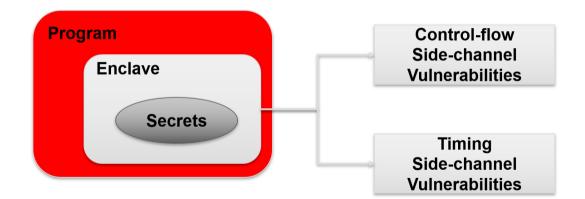
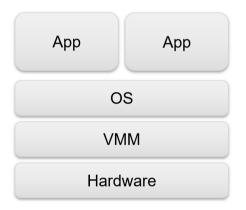
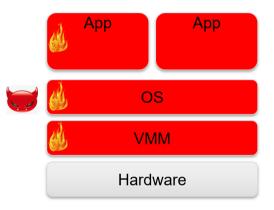


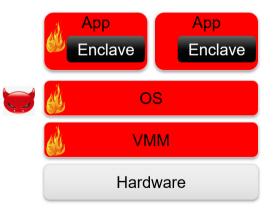
Time and Order: Towards Automatically Identifying Side-Channel Vulnerabilities in Enclave Binaries

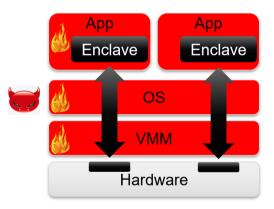

Wubing Wang, Yinqian Zhang, and Zhiqiang Lin

Department of Computer Science and Engineering The Ohio State University

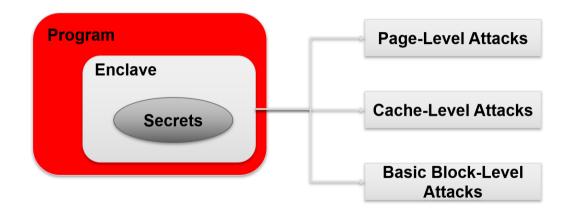

RAID 2019


Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
• 00000	000	0000000000	00000	O	00
Objective					

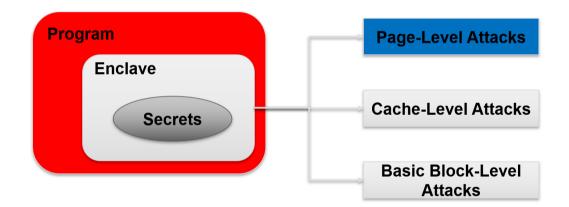

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000	00000	O	00
Intel SGX					


Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000	00000	O	00
Intel SGX					

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000	00000	O	00
Intel SGX					


Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Intel SGX					

Intel SGX side-channel attacks - Granularity


- Different Granularities
- O Different Targets

Intel SGX side-channel attacks - Granularity

Intel SGX side-channel attacks - Granularity

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Page-Lev	el Attacks				

- Approaches to observe page-level pattern
- The page-level vulnerability

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Page-Lev	el Attacks				

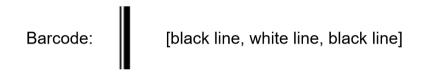
Barcode:

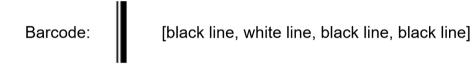
Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Page-Lev	el Attacks				

Barcode:

[black line, white line, black line, black line, black line]

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Page-Lev	el Attacks				

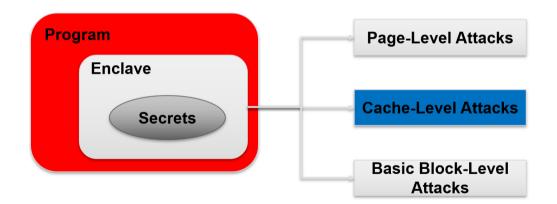

Page Sequence: page 0, page 1, page 0


Page Sequence: page 0, page 1, page 0, page 2, page 0


```
Page Sequence:
page 0, page 1, page 0, page 2, page 0, page 1,
page 0
```



```
Page Sequence:
page 0, page 1, page 0, page 2, page 0, page 1,
page 0, page 1, page 0
```

[black line, white line, black line, black line, black line]

Page Sequence:

page 0, page 1, page 0, page 2, page 0, page 1, page 0, page 1, page 0, page 1, page 0

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Cache-Leve	el Attacks				

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Cache-Lev	el Attacks				

- Approaches to observe cache-level pattern
- The cache-level vulnerability

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Cache-Le	vel Attacks				

$\mathsf{Prime} + \mathsf{Probe}$

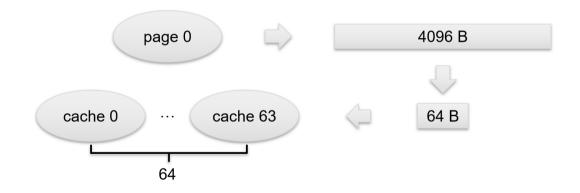
- Occupy specific cache set
- Ø Victim program is scheduled
- O Check which cache sets are still occupied

$\mathsf{Flush} + \mathsf{Reload}$

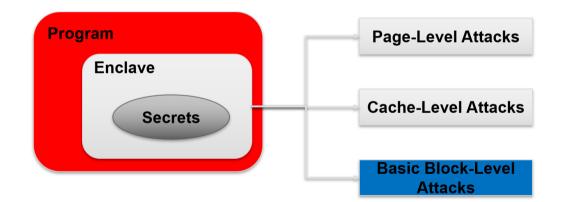
- Map binary into address space
- Is Flush a cache line from the cache
- O Victim program is scheduled
- Check Whether the flushed cache line has been reloaded

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Cache-Le	vel Attacks				

$\mathsf{Prime} + \mathsf{Probe}$


- Occupy specific cache set
- Ø Victim program is scheduled
- Oneck which cache sets are still occupied

$\mathsf{Flush} + \mathsf{Reload}$


- Map binary into address space
- Is Flush a cache line from the cache
- Victim program is scheduled
- Check Whether the flushed cache line has been reloaded

Not applicable: SGX do not share memory with external !

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Cache-Lev	el Attacks				

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Cache-Le	vel Attacks				

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Attack T	argets				

Program Inputs (e.g., Hunspell, Libjpeg, Freetype, Apache) Controlled-channel (S&P'15), Branch Shadowing (USENIX'17)

Encrypted Data (e.g., Padding Oracle attack & Bleichenbacher attack) Stacco (CCS'17)

Cryptography Key [e.g., RSA, DSA, AES] DATA (USENIX'18), MicroWalk (ACSAC'18), CacheD (USENIX'17)

Genomic sequences Software Grand Exposure(WOOT'17)

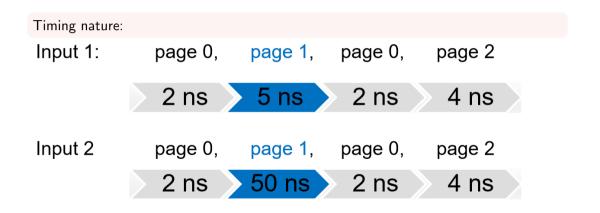
Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	••••	0000000000	00000	O	00
Motivation	S				

- The timing information is not thoroughly used
- No automatic tool to detect the side-channel attack in general

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	••••	0000000000	00000	O	00
Motivation	S				

• The timing information is not thoroughly used

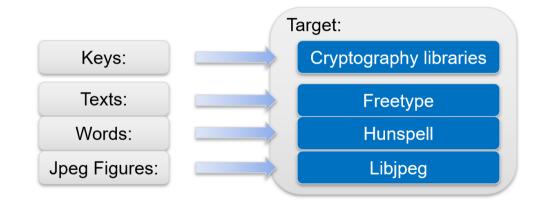
"An analysis of covert timing channels" John C. Wray 1992: Both storage nature (order) and timing nature are attributes of the channel, and a given channel may posses either or both.

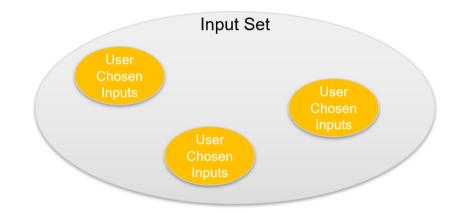

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	••••	0000000000	00000	O	00
Motivatio	ns				

Storage nature (order):

Input 1: page 0, page 1, page 0, page 2

Input 2 page 0, page 2, page 0, page 1

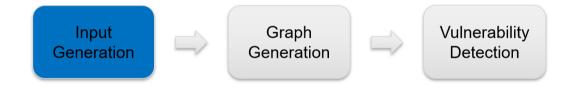

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	••••	0000000000	00000	O	00
Motivation	ns				


Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	○●○	0000000000	00000	O	00
Motivations					

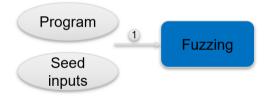
Input - execution mapping

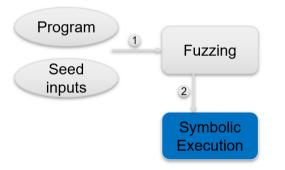
Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000		0000000000	00000	O	00
Motivations	S				

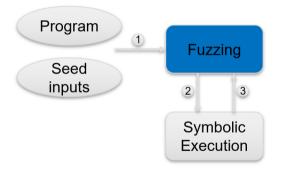
Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000		0000000000	00000	O	00
Motivation	S				

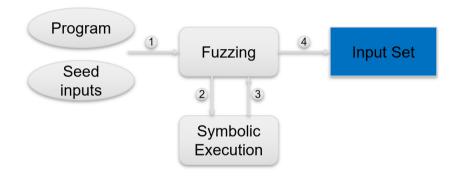

Introduction 000000	Motivations	ANABLEPS	Evaluation 00000	Related Work O	Summary 00
Challenges					

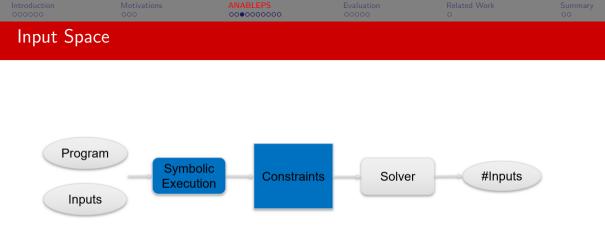
- O How to accurately measure the timing information
- What is the relationship between each input with the whole input set and other inputs


Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	• o o o o o o o o o o o o o o o o o o o	00000	O	00
ANABLEP	S				


Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	•000000000	00000	O	00
ANABLEPS	5				

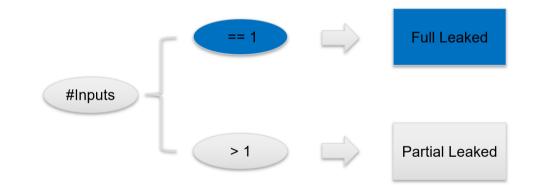

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary				
000000	000	000000000	00000	O	00				
Input Generation									

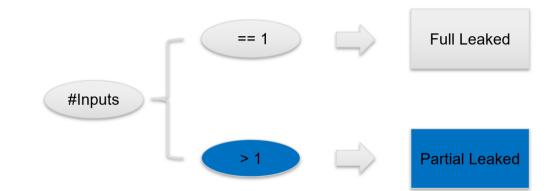

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000		00000	O	00
Input Ge	neration				



Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000		00000	O	00
Input Ge	neration				

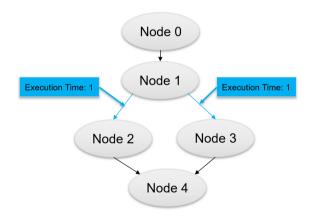
Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000		00000	O	00
Input Ge	neration				



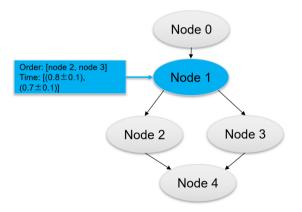

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000		00000	O	00
Input Space	ce				

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000		00000	O	00
Input Space	د				

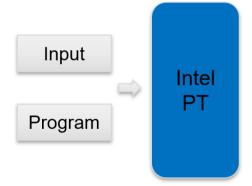
Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000		00000	O	00
Input Spa	се				



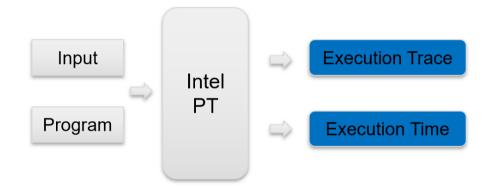
Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000		00000	O	00
ANABLEPS	5				


 Introduction
 Motivations
 ANABLEPS
 Evaluation
 Related Work
 Summary

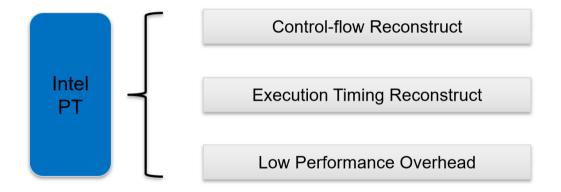
 Dynamic Control-Flow Graph


 Introduction
 Motivations
 ANABLEPS
 Evaluation
 Related Work
 Summary

 Extended Dynamic Control-Flow Graph (ED-CFG)


 Introduction
 Motivations
 ANABLEPS
 Evaluation
 Related Work
 Summary

 000000
 000
 000000
 000000
 000000
 000000



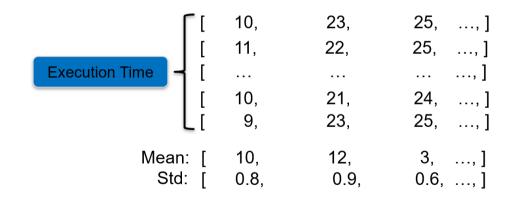
 Introduction
 Motivations
 ANABLEPS
 Evaluation
 Related Work
 Summary

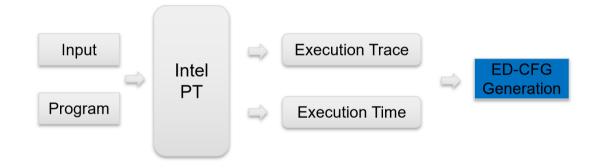
 000000
 000
 000000
 00000
 00000
 00000

Extended Dynamic Control-Flow Graph (ED-CFG) Generation

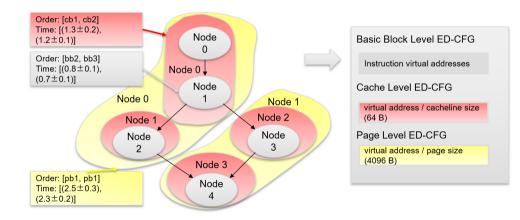
[0x400a08, 0x400cdb, 0x400ce0, ...]

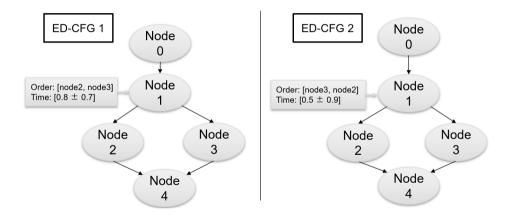
Execution Time

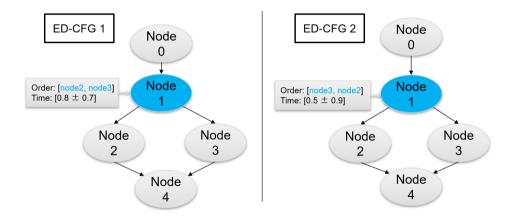

10,


23,

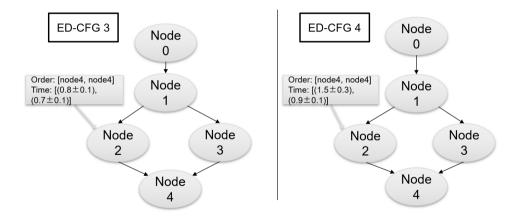
25, ...,]


17 / 28


Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	00000000000	00000	O	00

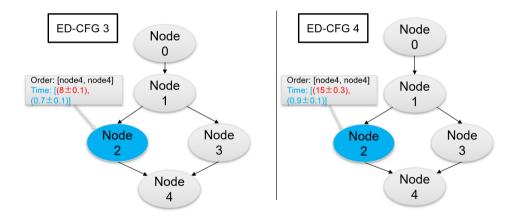

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000		00000	O	00
ANABLEPS	5				

The vulnerability detection - order-based

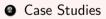

The vulnerability detection - order-based

 Introduction
 Motivations
 ANABLEPS
 Evaluation
 Related Work
 Summary

 000000
 000
 00000
 00000
 00000
 00000
 00000


The vulnerability detection - time-based

 Introduction
 Motivations
 ANABLEPS
 Evaluation
 Related Work
 Summary

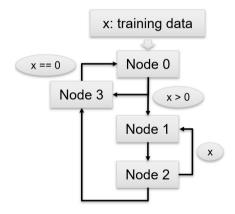

 000000
 000
 00000
 00000
 00000
 00000
 00000

The vulnerability detection - time-based

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000	•••••	O	00
Evaluation					

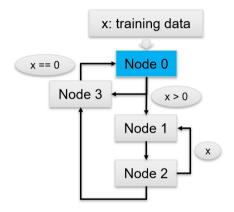
	Motivations	ANABLEPS	Evaluation	Related Work	Summary
	000	0000000000	00000	O	00
Detection F	Results				

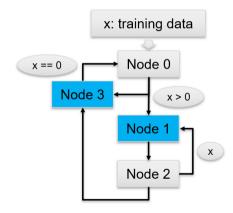
		C	Cache Level		Page Level
	Functionalities		#Order-Based		#Time-Based
Programs	Under Test	#Nodes	Vulnerable Nodes	#Nodes	Vulnerable Nodes
	dA	69	9	13	3
	SdA	109	12	22	3
Deep Learning	DBN	126	17	14	10
	RBM	68	8	13	7
	LogisticRegression	48	2	11	7
	Sort	31	12	11	0
gsl	Permutation	99	30	29	0
Hunspell	Spell checking	302	48	47	10
PNG	PNG Image Render	640	170	53	2
Freetype	Character Render	1054	263	82	13
Bio-rainbow	Bioinfo Clustering	214	16	24	1
QRcodegen	Generatee QR	176	32	15	3
Genometools	bed to gff3 convertion	1901	231	147	5

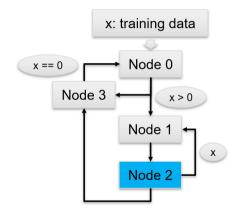

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000		00000	O	00
Evaluation					

- $\bullet \ \ \mathsf{Detection} \ \mathsf{Results}$
- ② Case Studies

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
			00000		

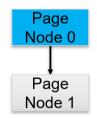

		0	Cache Level		Page Level
	Functionalities		#Order-Based		#Time-Based
Programs	Under Test	#Nodes	Vulnerable Nodes	#Nodes	Vulnerable Nodes
	dA	69	9	13	3
	SdA	109	12	22	3
Deep Learning	DBN	126	17	14	10
	RBM	68	8	13	7
	LogisticRegression	48	2	11	7
~~l	Sort	31	12	11	0
gsl	Permutation	99	30	29	0
Hunspell	Spell checking	302	48	47	10
PNG	PNG Image Render	640	170	53	2
Freetype	Character Render	1054	263	82	13
Bio-rainbow	Bioinfo Clustering	214	16	24	1
QRcodegen	Generatee QR	176	32	15	3
Genometools	bed to gff3 convertion	1901	231	147	5


```
int biomial*(int n, double p){
2
     for (i=0: i<n: i++){
3
       r = rand() / (RAND MAX + 1.0)
       if (r < p) c++:
6
7
8
    void dA get corrupted input(dA* this, int* x, int* tilde x, double p){
9
10
     int i:
11
      for (i=0; i<this->n visible; i++){
12
      if(x[i] == 0)
13
        tilde x[i] = 0;
14
       } else {
15
        tilde x[i] = binomial(x[i], p);
16
17
18 }
```

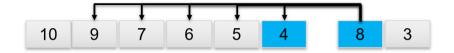


```
int biomial*(int n, double p){
2
      for (i=0: i<n: i++){
3
       r = rand() / (RAND MAX + 1.0)
       if (r < p) c++:
6
7
8
9
    void dA get corrupted input(dA* this, int* x, int* tilde x, double p){
10
      int i:
      for (i=0; i<this->n_visible; i++){
11
12
      if (x[i] == 0)
        tilde x[i] = 0:
13
14
       } else {
        tilde x[i] = binomial(x[i], p);
15
16
17
18 }
```

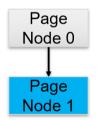
Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000		O	00

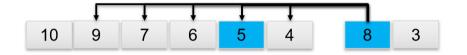
1 2 3 4 5 6	int biomial*(int n, double p){ for (i=0; i <n; i++){<br="">r = rand() (RAND_MAX + 1.0) if (r < p) c++;</n;>
	1
7	
8	}
<mark>9</mark> 10	<pre>void dA_get_corrupted_input(dA* this, int* x, int* tilde_x, double p){ int i;</pre>
11	for (i=0; i <this->n_visible; i++){</this->
12	$if(x[i] == 0){$
13	$tilde_x[i] = 0;$
14	} else {
15	tilde_x[i] = binomial(x[i], p);
16	}
17	1
18	
18	1

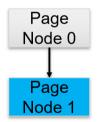

int biomial*(int n, double p){ 2 for (i=0; i<<mark>n</mark>; i++){ 3 $r = rand() / (RAND_MAX + 1.0)$ if (r < p) c++;8 void dA get corrupted input(dA* this, int* x, int* tilde x, double p){ 9 10 int i: for (i=0; i<this->n visible; i++){ 11 12 if (x[i] == 0)13 tilde x[i] = 0; 14 } else { 15 tilde_x[i] = binomial(x[i], p); 16 17 18 }

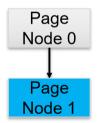
Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	000000000	00000	O	00

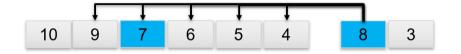

		0	Cache Level	Page Level	
	Functionalities		#Order-Based		#Time-Based
Programs	Under Test	#Nodes	Vulnerable Nodes	#Nodes	Vulnerable Nodes
	dA	69	9	13	3
	SdA	109	12	22	3
Deep Learning	DBN	126	17	14	10
	RBM	68	8	13	7
	LogisticRegression	48	2	11	7
	Sort	31	12	11	0
gsl	Permutation	99	30	29	0
Hunspell	Spell checking	302	48	47	10
PNG	PNG Image Render	640	170	53	2
Freetype	Character Render	1054	263	82	13
Bio-rainbow	Bioinfo Clustering	214	16	24	1
QRcodegen	Generatee QR	176	32	15	3
Genometools	bed to gff3 convertion	1901	231	147	5

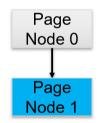

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	000000000	00000	O	00
~ ·					

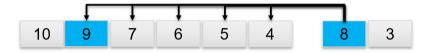


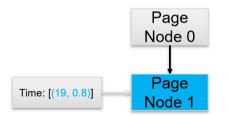

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000		O	00
<u> </u>					

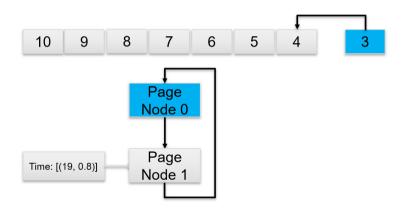

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	000000000	00000	O	00
<u> </u>					



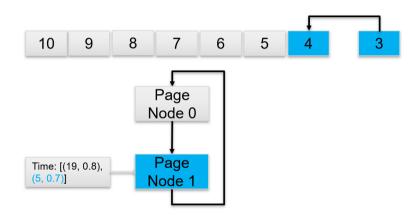

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	000000000	00000		00




Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	000000000	00000	O	00
<u> </u>					



Introduction 000000	Motivations 000	ANABLEPS	Evaluation	Related Work o	Summary 00
_					



Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000		O	00

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000	00000		00
Related V	Vork				

- Stacco: Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves.
 Yuan Xiao, Mengyuan Li, Sanchuan Cheng, and Yingian Zhang
- MicroWalk: A Framework for Finding Side Channels in Binaries. Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar
- DATA Differential Address Trace Analysis: Finding Address-based Side-Channels in Binaries.
 Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Mangard, and Georg Sigl
- CacheD: Identifying Cache-Based Timing Channels in Production Software. Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000	00000	O	• O
Conclusion					

- **New insights:** With the time information, attacker could get more secret data than only order information.
- New methods: Use the fuzzing and symbolic execution to generate inputs and quantify the leakage is a new attempt.
- New tools: ANABLEPS is an automatically program analysis tool, and will be released to the community. github.com/OSUSecLab/ANABLEPS

Introduction	Motivations	ANABLEPS	Evaluation	Related Work	Summary
000000	000	0000000000	00000	O	O
Thank You					

Time and Order: Towards Automatically Identifying Side-Channel Vulnerabilities in Enclave Binaries

Wubing Wang, Yinqian Zhang, and Zhiqiang Lin

Department of Computer Science and Engineering The Ohio State University

RAID 2019