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Abstract

In a typical infrastructure-as-a-service cloud setting,
different clients harness the cloud provider’s services by
executing virtual machines (VM). However, recent studies
have shown that the cryptographic keys, the most crucial
component in many of our daily used cryptographic pro-
tocols (e.g., SSL/TLS), can be extracted using cross-VM
side-channel attacks. To defeat such a threat, this paper
introduces HERMES, a new system that aims to protect
the cryptographic keys in the cloud against any kind of
cross-VM side-channel attacks by simply partitioning the
cryptographic keys into random shares, and storing each
share in a different VM. Moreover, it also periodically
re-shares the cryptographic keys, thereby invalidating the
potentially extracted partial ones. We have implemented
HERMES as a library extension that is transparent to the
application software, and performed deep case studies
with a web and a mail server on Amazon EC2 cloud. Our
experimental results show that the runtime overhead of
the proposed system can be as low as 1%.

1 Introduction

Recent advances in cloud computing enable customers
to outsource their computing tasks to the cloud ser-
vice providers (CSPs). Typically, CSPs manage exten-
sive amount of computational resources, and provide
services, such as Infrastructure-as-a-service (1aaS) [40],
Platform-as-a-service (PaaS) [31], Software-as-a-service
(SaaS) [44]. By outsourcing core computing to the cloud,
customers can mitigate the burden of resource manage-
ment, and concentrate more on the core business tasks. A
recent study on the cloud usage [3] reported that nearly
30% of enterprise IT organizations use public IaaS, such
as Microsoft’s Azure Service [12], Amazon’s Elastic Com-
pute Cloud (EC2) [4], or Google’s Compute Engine [9].
Despite its numerous advantages, cloud computing also
introduces new challenges and concerns, primarily the se-
curity and privacy risks [48]. The concerns simply stem

from outsourcing critical data (e.g., health records, social
security numbers, or even cryptographic keys) and/or com-
puting capabilities to a distant computing environment,
where the resources are shared with other potentially un-
trusted customers.

In particular, to increase efficiency and reduce costs,
a CSP may place multiple virtual machines (VMs), be-
longing to different customers, to the same physical ma-
chine. In such an execution platform, VMs should be
logically isolated from each other to protect the privacy
of each client. The CSPs use virtual machine monitors
(VMM) to realize logical isolation among VMs running
on the same physical machine. However, recent studies
show that a clever adversary can perform cross-VM side-
channel attacks (for brevity, cross-VM attack) to learn
private information that resides in another VM, even un-
der carefully enforced logical isolation in public cloud
infrastructures. More specifically, Ristenpart et al. [41]
showed heuristics to improve an adversary’s capabilities
to place its VMs alongside the victim VMs, and learn
crude information (e.g., aggregate cache usage). Most
recently, Zhang et al. [S1] managed to extract ElGamal
decryption keys by cross-VM attacks. These studies have
clearly demonstrated that logical isolation and trustworthy
cloud provider are not necessarily enough to guarantee
the security of sensitive information.

It would be too optimistic to assume that an adversary
is only limited to the two aforementioned attacks. Un-
fortunately, there exists a wide variety of side-channel
attacks, each with its own setup and methodology (e.g.,
[13-15,19,26,28,34,43]). Simply, the absence of such
attacks on public cloud infrastructures does not neces-
sarily mean that they are inapplicable. In fact, there are
side-channel attacks that target virtualized environments,
and leverage timings of cryptographic operations or mon-
itoring of common resource usage [39,47]. Those attacks
may be just one step behind being directly applicable to
the public cloud setting; which is why proposing preven-
tion mechanisms is extremely vital for the security and
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privacy of the sensitive data in the VMs including the
cryptographic keys.

To this end, we present HERMES, a system that reme-
dies the cryptographic key disclosure vulnerabilities of
VMs in the public cloud by using well-established crypto-
graphic tools such as Secret Sharing and Threshold Cryp-
tography. Specifically, the key technique in our system is
to partition a cryptographic key into several pieces, which
are computed using threshold cryptosystems, and to store
each share on a different VM. This makes it harder for
an adversary to capture the complete cryptographic key
itself, since it now has to extract shares from multiple
VMs (note that there is no single key or a centralized key
anymore in HERMES). To further improve the resilience,
the same cryptographic key is re-shared periodically, such
that a share is meaningful in only one time period. Conse-
quently, we introduce two significant challenges against
a successful attack: (i) multiple VMs should be attacked,
and (ii) each attack should succeed within a certain time
period. As a proof-of-concept, we apply HERMES to pro-
tect the cryptographic keys of Secure Sockets Layer (SSL)
and Transport Layer Security (TLS) protocols.

Contributions. In short, this paper makes the following
four contributions:

1. We present HERMES, a novel system to prevent the
leakage of cryptographic keys in cloud VMs via
mathematically proven techniques — Secret Sharing
and Threshold Cryptography.

2. As a proof-of-concept, we build a prototype of HER-
MES and apply it to protect the SSL/TLS crypto-
graphic keys, which is significantly more resilient to
any cross-VM attack.

3. We empirically evaluate HERMES with micro bench-
marks, and case studies for a web server and a mail
server, and show that with optimal setup, HERMES
can operate with overheads as low as 1%.

4. We formalize the problem of finding good HERMES
configurations, which minimizes the security risk for
given monetary and performance constraints.

Organization. The rest of the paper is structured as fol-
lows: We start by providing some background information
in §2 about the protocols and techniques used in HERMES.
It is followed by the threat model in §3, and the full techni-
cal details of HERMES in §4. Then, we evaluate HERMES
regarding its efficiency in §5, and discuss its security in §6.
Finally, we review the related work in §7, and conclude
in §8.

(1) client_hello

(2a) server_hello

-«
(2b) server_key_exc
=1 w
9] (2¢) certificate_request 9;
. —-—————————- <
®) g

(2d) hello_done

(3a) certificate

(3b) client_key_exc

Figure 1: Overview of SSL Protocol Handshake.

2 Background

2.1 SSL/TLS Protocols

SSL and TLS are widely accepted communication proto-
cols to establish a secure channel between two mutually-
distrusting parties, where two protocols contain only a
few minor differences [16,25,29,37]. For brevity, we will
refer the protocols as SSL; and any statement for SSL is
also applicable to TLS.

The SSL protocol consists of a handshake and a record
process, where the parties in the protocol are called the
client and the server. In the handshake process, they use
public key cryptography (PKC) to authenticate each other
and agree on the session keys. The session keys are bound
for only one session, and used for confidentiality and in-
tegrity. To calculate session keys, parties need to share
a master secret, which is derived from random data ex-
changed, and pre-master secret.

Fig. 1 shows an overview of the handshake process.
First, the client starts by sending client_hello message
(Step 1), which contains a set of supported cryptographic
algorithms (cipher suites in SSL terms), and some random
data to be used in key generation. Then, the server sends
its certificate, some random data, and the accepted cipher
suite (Step 2a); and key exchange parameters if necessary
(Step 2b). Moreover, if the server wants to authenticate
the client, it requests the client’s certificate (Step 2c¢). The
server finishes by sending hello_done message (Step 2d).
If requested, the client sends its certificate to the server,
along with some random data signed by its private key
(Step 3a). Next, it creates a random pre-master secret,
encrypts it with the server’s public key, and sends to the
server (Step 3b). Now, both parties can calculate the mas-
ter secret from the pre-master secret and random data
using protocol specific combinations of pseudo-random
functions.

Based on the chosen cipher suite, the number and the
content of the messages may vary. For instance, when
Diffie-Helman (DH) [22] is used for pre-master agree-
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ment, the parties sign their DH parameters with their pri-
vate keys, and send them in Step 2b and Step 3b. On the
other hand, they may use RSA to agree on the pre-master
secret, where the client encrypts the pre-master secret with
the server’s RSA public key, and the server decrypts it
using its private key.

2.2 RSA Variants

The following variants of the RSA algorithm alter the
way that a message is exponentiated with the private key.
In both versions, the dealer holds a public-private RSA
key pair, and wants to partition the private key over /
non-colluding parties.

Distributed RSA (D-RSA). Given a private key d, D-
RSA uses additive secret sharing, and partitions d into
[ random shares dy,...,d;, where d = d; + ...+ d; mod
¢(n), n is the modulus, and ¢ is Euler’s totient function.
Given the public key (n, ¢) and a share, none of the parties
can learn anything about d. Furthermore, an adversary
should capture all / shares to learn d.

To exponentiate a message M € Z, with d, one of the
parties acts as the combiner, whose job is to combine
partial results from all parties. Each party p; for 1 <i </
calculates M%, and sends it to the combiner. Then, the
combiner simply multiplies each message and finalizes
the operation. At the end of the process, the combiner
does not learn anything about the private key, but only the
final result M¢. For a detailed security analysis, we refer
to the original paper [24].

Threshold RSA (T-RSA). In this variant, the given pri-
vate key is partitioned using shamir secret sharing, in
which only 1 < k <[ shares are needed to complete an
exponentiation with d. The key technique in T-RSA is to
embed the private key into a degree (k — 1) polynomial,
evaluate the polynomial on / different points, and share
the results over the set of parties. Once again, a party
cannot learn the partitioned private key simply from the
public key and its share.

To exponentiate a message, k parties are chosen uni-
formly at random, where the combiner once again does
not learn anything other than M?. On the other hand, an
adversary should capture & shares to learn the private key.
In App. B, we present more details on private key parti-
tioning and usage, while an intensive security analysis is
performed in the original paper [42].

3 Threat Model

Entities. The entities in our threat model are the Cloud
Service Provider (CSP), the Defender, and the Adversary,
where the last two are simply the clients of the first. The

CSP offers IaaS and PaaS, which the clients can benefit
by initiating VMs. The defender and the adversary use the
same CSP, where the latter attacks the former to retrieve
private information. Although the CSP has a potential
to violate its clients’ privacy and integrity, we assume
that the CSP is trusted. This is a valid assumption, since
(1) Service Level Agreements (SLA) provide a clear-cut
distinction between what a CSP can and cannot perform
on a client’s data/VM, and (ii) disobeying a SLA may
impose prohibiting punishment for the CSP.

Logical isolation. To improve utilization, the cloud
provider may perform multiplexing. Hence, multiple VMs
may run on the same physical machine, which means a
VM of the adversary may run on the same physical ma-
chine with a VM of the defender; and they may share the
same physical resources (e.g., CPU, memory, hard-drives,
cache). On the other hand, we have no distinction on the
VMM that the CSP uses, as long as it provides logical
isolation between the VMs on the same physical machine.
We assume that the adversary knows the software running
on the defender VMs, but cannot leverage the memory
vulnerabilities of those software to compromise (i.e., to
take full control of) the VMs.

Adversary’s goal. The defender has multiple VMs in the
cloud, and each one may contain a set of private cryp-
tographic information. This set of information includes
temporary symmetric keys (e.g., AES key), or a share of
a distributed private key (e.g., share of an RSA key) that
is created by HERMES. An adversary’s aim is to capture
PKC keys, since capturing a session key is useful for only
one session, while acquiring PKC keys grants full access.
To fulfill its desire, the adversary is allowed to execute any
cross-VM attack in its disposal to extract private informa-
tion from each VM, where the attack itself is applicable
to the cloud setup. For instance, in access-driven attacks,
the adversary may need to co-reside its VMs with the de-
fender VM. In such a case, the adversary should achieve
co-residency, and make the attack applicable in a typical
cloud setup. Moreover, the attacks on the defender VMs
are not necessarily executed in serial manner. Each sep-
arate adversary VM can employ the cross-VM attack in
parallel, if the nature of the attack enables such setup.

Finally, since the adversary uses the same cloud as
the defender, we assume that all channels may be eaves-
dropped by the adversary, starting from right after the
bootstrapping of HERMES. Giving this capability to the
adversary may seem like an overprovision. However, we
take precautions to handle even the worst case scenario,
in which the adversary, somehow by-passing CSP’s secu-
rity mechanisms, listens to the conversations between the
defender VMs.
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Figure 2: Overview of HERMES Layout.

Misc. We do not consider the placement of the defender
VMs, and its effects on the security of HERMES. For in-
stance, one platform (e.g., a region, a physical machine,
etc.) may, somehow, be more susceptible to a certain range
of cross-VM attacks; or one can claim that the more dis-
tributed the defender VMs, the better the security. Zhang
et al. aim to physically isolate a defender VM as much
as possible [50], thus preventing only access-driven side-
channel attacks. Such precautions will tighten the defense
against access-driven attacks; however, it will fail to stop
the adversary from executing different attacks. On the
other hand, HERMES aims to protect the cryptographic
keys from all cross-VM attacks, no matter how the VMs
are placed.

4 The Proposed System — HERMES

In SSL, a certificate may contain public parameters of
different PKCs (e.g., RSA, DSA, ECC), which are em-
ployed to encrypt secret information, or to sign and show
that certain temporary data is authentic. In HERMES, we
assume that the parties use RSA as the PKC; however,
extension to other PKCs is trivial as long as a threshold
cryptosystem for that new PKC is provided.

Setup. Figure 2 shows an overview of the entities in HER-
MES: the defender, the adversary, / number of VMs that
belong to the defender, and the clients who want to es-
tablish secure connection to the defender’s VMs using
SSL and benefit from the defender’s web application. The
defender holds a set of private RSA keys, and partitions
them over the set of defender’s VMs. Each VM holds
one share for each partitioned private key, and they act
together to exponentiate with it. The VM that directly
talks with the client is called the combiner, while the re-
maining VMs are called auxiliary VMs. The adversary

aims to learn at least one of the partitioned RSA private
keys by (i) performing cross-VM attacks on each VM
to capture its shares, and by (ii) listening each message
flowing between the VMs. To achieve secure communi-
cation, each channel is established using our enhanced
SSL protocol. More specifically, inter-VM channels are
established with mutual verification (i.e., both end of the
parties authenticate each other), while only the combiner
VM is authenticated in a channel between that VM and
a client/defender. The defender re-shares the same pri-
vate keys every T seconds. The time window between
two consecutive re-sharing moments will be referred to
as an epoch, while the shares of a private key in any two
sessions are independent.

Modes. HERMES has two modes of operation, namely
D-RSA and T-RSA modes, using the corresponding RSA
variant (cf. §2.2). When the system runs in D-RSA mode,
the adversary has to capture all shares of a private key
to learn the key itself; whereas in T-RSA mode, it has
to capture at least k shares. The benefits of the second
mode are two-fold: (i) The system is more fault-tolerant
to server failures, and (ii) the system can achieve better
utilization by distributing work among different subsets
of VM, especially when k < (1/2).

Stages. The execution of HERMES is composed of several
stages: (i) Partitioning a private key (§4.2); (ii) Bootstrap-
ping the system by handing in the initial set of shares, and
establishing initial inter-VM SSL channels (§4.3); (iii)
Establishing connection between a defender VM and a
client (§4.4); (iv) Renegotiating an inter-VM SSL channel
(684.5); and (v) Distributing new shares of the same private
keys (§4.6).

4.1 Enhancing the SSL Protocol

In SSL, the communicating parties may execute mutual
verification or server-only verification. In any case, the
server uses its private key at two possible steps (cf. Fig. 1):
(i) After Step 2a to sign temporary parameters; (ii) after
Step 3b to decrypt the pre-master secret. On the other
hand, the client uses its private key before Step 3a only
in the mutual verification. With respect to a regular SSL
execution, we change the way that the server or client
computes the modular exponentiation of a message with
its RSA private key at those steps.

Fig. 3 shows the outline of our modifications in a server-
only verified SSL execution. The client performs SSL
handshake with the combiner, while the VMs communi-
cate over already established secure channels. After Step
2a, the combiner may create temporary key parameters
and sign them in collaboration with the auxiliary VMs.
It sends a help_sign message to all auxiliary VMs in
D-RSA mode (or up to k in T-RSA mode), where the
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Figure 3: Security Enhanced SSL Outline for Server-only
Verification.

message content is simply the parameters to be signed
(Step 2aa). Each auxiliary VM in the computation calcu-
lates its partial result using its share of the private key and
gives it to the combiner in the sign_partial_result
message (Step 2ab). On the other hand, if the combiner
has to decrypt an incoming message from the client, it
sends a help_decrypt message to all auxiliary VMs
in D-RSA mode (or up to k in T-RSA), containing the
masked or plain version of the client’s message (Step
3ba). Then, each auxiliary VM sends the computed par-
tial result with the dec_partial _result message to the
combiner (Step 3bb).

Whether or not the content of the help_decrypt mes-
sage should be masked with a random number depends
on the mode of operation. Even in the worst case, where
the adversary knows each message exchanged between
VMs, the combiner does not have to mask the message in
D-RSA. The reason comes from the security of D-RSA.
Assume the client sends M¢ mod 7 to the combiner, where
M is the pre-master secret, and (n,e) is the public key. In
order to learn M, the adversary needs each VM’s partial
result, just like the combiner does. However, even if the
adversary cracks down all secure channels and captures
all messages, it can only learn / — 1 parties’ partial results,
since the combiner does not send its partial result to any-
one. Thus, the adversary cannot learn any useful informa-
tion, and cannot compute M. If T-RSA is employed, then
the combiner selects k VMs, S = {iy,..., i}, uniformly
at random from the set of VMs and sends the message
to them. There are two cases to consider: (i) If the com-
biner is included in S, then the message does not need
masking similar to D-RSA case. The adversary needs k
partial results, but can only capture k — 1. (ii) Otherwise,
the combiner masks the message with a random number;
since the adversary may have captured k partial results
sent from k different auxiliary VMs, and the other param-
eters in the calculation are public (e.g., A=1!,a and b can

be calculated from gcd(e,4A?)), the adversary can now
calculate M.

In addition to server-only verified SSL channels, HER-
MES necessitates mutual verification, since any two de-
fender VMs, VM; and VM;, may perform key renegoti-
ation to refresh session keys. Without loss of generality,
assume that VM; is the client in SSL protocol, while VM;
acts as the server. Now, both parties should communicate
with the auxiliary VMs to perform operation with their
own private keys. The server may need co-operation after
steps 2a and 3b, while the client may need to sign random
data with its private key before Step 3a. The server acts
as mentioned in server-only authenticated Enhanced SSL.
On the other hand, the client sends help_sign message
to auxiliary VMs before Step 3a, and combines the partial
results. By following those steps, two defender VMs can
execute a successful handshaking process, using already
established secure and authenticated SSL channels with
the auxiliary VMs.

4.2 Partitioning Keys

Given an RSA key pair (n,e,d) and the number of VMs
1, the defender performs partitioning and calculates the
shares of each defender’s VM. In case HERMES is running
in T-RSA mode, the defender uses the third parameter k,
minimum number of VMs needed to operate.

In D-RSA, the share of the i'* VM, denoted by sh;,
is simply a uniformly randomly chosen value from the
domain Z¢(n), where shy + ...+ sh; is equal to d. Hence,
the defender chooses [ — 1 random values, and calculates
the final share as shy =d — (sh; +...+shj_1) mod ¢ (n).

On the contrary, key partitioning process is a bit
more complicated in T-RSA. Algo. 1 shows an outline
of preparations of each VM’s share. For each subset
Se C{1,...,1}, where |S¢| = k, the defender calculates
the interpolation constants R ”j?, and exponents for each
VM; € Sq (line 10-16). Moreo’ver, the defender stores the
modulus values for a,b in V;’s share for d, since i (the
function input) states that the given private key belongs
to VM; (line 18-19).

4.3 Bootstrapping the System

The defender creates [ VM instances on the CSP, and an
RSA key pair (n;,e;,d;) for each VM;, 1 <i <. Next, she
partitions each private key into shares and gives each VM
a unique ID i € [1,], the shares that correspond to that
ID, and the certificate for the i RSA key pair.

At this stage, the VMs need to establish initial authenti-
cated and secure SSL channels using our Enhanced SSL.
However, as mentioned in §4.1, Enhanced SSL necessi-
tates already established secure SSL channels to transfer
messages between VMs. We have to make an assumption
here, which will allow us to bypass this requirement, and
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Algorithm 1 Preparing shares for T-RSA

1: Input: RSA Parameters n, p=2p' +1,qg =24 +1,
e, d
Input: T-RSA parameters [, k, i
for j« 1tol/do

S/’lj 0

end for
A+ 1!

l
Calculate S = {Sy,...,S;}, where z = k),VSj €
S,1Sjl =k, S; C{1,...,1}, and each S is distinct
8: m=¢(n)/4
k=1
9: Create f(X) =d+ Y. a;X/, where Va; &z
j=1

R A A R ol

10: for all S, € S do
11: for all j € Sy do

12: Calculate XOS j

13: exp<—4-A~f(j)-l(i‘; mod m
14: shj < shjU(i,Sq,exp)

15: end for

16: end for

17: (a,b) < ecgd(e,4A?), where a4A? +be = 1
18: sh; <— sh; U (a mod m,b mod m)
19: return shy,...,sh;

to establish initial inter-VM SSL channels. We assume
that the VM, and the initial set of SSL channels are provi-
sioned securely, i.e., no adversarial attack occurs until the
initial set of SSL channels are established for inter-VM
communications. This is a reasonable assumption, since
(i) locating defender VMs on the cloud takes time [41],
and (ii) the whole process of bootstrapping takes short
time, especially if key-partitioning is performed before-
hand. Once the initial inter-VM SSL channels are estab-
lished, HERMES gets ready to serve the clients. Note that
a defender VM uses the same RSA key pair for inter-VM
and client connections.

Finally, in HERMES, we assume that the number of
VMs is fixed throughout the entire life-time of execution.
However, to augment HERMES capabilities with dynamic
expansion of the system, one should care about the boot-
strapping of those new VMs in terms of planting the initial
secrets and initiating secure channels. As will be clear
in §4.6, during the key re-sharing process, the defender
may hand in secret shares to the newly added VMs. Still,
introducing dynamic expansion via new VMs may lead
to security vulnerabilities that should be investigated thor-
oughly.

4.4 Connecting to a Client

Once the bootstrapping stage is over, a client or the de-
fender may request connection to a defender VM (i) to

consume the services offered by the defender, or (ii) to
distribute new shares for the private keys. In any case,
the connection is established using server-only verified
Enhanced SSL, where the connected VM takes the role
of the combiner VM.

Assume the client wishes to connect to VM, using En-
hanced SSL. Throughout the handshaking process, VM;
interacts with the auxiliary VMs (i.e., all VMs other than
VM;), and performs distributed signing or decryption pro-
cedures as described in §4.1. The whole distributed oper-
ations are transparent to the client, while the combiner or
any auxiliary VM learns nothing, but the result.

4.5 Inter-VM Key Renegotiation

Over time, any two defender VMs may decide to end one
SSL session, and renegotiate keys for the next one. In
such a case, those two VMs use their RSA key pairs, and
perform a new handshaking process using our Enhanced
SSL with mutual verification. Assume VM; and VM; de-
cides to perform renegotiation, where VM; and VM; act as
the client and server, respectively. Both VMs execute our
Enhanced SSL handshaking process using already estab-
lished SSL channels with the auxiliary VMs. When VM;
or VM needs to perform exponentiation with its private
key, it collaborates with the auxiliary VMs, and calculates
the result.

HERMES allows only one simultaneous key renegoti-
ation at a given time, since an on-going process neces-
sitates already established SSL channels. When two de-
fender VMs start the process, it issues a warning to all
VMs, blocking any other attempt for key renegotiation.
Once the on-going procedure halts, HERMES removes the
warning and allows the first renegotiation attempt.

4.6 Key Re-sharing

At the end of each epoch, the defender creates new shares
for the same private RSA keys that were partitioned and
distributed in the bootstrapping stage. In essence, it uses
the key-partitioning algorithm discussed in §4.2 and gen-
erates shares that are independent from the previous ones.
Then, it simply connects to each defender VM with our
Enhanced SSL, as in §4.4, and hands in the new shares
for all partitioned private keys.

The reason to adhere such a process is to mitigate the
risk of private key disclosure, since the adversary may
have already captured a set of shares for a partitioned
private key. It is obvious that partitioning the same key
for the second time will result in a different set of shares,
which are totally independent from the previous. Hence, if
the adversary did not capture enough shares to identify the
exact key in one epoch, it will have to start from scratch,
since those captured shares mean nothing in the next
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Setup

(1,1) (2,2) (3.3) (4.4) (5.5) (6,6) (7.7) (8.8) 9.9) (10,10)

Total 2.65 8.96 10.40 11.57 15.40 16.13 13.58 17.44 14.05 13.76
1 Cli. Network — 2.77 2.82 2.75 2.29 2.54 2.37 1.89 1.07 1.56
Combine — 1.78 1.76 1.82 2.25 2.18 1.87 1.99 2.00 1.93

Total 5.54 31.74 37.85 45.87 43.59 40.82 48.65 52.77 50.64 52.82

10 Cli. Network - 19.42 21.67 14.29 18.92 19.89 25.69 21.68 18.11 14.09
Combine — 1.95 2.05 222 2.20 2.18 1.87 2.17 2.58 2.23

Total 40.90 | 179.01 | 178.14 | 187.67 | 209.74 | 212.33 | 229.38 | 246.39 257.03 269.73

100 Cli. | Network - 121.05 | 113.36 | 122.96 108.82 | 125.52 | 108.25 106.98 98.71 113.15
Combine — 2.16 2.14 2.01 2.10 2.09 2.03 2.11 2.81 2.28

Total 146.94 | 640.40 | 728.56 | 928.75 | 1023.75 | 904.59 | 989.32 | 1097.64 | 1001.06 | 1174.54

1000 Cli. | Network — 210.36 | 197.28 | 202.08 | 229.03 | 240.42 | 20430 | 284.05 237.72 233.41
Combine — 2.26 2.08 1.96 2.18 2.17 2.20 2.43 2.24 2.62

Table 1: Average Connection, Network, and Combining Time Spent for D-RSA in milliseconds

epoch. The defender VMs do not immediately start using
the new keys, since each defender should get the new
shares, otherwise HERMES would have synchronization
problems. Instead, a defender VM broadcasts a message
to announce that it has the new shares. When all defender
VMs have the new shares, they pass on to the next epoch,
start using the new shares, and zeroise the old shares to
leave no trace. Till then, the VMs continue using the old
epoch shares.

5 Evaluation

We have implemented a prototype of HERMES atop
the most commonly used open source SSL library,
OpenSSL [10] v1.0.1e, the latest version as of this writing.
Our implementation is a separate shared library compat-
ible with the OpenSSL’s Engine API. Without changing
the OpenSSL source, programmers can plug-in our imple-
mentation and vary the way that RSA computations are
performed with the private key. Meanwhile, we have also
created multi-threaded applications (i) for the auxiliary
VMs to establish SSL connections with the combiner VM,
and to perform mathematical operations (e.g., exponenti-
ation with the private key share); (ii) for the defender to
partition the RSA private keys and hand in the shares to
each defender VM. In this section, we present our evalua-
tion result.

5.1 Experiment Setup

Case Studies. As it is challenging to exhaustively test
HERMES with all the network benchmarks, we evaluated
our system using a micro benchmark to profile the per-
formance, and two representative case studies, in which
SSL connection is necessary. The micro benchmark ex-
periments evaluate the performance under varying system
setups to target possible bottlenecks. Once the system dy-
namics are profiled, we execute two real-life case studies
and check any efficiency deficits. The first case study is a

web server, for which we used Apache HTTP Server [7]
v2.4.4. A client connects to the server via HTTPS, and
retrieves the default web page that comes with the appli-
cation, which is a static HTML page of size 2KB. The
second case study is a mail server using Postfix v2.10 [11].
On top of that, we installed Dovecot [8] v2.2.4 as the
IMAP(s)/POP3(s) server. A client connects to the Dove-
cot instance via IMAPS and checks the status of a mailbox,
which contains a single mail of size 1KB. Both server ap-
plications are executed with the keep alive property off
(i.e., the server does not store SSL sessions, and performs
a new handshake for every connection attempt by the
clients).

One may argue that testing the web and mail servers
with such low-sized content is applicable to real-world
case. It is true that almost all web sites serve contents
that may have much larger sizes. However, the purpose of
the experiments is to put as much pressure as possible to
HERMES in the given web and mail server case studies. As
will be clear in the results, as the number of connections
performed per unit time increases, HERMES acts more
efficiently due to decreased network overhead. Hence,
increasing the content sizes would increase the amount of
time the server spends on processing a query, and decrease
the number of requests per unit time. Instead, we used 1
and 2KB contents, and tried pushing HERMES as much
as possible.

Benchmarks. To extract micro benchmark results, we de-
veloped applications that connect to the given defender
VM, using given number of concurrent clients. For the
web server application, we used two different benchmark-
ing tools: Apache HTTP server benchmarking tool [5]
(AB) v2.4.4, which allows us to send HTTPS queries with
a variety of execution options; and Apache JMeter [6]
(AJ) v2.9, where we used the default HTTPS request sam-
pler that comes with the standard AJ binaries. For the
mail server application, we used AJ again, with the de-
fault mail reader sampler. Similar to the server-side, we
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Setup

(10,2) (10,3) (10,4) (10,5) (10,6) (10,7) (10,8) (10,9) (10,10)

Total 12.06 12.27 13.44 11.57 16.10 17.94 16.80 19.80 13.76
1 Clients Network 4.97 5.14 4.89 2.75 5.07 5.59 5.29 1.15 1.56
Combine 0.52 0.56 0.58 1.82 2.36 1.56 2.44 2.20 1.93

Total 19.78 23.22 28.14 45.87 39.48 48.99 49.97 60.70 52.82

10 Clients Network 9.72 10.15 10.19 14.29 16.30 23.15 27.17 34.03 14.09
Combine 1.27 1.07 1.26 2.22 2.42 2.64 3.09 2.81 2.23

Total 54.90 71.07 88.31 187.67 | 130.17 | 163.24 | 182.12 | 206.00 | 269.73

100 Clients | Network 11.77 25.27 37.77 122.96 | 69.74 84.05 82.96 121.32 | 113.15
Combine 1.24 1.62 1.74 2.01 2.15 2.34 2.80 3.01 2.28

Total 318.24 | 418.07 | 43598 | 928.75 | 653.12 | 642.48 | 877.42 | 995.89 | 1174.54

1000 Clients | Network 88.12 12372 | 130.21 | 202.08 | 196.29 | 212.05 | 214.20 | 216.97 | 233.41
Combine 1.50 2.20 1.85 1.96 2.08 2.52 2.82 3.24 2.62

Table 2: Average Connection, Network, and Combining Time Spent for Fixed / = 10 in milliseconds

did not use the keep alive functionality in the benchmark-
ing tools, which forces the clients to perform a new SSL
handshaking for each request.

Hardware. For our experiments, we created 10 VM in-
stances on Amazon EC2. The VM that serves that is aug-
mented with the web and mail server applications is of
the type mi.xlarge with 4 virtual CPU and 15GB of RAM.
The remaining VMs are of the type mI.small with 1 virtual
CPU, 1 virtual core, 1.7GB of RAM, and 64-bit Red Hat
Enterprise Linux 6.4. The reason that we don’t perform
experiments with more number of VMs is that our results
for 10 VMs are enough to extrapolate relations between
HERMES modes, parameters (e.g., [, k, T), and the per-
formance metrics (e.g., average latency, throughput). All
instances are created in the same EC2 region, US-West at
Oregon. The instances communicate with each other over
Amazon’s private network, while a client or the defender
interacts with the VMs over the public network. On the
other hand, we used a single machine to send connection,
web page, or mail check queries, where the machine is an
IBM x3500m3 server with 16GB of RAM, and 4 quad-
core CPUs at 2.4 GHz. Our client machine is located in
our university campus, and is connected to the defender
VMs over the Internet.

Parameters. We vary the number of concurrent clients
from 1 to 1000 exponentially to observe the effects of
increasing load on HERMES. We believe that the number
1000 is enough, since the number of web page views for
most popular web sites goes up to 37 billion per year,
which is approximately 1100 per second [1,2]. Each ex-
periment ran for 5 minutes, and the average value of 5
runs is shown as the final result. As will be shown in the
following subsection, we observe that a key re-sharing
process takes approximately 50 msec. Combined with the
observation that the average time to process a query may
go up to 2 sec, we vary 7 (i.e., the key re-sharing period)
from 5 to 125 seconds.

We perform experiments using 10 VMs, and represent
the setup as (/,k), where [ is the number of active VMs,
and k is the number of shares needed to calculate the
RSA result. When [ is equal to k, the system runs with
D-RSA mode of operation using / VMs. Furthermore,
(1,1) represents the single VM setup, where the default
SSL (i.e., the one without our modification and there is
only one key) is used. Also, as [ must be greater than or
equal to k, it is important to note that we do not have any
experiment set up of (/,k) where [ < k.

5.2 Results

Micro Benchmarking. In this set of experiments, we
aimed to observe the sole effects of HERMES on the perfor-
mance, where the client simply connects to the combiner
VM, and immediately closes the SSL channel, without
sending any additional query. Naturally, we expected to
observe a massive load on the combiner VM, since all
it does is to establish SSL channel with the client using
our enhanced SSL, and nothing else. Thus, the number of
requests per unit time will be high, which will introduce
an increased network overhead.

Table 1 shows the micro benchmark results for D-RSA
with up to 10 VMs (e.g., [ = 10). We vary the number
of concurrent clients from 1 to 1000, and measure the
average connection time, average time spent for inter-VM
communication, and average time spent for combining
partial results in milliseconds. It is observed that combin-
ing partial results from the auxiliary VMs do not incur
more than 3 msec overhead; thus, does not affect a suc-
cessful enhanced SSL connection in terms of efficiency.
The reason is the simplicity of combining partial results
(i.e., I modular multiplication). On the other hand, inter-
VM communication dominates the overhead introduced
by the enhanced SSL in D-RSA mode. Especially when
the number of concurrent clients is 1000, average time
required to execute an SSL connection exceeds 1 sec if
[ > 7. Thus, the network communication becomes the bot-
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Setup

(2,2) (3,2) (4,2) (5.2) (6,2) (7,2) (8.2) 9.2) (10,2)

Total 8.96 12.03 11.23 11.97 12.37 13.47 12.16 9.58 12.06

1 Clients Network 2.77 4.77 4.82 5.28 5.10 4.77 5.42 4.76 4.97
Combine 1.78 2.13 0.90 1.30 1.35 0.51 0.53 0.55 0.52

Total 31.74 33.45 23.77 25.34 23.57 20.18 18.81 19.26 19.78

10 Clients Network 19.42 19.10 11.00 9.78 9.62 8.20 10.49 9.26 9.72
Combine 1.95 2.26 1.52 1.47 1.26 1.50 1.29 1.33 1.27

Total 179.01 | 164.65 | 95.30 82.50 80.98 66.95 73.26 58.08 54.90

100 Clients | Network | 121.05 | 95.84 52.52 38.03 30.00 25.90 25.93 25.26 11.77
Combine 2.16 2.19 1.82 1.92 1.42 1.59 1.72 1.15 1.24

Total 640.40 | 665.95 | 548.22 | 504.12 | 450.09 | 340.10 | 350.46 | 320.84 | 318.24

1000 Clients | Network | 210.36 | 197.43 | 150.84 | 123.75 | 60.88 55.09 59.19 46.50 88.12
Combine 2.26 1.93 1.91 1.91 1.55 1.41 1.42 2.36 1.50

Table 3: Average Connection, Network, and Combining Time Spent for Fixed k = 2 in milliseconds.

tleneck for D-RSA in high load, in case the combiner VM
closes the connection right after a successful connection.
In the results for our case studies, we observe that if the
combiner has to process a request (e.g., prepare a web
page, or check a mailbox) after a successful SSL connec-
tion, the network overhead decreases, which results in less
average latency.

As previously mentioned, we introduce T-RSA mode to
reduce the overhead by simply distributing work amongst
different sets of VMs. Given the performance of 10 VMs
in D-RSA mode, we check if the performance can be im-
proved in T-RSA mode by reducing % (i.e., the number of
needed VMs). Table 2 shows the results for a fixed [ = 10
and varying number of k values. Furthermore, we perform
experiments to observe the effect of increasing number
of VMs for a fixed k = 2, and show the results in Table 3.
The performance metrics and the client parameters are
the same as in Table 1. It is observed that for a fixed /
value, the average latency to complete an enhanced SSL
connection drops down as k gets smaller, especially when
k < (1/2). The reason is that different sets of auxiliary
VMs are consulted to complete a single SSL connection
each time, which results in less network connection over-
head. Hence, per each inter-VM connection, we observe
less load, resulting up to 3 times better performance than
D-RSA mode with same [ value (e.g., between (10,10)
and (10,2)). On the other hand, it is still reasonable to
pass to T-RSA, even if k > (1/2), since decreasing k has,
definitely, positive effects on the performance. For a fixed
k value, increasing / by introducing new defender VMs
has positive effects on the average time to complete an en-
hanced SSL connection, by simply reducing the inter-VM
communication overhead. The value of k, indeed, affects
the number of VMs that should be introduced to reduce
the average completion time. We extrapolate that introduc-
ing nearly 2k new VMs into HERMES helps decreasing
the overhead by nearly 50%. To solidify our derivations,
we performed the same T-RSA experiments for different
fixed values of k and /. For brevity, we moved the results

Key re-sharing time (msec)
[ | Avg.Lat. [ | Avg.Lat. l Avg.Lat.
2 17.59 5 37.89 8 54.64
3 23.60 6 43.65 9 57.34
4 29.51 7 49.82 10 61.28

Table 4: Average Completion Time for Key Re-sharing in
milliseconds.

of those experiments to App. A, from which the same
observations can be easily made.

We, further, measured the average time of completion
for a single key re-sharing process for varying number of
defender VMs. Since, the number of connections that the
defender has to do in the re-sharing process depends on
[, but not on k, we performed the experiments in D-RSA
mode with / number of VMs. Table 4 shows the results,
where the defender re-shares the same partitioned keys
every 5 seconds, and no other client attempts to connect
to the VMs. The experiments ran for 5 minutes, and the
average time to complete a single key re-sharing is cal-
culated. We observe that the average time increases with
the number of VMs, since the defender has to connect
each VM separately, incurring additional inter-VM com-
munication overhead. We see that the values in Table 4
coincides with the values in Table 1. When [ is equal to
10, the defender has to make 10 simultaneous connec-
tions to HERMES, resulting a similar result as 10 clients
D-RSA for the setup (10, 10). In case of high load (e.g.,
1000 clients), the key re-sharing process would, definitely,
take longer time. Thus, the optimal 7 value for the key
re-sharing epoch should be chosen while considering the
server load, and the number of defender VMs.

Web Server. In our first case study, our aim is to show
that the performance improves as the combiner executes a
CPU intensive operation (e.g., prepare a web page) once
connected to the client. The experimental setup is the
same as the micro benchmarking setup, except now the
combiner VM is a web server. When a client employs
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SSL to connect to the combiner VM and retrieve a web
page, the combiner VM collaborates with the auxiliary
VMs, and executes our enhanced SSL.

Fig. 4a and 4d show the results for HERMES in D-RSA
mode, where the number of VMs changes from 1 to 10,
and the number of concurrent clients changes between
1 to 1000 for 7 of 125 sec. We use AB and AJ bench-
marking tools, run the experiments for 5 minutes, and
report the average time needed to execute a web page
retrieval request, and the number of requests per second.
We observe similar performance patterns for both of our
metrics (e.g., performance decrease when [ is increased)
in compare to the micro benchmarks. However, the per-
formance difference between the two end points (i.e., be-
tween (1,1) and (10, 10)) is narrower, due to more CPU-
intensive processing done by the combiner. For 1000 con-
current clients, average latency and throughput in (1,1)
is 740 msec and 255 req/sec, respectively. On the other
hand, the (10, 10) setup results in nearly 2 sec average
latency, and 120 req/sec throughput. Compared to nearly
10 times increase in the micro benchmarking results, we
see that the more CPU-intensive job the server does, the
closer the gap between the (1,1) and (10, 10) setups is.

Once again, we check if the performance can be
boosted by passing to T-RSA mode, with decreased num-
ber of needed VMs. Fig. 4b and 4e show the results for
fixed [ = 10 and 7 = 125 sec. We observe that especially
when k < (I/2), the overhead reduces down to nearly 10%
with respect to (1,1) setup. For instance, in the (10,5)
setup, the average latency is 1088 ms, while the through-
put is 220 req/sec. Even better, the throughput increases
to 248 in (10, 3) setup, and to 250 in (10,2) setup, which
is just 2% less than (1, 1). The reason stems from distribut-
ing workload to more VMs by keeping seperate parts of
the network busy at the same time, which reduces the
inter-VM communication overhead.

We remark that the results are gathered using the sec-
ond slowest VM instances in Amazon EC2. The defender
can instantiate stronger VM instances, with faster network,
which will definitely improve the performance, since the
network latency turns out to be the bottleneck. Further-
more, the defender can distribute the combiner role to
multiple VMs to achieve further workload distribution.

The next results for the web server case study are given
in Fig. 4c and 4f, where we measure the performance for
varying / parameter and a fixed k = 2. We observe that
having [ > 2k boosts the performance. Even in the (4,2)
setup, we measure that the average latency and throughput
is 909 msec and 236 req/sec, respectively, which means
less than 10% overhead for the second metric. When the
number of VMs is more than 3k, HERMES performs nearly
the same as the (1,1) setup.

To show that our choice of T = 125 sec does not have
major effects on the overall performance, we vary the
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Figure 5: Web Server results for k = 2 with varying 7

length of an epoch exponentially from 5 to 125 sec for
different number of VMs, and fixed number of concurrent
clients of 1000. We chose to execute epoch experiments
for the fastest HERMES setup, namely fixed k with high /
values, and to check if performance degradation occurs
for decreased key re-sharing period. Fig. 5 shows the
results for fixed k = 2 and 1000 concurrent clients, and
varying 7 values. We observe that even when 7 =5 sec,
the performance metrics behave similar to T = 125 sec
case. This stems from the server being already loaded with
enough concurrent clients, so that the seldom requests to
re-share keys are only minor issues that does not take too
much time to process.

Mail Server. Mail Server is our second case study, where
the clients establish connection using SSL via IMAPS pro-
tocol, and check a mailbox that contains a single mail. The
default setting with regular SSL (i.e., (1, 1) setup) already
results in an average 5758 ms latency, and 49.5 req/sec
for 1000 concurrent clients. Hence, the combiner has to
do more CPU-intensive operation for each client request.
We claim that the margin between (1,1) and (10, 10) se-
tups will be less, since the network will be less occupied
at a given time; thus, it will result in less inter-VM com-
munication overhead.

Fig. 6 shows the results for the mail server case study,
where the clients vary from 1 to 1000, and re-sharing
period is 125 sec. First of all, we observe that the perfor-
mance of each setup looks very similar, with nearly at
most 8% overhead with respect to (1,1). The reason to
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Figure 4: Web Server results

observe such a pattern is, as hypothesized, the fact that
an average mail inquiry takes too much time to process.
It causes low throughput values, resulting less number of
SSL handshakes being made per unit time, which in turn
causes less inter-VM communication overhead.

Once more, we observe that increasing the number of
VMs for D-RSA mode has negative effects on the per-
formance metrics, as shown in Fig. 6a and 6d. On the
contrary, increasing / for fixed k value in T-RSA mode en-
hances the overall performance, due to better distribution
of the defender VMs, as seen in Fig. 6¢ and 6f.

6 Security Analysis

The theoretical security of HERMES is based on the for-
mally proven security of D-RSA and T-RSA, as discussed
in §2.2. Combined with key re-sharing, the adversary
should successfully capture at least / shares in D-RSA
or k in T-RSA to calculate the shared cryptographic key.
On the other hand, in practice, HERMES should give guar-
antees on the probability of a successful attack based on
some assumptions on the nature of the attack and the
system parameters (e.g., T, [, k). The defender may have
limited budget, or have certain performance requirements.
In any case, HERMES must minimize any security risk
by choosing [, k, and T optimally. In this section, we first
formalize the problem of finding such optimal values for
those parameters, and then apply the optimization tech-
nique to a sample configuration: the micro benchmarking

scenario discussed in §5. Our choice to apply optimiza-
tion to only one configuration is due to space constraints;
however, our approach is modular, and is easily applicable
to any other cases.

6.1 Problem Formalization

In our formalization, we consider three main aspects: se-
curity, cost, and performance. Security aspect allows us
to provide an upper bound on the possibility of a suc-
cessful key extraction attack on HERMES for the given &,
/, and 7 values. Theoretically, increasing k and /, or de-
creasing T will make it harder for the adversary to achieve
its goal. However, increasing [ implies more defender
VMs running on the cloud, which increases the total cost.
Moreover, our experiments showed that the performance
degrades as / and k increase together. Hence, the opti-
mal values should be assigned to k, [, T for the given
constraints (e.g., budget, performance limit).

Security Aspect. To quantify the probability of a success-
ful attack in an epoch, we assume that the adversary has
to start from scratch in each epoch, which implies that
it loses all its previously acquired information. This is a
valid assumption, since shares for each epoch are inde-
pendent from one another, and a captured share does not
contribute any information to the next epoch. The inabil-
ity of conducting acquired information to the following
epochs makes it convincing to model the probability of
a successful attack as an exponentially distributed ran-
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Figure 6: Mail Server results

dom variable. Given the success rate parameter 6, the
probability distribution for the attack is:

left/e

r0={ 3

Since the exponential distribution is memoryless' and
the cryptographic key is re-shared in each epoch, we can
simply assume that the input to f is the time difference
from the last re-sharing moment. Then, given the length
of the epoch 7, the probability of a successful attack is:

ift >0
otherwise

ey

T
F(t,0) :/ flt)dt=1—e"° )
0
Finally, assuming that the probability of capturing
shares from a single VM is identical to and independent
from all other VMs, the probability of capturing at least k
shares from / defender VMs in an epoch is:

!
Sec(l,k,7,0) = Z <l> (1 _efr/e)i(efr/e)lﬂ' 3)

i=k \!

Cost Aspect. Modeling monetary cost in HERMES is
rather simple compared to the other two aspects. Assum-
ing that the cloud provider does not charge money for
the inter-VM communications, the total monetary cost
is Cost(l) = 1.B, where 3 is the unit cost of running a
single VM on the cloud provider. The cost of communica-
tion with the client is also neglected, since this is not an
additional cost incurred by HERMES.

Performance Aspect. The method to formalize the ex-
pected performance depends heavily on the application
that HERMES is running for, and the metrics that the de-
fender considers. For instance, one may value throughput
more than the latency while running HERMES. On the
other hand, the effects of changing parameters (i.e., k, /) in
the mail server case study is far different than changing the
same parameters in the micro benchmarking experiments.
For brevity, we show the performance of HERMES for the
given k and [ as Perf(l,k), and leave it to the defender to
define the characteristics of the function.

Optimization Problem. Given the success rate parameter
0, the unit cost of a VM f, the budget limit L., and
the performance limit L., r, the aim of the optimization
problem is to minimize the probability of a successful
attack in an epoch while keeping the total monetary cost
below Lo and the performance below Ly, r. Formally,
the optimization problem is:
minimize: Sec(l,k,7,0)
Cost(l) < Leost, Perf(1,k) < Lpery

[1>k>1,7>0

subject to:

6.2 Application to Micro Benchmarking

Modeling performance is highly dependent on the case
study and the aimed configuration, thus it is challenging
to apply the optimization to every single case. Instead, we
targeted to optimize HERMES for 100 concurrent clients
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6 = 600 6 = 3600

Leost /yr Conf. Sec() Conf. Sec()
$1820 (2,2) 6.8-107 (2,2) 1.9-10°°
$3640 (4,3) 2.2-1076 (4,3) 3.7-1078
$7280 (8,5) 2.1-107° (8,5) | 2.8-10713
$14560 | (16,10) | 1.1-107'7 | (16,10) | 2.1-107%

Table 5: Optimal setup and resulting successful attack
probabilities in an epoch for fixed expected latency limit
Lperf = 150 msec, and 6 = {600,3600}

in the micro benchmarking scenario, since all experiment
results for the chosen configuration are given in §5.2 and
App. B. For brevity, we make a further assignment of
parameters by choosing re-sharing period as 7 =5 sec
and success rate parameter as 0 = 3600. T = 5 sec is the
smallest value that we have tested, and is a valid value
that allows HERMES to complete several computations
in each epoch. Furthermore, choosing small re-sharing
period will tighten the overall security, since the adver-
sary has to complete the attack in a very short period. On
the other hand, choosing 6 as 3600 is due to the existing
cross-VM attacks (i.e., [41,51]), which necessitates hours
to capture the cryptographic key. In an exponential distri-
bution, expected waiting time to observe one success is 6.
Since, we expect the attack to succeed in an hour, we as-
sign 8 = 3600, representing the number of seconds in an
hour. In addition, we check 8 = 600 to observe changes
in optimal values.

In this example, we picked latency as the target per-
formance metric to consider, assuming that the defender
aimed to serve 100 concurrent clients as fast as possible.
The important step to model performance is to figure out
Perf(l,k). To overcome this, we applied multiple linear
regression on our experiment results, and came up with
a formula that gives the expected latency value for the
given [ and k values. As it is challenging to test every
possible formula, and increasing the number of variables
may over-fit the training data, we chose a simple poly-
nomial Perf(l,k) = co+c1.l+c2.k+c3.(1/k) to model
the expected latency, where the coefficients are ¢y = 118,
c1 = —18, ¢o =31, and ¢3 = 7. Finally, to observe the ef-
fects of different performance limits L., s, we calculated
optimal HERMES setups for L,.,¢ € [50,200]. Finally, as-
suming that the defender will use the second cheapest
VM instance on Amazon EC2, she will pay $0.104/hour,
which is approximately $910/yr. We vary the monetary
budget between $1820/yr and $14560/yr to check opti-
mal values, which is simply / € [2,16].

Table 5 shows the results of the optimization proce-
dure for varying monetary budget, and fixed Lp,,r = 150.
The results include the optimal HERMES setup and the
probability of a successful attack in one epoch, for both
6 = 3600 and 600. We observe that as we increase the

6 = 600 6 = 3600

Lpery Conf. Sec() Conf. Sec()
50 msec | (16,6) | 2.4-1077 | (16,6) | 5.6-1071%
100 msec | (16,8) | 2.7-107 | (16,8) | 1.7-1071°
150 msec | (16,10) | 1.1-107'7 | (16,10) | 2.1-107%
200 msec | (16,11) | 5.4-10720 | (15,11) | 4.9-107%

Table 6: Optimal setup and resulting successful attack
probabilities in an epoch for fixed monetary budget
Leoss = $14560/yr, and 6 = {600, 3600}

monetary budget, HERMES is allowed to run with more
VMs, resulting in lower probabilities of success for the
adversary. For instance, when the budget is $7280/yr and
0 = 3600, HERMES can be configured to run in (8,5)
setup, while the adversary has only 2.8 - 10~!3 chance to
capture the partitioned cryptographic key.

Table 6 shows similar set of results, this time for fixed
monetary budget of $14560/yr, but varying expected per-
formance limit L. y. We deduce that as HERMES is
allowed to respond slower, it can be configured to run
with increased k, which decreases the attack success prob-
ability. For instance, increasing expected latency from
50 msec to 150 msec decreases the attack success prob-
ability nearly 8 and 11 fold, when 6 is 600 and 3600,
respectively.

Note that the probabilities are calculated for a success-
ful attack in one epoch, one would question if the adver-
sary would accomplish its goal in a longer period, say a
year. For $7280/yr and an expected latency of 150 msec
in our micro benchmarking case study, the probability of
capturing the complete cryptographic key in one year is
1.8-107° if the average time to capture a key is predicted
as 3600 sec, which is a very small probability.

7 Related Work

Attacks. There exists a myriad of side-channel attacks
with different assumptions and setups. The adversary
may leverage observations made on the shared hardware
to execute access driven attacks (e.g., [13, 14, 28,43]);
measure timings of certain cryptographic operations
of the defender to perform time-driven attacks (e.g.,
[15, 19,20, 34,47]); or physically observe the defender
machines and run trace driven attacks (e.g., [18,26,33]).
The specific type of attacks, which HERMES aims to mit-
igate, is cross-VM side-channel attacks, in which both
the defender and the adversary are customers to a third-
party cloud infrastructure. Both entities initialize VMs
in the cloud, where the victim’s VMs are attacked by
the adversary’s VMs. Ristenpart et al. [41] showed the
first cross-VM side-channel, in which they first co-reside
their VMs with the defender VMs, and execute an access-
driven attack to retrieve crude information (e.g., aggregate
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cache usage). In another work, though not for adversar-
ial purposes, Zhang et al. [50] present HomeAlone that
performs a co-residency check between two VMs using
classifiers on cache timing. In another attack, Zhang et al.
push it one step further, and extract an ElGamal private
key using cross-VM attacks [51]. Those works showed
that VMs in public cloud infrastructures are vulnerable
to side-channel attacks, and protection mechanisms are
needed to secure private information.

Prevention. Among the variety of side-channel preven-
tion techniques, the most popular ones are randomization-
based approaches. MIST is one of such examples, in
which the square-and-multiply method is extended with
an additional division by a randomly chosen number [38,
45]. Other approaches include adding random noise be-
tween squaring and multiplying operations, or applying
always-multiply techniques. To countermeasure those
side-channel prevention techniques, Karlof et al. promotes
Hidden Markov Model based cryptanalysis as a powerful
tool [30]. On the other hand, Witteman et al. shows a trace
driven side-channel attack to break down always-multiply
technique and message binding in RSA [49]. Although
the latter is trace driven, those two works show that even
randomization based side-channel prevention approaches
could have vulnerabilities that can be used by different
types of adversaries.

There exist several works that aim to prevent side-
channel attacks in public clouds. HomeAlone [50] uses
co-residency checks to see if a VM is physically isolated
from any other VM, and to achieve maximum physical
isolation. Our work aims to prevent the leakage of private
keys even if the adversary co-resides with the defender,
whereas they aim to prevent access-driven side-channel at-
tacks by assuring physical isolation. In HyperSafe, Wang
and Jiang aim to provide hypervisor integrity throughout
the execution [46]. We assume that the cloud provider and
its infrastructure (including the hypervisor) are trusted.
Other prevention mechanisms include [17], which aims
to prevent side-channel attacks that use communication
traffic; StealthMem that hides memory access patterns
to protect private information [32]. Compared to these
works, HERMES is applicable to any type of cross-VM
attacks against cryptographic keys.

8 Conclusion

In this paper, we present HERMES, a novel system to pro-
tect cryptographic keys in cloud VMs. The key idea is to
periodically partition a cryptographic key using additive
or Shamir secret sharing. With two different case studies,
we show that the overhead can be as low as 1%. With
such small overhead in an average request, cryptographic
keys become more leakage-resilient against any adversary.

Furthermore, we model the problem of finding optimal
parameters for the given monetary and performance con-
straints, which minimizes the security risk. Using our for-
mal model, the defender can calculate the probability of a
successful attack, and take precautions (e.g., increase the
number of VMs, decrease epoch length). As a proof-of-
concept, the current implementation of HERMES mainly
focuses on the protection of the RSA private key, which
is widely used in many daily web site and mail server
communications. However, there exists a myriad of works
on threshold signature schemes for different cryptosys-
tems, (e.g., [21,23,27,35,36]), which may be applicable
to HERMES with slight modifications.
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Setup
92 | 603 | 04 9.5) 9.,6) .7 9.8) 9.9)
Total 9.58 10.70 | 11.53 15.88 13.93 13.97 14.13 14.05
1 Clients Network 4.76 4.49 4.85 5.30 5.01 4.84 2.45 1.07
Combine | 0.55 1.44 1.18 1.65 1.77 1.65 2.75 2.00
Total 19.26 | 21.29 | 24.14 | 3143 32.81 39.67 46.73 50.64
10 Clients | Network 9.26 | 10.84 | 12.87 15.85 14.55 22.92 23.74 18.11
Combine | 1.33 1.51 1.68 2.07 2.61 2.83 2.76 2.58
Total 58.08 | 68.32 | 91.87 | 144.08 | 164.54 | 209.26 | 247.54 | 257.03
100 Clients | Network | 25.26 | 37.91 | 51.19 | 98.69 108.02 | 101.33 | 111.37 | 98.71
Combine | 1.15 1.64 2.01 2.24 2.56 2.14 2.81 2.81

Table 7: Average Connection, Network, and Combining Time Spent for Fixed [ = 9 in milliseconds

Setup
(3,3) 4,3) (5,3) (6,3) (7,3) (8,3) 9,3) | (10,3)
Total 10.4 12.98 12.04 1196 | 13.33 | 11.57 | 10.70 | 12.27
1 Clients Network 2.82 6.57 5.11 5.04 5.28 4.92 4.49 5.14
Combine 1.76 1.46 1.66 1.51 1.90 1.49 1.44 0.56
Total 37.85 35.85 29.35 2422 | 2431 | 21.66 | 21.29 | 23.22
10 Clients Network 21.67 21.81 15.76 12.43 | 11.53 | 10.56 | 10.84 | 10.15
Combine 2.05 2.02 1.97 1.69 1.71 1.57 1.51 1.07
Total 178.14 | 209.99 | 146.54 | 99.47 | 86.62 | 79.72 | 68.32 | 71.07
100 Clients | Network 113.36 | 158.35 | 112.46 | 67.47 | 61.25 | 51.57 | 3791 | 25.27
Combine 2.14 2.49 2.00 1.85 1.90 1.65 1.64 1.62

Table 8: Average Connection, Network, and Combining Time Spent for Fixed & = 3 in milliseconds

A Additional Experiments

Tables 7 and 8 show the results for the micro benchmark.

B T-RSA Details

Key partitioning: The dealer creates two strong primes
p=2p' +1and g =24 + 1, where p’ and ¢’ are also
prime numbers. Next, it creates a random prime number
e > [, and calculates d = e~! mod m, where m = p'q’.
Then, the dealer creates a random polynomial f(X) =

=1
Y a;X' € Z[X], where ap = d, and ay,...,a;_ are ran-
i=0

dom integers in Z. Next, the dealer computes each party
pi’s share as s; = f(i) mod m. The public key is (n,e),
while each party is given s; as their share of the private
key.

Using the secret key: For a given message M € Z;,
the chosen combiner selects a subset of the parties, S =
{it,-- i} €{1,...,1}, where |S| =k, and sends M to
each party in S. Each selected party p;; performs the fol-
lowing set of operations:

1. A=1!
Hixes\{ij} —ix

S _
2. on"j o Anixes\{ij}(ii_ix)

30wy, = M0

l(i i is the polynomial interpolation constant for p;;
in set S, where Af(0) = ¥; es l&ijf(ij) mod m. Once
the combiner gets a partial result, w;;, from each party
in §, it computes w = Hijes wi;. Then, it executes the
extended Euclidean algorithm for e and ¢ = 4A?%, and
gets integers a and b, where €'a+eb = ged(e',e) = 1.
The greatest common divisor of e and ¢’ is 1, since e is
a prime number, and each factor of ¢’ is smaller than e.

Finally, the combiner computes y = w*M? as the final
result.

The final value y is in fact M? mod n:
w= H wi; = HM4AS"1AOJJ = M* = M pod n
ijes ijes

y = WaMb = Mae'd+b = Md(l—eb)+b = Md mOd n

Notes

In a memoryless probability distribution, the cumulative probability
depends on the distance from the starting time of the distribution to the
current time.
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