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ABSTRACT

Nowadays, there are a massive number of embedded Internet-of-
Things (IoT) devices, each of which includes a microcontroller unit
(MCU) that can support numerous peripherals. To detect security
vulnerabilities of these embedded devices, there are a number of
emulation (or rehosting) frameworks that enable scalable dynamic
analysis by using only the device firmware code without involving
the real hardware. However, we show that using only the firmware
code for emulation is insufficient since there exists a special type
of hardware-defined property among the peripheral registers that
allows the bounded registers to be updated simultaneously without
CPU interventions, which is called the hidden memory mapping.
In this paper, we demonstrate that existing rehosting frameworks
such as P2IM and yEMU have incorrect execution paths as they fail
to properly handle hidden memory mapping during emulation. To
address this challenge, we propose the first framework AuToMar
that uses a differential hardware memory introspection approach
to automatically reveal hidden memory mappings among periph-
eral registers for faithful firmware emulation. We have developed
AuTOoMAP atop the UNICORN emulator and evaluated it with 41
embedded device firmware developed based on the Nordic MCU
and 9 real-world firmware evaluated by gEMU and P2IM on the two
STMicroelectronics MCUs. Among them, AuToMaP successfully
extracted 2,359 unique memory mappings in total which can be
shared through a knowledge base with the rehosting frameworks.
Moreover, by integrating AuToMap with yfEMU, AuToMAP is able
to identify and correct the path of the program that will not run on
the actual hardware.
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1 INTRODUCTION

Today, smart embedded devices (e.g., smart locks, smart lights, and
smart plugs) are ubiquitous, due to the rapid growth of the Internet-
of-Things (IoT). It is anticipated that the number of smart embedded
devices will reach 30.9 billion by 2025 [45]. For an embedded device,
it usually comes with a microcontroller unit (MCU), which can sense
and process input from the environment through a variety of periph-
erals according to the computation defined by the manufacturers.
There are various vendors for embedded devices, such as Nordic [12]
and STMicroelectronics [17], which provide integrated MCU hard-
ware and software development kits (SDKs) to facilitate third-party
developers (e.g., IoT device vendors) to produce embedded devices.
Fundamentally, an embedded device is controlled by the firmware
code programmed on its MCU, which inevitably contains vulner-
abilities just as other computer software does. To detect potential
vulnerabilities in these devices before they are exploited for mali-
cious purposes, many analysis techniques can be used to vet the
device firmware, such as static analysis (e.g., [27, 31, 40, 50, 53, 57])
and dynamic analysis (e.g., [39, 44, 51]). In particular, as fuzzing [56]
has become increasingly popular for efficient bug and vulnerability
hunting, enabling dynamic analysis of embedded device firmware
becomes the critical foundation. To increase the scalability of anal-
ysis, many dynamic analysis approaches execute the firmware
without actual hardware, which is known as emulation or rehost-
ing [32]. However, there are many challenges in enabling firmware
emulation due to the proprietary and sophisticated dependencies
of hardware, and an emulation framework must properly model
specific hardware, especially the peripherals. Otherwise, the pro-
gram is likely to stall infinitely or enter invalid states. As a result,
many emulation frameworks have been proposed to tackle this
challenge [30, 32, 33, 37, 46, 60]. For example, yEMU [60] proposes
an invalidity-guided symbolic execution for peripheral modeling.
While existing rehosting frameworks can certainly be adopted
to emulate an MCU embedded device firmware, we find that they
still fall short in executing incorrect program paths that should
never be executed on actual hardware. Specifically, we notice a
hidden hardware property that allows the registers in different (or
the same) peripherals to be updated simultaneously without CPU
intervention [3], and we call it hidden memory mapping. In other
words, when the value of a certain peripheral register changes,
many other peripheral registers are also updated automatically.
Without properly handling hidden memory mappings, an emula-
tor is likely to model the peripherals in the firmware incorrectly,
which can further lead to false program states due to executing
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wrong program paths. In this paper, we show that even state-of-
the-art rehosting frameworks such as P2IM [33] and ygEMU [60]
have incorrect peripheral modeling results as they do not take hid-
den memory mapping into consideration. Fundamentally, as such
hidden memory mapping is completely defined by hardware and is
not visible from the software’s (i.e., firmware) perspective, using
just the firmware code for emulation is not sufficient.

However, to the best of our knowledge, none of the prior works
notices hidden memory mapping, and their proposed techniques
cannot handle this property. Therefore, in this paper, we propose the
first framework, AUTOMAP, to automatically reveal hidden memory
mappings among peripheral registers for faithful firmware emu-
lation. It is not trivial to design and implement AuToMAP and we
need to address three main challenges. First, hidden memory map-
pings do not require CPU intervention, and thus cannot be directly
inferred from the device firmware code. Second, hidden memory
mappings may have sophisticated dependencies on specific periph-
eral registers, and it will lead to incorrect mapping results if those
dependencies are not properly handled in advance. For instance, we
discover that some mappings will be enabled only when another (or
some other) peripheral register is set to be a specific value. Third,
hidden memory mapping has bit-level granularity, which means
updating a single bit of a peripheral register can affect other regis-
ters. Therefore, acquiring the whole memory mapping knowledge
base takes a significant amount of time.

We have overcome the aforementioned challenges and imple-
mented AUTOMAP on top of the UNICORN emulator [48]. First, to
trigger hidden memory mapping, we must rely on the correspond-
ing MCU hardware, as it is not visible from the firmware code.
Consequently, AuTOMAP uses a differential hardware introspec-
tion approach to extract the hidden memory mappings. Second, to
handle sophisticated mapping dependencies, we replicate the previ-
ously executed peripheral register writes in the firmware to reliably
trigger memory mappings, as we observe that the dependencies
will be naturally handled by the firmware code logic. Finally, we
propose an on-demand approach that only resolves the memory
mappings of the specific register values only when needed, to avoid
revealing a massive number of hidden memory mappings that are
unnecessary for emulation. The resolved memory mappings will
be stored in a knowledge base, which can be reused to emulate
firmware on the same MCU hardware.

To evaluate AuToMAP, we utilize 50 MCU-based firmware from
three different vendors to show how well AuTOMAP can discover
hidden memory mappings, including 41 example firmware from
the NRF52832 MCU and 9 real-world firmware from P2IM and
HEMU’s dataset [33, 60] which are developed for two other MCUs,
STM32F103 and STM32F429. The results of our experiment show
that AUTOMAP can extract 2,359 unique memory mappings (47
mappings per firmware on average) in total among these firmware.
Moreover, we show that the knowledge base method can signifi-
cantly decrease the time up to 97.01% to model memory mappings
in AuToMAP. Furthermore, we demonstrate a use case by integrat-
ing AuToMaPr to pEMU. With AutoMap, yEMU can execute more
basic blocks and even previously uncovered blocks (up to 15.6%)
on all 5 firmware tested than ygEMU alone.

Contributions. Our paper makes the following contributions.

¢ Novel Findings. We discover special bindings between pe-
ripheral registers called hidden memory mapping. We show
that state-of-the-art rehosting frameworks would miss br-
anches or execute invalid branches without properly han-
dling hidden memory mappings.
e New Tool. We propose AuUTOMAP, the first tool to reveal
hidden memory mapping of peripheral registers on-demand
for accurate firmware emulation.
Empirical Evaluation. We have evaluated AuToMaP with
41 example and 9 real-world firmware, where it extracted
2,359 unique hidden memory mappings. We also show that
the knowledge base can improve AUTOMAP’s efficiency by
up to 97.01%. We demonstrate a use case by integrating
AuToMapP to pEMU and it is capable of executing many
uncovered basic blocks (up to 15.6%) than pEMU alone.

2 BACKGROUND

2.1 Peripherals and Their Internals

MCU embedded devices have integrated a great number of periph-
erals, such as power, universal asynchronous receiver/transmitter
(UART), and general purpose input and output (GPIO), each of
which is responsible for a specific task. For instance, the power
peripheral supports global system ON and OFF modes. Each pe-
ripheral plays an important role during firmware execution, as
the firmware frequently examines the peripheral register values
at run-time to check their status. Each peripheral occupies a small
memory region and consists of hundreds or thousands of peripheral
registers, which have different roles such as enabling and disabling
interrupts. At a high level, these peripherals can be classified into
vendor-specific and platform-specific peripherals, and we explain
them in detail as follows.

Vendor-specific Peripherals. The memory layout of MCU is spec-
ified by its vendor, and diverse vendor-specific peripherals reside in
a memory region. For instance, in the Nordic NRF52832 MCU [8],
every peripheral locates in a memory region from 0x40000000 to
0x60000000 and each peripheral occupies 4,096 bytes and includes
1,024 registers at most. A peripheral register has 32 bits, and each
bit has its specific usage. For example, according to the Nordic
MCU specification [6], the register enabling interrupt of the clock
peripheral uses only its first four bits, while the register indicating
the starting status of the clock uses only the first bit. In addition,
each peripheral register has a unique initial value (e.g., NRF52832
PIN_CNF [9]), and only a few of them have non-zero initial values.

Platform-specific Peripherals. In addition to the vendor-specific
peripherals, there are also many other platform-specific peripherals
such as Instrumentation Trace Macrocell (ITM) and Data Watch-
point and Trace (DWT). ITM supports PRINTF style debugging tools
to analyze its operating system. According to the ARM Cortex-M4
technical reference manual [2], these peripherals locate in a region
ranging from 0xe0000000 to 0xe@100000, which work similarly to
the vendor-specific peripherals mentioned before.

Peripheral internals. To illustrate how peripherals work and
how they communicate with each other, we present a high-level
architecture and the peripheral internals in Figure 1. Specifically,
a peripheral has a peripheral core to execute its own task and
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Figure 1: Peripheral channel interconnected between pe-
ripherals and peripheral’s internal process
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update its internal registers, which is done independently with-
out CPU intervention. Such a process is called an autonomous
peripheral operation [16]. Meanwhile, as shown in Figure 1, each
peripheral core receives and handles tasks from its own as well as
other peripherals, and emits events for inter-peripheral communi-
cation. In particular, such inter-peripheral communication is called
distributed programmable peripheral interconnect (DPPI) in the
Nordic MCU [3]. Through this communication channel, peripherals
can send and receive tasks and events independently. The channel
configuration can be defined by the developers.

2.2 State-of-the-art MCU Firmware Rehosting
Frameworks

As mentioned in §2.1, each peripheral plays an essential role in an
embedded device. Unlike traditional devices running on general-
purpose OS such as Linux, MCU-based embedded devices usually
run on a proprietary tiny OS or without OS (i.e., bare metal devices),
and need to interact with a great number of peripherals. There-
fore, to correctly emulate an MCU firmware, peripheral modeling
is mandatory, which is essential to properly handle the accesses
(e.g., read and write) to the peripheral registers in the firmware
code. However, this is fundamentally challenging due to the ab-
sence of hardware, and a rehosting framework must properly infer
and assign a value to a peripheral register when it is accessed by
the firmware code.

In the following, we briefly describe 7 state-of-the-art (SOTA)
rehosting frameworks for MCU-based firmware. At the high-level,
these frameworks share a common objective, as they attempt to
model the MCU peripherals (i.e., infer the value of a peripheral reg-
ister) to enable hardware-independent emulation. To address the
challenge of peripheral modeling, these frameworks propose differ-
ent approaches, and we summarize them in Table 1, which presents
their corresponding main techniques and supportive techniques,
as well as the termination criteria. While there are other firmware
rehosting frameworks such as FIRMAE [39], they are designed for
non-MCU-based firmware (e.g., those running on general-purpose
OSes). They attempt to tackle the peripheral modeling challenge
by using OS-specific functions (e.g., syscall) and system logs to
handle peripheral accesses, which are unavailable in MCU-based
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HEMU [60] X v X X x v X X| X X 4
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JETSET [37] X v X X v X X x| x Vv v
FuzzwARE [52] L4 X X X x X vV |Xx X X

Table 1: Summary in SOTA MCU-based rehosting frame-
works. Each column presents a technique involved.

firmware. Hence, these non-MCU-based firmware rehosting frame-
works fall out of our scope. In the following, we describe each
framework in more detail.

P2IM. The key idea of P2IM [33] is to infer the values of peripheral
registers based on their unique usage patterns. Specifically, it classi-
fies peripheral registers into four types: 1) Control register, 2) Status
register, 3) Control-status register, and 4) Data register. For example,
a control register follows a read-modify-write pattern. Based on the
classification, P2IM handles each type of peripheral register accord-
ingly. In particular, for a status register, P2IM performs explorative
executions to test different bits on the status register and chooses
the one that can execute further branches. If the execution correctly
returns to the caller with the assigned status register value, P2IM
terminates the explorative execution. For a control register, P2IM
uses directly its previous value.

DICE. In terms of peripheral register modeling, DICE [46] uses the
same strategy as P2IM. Additionally, DICE implements a process
related to Direct Memory Access (DMA) process on top of P2IM.

Laelaps. As shown in Table 1, LAELAPs [25] uses symbolic execu-
tion with path selection. To be more specific, it performs symbolic
execution on every peripheral register access point. For efficient
path selection, LAELAPS defines standards, such as avoiding infinite
loops and prioritizing new paths, and uses the Context Preserving
Scanning Algorithm (CPSA) to find the most promising path. Based
on the selected path, LAELAPS carries out symbolic execution to
infer the value. To mitigate path explosions, LAELAPS only considers
a few next basic blocks during symbolic execution.

HEMU. Compared to P2IM and LaeLaps, yfEMU [60] performs an
invalidity-guided symbolic execution as presented in Table 1. Specif-
ically, pEMU defines different types of invalidity, such as infinite
loops and invalid memory access. Moreover, tEMU uses different
caching strategies, such as storage model and replay-based match-
ing, based on the characteristics of peripheral register usage in
firmware. For example, the storage model is similar to the way
of handling a control register in P2IM. When the current caching
strategy does not work, yEMU uses other strategies.

Next, it performs symbolic execution on a peripheral register
access point (i.e. a peripheral register read) to execute a new branch
depending on the selected caching strategy. If it does not cause
invalidity, it saves the result of symbolic execution and continues
to emulate the firmware. Otherwise, it executes different branches
by applying other values from symbolic execution.



HALucinator. Unlike the aforementioned frameworks, HALucI-
NATOR [30] replaces Hardware Abstract Layer (HAL) functions with
their implementation since access to a peripheral register normally
occurs in HAL functions, which are software libraries to handle
hardware operations. Therefore, HALUCINATOR first scans and iden-
tifies the HAL library functions from a firmware image through
the library matching algorithm. Next, it replaces all HAL library
functions with self-programmed functions.

Jetset. JETSET [37] uses symbolic execution with path selection un-
til it reaches a specified destination address. First, JETSET constructs
a control flow graph (CFG) from an entry point to the destination
address. During emulation, it adds symbols to peripheral registers
read by the firmware. Since there could be multiple paths to the
destination address, JETSET uses the Tabu search [34] algorithm
and context-sensitive distance to choose an optimal path. When the
path is determined, JETSET performs symbolic execution to resolve
all constraints on the path and infers peripheral behavior.

Fuzzware. FuzzwARE [52] uses locally-scoped dynamic symbolic
execution to infer peripheral values that are meaningful to the
firmware logic to build access models of a peripheral register. How-
ever, compared with other frameworks, it also attempts to decrease
the overhead of input as much as possible by analyzing bit-usage.
Therefore, it utilizes the access modeling approach and efficiently
performs fuzzing tests. Since it does not prioritize specific types of
program paths (e.g., removing paths that are not of interest), it can
execute every reachable basic block based on the firmware logic.

Summary. While the techniques utilized in these frameworks are
indeed useful, there are two fundamental limitations. First, they
rely on heuristics and empirical observations to infer the peripheral
register values (e.g., the pattern-based inference implemented in
P2IM), which may assign incorrect values to peripheral registers.
Second, many approaches appear to be biased and may not faithfully
replicate the actual firmware execution traces, such as the invalidity-
guided approach demonstrated by pEMU. Consequently, these
frameworks may execute program branches that should never be ex-
ecuted in real hardware (i.e., false positives of executed basic blocks).

3 THE HIDDEN MEMORY MAPPING

In this section, we first describe cases that two SOTA rehosting
frameworks, P2IM and yEMU, model a peripheral register incor-
rectly (§3.1). Then, we describe and illustrate the root cause of
incorrect modeling, and hidden memory mapping among periph-
eral registers (§3.2).

3.1 The Failure Cases from Existing Rehosting
Frameworks

In §2.2, we describe how each existing rehosting framework ac-
tually works and its limitations. To more concretely explain how
these frameworks produce incorrect results, we present two real-
world firmware examples where P2IM and pEMU fail to correctly
model a peripheral register, respectively in Figure 2 and Figure 3.
The fundamental reason is that without the corresponding hard-
ware, P2IM and pEMU will lead to execution on incorrect program
branches that should never be executed in real hardware, as they

0x40021004 bit-level binding info

0x40021004 bit information
0x40021004 = 0x380402;
0, 1 bit - System clock switch

0 0 HSI clock selected

1 0 HSE clock selected

0 1 PLL clock selected (Expected result)

If ((DAT_0x40021004 & 0xc) == 8) {
/* Correct branch */
ClockFreq = 4000000 * factor;

}

else {

. 2, 3 bit - System clock switch status
) o 00 HSI system clock used

1 0 HSE system clock used
Return ClockFreq;

0 1 PLL system clock used (Expected result)
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Figure 2: Simplified Real-world firmware code snippet
where P2IM models a peripheral register in a wrong way.

fail to reflect an actual change of certain peripheral register. In the
following, we describe these cases in detail.

P2IM. Figure 2 shows the source code snippet in a real-world
firmware evaluated by P2IM, which updates a ClockFreq variable
through a peripheral register located at 9x40021004 in the mem-
ory. Specifically, line 1 allocates 9x380402 to the register located in
0x40021004. Next, it performs an and operation on the peripheral
register value and a constant value @xc. Depending on the result,
the program sets the clock frequency differently. When firmware
runs on the corresponding hardware, the if condition is satisfied
as the resulted value is 8 after the and operation, which further
updates ClockFreq as 4000000 times factor.

However, to our surprise, we observe that P2IM emulates the
firmware into the wrong branch for this piece of code (i.e., the else
branch starting at line 7), and we further explain it in detail. Recall
in §2.2, P2IM determines the value of a peripheral register based on
its usage pattern. As in the example, P2IM classifies the peripheral
register located at 9x40021004 as a control-status register. Hence, it
directly uses @x380402 as a value of the peripheral register, which
causes the program to execute the incorrect branch (i.e., lines 7-9)
since the if condition is not satisfied.

Through our observation, the reason for this incorrect emulation
is that in the real hardware the value of the register at 9x40021004
becomes @x38040c after being assigned a value of 0x380402 at line
1, which is due to an automatic update of the value by the hardware
(not visible in the code). Such an automatic allocation occurs due to
the property of each bit in the peripheral described in Figure 2. As
P2IM directly uses the assigned value at line 1 (0x380402) since the
value does not violate the P2IM rules, it fails to set the register to the
desired value, causing the program to execute the wrong branch.

HEMU. Similarly, Figure 3 presents the code snippet of a real-world
firmware from yEMU’s dataset, and the bit-level information of a
register at 9x40023800. At line 1, the program stores @x1000000 to
the register located at 0x40023800. Next, it performs an and opera-
tion on the register and a constant value of 0x2000000. It returns a
different value depending on the result. As in the actual hardware,
the program executes the else branch and returns HAL_OK.
However, similar to P2IM, yEMU emulates the firmware on the
wrong branch (i.e., line 4). When the program reads the peripheral
register at 0x40023800, yEMU performs symbolic execution to
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/* part of function named SystemClock_Config */

HAL_RCC_ClockConfig(); /* return value not checked */
Freq = HAL_RCC_GetHCLKFreq() ;

/* part of function named HAL_RCC_ClockConfig */
0x40023800 bit information
1 0x40023800 = 0x1000000;
2 24 bit - Main PLL enable
3 If ((DAT_0x40023800 & 0x2000000) == 0) { 0 PLL OFF
4 /* Wrong branch uEmu executes*/ 1 PLL ON (Expected result)
5: Return HAL_ERROR;
6 } 25 bit - Main PLL clock ready flag
7 /* Correct branch */ 0 PLL unlocked
8 Freq = HAL_RCC_GetSysClockFreq() ; 1 PLL locked (Expected result)
9: Return HAL_OK;

Figure 3: Simplified Real-world firmware code snippet
where pEMU models a peripheral register in a wrong way.

infer the value. yEMU assigns 0x@ to the peripheral register and
executes the incorrect if branch. Recall in §2.2 that yfEMU uses
an invalidity-guided approach for value inference. As the assigned
value 0x0@ does not cause an invalid state (because the caller function
SystemClock_Config does not check the return value from its
callee HAL_RCC_ClockConfig), uEMU directly assigns value and
thus fails to execute expected basic blocks.

Similar to the example in Figure 2, the reason for this incorrect
modeling is that when a value 0x1000000 is assigned to the register
at 0x40023800 (i.e., line 1), the value becomes 0x3000000 due to
an automatic update of the hardware. The reason is the property of
each bit in the register described in Figure 3.

3.2 Understanding the Hidden Memory
Mapping

As described above, the root cause of the two failure cases is the
hidden value update automatically performed by the MCU, which
occurs among the peripheral register bits that are semantically
related to each other. For instance, from Figure 2, the 0 and 1st
bits of the register at 9x40021004 are related to the 2nd and 3rd
bits, respectively. In other words, the change of a peripheral reg-
ister can alter one or multiple peripheral registers (including the
changed register itself) automatically without CPU intervention,
and we define such a hardware property as hidden memory map-
ping. Through our observation of the firmware execution, we find
that hidden memory mappings can be classified into two types: (1)
intra-peripheral memory mapping (i.e., all the mapped registers are
within the same peripheral such as the one in Figure 2 and Figure 3)
and (2) inter-peripheral memory mapping (i.e., the mapped registers
reside in other peripherals).

Rationale of Memory Mapping. Hidden memory mapping ex-
ists because of the special hardware design of embedded device
peripherals. Recall in §2.1, peripherals are interconnected through
a peripheral channel (e.g., the PPIBus of Nordic SoCs [3]), which
allows them to transmit tasks and events to one another without the
intervention of CPUs. As a result, developers can make use of such a
feature to improve throughput and lower latency to save the energy
of devices. Moreover, many peripheral registers have semantic-level

relationships so their values should be updated simultaneously. For
instance, an ENABLE register and a DISABLE register within a periph-
eral have exactly opposite semantics, and thus when one of their
values gets changed, the other should be updated simultaneously
as well through the memory mapping process [3].

4 OVERVIEW OF AUTOMAP
4.1 Objective

As illustrated in §3.1, existing firmware rehosting frameworks have
incorrect peripheral modeling results due to hidden memory map-
pings. Therefore, in this paper, we present the first framework,
namely AuToMapP, which can be an extension of any of the ex-
isting emulators (e.g., P2IM, and pgEMU) to automatically reveal
hidden memory mappings to support faithful firmware emulation.
Specifically, given an MCU-based firmware with the corresponding
hardware, AuTOMAP is able to extract the knowledge of hidden
memory mapping of peripheral registers, which can be used by the
emulators to correctly emulate the firmware. AUTOMAP provides a
memory mapping knowledge base to store inferred mapping infor-
mation, which can be directly applied to the emulators if applicable
(e.g., when emulating firmware from an MCU with existing map-
ping knowledge). Otherwise, the values of peripheral registers need
to be inferred for emulation.

4.2 Challenges and Solutions

In the following, we detail the challenges we encountered when
designing AuToMAP, and the corresponding solutions.

Challenge(C) 1. Reliably Triggering Memory Mapping. As de-
scribed in §3.2, hidden memory mapping is not visible from the
firmware code. As a result, using just the firmware code is im-
possible to infer the memory mappings, and thus there are only
two ways. First, we can obtain a few memory mappings from the
vendor’s specifications (e.g., [11, 20]). However, after exhaustive
investigation, we find that the vendors only provide a very limited
number of hidden memory mappings, which are far from complete
and not sufficient for firmware emulation. Alternatively, the other
way is to use the corresponding MCU hardware to obtain the mem-
ory mappings. However, as hidden memory mappings are highly
diversified due to different hardware implementations, we need a
systematic solution to trigger the memory mapping.

Solution(S) 1. Differential Hardware Memory Introspection.
To address the challenge, we design a hardware-in-the-loop ap-
proach to extract memory mapping knowledge by using differen-
tial hardware memory introspection. Specifically, AuUToMAP re-
quires the corresponding hardware MCU to reliably trigger hidden
memory mappings, in which it consecutively introspects the hard-
ware memory before and after writing a specific peripheral register.
Therefore, the changes in the peripheral memory region reflect the
corresponding altered registers and their values, which are used to
construct the hidden memory mapping relationship.

C2. Handling Mutual Dependencies to Trigger Memory Map-
pings. Although with S1 we can trigger hidden memory mappings,
we still need to handle sophisticated dependencies among periph-
eral registers. To be more specific, we discover that a few mappings
will be enabled only when another specific peripheral register is



set to be the desired value. For instance, to trigger the memory
mapping properly on the TASKS_HFCLKSTOP register, we must set
another register TASKS_HFCLKSTART to a proper value in advance.
Without satisfying the dependency, the hidden memory mapping
on TASKS_HFCLKSTOP will not be triggered, which further leads to
incorrect or incomplete results. As a result, we also need to satisfy
their dependencies in advance by assigning proper values to the de-
pendent registers. However, there are neither vendor specifications
nor publicly available information to infer them. Meanwhile, a brute-
force approach (i.e., traversing all possible registers in the memory)
is unrealistic due to the huge size of the peripheral region (e.g.,
the peripheral region size is 020000000 in Nordic NRF52832 [10]),
which makes it extremely difficult to locate the exact dependent
registers and the desired values for assignment.

S$2. Memory Context Preparation. Interestingly, we discover
that these dependencies are naturally handled by the firmware
code logic, which can be leveraged to resolve the dependencies to
trigger the memory mappings as needed. Specifically, for a spe-
cific peripheral register write to be executed in the firmware, its
dependent registers should have already been initialized by the
previously executed memory write instructions. Therefore, to re-
solve the dependencies of a peripheral register, we replicate all the
executed peripheral register writes before it, which represents a
specific memory context.

C3. Efficiently Extracting Memory Mapping. The third chal-
lenge we need to address is to efficiently extract hidden memory
mappings, which is challenging for two reasons. First, as mentioned
in C2, the peripheral memory space is extremely large, and thus
it is time-consuming to traverse the whole space to get all hidden
memory mappings. Second, as illustrated in §3.1, hidden memory
mapping has bit-level granularity as each bit of a peripheral regis-
ter may have mappings with the bits of other peripheral registers.
More specifically, since the size of a peripheral register is 4 bytes,
there are 232 cases that can be written to the peripheral register.
Therefore, we must efficiently extract the hidden memory map-
pings. Although we can use the memory layout from the vendor’s
specifications [10] to narrow down the search space, this is not
sufficient and we still need a more efficient solution.

$3. On-demand Memory Mapping Inference. We use an on-
demand memory mapping inference approach to address this chal-
lenge, as we find that not all hidden memory mappings are neces-
sary for firmware emulation. Therefore, to increase the efficiency,
AuTOMAP only infers the hidden memory mapping only when
it is needed. For example, when AUTOMAP encounters a specific
peripheral register write, it only infers the hidden memory map-
ping triggered by this specific write, and uses the aforementioned
differential hardware memory introspection to extract the hidden
memory mappings. Additionally, to minimize hardware query op-
erations, we use a knowledge base to store the extracted memory
mapping for future use.

4.3 Framework Overview

As mentioned before, AUTOMAP can be an extension of any SOTA
firmware emulation framework, and we present the high-level ar-
chitecture of AuToMar in Figure 4. To integrate AUTOMAP into
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On-demand Memory Applying Memory

O

Mapping Inference Mapping
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Figure 4: Overview of AuTOMAP.

an emulator, we need to first modify the emulator for its periph-
eral modeling logic, and also develop the hardware interaction
components for hidden memory mapping extraction. In the follow-
ing, we briefly explain the necessary emulation modification and
AuTOMAP’s components.

Emulator Modification. We modify the logic of reading and writ-
ing a peripheral register from an emulator. Whenever reading an
uninitialized peripheral register takes place, the emulator executes
AuTOMAP to extract the initial value. In addition, whenever writing
a value to a peripheral register occurs, the emulator checks the
knowledge base. If the knowledge of the memory mapping of this
write operation already exists in the knowledge base, the memory
mapping is applied to update other affected registers. Otherwise, the
emulator halts and invokes AUTOMAP to extract the hidden memory
mapping. After the peripheral modeling is finished, the emulator
continues to emulate firmware until new peripheral access occurs.

AuTOMAP. There are two components of AuUTOMAP. First, to pre-
pare the memory context before extracting hidden memory map-
pings, it needs to replicate each peripheral register written in the
history, which is recorded during emulation. Second, with a given
peripheral register and a corresponding value to be written, Au-
TOMAP performs differential hardware memory introspection to
extract the hidden memory mappings, and the results will be stored
in a knowledge base.

4.4 Scope and Assumptions

As AuToMAP uses a hardware-in-the-loop approach, we assume
that the corresponding hardware (e.g., a Nordic NRF52832 SoC) is
provided for the given firmware. In addition, the hardware should
have an exposed debugging service (e.g., openocd or J link, or st link
to connect to GDB) that allows introspection of the device memory
so that AUTOMAP can interact with it. For a proof-of-concept, in
this work, we target three specific MCUs, Nordic NRF52832 [8],
STMicroelectronics STM32F103 [19] and STM32F429 [21], which
have interfaces such as J-link [15] and st-link [18] for hardware
access. For every other MCUs evaluated by pEMU, they support
J-TAG debug [4, 5, 14] or on-chip debug [13]. We also assume the



memory layout of the hardware is known, since they can be easily
found from the vendor specifications (e.g., [10]).

5 DETAILED DESIGN

In this section, we present the detailed design of AuToMaPp, includ-
ing the necessary emulator modification in §5.1 and AuToOMAP’s
unique components in §5.2.

5.1 Emulator Modification

On-demand Memory Mapping Inference. Recall in §4.2, Au-
TOMAP uses an on-demand approach to reveal hidden memory
mapping only when it is necessary for emulation. At a high-level,
this approach consists of three steps. First, the emulator handles the
peripheral register access (e.g., read and write) during firmware em-
ulation. Next, the emulator invokes AUTOMAP to query the memory
mapping knowledge from a common knowledge base shared among
firmware of the same MCU. Finally, when the memory mapping is
returned from AuTOMAP, the emulator needs to further prepare the
memory context to handle mutual dependencies. In the following,
we detail each of these steps.

e Peripheral Register Access Handling. Before the emulator
starts executing the firmware, it first initializes all the previously
modeled registers from the knowledge base. When the initializa-
tion is finished, the emulator starts executing firmware. During
the emulation, it needs to handle the access to peripheral regis-
ters within the peripheral regions (defined by the vendor spec-
ifications [10]). In summary, there are two types of peripheral
register operations during the execution: 1) Reading a peripheral
register, 2) Writing a value to a peripheral register. Reading a
peripheral register (e.g., 1dr-related instructions) is to fetch the
value from the peripheral register’s address and store it into a
register (e.g., R0, R1 in ARM assembly code). In contrast, writing
a peripheral register (e.g., str-related instructions) involves both
the address of a peripheral register and a value written to the
register. When the emulator handles peripheral register accesses,
it queries the knowledge base.

Memory Mapping Knowledge Base Query. When the emu-
lator encounters a read operation for an uninitialized peripheral
register, it executes AuUTOMAP with the address of the target
register to extract an initial value from the hardware, as a pe-
ripheral register may be assigned a non-zero initial value by
default (we will describe later how AuTOMAP can get the initial
value in §5.2). An uninitialized peripheral register (with a zero
value) means that the register may have a default zero value,
or it has not been modeled by AuTOMAP yet. In this case, it is
not necessary to query the knowledge base. Next, the obtained
initial value is assigned to the register in the emulator.

In contrast to a read operation, whenever the emulator en-
counters a peripheral register write, it first queries the knowledge
base where the hidden memory mapping knowledge for the pe-
ripheral register may exist. Hence, it queries the knowledge base
for this specific write operation, based on the peripheral regis-
ter address and the value to be written. Note that the hidden
memory mapping is hardware-specific and all firmware running
on the same MCU share the same set of peripherals. Therefore,

a specific peripheral register write always results in the same
outcome for different firmware running on the same MCU (i.e.,
the hidden memory mappings are identical). Given a set of the
peripheral register and value, if the memory mapping can be
found from the knowledge base, the emulator directly applies the
mapping to update the corresponding affected registers. Other-
wise, it further invokes AUTOMAP to extract the hidden memory
mapping for this register write. As a result, the above memory
mapping knowledge base query can be formulated as:

R:Q(AT) = AutoMap(A), YV : KB(A,V,T) =0

KB(A,V,T), KB(A,V,T) # 0
AutoMap(A, V), KB(AV,T)=0

where A, V, T, and Q respectively denote the address of a periph-
eral register, the value to be written to A, the MCU model, and
query function. In addition, R and W denote different queries for
peripheral register read and write, as a peripheral register read
only requires to query the value of the register while a register
write requires to query the memory mapping when the register
A is written by V.

W:Q(A,V,T)={

Memory Context Collection. As mentioned in §4.2, AuToMAP
uses memory context to resolve the complicated dependencies
among peripheral registers to trigger memory mappings. There-
fore, before invoking AUTOMAP to reveal the hidden memory
mapping, the emulator needs to collect the memory context
which will be used later in AuToMAaP. To collect memory con-
text of the target register, the emulator saves every peripheral
register write operation during the operation. Therefore, when a
peripheral register write occurs, the emulator stores the address
of a peripheral register and the corresponding value including
repeated writing as well.

5.2 AuTtoMAP

In this section, we describe the components of AuUTOMAP in detail.
As hidden memory mapping cannot be inferred from the software’s
perspective, the objective of AUTOMAP is to interact with the corre-
sponding hardware to extract the hidden memory mapping to model
the peripheral for emulation. At a high level, AUTOMAP receives
a peripheral register and a value written to the peripheral register
from the emulator when the peripheral register write operation oc-
curs. It first prepares the memory context for mutual peripheral de-
pendencies, and then uses differential hardware memory introspec-
tion to extract the hidden memory mapping. Additionally, when the
emulator loads a value from an uninitialized peripheral register, it
needs to get its initial value from the hardware since the initial value
may not be zero and can affect the program flow. As described in Al-
gorithm 1, there are three functions. The function BUILD_MEMMAP
(line 15) is called by the emulator and it executes two other func-
tions, PREPARE_DEPENDENCY and MEM_INTROSPECTION (lines 17
and 24). Specifically, BurLb_MEMMAP describes how AuToMap mod-
els a peripheral register, which takes the history of register writings
(prev_writes), a peripheral register address (peri_addr), and the
value written to the peripheral register (value) as input, and outputs
the memory mapping knowledge for this particular peripheral reg-
ister. In the following, we further describe this algorithm in detail.



Algorithm 1 Modeling memory mapping

1: Input: prev_writes: history of register writes; peri_addr: Address of peripheral
register; value: A value written to the peripheral register
2: Output: knowledge: memory mapping knowledge

3: procedure PREPARE_DEPENDENCY(prev_writes)

4 peri_reg_addrs, values < prev_writes

5: idx «—0

6: while idx < LEN(peri_reg_addrs) do

7: MEM_WRITE(values[idx], peri_reg_addrs[idx])
8 idx++

9 execute CPU cycles (# of instructions)

10: procedure MEM_INTROSPECTION(prev_mem, next_mem)
11: idx <0

12: while idx < LEN(prev_mem) do
13: if prev_memlidx : idx + 4] != next_mem|idx : idx + 4] then
14: knowledge < compared reg addr & next_mem/[idx]

idx = idx + 4

15: procedure BUILD_MEMMAP(peri_addr, value, prev_writes)

16: knowledge « MEM_READ(peri_addr)

17: PREPARE_DEPENDENCY(preuv_writes)

18: prev_mem < MEM_READ(peri_regions)

19: MEM_WRITE(value, peri_addr)

20: execute CPU cycles (# of instructions)

21: next_mem < MEM_READ(peri_regions)

22: knowledge < MEM_READ(peri_addr)

23: if prev_mem != next_mem then

24: MEM_INTROSPECTION(prev_mem, next_mem)

Memory Context Preparation. Since a given set of a peripheral
register and a value can have a dependency upon other registers,
AuToMAP prepares the memory context to handle the dependency
of the peripheral register beforehand, which is to set other de-
pendent registers with the corresponding value in advance. The
function PREPARE_DEPENDENCY shows how the memory context is
prepared. First, AUTOMAP gets every previous write from a mem-
ory context database (line 4) which is established by the emulator
as in §5.1. Specifically, a memory context record consists of two
pieces of information: 1) the peripheral register’s address, 2) the
corresponding value written to the register. Based on the informa-
tion, AuTOMAP replicates every write in order (line 7). Meanwhile,
after each write, it executes a pre-defined number of instructions
(line 9) because some writes need a few cycles to finish their pro-
cess, which can vary depending on MCU types. For example, from
Nordic documentation [7], it needs several CPU cycles to write a
value to the LATCH register from the GPIO peripheral. Hence, we
execute enough instructions after a write to finish the process of
the peripheral core.

We use a concrete example in Figure 5a to show how this com-
ponent works. First, the program writes value 1 to two peripheral
registers, TASKS_HFCLKSTART and TASKS_HFCLKSTOP, in order. In
line 1, there is no memory context as the program has not started
writing values to any peripheral register. However, in line 2, Au-
TOMAP needs to prepare the memory context which involves the
peripheral register write at line 1. To show the importance of mem-
ory context, we further use two examples in Figure 5b and Figure 5¢
which present the different memory mapping results without and
with preparing the dependency from Figure 5a, respectively. Two
figures present that the first knowledge (i.e., write a value 1 to
the register located at 9x40000000) is properly modeled. However,
without memory context preparation (i.e., without writing 1 to

0x40000000 before modeling), AuToMaP directly models the next
write in the reset state of hardware. That is, the value of the reg-
ister located at 0x40000408 is 0. As a result, the second knowledge
(i.e., changes 0x40000408 to 0) misses memory mappings since the
value is not set as 1 before modeling.

Differential Hardware Memory Introspection. After memory
context preparation, AUTOMAP performs memory differential in-
trospection on hardware to extract hidden memory mapping. As
shown in Algorithm 1, AuToMAP consecutively reads peripheral
regions two times: before and after a peripheral register write (lines
18 and 21). Before comparing two memory regions, AUTOMAP
reads the changed value of the target register since the register
may not change to the exact written value as shown in Figure 2
(line 22). Then, it compares two memory regions. If the two re-
sulting memory states are not identical, indicating other periph-
erals are simultaneously updated, AuToMAapP further invokes the
MEM_INTROSPECTION procedure. Otherwise, the register write
does not trigger memory mapping. Eventually, a hidden memory
mapping record will be stored in the knowledge base, and we use
the following expressions to define a hidden memory mapping
record in the knowledge base:

KB(AV,T) = (Vinit, Vafters Mo, My, ...)

where A is the address of the peripheral register, V refers to the
written value, and T is the MCU model. Furthermore, the remaining
elements are defined based on the following expressions:

Vinit = meminiz (A)
Vafter = MeMgfrer (4)
My = (An, memgfrer (An))
Specifically, Vin;; refers to the initial value of the peripheral reg-
ister at address A, Vg, is the value of the register at A after the
register write, and Mj, presents every memory mapping where n is
an index starting from 0. memin;; and mem, e, denote memory
of hardware in an initial state (i.e., memory consists of an initial
value of peripheral registers) and after writing, respectively.

We further use the above symbols to explain in detail how
MEM_INTROSPECTION works. As shown in line 10, the function
takes two parameters, prev_mem and next_mem. Two variables in-
clude memory snapshot of whole peripheral regions before and
after write, respectively. Because memory mapping can occur in
different peripherals, it searches every peripheral region (line 12).
If any change has been detected, it saves the corresponding reg-
ister address and its changed value to the knowledge. M, (i.e.,
(An, memgfier(An))) is defined where Ay, is the register address
and the second parameter presents the changed value. The value
of multiple registers can change so that the result might include
multiple addresses and their changed value per a set of a periph-
eral register address and a given value (line 14). Hence, there are
multiple mappings on the above formula, such as My and M;.

When AuToMar finishes, it outputs the hidden memory mapping
knowledge of the given peripheral register (i.e., A, V in the above
formula). Memory mapping information can include none, one, or
multiple addresses of registers with a changed value (i.e., My). The
new knowledge of memory mapping is added to the knowledge base
when it does not exist in the base. The purpose of the knowledge
base is to save the extracted hidden memory mapping to increase



/* 0x40000000
/* 0x40000004

1 */

1: NRF_CLOCK->TASKS_HFCLKSTART = 1;
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2: NRF_CLOCK->TASKS_HFCLKSTOP = 1
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Figure 5: An example of the clock peripheral in an NRF52832
MCU firmware with mutual register dependencies.

efficiency. As the hidden memory mapping is MCU-specific (i.e., T),
all the firmware running on the same MCU can share the knowledge
base during the emulation, which saves a huge number of times for
hardware memory introspection.

6 IMPLEMENTATION

In this section, we describe how we modify an emulator and imple-
ment AuTOMAP described in §5.

Unicorn Emulator Extension. We developed AuUTOMAP atop the
UNICORN [48] emulator. To begin with, the emulator initializes every
peripheral register modeled in the knowledge base. Since UNICORN
supports specific instruction-level hooking, we can hook every 1dr-
and str-related instruction to handle peripheral register access.
When a ldr-related instruction (e.g., 1dr and ldrb instructions)

loads a value from an uninitialized peripheral register, it executes
AUTOMAP to extract the initial value.

When any str-related instruction (e.g., str and strb instruc-
tions) is encountered, the emulator checks the address of the desti-
nation. If it is located in a peripheral region, it checks the knowledge
base for memory mapping knowledge. When the corresponding
knowledge exists, it directly uses the mapping to change one or
multiple peripheral registers. However, when the peripheral reg-
ister has not been modeled, the emulator invokes AuUTOMAP to
extract the hidden memory mapping.

AUTOMAP. We use Python to implement AuToMaP for mod-
eling memory mapping of peripheral registers, and use GDB to
store a value and read memory regions of peripherals. There are
many tools that can be used to connect GDB with MCUs, such as
J-TAG, openocd [36], and J-link [15]. Since we evaluate AuToOMAP
on MCU NRF52832 from Nordic Semiconductors, we use J-Link to
connect the GDB server. In addition, we use openocd [36] to con-
nect the GDB server on STM32F103 and STM32F426 MCUs through
st-link [18].

7 EVALUATION

In this section, we present our evaluation of AUTOMAP! answering
four research questions: (1) How many hidden memory mappings
can AUTOMAP reveal? (2) How can the knowledge base method
optimize the execution time of AuToMaPr? (3) How can we interpret
the extracted hidden memory mapping results? (4) How can Au-
ToMAP improve the emulation performance of existing rehosting
frameworks? First, we present the detailed result of the extracted
hidden memory mapping by AuToMAP in §7.1. Second, we evaluate
how the knowledge base method can improve efficiency in §7.2.
Third, we classify unique types of memory mappings based on their
patterns in §7.3. Lastly, we demonstrate a use case by integrating
AuTtoMap into yEMU for fuzz testing in §7.4.

Firmware Dataset. Table 2 shows the 50 firmware used for eval-
uation on AutoMapr, which come from three different MCUs of
two MCU vendors. Among these 50 firmware, 41 of them are the
example firmware included in the Nordic NRF52832 SDK of ver-
sion 17.0.2. The main objective of using the example firmware is
that it utilizes various peripherals. Therefore, we can make a fair
evaluation of AuToMap. For the remaining firmware, 5 and 4 of
them are real-world firmware evaluated by P2IM and EMU, which
are developed for STM32F103 and STM32F429 MCUs, respectively.
Note that the P2IM and pEMU datasets also have firmware from
other MCUs but we exclude them as we only focus on two MCUs,
namely STM32F103 and STM32F429.

7.1 Detailed Results of AutoMar on Each
Firmware

In this section, we present the detailed results of hidden memory
mapping extracted from the 50 firmware, which are shown in Ta-
ble 2. To obtain statistics, the emulator executes firmware without
any interrupt. That is, input is not required for the experiment.
We also show the detailed statistics reported from AuToMAP, in-
cluding the number of unique writing to a peripheral register, the

I The source code is available at https://github.com/OSUSecLab/AutoMap.
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MCU Firmware #RW #RW  T# M# #V # MM

P V SMM MM /RW peris 1-1 1-n | Intra Inter
bk_freertos 12 17 21 52 7 3 6 15 11 2
bk 1 9 9 26 3 1 0 9 8 0
bk_rtc 12 17 21 52 7 3 6 15 11 2
bk_systick 3 9 9 26 3 1 0 9 8 0
bsp 7 50 35 95 11 5 5 30 24 4
cli_libuarte 15 68 30 73 11 7 9 21 16 4
csense_drv 12 61 37 97 11 5 9 28 24 4
csense 12 44 24 51 7 5 9 15 13 2
fatfs 3 45 23 81 11 3 2 21 17 3
flash_fstorage 5 4 4 11 7 1 2 2 1 1
flashwrite 10 38 26 67 11 5 9 17 11 8
gfx 3 16 8 27 11 2 2 6 3 2
gpiote 5| 22 9| 15 3 4| 4 5 4 1
i2s 5 49 22 59 6 3 4 18 15 2
led_softblink 8 19 17 48 7 3 4 13 11 1
libuarte 12 67 32 85 11 6 8 24 21 4
power_pwm 8 22 19 48 7 3 4 15 13 1
Ipcomp 5 41 22 53 4 3 5 17 16 1
change_int 3 10 7 13 3 2 2 5 4 0
S | ppi 9| 54 17| 28 4 6| 10| 7 8 1
E preflash 15 55 35 78 7 6 10 25 22 2
QZ: pwm_driver 13 82 41 115 14 6 9 32 26 6
pwm_library 5 40 14 25 3 4 7 7 8 1
pwr_mgmt 13 43 30 74 11 5 8 22 17 4
qdec 7 40 18 35 4 4 7 11 10 1
radio_test 13 46 31 74 11 7 12 19 13 9
ram_retention 1 11 10 30 4 2 0 10 8 1
g 5 21 14 35 11 3 6 8 5 4
rtc 7 23 19 50 7 3 4 15 13 2
simple_timer 3 17 12 31 3 2 2 10 9 0
spi_mngr 14 55 38 86 7 6 9 29 24 3
spi 5 45 24 72 11 3 4 20 17 2
spis 5 43 20 53 5 4 4 16 13 3
temperature 3 17 8 19 4 3 2 6 4 1
timer 3 20 12 29 3 2 3 9 10 0
twi_mngr 11 51 37 97 11 5 7 30 25 4
twis_slave 3 68 36 95 11 6 8 28 23 5
twi_scanner 3 16 10 29 11 2 4 6 3 4
twi_sensor 3 16 9 28 11 2 3 6 3 3
uart 3 30 20 62 11 2 2 18 14 3
wdt 11 40 33 76 7 5 7 26 24 2
“ Drone 16 | 112 44 176 88 11 26 18 18 24
E Gateway 10 78 48 54 3 8 44 4 38 8
B Soldering_Iron | 27 | 147 140 418 89 13 64 76 6 117
E Reflow_Oven 8 21 10 12 3 5 9 1 6 3
@ Robot 8 64 14 18 3 7 12 2 10 3
Q CNC 9 | 222 121 721 256 12 68 53 11 108
g MODBUS 18 | 137 79 627 255 15 60 19 16 57
2 | pLC 10 | 43 7 7 1 51 7| o0 3 2
5, USB 10 24 7 262 255 6 5 2 0 7

Table 2: Detailed memory mapping related information of
result on each firmware. RW, MM, P, V, T#, and M# stands
for register write, memory mapping, Platform, Vendor, total
number, and max number, respectively.

total number of memory mappings triggered by writings, and the
number of memory mapping types including one-to-one and one-to-
many mapping. Specifically, the third and fourth columns of Table 2
present the number of unique register writes to platform and vendor
peripheral regions, respectively. It is shown that each firmware has
at least one write to both a platform and vendor peripheral register.
Moreover, the number of writes to a vendor’s peripheral register
is larger than a platform’s peripheral register for all firmware. In
addition, since the firmware from the NRF52832 MCU are example
firmware, the number of writes is smaller compared to real-world
firmware with STM32F103 and STM32F429 MCUs, as they are sim-
pler. Moreover, the eighth column presents the number of vendor’s
peripheral used in each firmware, which shows that at least one
peripheral is used in every firmware. Additionally, from the third
and eighth columns, we can find out that multiple unique writes can
occur in the same peripheral. For example, in the blinky_systick
firmware, every write takes place in a single peripheral.

B NRF52832
NN STM32F103
EEH STM32F429

,_.
£

Total # Memory Mapping on firmware
=
o

100 4

1 2 3 4 5 6 7 9 11 14 15 16 22 88 89 255 256
# Memory Mapping per Single Write

Figure 6: Total number of memory mappings triggered by a
single register write from firmware.

The fifth column shows the number of register writes that trigger
memory mapping. Therefore, the numbers in the fifth column are
identical or smaller than the sum of the third and fourth columns.
As shown, nearly more than 50% of the peripheral register writes
can trigger hidden memory mapping. The sixth column presents
the total number of memory mappings per firmware, which are
triggered by the register writes in the fifth column. As the number
of memory mapping is always greater than the number of register
writes, it can be further inferred that many register writes can cause
multiple memory mappings. To further show how one register
can trigger multiple mappings, we show the maximum number
of memory mappings triggered by a single register write in the
seventh column.

As explained in the seventh column, since memory mappings can
affect one or multiple registers, we can classify them into one-to-one
and one-to-many memory mapping. The ninth and tenth columns
of Table 2 present the number of the one-to-one and one-to-many
memory mappings per firmware, respectively. Specifically, Figure 6
presents the number of memory mappings per single register write
from every firmware. For example, there are 218 one-to-one mem-
ory mappings from the 41 example firmware. According to Figure 6,
a single peripheral write can trigger up to 14 memory mappings,
but in most cases it usually affects a single, two, or three regis-
ters in the NRF52832 MCU. Similarly, one-to-one, one-to-two, and
one-to-three mappings also occur frequently in STM32F103 and
STM32F429 MCUs. The numbers are close to example firmware
even though the number of firmware evaluated is small as these real-
world firmware have much more complicated logic. Moreover, the
maximum number of mappings is larger than the example firmware
(i.e, 89 and 256 in STM32F103 and STM32F429, respectively).

Lastly, the last two columns present the number of intra- and
inter-peripheral memory mappings, respectively. Intra-peripheral
memory mapping means that it occurs only in the same peripheral
region (i.e., all the peripheral registers of this mapping reside in
the same peripheral region). On the other hand, inter-peripheral
memory mapping means that at least one peripheral register is in
a different peripheral region. As shown in Table 2, even though the
number of intra-peripheral mapping is more common than inter-
peripheral mapping, we still need to search the whole peripheral
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memory space to get the mapping knowledge in case we miss any
inter-peripheral mappings.

7.2 Efficiency of Knowledge Base Method

As mentioned in the design of AuTOMAP, an important component
is the knowledge base, which records the extracted memory map-
ping and can be shared among all the firmware running on the
same MCU. In this section, we show how the knowledge base can
improve AUTOMAP’s efficiency. Since the knowledge base is only
shared within the same MCU, we continuously apply AuToMar for
the extraction of hidden memory mapping for the 41 Nordic exam-
ple firmware for evaluation. Figure 7 shows the size of accumulated
memory mapping knowledge, and it can be inferred that the size
of knowledge increases as AUTOMAP models more firmware. Since
the order of saving knowledge of memory mapping can also affect
the growing speed of the knowledge base, we further re-run the

experiment with four different firmware execution orders: 1) Iden-
tical order as Table 2, 2) Reverse order from Table 2, and 3) Two
random orders.

Figure 7 shows that the size of the knowledge base increases
rapidly when it is small. However, when the size of the knowledge
base becomes larger, the knowledge base gradually converges and
the growing speed becomes slower. Since the result comes from the
41 example firmware and each firmware usually utilizes different
peripherals, it is difficult to see the efficiency of the knowledge
base method clearly. However, considering that the total number
of register writes from example firmware is 1,747, the knowledge
base method has significantly reduced the number of hardware
introspection from 1,747 to 548 (68.6%). If the knowledge base is
absent, AUTOMAP has to interact with the hardware 1,199 times,
which are not necessary and have been resolved in the previous
firmware emulation.

To concretely show how the knowledge base can save the mod-
eling time, we present Figure 8 to show the modeling time with
and without knowledge base, where the 41 firmware were exe-
cuted following the order in Table 2. As shown, the knowledge base
method decreases modeling execution time significantly in all 41
firmware. Note that AUTOMAP spent a long time executing some
of the firmware. For example, to model every peripheral register
write in flashwrite firmware, it takes AuTOMAP 21,778 seconds to
complete, where most of time spends on preparing memory context.
In the experiment, we execute 2,000 instructions after each write to
prepare memory context. The modeling time increases by 5 seconds
whenever it executes 2,000 instructions for the context. However,
Figure 8 clearly shows that knowledge base method can decrease
the modeling time significantly.

7.3 Classifying Types of Memory Mappings

By analyzing every memory mapping explained in §7.1, we further
interpret these results by classifying them into two types based
on the mapped peripheral register values: 1) identical memory
mapping, and 2) bit-banding memory mapping. Identical memory
mapping includes multiple peripheral registers that have identical
values, which normally occurs in the set and clear registers. With
the set register, we can change the value by or operation. On the
contrary, with the clear register, we can change the value by xor op-
eration. Therefore, when the value of the set register is Oxffffffff,
we need to use the clear register to change the value of the set regis-
ter. Because the operation of the set register is or operation so that
we cannot change the value. Whenever we change one of the pe-
ripheral registers having a property of identical memory mapping,
the peripheral core will update other identical peripheral registers
automatically.

The second type is bit-banding memory mapping. The termi-
nology bit-banding comes from a feature that is used in different
architectures such as Cortex M3 and M4 [1, 2]. There is a periph-
eral register that each bit corresponds to the different memory
region. Setting a bit enables the corresponding memory region
directly accessible through a single 1dr instruction. Unlike tradi-
tional bit-banding, with a peripheral register in MCU, each bit is
corresponding to other peripheral registers. That is, when a bit of
a peripheral register is set, the peripheral core changes the value



# executed BBs BBs portion of

Firmware AuTOMAP not in yEMU
AutoMar pEMU  # %

Drone 1,413 1,410 5 0.35%

Gateway 1,385 1,248 | 216 15.59%

Steering_Iron 1,402 1,289 | 116 8.27%

Reflow_Oven 845 830 17 2.01%

Robot 1,035 94 | 77 7.43%

Table 3: Fuzzing result comparison between EMU and both
AuTtoMap and yEMU.

of the corresponding peripheral register automatically. In addition,
setting a single bit can change one or multiple registers.

7.4 Integrating AutoMaP to pEMU

Since AuToMaP can guide SOTA rehosting frameworks to correct
the execution of wrong branches, we demonstrate a use case of
AuToMAP by integrating it into yfEMU. More specifically, we manip-
ulate yEMU’s logic to make use of AuTOMAP’s results for peripheral
modeling during emulation. During the peripheral modeling stage
of yEMU, it utilizes the hidden memory mappings from AuToMaP’s
knowledge base (constructed using the 50 firmware in Table 2) if
available. Otherwise, it executes the original symbolic execution to
infer the proper value of the targeted peripheral register.

To evaluate the performance, we test the new implementation
on the 9 STM32-based firmware in Table 2 by performing 24-hour
fuzz testing and collecting the basic block coverage. We exclude all
the Nordic-based firmware because pEMU does not perform fuzz
testing on NRF52832 firmware in its evaluation. Among the 9 tested
firmware, only 5 of them work properly on gEMU while the rest 4
triggered segmentation faults possibly due to implementation issues.
To be specific, when it starts fuzzing after modeling peripheral
registers, memory error happens from S2E [29] framework. Hence,
the authors are trying to address the issues, but they still exist
when we perform fuzzing. Table 3 summarizes the fuzzing results.
As shown, with AutoMap, yEMU is able to execute more basic
blocks than pgEMU on all the 5 firmware. AUTOMAP can improve
the basic block coverage. Moreover, in the best case scenario (i.e., the
Gateway firmware), AUTOMAP covers the uncovered basic blocks
of pEMU by 15.6%.

8 DISCUSSION

8.1 Characteristics of Peripheral Registers in
Different MCU

Each MCU has various peripherals. For example, the Nordic NRF52832
MCU includes 40 different peripherals. In contrast, the STMicro-
electronics STM32F429 MCU has nearly 70 different peripherals.
In addition, the size of the peripheral region varies. For instance,
every peripheral has the same size of memory region as 4,096 bytes
in NRF52832. However, in STM32F429 and STM32F103, the size of
each peripheral region is usually 1,024 bytes.

Due to various peripherals and their registers from different
MCUs, the property of hidden memory mapping also differs. For
instance, NRF52832 peripheral registers have hidden memory map-
ping properties with other registers such as an identical set of mem-
ory mapping. In addition, STM32F429 and STM32F103 peripheral

registers have bit-level memory mapping on the peripheral register.
For example, if one bit is set in a peripheral register, one or multiple
bits of the register may change. Such a bit-level mapping also can
be detected by our methodology. Because AuToMAP always saves
the changed value of the register to the knowledge base.

8.2 Limitation

To extract hidden memory mappings of a peripheral register, Au-
TOMAP requires the corresponding hardware MCU, which limits
AuTOMAP’s scalability. However, as mentioned in §4.2, using MCU
hardware is the only way to get memory mapping, and such mod-
eling is one-time effort as the established knowledge base can be
shared among the firmware using the same MCU. Moreover, the
hardware memory introspection in AuUTOMAP causes additional
overhead for peripheral modeling, as AUTOMAP needs to use tools
such as GDB to read or write the hardware memory. We leave the
improvement of AuToMAFP’s efficiency to the future work.

In addition, we also encountered a special type of data peripheral
register which is usually unwritable by the MCU hardware so that
AuTOMAP could not reveal the memory mappings on these registers.
Generally speaking, data peripheral registers are for receiving sig-
nals or data from the external environment, which are thus usually
regarded as the source of some fuzzing tools such as yEMU. How-
ever, as AUTOMAP requires to use the hardware to write values to
the peripheral registers for hardware memory introspection, it can-
not handle these data peripheral registers. For these data registers,
AuTOMAP can still fall back to existing rehosting approaches such as
the symbolic execution in yEMU, to resolve the data register values.

8.3 Future Work

First, while in this work we implemented AuToMAP for three dif-
ferent MCUs, it can certainly be extended for other MCUs as well.
Although different MCUs can have different types of memory map-
pings, we can still apply AuToMAP to model the peripherals using
the same strategy, and construct a knowledge base for each MCU.

Second, in this work we show a few cases to demonstrate how the
existing rehosting framework can produce incorrect results because
of hidden memory mapping, and it is also worthwhile to revisit and
improve these frameworks such as P2IM and gEMU. Particularly,
as these works use fuzzing for vulnerability and bug discovery,
AuTOMAP can be further integrated into the fuzzing components
which may help discover additional vulnerabilities with fewer false
positives when hidden memory mapping is considered.

Third, we can improve the algorithm of AuToMap. Since not
all peripheral registers have memory mapping properties, those
do not have memory mappings can be pre-filtered by AuToMar
in advance so that it will not extract memory mappings for them,
which can decrease the modeling time. For example, as explained
in §8.2, a data register is usually unwritable so that we cannot
trigger memory mapping on the data register. Hence, by filtering
out the data register, we can increase the efficiency of AuToMaP.

Finally, we can model a peripheral by using a machine learning
when we get enough memory mapping knowledge on every periph-
eral. Such implementation may be feasible since memory mappings



may have some clear patterns and statistical features. The ulti-
mate goal is to infer the memory mapping from the trained model
without hardware, making AuToMAP more scalable and efficient.

9 RELATED WORK

9.1 Firmware Analysis

Firmware analysis is widely adopted in the security field for a
long time. Both static analysis and dynamic analysis are used in
firmware analysis. For instance, FIE [31] uses symbolic execution
to emulate firmware on top of KLEE [24], targeting the MSP430
micro-controller. FIRMUSB [35] introduces USB-specific firmware
analysis, and uses targeting algorithms and domain-specific knowl-
edge. KARONTE [50] discovered vulnerable interactions between
different firmware by modeling and tracking multi-binary interac-
tions. FIRMXRAY [57] uncovered Bluetooth link layer vulnerabilities
from Bluetooth IoT firmware.

In terms of dynamic analysis, AVATAR [58] is a hybrid emulator
using hardware for input and output. IoTFuzzER [26] uncovered
memory corruption vulnerabilities in IoT devices. FIRM-AFL [59] ap-
plies augmented process emulation which combines system mode
and user mode emulation to fuzzing on IoT firmware. P2IM [33] ap-
plies explorative execution to handle peripheral registers with their
usage pattern. HALUCINATOR [30] replaces HAL functions to decou-
ple the hardware from the firmware. DICE [46] is an extension of
P2IM detecting DMA. uEMU [60] performs symbolic execution to
infer a value of a peripheral register. Similar to gkEMU, JETSET [37]
utilizes symbolic execution to infer the value of a peripheral register
to reach a destination address. FuzzwARE [52] uses dynamic sym-
bolic execution and tries to minimize the overhead of input. Due to
its objective, it covers every reachable basic block unlike other tools.
PERISCOPE [55] provides kernel peripheral fuzzing. DTAINT [28]
detects the vulnerability of firmware by using taint analysis.

Among all these related works, AVATAR [58] is the closest one
because both AuToMAP and AVATAR use a hardware-in-the-loop ap-
proach. However, there are still substantial differences: (1) AvATAR
does not attempt to reveal any hidden memory mapping, whereas
AuTOMAP is exactly designed for this; (2) AVATAR needs to run
the identical firmware image on the target hardware in parallel
during emulation. In contrast, AuTOMAP does not have this con-
straint as long as hidden memory mapping can be extracted on
the identical MCU; (3) AVATAR keeps the identical whole memory
state between an emulator and hardware during execution. There-
fore, AVATAR cannot apply the knowledge base method since any
firmware cannot have an identical memory state with others. How-
ever, AUTOMAP aims at the characteristic of MCU. Hence, it can be
applied to different firmware with common knowledge.

9.2 Embedded Device Security

Many researchers [41, 42, 49] elaborate on the security of embedded
devices and systems. Moreover, different types of attacks such as
exploiting bugs of software, network, and exploiting side channels
to embedded security have been proposed and discovered. Hall
Spoofing [23] attacks the Hall sensor of an inverter by spoofing
the signal. It results in nearly 31% of voltage change. Multiple
attacks on Internet-of-Things (IoT) devices such as light-bulbs and
power switches also exist [47, 54]. For example, Amazon Alexa is

vulnerable since it sent private chats randomly [43]. Distributed
denial-of-service (DDoS) attacks occur because 100,000 internet-
connected devices were attacked [38]. Exploiting key distribution
schemes also exist [22].

10 CONCLUSION

In this paper, we discover the hidden memory mapping on MCU-
based firmware, which allows the change of a peripheral regis-
ter to update one or multiple peripheral registers simultaneously
without CPU intervention. Because of such hardware property, ex-
isting firmware rehosting frameworks such as P2IM and pEMU
can execute incorrect program branches that should never be ex-
ecuted. To address this challenge, we present AuTOMAP, the first
framework that automatically reveals hidden memory mapping of
peripheral registers on demand using a differential hardware mem-
ory introspection approach. We implemented AutoMar atop UNI-
corRN emulator and evaluate it with 41 example firmware from the
Nordic NRF52832 SDK and 9 real-world firmware for STM32F103
and STM32F426 MCUs evaluated by P2IM and yEMU. Among these
50 firmware, AUTOMAP extracted 2,359 unique memory mappings
(47 mappings per firmware on average) in total, and detected at least
one memory mapping in every single firmware. Moreover, we show
that the knowledge base method can significantly decrease the time
up to 97.01% for modeling memory mappings in AuToMar. We
also demonstrate a use case by integrating AutoMap into pEMU.
With AutoMap, pEMU can achieve higher basic block coverage
for fuzzing and covers previously unexplored basic blocks (up to
15.6%) on all the 5 tested firmware than yEMU alone.
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