ramalingam, G.: The Undecidability of Aliasing. In: TOPLAS (1994)
39. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.R., Holz, T.: Counter-

feit Object-Oriented Programming. In: S&P (2015)
40. Tan, G., Jaeger, T.: CFG Construction Soundness in Control-Flow Integrity. In:

PLAS (2017)
41. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano, L.,

Pike, G.: Enforcing Forward-Edge Control-Flow Integrity in GCC and LLVM. In:
USENIX Security (2014)

42. Veen, V.v.d., Andriesse, D., Göktas, E., Gras, B., Sambuc, L., Slowinska, A., Bos,
H., Giuffrida, C.: Practical Context-Sensiticve CFI. In: CCS (2015)

43. Veen, V.v.d., Goktas, E., Contag, M., Pawlowski, A., Chen, X., Rawat, S., Bos, H.,
Holz, T., Athanasopoulos, E., Giuffrida, C.: A Tough call: Mitigating Advanced
Code-Reuse Attacks at the Binary Level. In: S&P (2016)

44. Zhang, C., Song, C., Zhijie, K.C., Chen, Z., Song, D.: vTint: Protecting Virtual
Function Tables’ Integrity. In: NDSS (2015)

45. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical Control Flow Integrity & Randomization for Binary Executables. In:
S&P (2013)

46. Zhang, M., Sekar, R.: Control Flow Integrity for COTS Binaries. In: USENIX
Security (2013)

https://clang.llvm.org/docs/SafeStack.html.
https://goo.gl/W7aMF9
https://goo.gl/F7tUZj

	CFI: Type-Assisted Control Flow Integrity for x86-64 Binaries

