
This paper is included in the Proceedings of the 
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

ISBN 978-1-931971-46-1

Open access to the Proceedings of the 
27th USENIX Security Symposium 

is sponsored by USENIX.

Guarder: A Tunable Secure Allocator
Sam Silvestro, Hongyu Liu, and Tianyi Liu, University of Texas at San Antonio;  

Zhiqiang Lin, Ohio State University; Tongping Liu, University of Texas at San Antonio

https://www.usenix.org/conference/usenixsecurity18/presentation/silvestro



GUARDER: A Tunable Secure Allocator

Sam Silvestro∗ Hongyu Liu∗ Tianyi Liu∗ Zhiqiang Lin† Tongping Liu∗
∗University of Texas at San Antonio

†The Ohio State University

Abstract
Due to the on-going threats posed by heap vulnerabili-
ties, we design a novel secure allocator — GUARDER—
to defeat these vulnerabilities. GUARDER is different
from existing secure allocators in the following aspects.
Existing allocators either have low/zero randomization
entropy, or cannot provide stable security guarantees,
where their entropies vary by object size classes, exe-
cution phases, inputs, or applications. GUARDER en-
sures the desired randomization entropy, and provides an
unprecedented level of security guarantee by combining
all security features of existing allocators, with overhead
that is comparable to performance-oriented allocators.
Compared to the default Linux allocator, GUARDER’s
performance overhead is less than 3% on average. This
overhead is similar to the previous state-of-the-art, Free-
Guard, but comes with a much stronger security guaran-
tee. GUARDER also provides an additional feature that
allows users to customize security based on their perfor-
mance budget, without changing code or even recompil-
ing. The combination of high security and low overhead
makes GUARDER a practical solution for the deployed
environment.

1 Introduction

A range of heap vulnerabilities, such as heap over-
reads, heap over-writes, use-after-frees, invalid-frees,
and double-frees, still plague applications written in
C/C++ languages. They not only cause unexpected pro-
gram behavior, but also lead to security breaches, includ-
ing information leakage and control flow hijacking [34].
For instance, the Heartbleed bug, a buffer over-read prob-
lem in the OpenSSL cryptography library, results in the
leakage of sensitive private data [1]. Another example
of a recent buffer overflow is the WannaCry ransomware
attack, which takes advantage of a vulnerability inside
Server Message Block [17], affecting a series of Win-

Vulnerability Occurrences (#)
Heap Overflow 673
Heap Over-read 125
Invalid-free 35
Double-free 33
Use-after-free 264

Table 1: Heap vulnerabilities reported in 2017.

dows versions [12]. Heap vulnerabilities still widely ex-
ist in different types of in-production software, where Ta-
ble 1 shows those reported in the past year at NVD [29].

Secure memory allocators typically serve as the first
line of defense against heap vulnerabilities. How-
ever, existing secure allocators, including the OpenBSD
allocator [28] (which we will simply refer to as
“OpenBSD”), DieHarder [30], Cling [2], and Free-
Guard [33], possess their own strong deficiencies.

First, these allocators provide either low randomiza-
tion entropy, or cannot support a stable randomization
guarantee, which indicates they may not effectively de-
fend against heap overflows and use-after-free attacks.
Cling does not provide any randomization, while Free-
Guard only provides two bits of entropy. Although
OpenBSD and DieHarder supply higher entropy levels,
their entropies are not stable, and vary across different
size classes, execution phases, inputs, and applications.
Typically, their entropies are inversely proportional to an
object’s size class. For instance, OpenBSD has the high-
est entropy for 16 byte objects, with as many as 10 bits,
while the entropy for objects with 2048 bytes is at most 3
bits. Therefore, attackers may exploit this fact to breach
security at the weakest point.

Second, existing allocators cannot easily change their
security guarantees, which prevents users from choos-
ing protection based on their budget for performance or
memory consumption. For instance, their randomization
entropy is primarily limited by bag size (e.g. DieHarder
and OpenBSD), or the number of free lists (e.g. Free-
Guard). For instance, simply incrementing FreeGuard’s

USENIX Association 27th USENIX Security Symposium    117



entropy by a single bit may significantly increase mem-
ory consumption, due to doubling its number of free lists.

Third, existing secure allocators have other problems
that may affect their adoption. Both OpenBSD and Die-
Harder impose large performance overhead, with 31%
and 74% on average. Also, they may slow down some
applications by 4× and 9× respectively, as shown in
Figure 3. This prohibitively high overhead may prevent
their adoption in performance-sensitive scenarios. On
the other hand, although FreeGuard is very efficient, its
low entropy and deterministic memory layout make it an
easier target to attack.

This paper presents GUARDER, a novel allocator that
provides an unprecedented security guarantee, but with-
out compromising its performance. GUARDER supports
all necessary security features of existing secure alloca-
tors, and offers the highest level of randomization en-
tropy stably. In addition, GUARDER is also the first se-
cure allocator to allow users to specify their desired se-
curity guarantee, which is inspired by tiered Internet ser-
vices [8].

Existing allocators provide unstable randomization
entropies because they randomly select an object from
those that remain available within a bag (e.g. OpenBSD),
or among multiple bags belonging to the same size class
(e.g. DieHarder). However, the number of available ob-
jects is reduced with every allocation, unless immedi-
ately offset by a deallocation, thus decreasing entropy.
Also, their entropies greatly depend on the bag size,
which limits the total number of available objects inside.
GUARDER proposes an allocation buffer to track avail-
able objects for each size class, then randomly chooses
one object from the buffer upon each allocation. The al-
location buffer will be dynamically filled using both new
and recently-freed objects on-demand, avoiding this de-
crease of entropy. The allocation buffer will simultane-
ously satisfy the following properties: (1) The buffer size
can be easily adjusted, where a larger size will provide a
higher randomization entropy; (2) The buffer size is de-
fined independently from any size class in order to pro-
vide stable entropy for objects of different size classes;
(3) It is very efficient to locate an item inside the buffer,
even when given an index randomly; (4) It is more effi-
cient to search for an available object by separating avail-
able objects from the large amount of in-use ones.

However, although it is possible to place deallocated
objects into the allocation buffer directly, it can be very
expensive to search for an empty slot in which to do so.
In addition, it is difficult to handle a freed object when
the allocation buffer is full. Instead, GUARDER pro-
poses a separate deallocation buffer to track freed ob-
jects: freed objects will be recorded into the deallocation
buffer sequentially, which will be more efficient due to
avoiding the need for searching; these freed objects will

Performance 

Se
cu

rit
y 

FreeGuard 

OpenBSD 

DieHarder 

Linux 

GUARDER 

Figure 1: Comparing to performance vs. security of
existing work

be moved to the allocation buffer upon each allocation,
and in a batched mode when the allocation buffer is re-
duced to half-full. More implementation details are de-
scribed in Section 4.

The combination of allocation and deallocation
buffers also seamlessly integrates with other customiza-
tion mechanisms, such as guard pages and over-
provisioning. When filling the allocation buffer with new
heap objects, GUARDER maintains a bump pointer that
always refers to the next new object at the top of the
heap. It will skip all objects tied to randomly-selected
guard pages (and set them as non-accessible), and ran-
domly skip objects in proportion to the user-defined
over-provisioning factor. This mechanism ensures these
skipped objects will never participate in future alloca-
tions and deallocations. In contrast, DieHarder is unable
to place guard pages within the interior of a bag, since
every object has a chance of being allocated in the fu-
ture. For this same reason, DieHarder may incur a larger
memory footprint or additional cache misses.

GUARDER designs multiple mechanisms to further
improve its performance. First, it designs a novel heap
layout to quickly locate the metadata of each freed ob-
ject in order to detect double and invalid frees. Second, it
minimizes lock acquisitions to further improve scalabil-
ity and performance. Third, it manages pointers to avail-
able objects directly within the allocation buffer, remov-
ing a level of indirection compared to existing bitmap-
based (e.g. DieHarder or OpenBSD) or free-list-based
(e.g. FreeGuard) approaches. GUARDER also overcomes
the obvious shortcoming of FreeGuard’s deterministic
layout by constructing per-thread heaps randomly. Com-
pared to existing work, as shown in Figure 1, GUARDER
achieves the highest security, while also imposing small
performance overhead.
Overall, GUARDER makes the following contributions.

Supporting a stable and tunable security guarantee.
It is the first allocator to support customizable security
guarantees on randomization entropy, guard pages, and

118    27th USENIX Security Symposium USENIX Association



over-provisioning, which allows users to choose the ap-
propriate security level based on their performance or
memory budget. GUARDER implements a combination
of allocation and deallocation buffers to support its cus-
tomizable security.

Supporting the highest degree of security, but with
reasonable overhead. GUARDER implements all neces-
sary security features of existing secure allocators, and
provides around 9.89 bits of entropy, while only impos-
ing less than 3% performance overhead and 27% mem-
ory overhead when compared to the default Linux allo-
cator. GUARDER achieves similar performance overhead
to the state-of-the-art (FreeGuard), with less memory
overhead, and while substantially improving randomiza-
tion by providing over 200 times more objects (per each
thread and size class) to randomly choose between. For
example, where FreeGuard selects one out of ∼ 4 ob-
jects, GUARDER chooses from over 948 objects.

Substantial evaluation of GUARDER and other secure
allocators. The paper performs substantial evaluation
of the performance and effectiveness of GUARDER and
other existing allocators. Investigations were conducted
through direct examination of source code and by per-
forming extensive experiments. GUARDER is the first
work to experimentally evaluate the randomization en-
tropy and search trials of existing allocators.

2 Background

2.1 Heap Vulnerabilities

Heap vulnerabilities that can be defended or reduced by
GUARDER include buffer overflows, use-after-frees, and
double/invalid frees. These memory vulnerabilities can
result in information leakage, denial-of-service, illegiti-
mate privilege elevation, or execution of arbitrary code.

A buffer overflow occurs when a program reads or
writes outside the boundaries of an allocated object,
which further includes buffer underflows. Use-after-free
occurs when an application accesses memory that has
previously been deallocated, and has possibly been re-
utilized for other live objects [37, 10, 6]. A double-free
problem takes place when an object is freed more than
once. Finally, an invalid-free occurs when an invalid
pointer is passed to heap deallocation functions.

2.2 Existing Secure Heap Allocators

There are multiple existing secure allocators, including
OpenBSD [28], Cling [2], DieHarder [30], and Free-
Guard [33]. Among these, Cling is an exception that
does not support randomization, the most important fea-
ture of secure allocators. Cling only mitigates use-after-

free vulnerabilities through constraining memory reuses
to objects of the same type.

Based on our understanding, OpenBSD, DieHarder,
and FreeGuard share many common design elements.
(1) All employ the BIBOP style — “Big Bag of
Pages” [14]. For BIBOP-style allocators, one or mul-
tiple continuous pages are treated as a “bag” that holds
objects of the same size class. The metadata of each heap
object, such as its size and availability information, is
typically stored in a separate area. Thus, BIBOP-style
allocators improve security by avoiding many metadata-
based attacks. (2) They all distinguish between the man-
agement of “small” and “large” objects, but with differ-
ent size thresholds. (3) These secure allocators manage
small objects using power-of-two size classes. Further,
they do not perform object splitting or coalescing, which
is different from general purpose allocators, such as the
default Linux allocator.

These allocators also have their own unique designs,
which are discussed briefly as follows.

OpenBSD. OpenBSD utilizes a bitmap to maintain the
status of heap objects, with each bag having a size of
4 kilobytes that is directly allocated from the kernel via
an mmap system call. For small objects, one out of four
lists will be chosen randomly upon each allocation. If no
available objects exist in the first bag of the selected list,
a new bag is then allocated and added to the current list.
Otherwise, an index will be computed randomly, which
will serve as the starting point to search for an available
object. It will first check the remaining bits of the current
bitmap word. If no available objects exist, it will move
forward until finding one with available objects. Then, it
performs a bit-by-bit search to identify the location of the
first available object. For large objects, defined as those
larger than 2 kilobytes, OpenBSD maintains a cache of
at most 64 pages in order to reduce mmap system calls.

DieHarder. In DieHarder, the bag size is initially set to
64 kilobytes, and will be doubled each time a new bag
is required. Similarly, a bitmap is used to manage the
status of each small object, defined as less than 64 kilo-
bytes, and the same bags may be used to satisfy requests
from multiple different threads. DieHarder allocates ob-
jects randomly from among the available objects of all
bags serving a given size class. If the chosen object is
unavailable, it will then compute another random place-
ment. To our understanding, this design may hurt perfor-
mance (compared to OpenBSD), as it may unnecessarily
load bitmap words from different cache lines.

DieHarder utilizes the over-provisional mechanism to
help tolerate buffer overflows. A portion of objects will
never be allocated; therefore, a bug overflowing into a
non-used object will not harm the application.

USENIX Association 27th USENIX Security Symposium    119



Large objects will be allocated directly via mmap, with
entropy supplied by the underlying OS’s ASLR mecha-
nism. Upon deallocation, any accesses to these objects
can thus cause a segmentation fault. That is, DieHarder
can strongly defend against use-after-free vulnerabilities
in large objects.

FreeGuard. FreeGuard is the previous state-of-the-art
secure allocator, but contains some compromise to its se-
curity guarantee.

It adopts a deterministic layout and utilizes shadow
memory to directly map objects to their metadata. While
this design avoids search-related overhead on dealloca-
tions, it will also sacrifice security, as the mapping be-
tween objects and metadata is computable.

FreeGuard implements multiple security mechanisms,
such as guard pages and canaries. However, it provides
only 2.01 bits of entropy by randomly choosing one-out-
of-four free lists (and also rarely from new objects) on
allocations.

2.2.1 Problems of Existing Secure Allocators

The problems of these secure allocators are summarized
as follows.

Security Guarantee. The following problems exist
in these secure allocators. (1) These allocators either
have very limited randomization entropy (such as 2.01
bits for FreeGuard), or have unstable entropies that
can vary greatly across different size classes, execution
phases, executions, and applications. For OpenBSD and
DieHarder, their entropies are inversely proportional to
size class, and may change during execution or when ex-
ecuted using different inputs. For example, DieHarder’s
entropy for 1 kilobyte objects falls between 4.8 bits (e.g.
bodytrack) and 13.3 bits (e.g. fluidanimate). (2) Their se-
curity guarantee is determined by their design, which is
difficult to change for different requirements. OpenBSD
and DieHarder’s entropies are determined by their bag
size, while FreeGuard’s entropy is determined by its four
free lists. (3) FreeGuard’s metadata is unprotected, and
the relationship between heap objects and metadata is
deterministic. Thus, if an attacker were able to modify
them, he may take control of the allocator and issue suc-
cessful attacks afterwards. (4) OpenBSD has very lim-
ited countermeasures for protecting large objects (those
with sizes larger than 2 kilobytes). Since its cache only
maintains a maximum of 64 pages, its entropy should be
less than 6 bits if an object can be allocated from the
cache.

Performance and Scalability Issues. OpenBSD and
DieHarder also have significant performance and scal-
ability issues: (1) Their runtime overhead is too heavy
for performance-sensitive applications, with 31% for

OpenBSD and 74% for DieHarder (see Section 5.1).
Based on our evaluation (as shown in Figure 3),
OpenBSD can slow down a program up to 4× (e.g.,
swaptions), and DieHarder may reduce performance by
more than 9× (e.g., freqmine). (2) They have a signifi-
cant scalability problem, due to utilizing the same heap
to satisfy requests from multiple threads [5].

3 Overview

This section discusses the threat model and basic idea of
GUARDER.

3.1 Threat Model
Our threat model is similar to many existing works [9,
24]. First, we assume the underlying OS (e.g., Linux) is
trusted. However, the ASLR mechanism is not necessar-
ily required to be valid, since GUARDER manages mem-
ory allocations using a separate randomization mecha-
nism, making its layout difficult to predict even if ASLR
in the underlying OS is broken. Second, we also assume
that the platform will use a 64-bit virtual address space,
in order to support the specific layout of this allocator.

For the target program, GUARDER assumes the at-
tacker may obtain its source code, such that they may
know of possible vulnerabilities within. GUARDER fur-
ther assumes the attackers have no knowledge related to
the status of the heap, and cannot take control of the al-
locator. They cannot utilize a data leakage channel, such
as /proc/pid /maps, to discover the location of meta-
data (in fact, such a leakage channel can be easily dis-
abled). GUARDER also assumes the attackers cannot in-
terfere with the memory management of the allocator,
such as by hacking the random generator. Otherwise,
they are able to change the order of memory allocations
to increase their predictability.

3.2 Basic Idea of Guarder
GUARDER will defend against a wide range of heap vul-
nerabilities, such as heap overflows, use-after-frees, dou-
ble and invalid frees, as well as reduce heap spraying
attacks.

GUARDER implements almost all security features of
existing secure allocators, as listed in Table 2. The only
feature disabled by default is destroy-on-free. We argue
that this feature is not necessary, since the strong ran-
domization of GUARDER will decrease the predictability
of every allocation, which will significantly decrease the
exploitability of dangling pointers and makes meaningful
information leakage much more difficult [30]. Compared
to the state-of-the-art, GUARDER significantly increases
randomization (entropy is increased by 7.8 bits, over 200

120    27th USENIX Security Symposium USENIX Association



Security Features Security Benefit DieHarder OpenBSD FreeGuard GUARDER

BIBOP style Defends against metadata-based attacks D D D D
Fully-segregated metadata Defends against metadata-based attacks D D D D
Destroy-on-free Exposes un-initialized reads or use-after-frees D � � �
Guard pages Defends against buffer over-reads and over-writes 	 D D DDefends against heap spraying
Randomized allocation Increases attack complexity of overflows and UAFs D D D D
Over-provisional allocation Mitigates harmful effects of overflows D D
Check canaries on free Early detection of overflows 	 D D
Randomization entropy∗ Increases attack complexity O(logN) 2–10 2.01 E

Table 2: Detailed comparison of security features of existing secure allocators.
D: allocator has feature �: optional feature, disabled by default
	: weak implementation ∗: actual results of entropies can be seen in Figure 4

times), adopts the over-provisional mechanism (first pro-
posed by DieHarder), and discards its deterministic lay-
out. Additionally, GUARDER supports customizable se-
curity guarantees, without changing code or recompiling,
which allows users to specify their desired level of secu-
rity by setting the corresponding environment variables.

GUARDER, as a shared library, can be preloaded to
replace the default allocator, and intercepts all memory
management functions of applications automatically. It
does not target support for applications with their own
custom allocators, although these applications can be
changed to use standard memory functions in order to
benefit from GUARDER.

GUARDER employs different mechanisms for manag-
ing small and large objects, the same as existing secure
allocators (described in Section 2.2). GUARDER bor-
rows the same mechanism as DieHarder and FreeGuard
for handling large objects, but defines large objects as
those larger than 512 kilobytes. The major contribution
of GUARDER lies in its management of small objects; in
fact, most objects belong to this class, and have a domi-
nant impact on application performance.

The basic idea of the allocator is shown in Figure 2.
In order to reduce the performance overhead caused by a
high number of mmap system calls, GUARDER requests a
large block of memory once from the underlying OS to
serve as the heap. Then, it divides the heap into multiple
per-thread sub-heaps, where each sub-heap will be fur-
ther divided into a set of bags. GUARDER also organizes
objects into power-of-two size classes, starting from 16
bytes and ending with 512KB, and places metadata in
a separate location. Each bag will have the same size
(e.g., 4GB). Due to the vast address space of 64-bit ma-
chines [26, 2], the address space should accommodate all
types of applications.

Per-thread design: GUARDER employs a per-thread
heap design such that each thread has its own heap seg-
ment, and always returns freed objects to the heap be-
longing to the current thread. There is no need for
GUARDER to acquire locks upon allocations and deal-
locations, which avoids lock acquisition overhead and

prevents potential lock contention. FreeGuard, although
also using a per-thread heap design, returns freed objects
to the original owner thread, thus requiring a lock. This
explains why GUARDER has overhead similar to Free-
Guard, even with a much stronger security guarantee.
However, this design could introduce memory blowup,
where memory consumption is unnecessarily increased
because freed memory cannot be used to satisfy future
memory requests [5]. GUARDER further designs mech-
anisms to alleviate this problem, as described in Sec-
tion 4.6.3.

Obfuscating bag order: GUARDER randomizes the
order of bags within each per-thread sub-heap. In con-
trast, FreeGuard places bags in ascending order by their
size class, which is very easy to predict. To shuffle
the ordering of size classes, GUARDER employs a hash
map to manage the relationship between each bag and its
metadata. Further, metadata are randomly allocated us-
ing mmap system calls, rather than using a pre-allocated
block, as in FreeGuard.

More importantly, GUARDER introduces separate allo-
cation and deallocation buffers for each size class of each
thread, which is a key difference between GUARDER and
other secure allocators. This design allows GUARDER
to support multiple customizable security features, in-
cluding the over-provisioning mechanism that neither
OpenBSD nor FreeGuard support. This design is further
described as follows.

Allocation buffer. Each bag is paired with an alloca-
tion buffer that holds the addresses of available objects in
the bag. This allocation buffer supports the user-defined
entropy: if E is the desired entropy, then allocating an
object randomly from 2E objects will guarantee E bits
of entropy. The idea of the allocation buffer is inspired
by Stabilizer [11], but with a different design to reduce
unnecessary allocations and deallocations, and support
customizable securities.

GUARDER designs the allocation buffer as follows: its
capacity will be set to 2E+1 (not 2E ), and ensures it will
never fall below half-full. This design guarantees one

USENIX Association 27th USENIX Security Symposium    121



…… 

Class:256B 

Thread1 

Class:16B 

…… 

Thread1:  
Class:16B 

Threadm 

Heap 

…… 

Alloc Buffer 

0	
   1	
   2	
   3	
   2E+1-­‐1	
   1	
   2	
   3	
   M	
  0	
  

Dealloc Buffer 

4	
  

Filling 

Fi
lli

ng
 

…… Threadm:  
Class:64B 

…… 

Alloc Buffer 

0	
   1	
   2	
   3	
   2E+1-­‐1	
   1	
   2	
   3	
   M	
  0	
  

Dealloc Buffer 

4	
  

Filling 

…… …… 

…… 

Class:32B Class:64B 

Fi
lli

ng
 

Figure 2: The basic idea of the allocator.

out of at least 2E objects will be chosen randomly upon
each allocation request, and reduces the number of fill-
ing operations by using double this size. The allocation
buffer will be filled by objects from a separate dealloca-
tion buffer, described below, or from new heap objects.

Circular deallocation buffer. GUARDER designs a sep-
arate deallocation buffer to track freed objects for a given
thread and size class. This design, separating the activ-
ities of allocations and deallocations into two different
buffers, benefits performance, since freed objects can be
recorded sequentially in the deallocation buffer. Because
there is no need to search for an available slot, the deal-
location step will be completed in constant time.

The allocation buffer will be filled after each alloca-
tion if at least one free object exists in the corresponding
deallocation buffer. The empty slot created by the allo-
cation will be filled immediately, which helps reduce the
number of trials needed to find an available object dur-
ing allocations. The allocation buffer will also be filled
when the number of available objects falls below 2E , in
order to ensure the randomization guarantee. In this case,
freed objects from the deallocation buffer will be utilized
first, followed by those from a global object buffer. If
this is still insufficient, new objects from the associated
per-thread heap will be imported. This design helps min-
imize the number of searches upon each allocation, since
the allocation buffer will never be less than half-full. In
contrast, OpenBSD and DieHarder may require a large
number of searches to identify an available object, rang-
ing between one and several dozen. Table 3 describes the
evaluation results for these allocators.

3.2.1 Defending Against Different Attacks

GUARDER defends against heap vulnerabilities by em-
ploying the combination of multiple mechanisms.

Defending exploits of buffer overflows. GUARDER can
defend against the exploitation of buffer overflows in
several ways. First, its strong randomization makes at-
tacks much more difficult, since attackers must know the
target chunk addresses at which to issue attacks. When
objects are highly randomized, it is extremely difficult to
know where an allocation will be satisfied, even if source
code is available. Second, over-provisioning may toler-
ate overflows landing on unused objects, thus nullifying
them. Third, guard pages can thwart overflow attempts.
Finally, if some attacks modify the canaries placed at the
end of each object, GUARDER can detect such attacks.

Defending exploits of use-after-frees. Similarly,
GUARDER defends against such exploits in multiple
ways. First, GUARDER separates the metadata from
the actual heap, making it impossible to issue use-after-
free attacks on freelist pointers. Second, its strong ran-
domization makes meaningful attacks extremely diffi-
cult, with only a 0.11% success rate per try due to its 9.8
bits of entropy, as evaluated in Section 5.4. Since each
subsequent free is a Bernoulli trial following a geometric
distribution, it is expected to achieve the first successful
attack after 891 tries. Finally, unsuccessful attacks may
crash programs incidentally, due to guard pages placed
inside, therefore the brute-force approach may not easily
succeed.

Defending exploits of double and invalid frees. As dis-
cussed above, GUARDER can detect against every double
and invalid free, due to its custom allocator. Therefore,
GUARDER can choose to stop the program immediately,

122    27th USENIX Security Symposium USENIX Association



or skip these invalid operations. Therefore, GUARDER
can always defend against such vulnerabilities.

4 Implementation Details

This section describes how GUARDER supports different
security mechanisms based on its unique design of al-
location and deallocation buffers. Additionally, this sec-
tion also discusses certain optimizations to further reduce
performance overhead and memory blowup.

4.1 Customizable Randomization Entropy
GUARDER supports customizable randomization to meet
the various performance and security requirements of
different users. As described in Section 3.2, this mecha-
nism is achieved by altering the number of entries in each
allocation buffer. Currently, 9 bits of entropy are chosen
by default, and GUARDER guarantees that the number of
available objects will never be less than 512 (29), where
each buffer has 1024 entries.

Object selection is performed as follows: upon every
allocation, a random index into the allocation buffer is
generated. It will then acquire the object address stored
at this index, if the object is available. If the index refers
to an empty slot (i.e., contains a null value), the allocator
will initiate a forward search starting from the selected
index. The required number of searches is expected to be
around two on average, given the fact that the allocation
buffer is never less than half-full. However, this is actu-
ally not true due to certain worst cases. Therefore, we
divide the allocation buffer into eight separate regions,
and record the number of available objects within each.
Thus, we can easily skip an entire region if no objects are
present.

4.2 Customizable Over-Provisioning
Over-provisioning is a technique in which a certain num-
ber of heap objects are designated as never-to-be-used.
Therefore, an overflow that occurs in a place containing
no useful data can easily be tolerated [30].

GUARDER implements its over-provisioning by con-
trolling the filling step of allocation buffers. For instance,
the over-provisioning factor is set to 1/8 by default, re-
sulting in 1/8 of objects from each bag being skipped.
This also indicates that a given object will be pulled
into the corresponding allocation buffer with a likeli-
hood of 87.5%. However, the naive method of comput-
ing and comparing probabilities for each object is too ex-
pensive. Instead, GUARDER utilizes an associated over-
provisional buffer, with a capacity equal to half the allo-
cation buffer, in which new objects from a given bag are
first placed. Then, the specified proportion (e.g., 1/8) of

these objects will be deleted from this buffer randomly,
and will never participate in future allocations or deallo-
cations. This method reduces the amount of computing
and comparing by 7/8 compared to the naive method.

In contrast to DieHarder, GUARDER’s over-
provisional mechanism significantly reduces memory
footprint and cache loadings, since “skipped” objects
will never be accessed in the future. In DieHarder, every
object always has a probability of being allocated at
some point during the execution. However, accessing
these objects may increase the number of physical pages
in memory, and involve unnecessary cache loading
operations.

4.3 Customizable Guard Pages
GUARDER places guard pages within each bag to
thwart overflow or heap spraying attacks. In contrast,
DieHarder cannot place guard pages internally, since ev-
ery heap object has some probability of being utilized.
For this reason, DieHarder has a “weak implementation”
listed under “Guard Pages” in Table 2, as it cannot stop
heap spraying or buffer overflow attacks that only occur
within each bag. OpenBSD designs each bag to occupy
a single page, which practically places guard pages be-
tween bags.

Different from FreeGuard, GUARDER supports a flex-
ible ratio of guard pages, obtained from an environment
variable. When pulling from new heap objects during
the filling procedure, GUARDER will randomly choose
which pages to protect, in proportion to this value. For
size classes less than one page, all objects within the page
will be protected. If a size class exceeds one page, then
multiple pages (equaling the size class) will be protected
in order to not change the mapping between objects and
their metadata.

4.4 Detecting Double and Invalid Frees
GUARDER can detect double and invalid frees by em-
ploying an additional status byte associated with each ob-
ject. This object status metadata for each bag are located
in a separate area. For each allocation, GUARDER marks
its status as in-use. Upon deallocation, GUARDER will
first compute the index of its status byte, then confirm
whether it is an invalid or double-free. If so, it will stop
the program immediately; otherwise, it will update the
status accordingly. GUARDER can detect all double and
invalid frees. Due to complexities brought by memalign,
GUARDER treats any address within a valid object as a
valid free, and consequently frees the object, which is
similar to DieHarder.

Note that GUARDER may miss a special kind of dou-
ble free, similar to existing work [23, 32], when a de-

USENIX Association 27th USENIX Security Symposium    123



allocated object has been subsequently reutilized for
other purposes. For example, if a program invokes mal-
loc(V1)→ free(V1)→malloc(V2)→ free(V1), then the
second free(V1) will be considered a valid free operation.

4.5 Checking Canaries on Free
GUARDER also utilizes canaries to help thwart buffer
overflow attacks. A single byte placed at the end of every
object is reserved for use as a canary. This byte is located
beyond the boundary of the size requested by the appli-
cation. Upon deallocation, this byte’s value is inspected;
if modified, this serves as evidence of a buffer overflow.
Then, GUARDER immediately halts the execution and re-
ports to the user. GUARDER will additionally check the
canary values of an object’s four adjacent neighbors at
the same time, which provides additional protection for
long-lived objects that may never be freed by the appli-
cation.

4.6 Optimizations
GUARDER has made multiple optimizations to further re-
duce its performance and memory overhead. To this end,
GUARDER also employs the Intel SSE2-optimized fast
random number generator (RNG) [31, 33].

4.6.1 Accessing Per-Thread Data

GUARDER must access its per-thread heap upon every
allocation and deallocation. Therefore, it is critical for
GUARDER to quickly access per-thread data. However,
the implementation of Thread Local Storage (TLS) (de-
clared using the “ thread” storage class keyword) is
not efficient [13], and introduces at least an external li-
brary call, a system call to obtain the thread ID, and a
table lookup. Instead, GUARDER employs the stack ad-
dress to determine the index of each thread and fetch per-
thread data quickly, as existing work [42]. GUARDER
allocates a large block of memory that it will utilize for
threads’ stack areas. Upon thread creation, GUARDER
assigns a specific stack area to each thread (e.g., its
thread index multiplied by 8MB). Then, GUARDER can
obtain the thread index quickly by dividing any stack off-
set by 8MB.

4.6.2 Reducing Startup Overhead

In order to support a specified randomization entropy,
GUARDER needs to initialize each allocation buffer with
2E+1 objects, then place the specified ratio of guard
pages within. However, some applications may only
utilize a subset of size classes, which indicates that the
time spent placing guard pages in unused bags is wasted.
Therefore, GUARDER employs on-demand initialization:

it only initializes the allocation buffer and installs guard
pages upon the first allocation request for the bag.

4.6.3 Reducing Memory Consumption

To reduce memory consumption, GUARDER returns
memory to the underlying OS when the size of a freed
object is larger than 64 kilobytes, by invoking madvise

with the MADV DONTNEED flag.
GUARDER designs a global deallocation buffer to re-

duce the memory blowup caused by returning freed ob-
jects to the current thread’s sub-heap. This problem is
extremely serious for producer-consumer applications,
since new heap objects would continually be allocated
by the producer. If a thread’s deallocation buffer reaches
capacity, the thread will attempt to donate a portion of its
free objects to a global deallocation buffer. Conversely,
when a thread has no freed objects in its deallocation
buffer, GUARDER will first pull objects from the global
deallocation buffer before attempting to utilize new heap
objects.

5 Experimental Evaluation

Experiments were performed on a 16-core machine, in-
stalled with Intel R© Xeon R© CPU E5-2640 processors.
This machine has 256GB of main memory and 20MB of
shared L3 cache, while each core has a 256KB L1 and
2MB L2 cache. The underlying OS is Linux-4.4.25. All
applications were compiled using GCC-4.9.1, with -O2

and -g flags.
We utilized the default settings for each allocator, ex-

cept where explicitly described. By default, GUARDER
uses 9 bits of randomization entropy, a 10% proportion
of random guard pages, and a 1/8 over-provisioning fac-
tor. OpenBSD’s object junking feature was disabled in
order to provide a fair comparison.

In order to evaluate the performance and memory
overhead of these allocators, we performed experi-
ments on a total of 21 applications, including 13 PAR-
SEC applications, as well as Apache httpd-2.4.25,
Firefox-52.0, MySQL-5.6.10, Memcached-1.4.25,
SQLite-3.12.0, Aget, Pfscan, and Pbzip2. Note
that Firefox uses an allocator based on jemalloc by de-
fault, although all figures and tables label it as “Linux”
in this section. We did not evaluate single-threaded ap-
plications, such as SPEC CPU2006, due to the following
reasons. First, multithreaded applications have become
the norm, resulting from ubiquitous multicore hardware.
Second, DieHarder and OpenBSD have a severe scal-
ability issue, which cannot be observed using single-
threaded applications.

124    27th USENIX Security Symposium USENIX Association



5.1 Performance Overhead

To evaluate performance, we utilized the average results
of 10 executions, as shown in Figure 3. DieHarder’s
destroy-on-free feature was disabled to allow for com-
parison with GUARDER. A value larger than 1.0 repre-
sents a runtime slower than the Linux allocator, while
those below 1.0 are faster. On average, the performance
overhead of these secure allocators are: DieHarder–
74%, OpenBSD–31%, FreeGuard–1%, and GUARDER–
3%, by comparing to the Linux allocator, while a known
performance oriented allocator—TCMalloc–is slightly
faster than it, with 1.6% performance improvement. That
is, GUARDER imposes negligible performance overhead,
while providing an unprecedented security guarantee. It
has performance overhead similar to FreeGuard, but with
much higher randomization entropy and support for heap
over-provisioning, as evaluated in Section 5.3 and de-
scribed in Section 6.2.

We further investigated why GUARDER runs faster
than DieHarder and OpenBSD, and why it is comparable
to FreeGuard. Based on our understanding, two factors
can significantly affect the performance of allocators.

System call overhead. The first factor is the overhead of
system calls related to memory management. These in-
clude mmap, mprotect, madvise, and munmap, however,
this data was omitted due to space limitations. Based on
our evaluation, GUARDER and FreeGuard impose much
less overhead from mmap system calls, since they ob-
tain a large block of memory initially in order to reduce
the number of mmap calls. Although they impose more
mprotect calls, our evaluation indicates that mprotect
requires only about 1/20 the time needed to perform an
mmap system call.

Heap allocation overhead. We also evaluated the over-
head associated with heap allocations by focusing on the
number of searches/trials performed during allocations
and deallocations, as well as the number of synchroniza-
tions. An allocator will impose more overhead when
the number of searches/trials is larger. Similarly, if the
number of synchronizations (mostly lock acquisitions) is
larger, the allocator will also impose more overhead.

The average number of trials for each secure allocator
is shown in Table 3, where the Linux allocator and TC-
Malloc typically only require a single trial upon each al-
location and deallocation. These values were computed
by dividing the total number of trials by the number of
allocations or deallocations. For both allocations and
deallocations, FreeGuard only requires a single trial due
to its free-list-based design. In comparison, GUARDER
makes random selections from allocation buffers that are
consistently maintained to remain at least half-full. As a
consequence, GUARDER’s average number of allocation
“tries” is about 1.77. Both OpenBSD and DieHarder ex-

ceed this value, with 3.79 and 1.99 times respectively.
For each deallocation, DieHarder performs 12.4 trials,
while OpenBSD, FreeGuard, and GUARDER only re-
quire a single trial. Based on our understanding, the large
number of trials is a major reason why DieHarder per-
forms much worse than other secure allocators. During
each deallocation, DieHarder will compare against all
existing minibags one-by-one to locate the specific mini-
bag (and mark its bit as free inside), loading multiple
cache lines unnecessarily. GUARDER utilizes a special
design (see Figure 2) to avoid this overhead. Although
DieHarder has less allocation trials than OpenBSD, its
worse case is significantly worse than that of OpenBSD.

Synchronization overhead can be somehow indicated
by the number of allocations, as shown in Table 5. For
all other secure allocators, such as DieHarder, OpenBSD,
and FreeGuard, each allocation and deallocation should
acquire a lock, although FreeGuard will have less con-
tention. In comparison, GUARDER avoids most lock ac-
quisitions by always returning freed objects to the current
thread’s deallocation buffer. GUARDER only involves
lock acquisitions when using the global deallocation
buffer, employed to reduce memory blowup (described
in Section 4.6.3). This indicates that GUARDER actually
imposes less synchronization overhead than FreeGuard,
which is part of reason why GUARDER has a similar
overhead to FreeGuard, while providing a much higher
security guarantee.

5.2 Performance Sensitivity Studies

We further evaluated how sensitive GUARDER’s perfor-
mance is to different customizable allocation parameter,
such as the randomization entropy, the proportion of each
bag dedicated to random guard pages, and the level of
heap over-provisioning. The average results of all appli-
cations were shown in Table 4, where the data is normal-
ized to that of the default setting: 9 bits of randomization
entropy, 10% guard pages, and 1/8 of over-provisioning
factor.

Randomization Entropy. Different randomization en-
tropies were evaluated, ranging from 8 to 12 bits. As
shown in Table 4, a higher entropy, indicating it is harder
to be predicted and more secure, typically implies a
higher performance overhead. For instance, 12 entropy
bits may impose 4.7% performance overhead when com-
paring to the default setting. With a higher entropy, deal-
located objects have a lower chance to be re-utilized im-
mediately, which may access more physical memory un-
necessarily, causing more page faults and less cache hits.

Guard Page Ratio. A higher ratio of guard pages will
have a higher chance to stop any brute-force attacks. The
performance effects of different ratios of random guard

USENIX Association 27th USENIX Security Symposium    125



0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

1.2 

1.3 

1.4 

blackscholes 
bodytrack 
canneal 
dedup 
facesim

 
ferret 
fluidanim

ate 
freqm

ine 
raytrace 
stream

cluster 
swaptions 
vips 

x264 

Aget 

Apache 
Firefox 
M

em
cached 

M
ySQL 

Pbzip2 
Pfscan 
SQLite 

AVERAGE 
N

or
m

al
iz

ed
 R

un
tim

e 
TCMalloc Default DieHarder OpenBSD FreeGuard Guarder Dummy 

9.2 6.1 4.2 1.42 3.0 1.4 1.7

Figure 3: Performance overhead of secure allocators (and TCMalloc), where all values are normalized to the default
Linux allocator.

Trials DieHarder OpenBSD FreeGuard GUARDER

Allocation Average 1.99 3.79 1 1.77
Maximum 93 45 1 131

Deallocation Average 12.40 1 1 1
Maximum 141 1 1 1

Table 3: Number of trials for allocations and deallocations in different allocators.

Entropy (bits) GPR=10%, OPF=1/8
8 9 10 11 12

1.003 1.000 1.016 1.031 1.047
Guard Page Ratio EB=9, OPF=1/8
2% 5% 10% 20% 50%

0.987 0.990 1.000 1.016 1.046
Over-provisioning Factor EB=9, GPR=10%
1/32 1/16 1/8 1/4 1/2
0.998 0.995 1.000 1.001 1.011

Table 4: Performance sensitivity to each parameter,
normalized to the default settings of GUARDER.

EB = Entropy Bits, GPR = Guard Page Ratio, OPF =
Over-Provisioning Factor

pages, including 2%, 5%, 10%, 20%, and 50%, were
similarly evaluated. For the 50% ratio, almost every
page (or object with size greater than 4 kilobytes), will
be separated by a guard page. Similarly, a larger ratio
of installed guard pages typically implies a larger perfor-
mance overhead, due to invoking more mprotect sys-
tem calls.

Over-provisioning factor. Different heap over-
provisioning factors, including 1/32, 1/16, 1/8, 1/4,
and 1/2, were evaluated. In the extreme case of 1/2,
half of the heap will not be utilized. This evaluation
shows two results: (1) A larger over-provisioning fac-
tor will typically imply larger overhead. (2) The perfor-
mance impact of over-provisioning is not as large as ex-
pected, as over-provisioning will not affect cache utiliza-
tion when skipped objects are completely removed from
future allocations and deallocations. However, it may
cause a much larger performance impact on DieHarder,
due to its special design.

5.3 Memory Overhead

We collected the maximum memory consumption for all
five allocators. For server applications, such as MySQL

and Memcached, memory consumption was collected via
the VmHWM field of /proc/pid /status file. For other
applications, memory consumption was collected using
the maxresident output of the time utility [22].

126    27th USENIX Security Symposium USENIX Association



To ensure a fair comparison, we disabled the ca-
nary checking functionality for both FreeGuard and
GUARDER (and is disabled by default in OpenBSD),
since adding even a single-byte canary may cause an ob-
ject to be allocated from the next largest size class.

In total, the memory overhead (shown in Table 5)
of FreeGuard is around 37%, while DieHarder and
OpenBSD feature slightly less memory consumption
than the Linux allocator, with -3% and -6%, respectively.
GUARDER imposes 27% memory overhead on evaluated
applications, when using the default 9 bits of entropy. It
especially imposes more than 4× memory overhead for
Swaptions, MySQL, and SQLite.

GUARDER’s memory overhead on certain applications
can be attributed to multiple reasons, mostly relating to
its management of small objects. First, GUARDER may
increase its memory consumption due to its randomized
allocation. For any given size class, GUARDER will
place more than 2n objects into its allocation buffer, then
randomly allocate an object from among them. There-
fore, GUARDER may access other pages (due to its ran-
domized allocation policy) when there are still avail-
able/free objects in existing pages. Second, GUARDER’s
over-provisional mechanism will introduce more mem-
ory consumption, since some objects will be randomly
skipped and thus never utilized. Note that GUARDER
also achieves comparable average memory overhead to
FreeGuard, due to its global free cache mechanism,
which better balances memory usage among threads
(particularly for producer-consumer patterns).

We also observe that GUARDER’s memory overhead is
near 0% when 7 bits of entropy are utilized. This further
indicates the necessity to provide customizable security,
as users may choose a lower entropy to reduce perfor-
mance and memory consumption as needed.

5.4 Randomization Entropy

We further evaluated the randomization entropies of
these secure allocators, with results shown in Figure 4.
We are the first work that experimentally evaluates the
entropies of each size class, by explicitly modifying
these allocators. The basic idea is to update a per-size-
class global variable upon each allocation, then compute
the average entropy of each size class for different ap-
plications. We computed the entropy based on the max-
imum number of available choices upon each allocation
using a log2(N) formula. Note that we utilized the max-
imum number of entries in four bags to compute the en-
tropy for OpenBSD upon each allocation. Because the
bag size for OpenBSD is just one page, we do not show
its entropies for objects larger than 4 kilobytes.

Both DieHarder and OpenBSD were seen to exhibit
unstable entropy, and FreeGuard shows a constant low

entropy (approximately 2 bits). By contrast, GUARDER’s
measured entropy is 9.89 bits for every size class, when
the specified entropy is set to 9 bits. Taking the size
class of 64 kilobytes for example, GUARDER will ran-
domly allocate one object from over 831 objects, while
DieHarder and FreeGuard will allocate from just 32
and 4 objects, respectively. This clearly indicates that
GUARDER has significantly higher security than these
existing allocators. DieHarder only exceeds GUARDER’s
entropy in the first four size classes, when compared to
its default configuration with 9 bits. However, our evalu-
ation also shows that GUARDER guarantees virtually the
same high entropy across different size classes, execution
phases, applications, or inputs, making it the first secure
allocator of this kind.

5.5 Effectiveness of Defending Against At-
tacks

We evaluate the effectiveness of GUARDER and other al-
locators using a collection of real-world vulnerabilities,
including buffer over-writes, buffer over-reads, use-after-
frees, and double/invalid frees. With the exception of
Heartbleed, each of the reported bugs will typically re-
sult in a program crash. Heartbleed is unique in that it
results in the silent leakage of heap data. GUARDER was
shown to avoid the ill effects of these bugs, and/or report
their occurrences to the user, as shown in Table 6. More
information about these buggy applications is described
below.

bc-1.06. Arbitrary-precision numeric processing lan-
guage interpreter
The affected copy of this program was obtained from
BugBench [25], and includes a buffer overflow as the re-
sult of an off-by-one array indexing error, caused by a
specific bad input, which will produce a program crash.
Based on their powers-of-two size classes, each secure
allocator places the affected array in a bag serving ob-
jects larger than the needed size. As such, this small one-
element overflow is harmlessly contained within unused
space, thus preventing the crash.

ed-1.14.1. Line-oriented text editor
ed contains a simple invalid-free bug, caused by a call to
free() that was forgotten by the developer after mov-
ing a buffer from dynamic to static memory. GUARDER
guarantees detection of all double/invalid free problems,
and thus provides an immediate report of the error, in-
cluding the current callstack.

gzip-1.2.4. GNU compression utility
Gzip, obtained from BugBench [25], contains a stack-
based buffer overflow. For testing purposes, it was
moved to the heap. This bug would normally corrupt
the adjacent metadata, however, when testing each se-

USENIX Association 27th USENIX Security Symposium    127



Application Allocations Deallocations Memory Usage (MB)
(#) (#) Linux DieHarder OpenBSD FreeGuard GUARDER

blackscholes 18 14 627 634 628 630 655
bodytrack 424519 424515 34 42 32 63 111
canneal 30728189 30728185 963 1153 828 932 1186
dedup 4045531 1750969 1684 1926 1020 2693 1474
facesim 4729653 4495883 327 377 324 374 491
ferret 137968 137960 66 94 71 100 132
fluidanimate 229992 229918 213 270 235 237 477
freqmine 456 347 1543 1344 1426 1631 1885
raytrace 45037352 45037316 1162 1724 1111 1511 1770
streamcluster 8908 8898 111 114 111 117 149
swaptions 48001811 48000397 6 12 7 12 383
vips 1422138 1421738 32 37 32 820 104
x264 71120 71111 491 506 497 494 604
Aget 49 24 69 59 32 51 82
Apache 102216 101919 4 5 2 6 12
Firefox 20874509 20290076 159 163 169 163 172
Memcached 7601 76 6 8 4 7 13
MySQL 491544 491433 126 135 277 158 535
Pbzip2 67 61 97 102 99 261 105
Pfscan 51 15 753 800 837 803 798
SQLite 1458486 1458447 41 64 35 125 331
Normalized Total 1.00 0.97 0.94 1.37 1.27

Table 5: The number of allocations, deallocations, and memory usage of secure allocators.

cure allocator, this crash is avoided due to their metadata
segregation. Additionally, around 10% of GUARDER and
FreeGuard tests resulted in halting execution, caused by
accessing an adjacent random guard page.

Libtiff-4.0.1. TIFF image library
A malformed input will cause the affected version of
Libtiff’s gif2tiff converter tool to experience a buffer
overflow, normally resulting in a program crash. When
verifying this bug with GUARDER, this will always re-
sult in (1) an immediate halt due to illegal access on
an adjacent random guard page, or (2) a report to the
user indicating the discovery of a modified canary value.
OpenBSD aborts with a “chunk info corrupted” error,
while DieHarder produces no report and exits normally.

Heartbleed. Cryptographic library
The Heartbleed bug exploits a buffer over-read in
OpenSSL-1.0.1f. Both GUARDER and FreeGuard will
probabilistically guard against this attack, with protec-
tion in proportion to the amount of random guard pages
installed. By default, this is 10%. Neither OpenBSD nor
DieHarder can provide protection against this bug.

PHP-5.3.6. Scripting language interpreter
A variety of malicious XML data are provided as in-
put, resulting in use-after-free and double-free condi-
tions. GUARDER, FreeGuard, and OpenBSD halt and re-

port each of these bugs, while DieHarder exits normally
with no report made.

polymorph-0.4.0. File renaming utility
The affected version of polymorph suffers from a stack-
based buffer overflow that was adapted to the heap for
testing purposes, and results in a program crash due to
corrupted object metadata. Due to their segregated meta-
data, all of the secure allocators allow the application to
exit normally. However, both GUARDER and FreeGuard
also provide probabilistic protection in proportion to the
amount of installed random guard pages.

Squid-2.3. Caching Internet proxy server
Squid 2.3 contains a heap-based buffer overflow caused
by an incorrect buffer size calculation. Normally, this
bug will cause the program to crash due to corrupting
adjacent metadata. When tested with GUARDER, the
overwritten canary value at the site of the overflow is
detected, and the program is immediately halted. Free-
Guard exhibits similar behavior, while OpenBSD and
DieHarder do not detect the overflow at all.

Summary. For all evaluated bugs, GUARDER was capa-
ble of either probabilistically detecting the attack – such
as through the use of random guard pages to thwart buffer
overflow – or immediately provided a report to the user
when the error condition occurred (e.g., double-free).

128    27th USENIX Security Symposium USENIX Association



0

2

4

6

8

10

12

14

16B 32B 64B 128B 256B 512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB

E
nt

ro
py

 (
bi

ts
)

Size Class

Average Allocation Entropy by Size Class of Secure Allocators

DieHarder OpenBSD FreeGuard Guarder

Figure 4: Average randomization entropies of existing secure allocators, grouped by object size class. GUARDER
provides a consistently high entropy which other allocators cannot support.

Application Vulnerability Original DieHarder OpenBSD FreeGuard GUARDER

bc-1.06 Buffer Over-write Crash No crash No crash No crash No crash
ed-1.14.1 Invalid-Free Crash No crash Halt→report Halt→report Halt→report
gzip-1.2.4 Buffer Over-write Crash No crash No crash p-protect p-protect
Heartbleed Buffer Over-read Data Leak Data Leak Data Leak p-protect p-protect

Libtiff-4.0.1 Buffer Over-write Crash No crash Crash Halt→report Halt→report

PHP-5.3.6
Use-After-Free Crash No crash Halt→report Halt→report Halt→report
Use-After-Free Crash No crash Halt→report Halt→report Halt→report

Double-Free Crash No crash Halt→report Halt→report Halt→report
polymorph-0.4.0 Buffer Overflow Crash No crash No crash p-protect p-protect

Squid-2.3 Buffer Overflow Crash No crash No crash Halt→report Halt→report
No crash: Program completes normally Data Leak: Leakage of arbitrary heap data occurred

Halt→report: Halts execution & reports to user p-protect: Probabilistic protection, p = 0.10 (default)

Table 6: Effectiveness evaluation on known vulnerabilities.

However, we also noticed that the results of GUARDER
and FreeGuard are very similar. Based on our investi-
gation, these evaluated bugs (mostly static) cannot show
the benefit of the improved security of GUARDER, as de-
scribed in Section 6.2, such as higher entropy and over-
provisioning. For instance, it is not easy to evaluate
higher randomization entropy providing more resistance
to attacks, but in reality it does. Additionally, for exam-
ple, if a one-element overflow is already contained within
unused space, over-provisioning provides no additional
benefit.

6 Discussion

6.1 Customization
(a) Why is Customization Helpful? GUARDER is the first
allocator that supports customizable security. Based on
our evaluation (see Section 5), higher security comes at
the cost of increased performance overhead and mem-

ory consumption. Sometimes, this difference could be
sufficiently large that it may affect users’ choices. For
instance, GUARDER’s memory overhead using 7 bits of
entropy is around 0% (not shown due to space limita-
tions), while its memory overhead with 9 bits is around
27%. Therefore, users may choose a level of secu-
rity that reduces memory consumption when required
by resource-constrained environments, such as mobile
phones. GUARDER provides this flexibility, without the
requirement of changing and recompiling applications
and the allocator.

(b) How many bits of entropy could GUARDER sup-
port? Currently, GUARDER supports up to 16 bits of
entropy on machines with 48 address bits, in theory, al-
though with the potential for higher overhead. In the
current design, as shown in Figure 2, the number of sup-
ported threads may limit entropy choices, since there are
16 bags in each thread, and every bag has the same size.
If there are 128 threads in total, with a heap space of 128
terabytes, every bag will be 64 gigabytes, which can sup-

USENIX Association 27th USENIX Security Symposium    129



port up to 16 bits of entropy. Since there is room for at
most 217 objects of size 512 kilobytes in such a bag, it
may only support 16 bits of entropy if over-provisioning
and guard pages are also supported. In the future, we
plan to allocate each bag on-demand, and may use dif-
ferent bag sizes, in order to support even higher levels of
entropy.

6.2 Comparison with FreeGuard
In this section, we compare GUARDER with the cur-
rent state-of-the-art secure allocator FreeGuard. On av-
erage, GUARDER imposes around 3% performance over-
head and 27% memory overhead, while FreeGuard im-
poses around 1% performance overhead and 37% mem-
ory overhead.

However, GUARDER supports more security features
and a higher level of entropy, due to its unique and novel
design as described in Section 4: (1) GUARDER sup-
ports heap over-provisioning, which FreeGuard does not.
This indicates that some buggy applications that may
be attacked when using FreeGuard can be avoided with
GUARDER. (2) Under the same overhead, GUARDER
supports around 9.89 bits of entropy, which is more than
200 times that of FreeGuard. (3) GUARDER further ran-
domizes the order of bags within each per-thread heap,
while FreeGuard’s deterministic layout is much easier to
attack. (4) More importantly, GUARDER allows users to
configure their desired security through entropy, guard
page ratio, and over-provisional factors, which Free-
Guard cannot support.

7 Related Work

Apart from the secure allocators previously examined in
Section 2, several other works attempt to solve heap-
related security problems, though often choosing to tar-
get only a particular class of vulnerability.

7.1 Allocators Protecting Object Metadata
Multiple allocators aim to secure object metadata.
Robertson et al. utilize the placement of canary and
checksum values, which will be relied upon to warn of
potential buffer overflow. Younan et al. achieve fully-
segregated metadata by incorporation of a hash table
used to maintain their mappings [41]. Heap Server pro-
poses the separation of memory management functions
to a separate process, isolating the actual heap data in a
different address space than its associated metadata [19].
dnmalloc dedicates a separately allocated area to

house object metadata, and also utilizes a table to main-
tain mappings between these chunks and their meta-
data, an approach that is not unlike that of DieHarder or

OpenBSD [40]. The metadata segregation achieved by
these works can protect against metadata-based vulner-
abilities, however, they cannot guard against attacks on
the actual heap.

Blink, a rendering engine for the Chromium project,
utilizes PartitionAlloc, a partition-based allocator with
built-in exploit mitigations [15]. While PartitionAlloc
provides a general allocator class suitable for supporting
multithreaded applications, it is primarily optimized for
single-threaded usage. It also lacks key protections of-
fered by secure allocators, such as randomization. Lastly,
its design could be significantly hardened; for exam-
ple, its rudimentary detection of double/invalid frees,
and free list pointers that occupy deallocated slots [16].
By comparison, GUARDER guarantees to detect all in-
valid/double frees, and fully segregates object metadata.

7.2 Protection Utilizing Compiler Instru-
mentation

Some works attempt to introduce randomness into the
memory layout or allocation functions. Bhatkar et al.
propose the concept of “address obfuscation”, in which
the address space is randomized [7]. Kharbutli further
describes securing the sequence in which freed objects
are reused, in an effort to introduce non-determinism to
allocation functions [19]. GUARDER provides a higher
entropy than these systems.

The reliance on managing additional metadata to
guard against problems at runtime has been employed
by many techniques toward increased security. These
problems include protection against overflows through
the validation of array accesses [3, 4], as well as perform-
ing type-checking of variable casting operations [21].

FreeSentry [39] also utilizes compiler instrumenta-
tion, but toward protecting against use-after-free prob-
lems. This is achieved by recording the application’s use
of pointer values, updating their status after the target
objects have been freed. DangNULL similarly targets
use-after-free and double-free vulnerabilities by track-
ing each pointer, nullifying it when the object it ref-
erences is deallocated [20]. FreeSentry incurs approx-
imately 25% performance overhead on average, while
DangNULL ranges from 22% to 105%. DangSan uti-
lizes a new lock-free design to reduce performance over-
head, only introducing half the overhead of FreeSentry
and DangNULL [36]. However, they cannot support the
randomization of memory allocations.

Iwahashi describes a signature-based approach to de-
tect and identify the cause of these and potentially other
vulnerabilities [18]. Cabellero et al. describe Undangle,
a runtime approach for detecting use-after-free vulnera-
bilities through the use of object labeling and tracking,
which helps discover dangling pointers [10].

130    27th USENIX Security Symposium USENIX Association



Rather than protecting against a single type of memory
error, GUARDER defends against many common errors,
achieving this with very little overhead on average. The
GUARDER heap combines protections similar to those
provided by the mechanisms introduced by these works,
including fully-segregated metadata, randomized object
reuse, and detection of double/invalid free vulnerabili-
ties, among others.

The Low Fragmentation Heap (LFH) is a widely de-
ployed heap policy for Windows-based platforms, intro-
duced in Windows XP [27]. When enabled, LFH will
utilize a bucketing scheme to fulfill similarly sized al-
locations from larger pre-allocated blocks. LFH is ap-
plied for objects of size 16 kilobytes or less, and its 128
buckets span five size classes of varying granularity. The
LFH utilizes guard pages, randomization, and encoding
of metadata pointers in order to add security to the heap.
However, LFH has only 5 bits of entropy for new heap
placement, as well as object selection [35, 38]. Further-
more, these entropy values are fixed, unlike those pro-
vided by GUARDER.

Apple’s MacOS X operating system utilizes a scalable
zone allocator from which to fulfill requests from the
user-facing malloc layer. While this allocator has seen
recent updating for multithreading improvements based
on Hoard [5], Mac OS X is significantly lacking in mem-
ory security features as compared to other current op-
erating systems [43]. For example, guard pages, segre-
gated metadata, and randomization, are not incorporated.
While metadata header checksums are present, they are
merely intended to detect accidental corruption, rather
than intentional, and can be easily bypassed.

7.3 Employing the Vast Address Space
Archipelego [26] randomly places objects throughout the
vast 64-bit address space in order to trade the address
space for security and reliability. Thus, the probability of
overflowing real data can be effectively reduced. Cling
also utilizes the vast address space to tolerate use-after-
free problems [2].

8 Conclusion

This paper introduced GUARDER, a novel secure allo-
cator that provides an unprecedented security guaran-
tee among all existing secure allocators. GUARDER
proposes the combination of allocation and deallocation
buffers to support different customizable security guar-
antees, including randomization entropy, guard pages,
and over-provisioning. Overall, GUARDER implements
almost all security features of other secure allocators,
while only imposing 3% performance overhead, and fea-
turing comparable memory overhead.

Acknowledgment

We thank the anonymous reviewers for their invaluable
feedback. This work is supported in part by National
Science Foundation (NSF) under grants CNS-1812553,
CNS-1834215, AFOSR award FA9550-14-1-0119, and
ONR award N00014-17-1-2995.

References

[1] Heartbleed, 2014.

[2] AKRITIDIS, P. Cling: A memory allocator to mit-
igate dangling pointers. In Proceedings of the 19th
USENIX Conference on Security (Berkeley, CA,
USA, 2010), USENIX Security’10, USENIX As-
sociation, pp. 12–12.

[3] AKRITIDIS, P., CADAR, C., RAICIU, C., COSTA,
M., AND CASTRO, M. Preventing memory error
exploits with wit. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy (Washington,
DC, USA, 2008), SP ’08, IEEE Computer Society,
pp. 263–277.

[4] AKRITIDIS, P., COSTA, M., CASTRO, M., AND
HAND, S. Baggy bounds checking: an efficient
and backwards-compatible defense against out-of-
bounds errors. In Proceedings of the 18th con-
ference on USENIX security symposium (Berkeley,
CA, USA, 2009), SSYM’09, USENIX Association,
pp. 51–66.

[5] BERGER, E. D., MCKINLEY, K. S., BLUMOFE,
R. D., AND WILSON, P. R. Hoard: a scalable
memory allocator for multithreaded applications.
In ASPLOS-IX: Proceedings of the ninth interna-
tional conference on Architectural support for pro-
gramming languages and operating systems (New
York, NY, USA, 2000), ACM Press, pp. 117–128.

[6] BERGER, E. D., AND ZORN, B. G. Diehard: Prob-
abilistic memory safety for unsafe languages. In
Proceedings of the 27th ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (New York, NY, USA, 2006), PLDI
’06, ACM, pp. 158–168.

[7] BHATKAR, E., DUVARNEY, D. C., AND SEKAR,
R. Address obfuscation: an efficient approach to
combat a broad range of memory error exploits. In
In Proceedings of the 12th USENIX Security Sym-
posium (2003), pp. 105–120.

[8] BHATTI, N., AND FRIEDRICH, R. Web server sup-
port for tiered services. Netwrk. Mag. of Global In-
ternetwkg. 13, 5 (Sept. 1999), 64–71.

USENIX Association 27th USENIX Security Symposium    131



[9] BITTAU, A., BELAY, A., MASHTIZADEH, A.,
MAZIÈRES, D., AND BONEH, D. Hacking blind.
In Proceedings of the 2014 IEEE Symposium on Se-
curity and Privacy (Washington, DC, USA, 2014),
SP ’14, IEEE Computer Society, pp. 227–242.

[10] CABALLERO, J., GRIECO, G., MARRON, M.,
AND NAPPA, A. Undangle: early detection of dan-
gling pointers in use-after-free and double-free vul-
nerabilities. In Proceedings of the 2012 Interna-
tional Symposium on Software Testing and Analysis
(New York, NY, USA, 2012), ISSTA 2012, ACM,
pp. 133–143.

[11] CURTSINGER, C., AND BERGER, E. D. Stabilizer:
Statistically sound performance evaluation. In Pro-
ceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (New York, NY,
USA, 2013), ASPLOS ’13, ACM, pp. 219–228.

[12] CVE. Cve-2017-0144. https://www.cve.

mitre.org/cgi-bin/cvename.cgi?name=

CVE-2017-0144.

[13] GROSS, D. TLS performance overhead and cost
on gnu/linux. http://david-grs.github.

io/tls_performance_overhead_cost_linux,
2016.

[14] HANSON, D. R. A portable storage management
system for the icon programming language, 1980.

[15] INC., G. Partitionalloc design. https:

//chromium.googlesource.com/chromium/

src/+/lkgr/base/allocator/partition_

allocator/PartitionAlloc.md.

[16] INC., G. Partitionalloc source. https:

//chromium.googlesource.com/

chromium/blink/+/master/Source/wtf/

PartitionAlloc.h.

[17] ISLAM, A., OPPENHEIM, N., AND THOMAS, W.
Smb exploited: Wannacry use of ”eternalblue”.
https://www.fireeye.com/blog/threat-

research/2017/05/smb-exploited-

wannacry-use-of-eternalblue.html, 2017.

[18] IWAHASHI, R., OLIVEIRA, D. A., WU, S. F.,
CRANDALL, J. R., HEO, Y.-J., OH, J.-T., AND
JANG, J.-S. Towards automatically generat-
ing double-free vulnerability signatures using petri
nets. In Proceedings of the 11th International Con-
ference on Information Security (Berlin, Heidel-
berg, 2008), ISC ’08, Springer-Verlag, pp. 114–
130.

[19] KHARBUTLI, M., JIANG, X., SOLIHIN, Y.,
VENKATARAMANI, G., AND PRVULOVIC, M.
Comprehensively and efficiently protecting the
heap. In Proceedings of the 12th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (New York, NY,
USA, 2006), ASPLOS XII, ACM, pp. 207–218.

[20] LEE, B., SONG, C., JANG, Y., WANG, T., KIM,
T., LU, L., AND LEE, W. Preventing use-after-
free with dangling pointers nullification. In NDSS
(2015).

[21] LEE, B., SONG, C., KIM, T., AND LEE, W. Type
casting verification: Stopping an emerging attack
vector. In Proceedings of the 24th USENIX Confer-
ence on Security Symposium (Berkeley, CA, USA,
2015), SEC’15, USENIX Association, pp. 81–96.

[22] LINUX COMUNITY. time - time a simple command
or give resource usage, 2015.

[23] LIU, T., CURTSINGER, C., AND BERGER, E. D.
Doubletake: Fast and precise error detection via
evidence-based dynamic analysis. In Proceedings
of the 38th International Conference on Software
Engineering (New York, NY, USA, 2016), ICSE
’16, ACM, pp. 911–922.

[24] LU, K., SONG, C., LEE, B., CHUNG, S. P.,
KIM, T., AND LEE, W. Aslr-guard: Stopping
address space leakage for code reuse attacks. In
Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security (New
York, NY, USA, 2015), CCS ’15, ACM, pp. 280–
291.

[25] LU, S., LI, Z., QIN, F., TAN, L., ZHOU, P., AND
ZHOU, Y. Bugbench: Benchmarks for evaluating
bug detection tools. In In Workshop on the Evalua-
tion of Software Defect Detection Tools (2005).

[26] LVIN, V. B., NOVARK, G., BERGER, E. D.,
AND ZORN, B. G. Archipelago: Trading address
space for reliability and security. In Proceedings of
the 13th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2008), ASPLOS
XIII, ACM, pp. 115–124.

[27] MICROSOFT. Software defense: mitigating heap
corruption vulnerabilities. https://blogs.

technet.microsoft.com/srd/2013/10/

29/software-defense-mitigating-heap-

corruption-vulnerabilities/.

132    27th USENIX Security Symposium USENIX Association



[28] MOERBEEK, O. A new malloc(3) for
openbsd. https://www.openbsd.org/papers/

eurobsdcon2009/otto-malloc.pdf, 2009.

[29] NIST. National vulnerability database.

[30] NOVARK, G., AND BERGER, E. D. DieHarder:
securing the heap. In Proceedings of the 17th ACM
conference on Computer and communications se-
curity (New York, NY, USA, 2010), CCS ’10,
ACM, pp. 573–584.

[31] OWENS, K., AND PARIKH, R. Fast random
number generator on the intel R© pentium R© 4 pro-
cessor. https://software.intel.com/en-us/
articles/fast-random-number-generator-

on-the-intel-pentiumr-4-processor/,
March 2012.

[32] SEREBRYANY, K., BRUENING, D., POTAPENKO,
A., AND VYUKOV, D. AddressSanitizer: a fast
address sanity checker. In Proceedings of the
2012 USENIX conference on Annual Technical
Conference (Berkeley, CA, USA, 2012), USENIX
ATC’12, USENIX Association, pp. 28–28.

[33] SILVESTRO, S., LIU, H., CROSSER, C., LIN, Z.,
AND LIU, T. Freeguard: A faster secure heap
allocator. In Proceedings of “24th ACM Confer-
ence on Computer and Communications Security
(CCS’17)”.

[34] SZEKERES, L., PAYER, M., WEI, T., AND SONG,
D. Sok: Eternal war in memory. In Proceedings
of the 2013 IEEE Symposium on Security and Pri-
vacy (Washington, DC, USA, 2013), SP ’13, IEEE
Computer Society, pp. 48–62.

[35] VALASEK, C. Understanding the low fragmenta-
tion heap, 2010.

[36] VAN DER KOUWE, E., NIGADE, V., AND GIUF-
FRIDA, C. Dangsan: Scalable use-after-free de-
tection. In Proceedings of the Twelfth European

Conference on Computer Systems (New York, NY,
USA, 2017), EuroSys ’17, ACM, pp. 405–419.

[37] WIKIPEDIA. Dangling pointer. https://en.

wikipedia.org/wiki/Dangling_pointer,
September 2016. Last updated: September 1,
2016.

[38] YASON, M. Windows 10 segment heap inter-
nals. https://www.blackhat.com/docs/us-

16/materials/us-16-Yason-Windows-10-

Segment-Heap-Internals-wp.pdf, 2016.
[39] YOUNAN, Y. Freesentry: protecting against use-

after-free vulnerabilities due to dangling pointers.
In NDSS (2015).

[40] YOUNAN, Y., JOOSEN, W., AND PIESSENS, F.
Efficient protection against heap-based buffer over-
flows without resorting to magic. In Proceedings
of the 8th International Conference on Information
and Communications Security (Berlin, Heidelberg,
2006), ICICS’06, Springer-Verlag, pp. 379–398.

[41] YOUNAN, Y., YOUNAN, Y., JOOSEN, W.,
JOOSEN, W., PIESSENS, F., PIESSENS, F., EYN-
DEN, H. V. D., AND EYNDEN, H. V. D. Security
of memory allocators for c and c++. Tech. rep.,
2005.

[42] ZHOU, J., SILVESTRO, S., LIU, H., CAI, Y., AND
LIU, T. Undead: A featherweight deadlock detec-
tion and prevention system for production software.
In the submission of “the 39th International Con-
ference on Software Engineering (ICSE’17)”.

[43] ZOVI, D. Mac os xploitation. https://papers.
put.as/papers/macosx/2009/D1T1-Dino-

Dai-Zovi-Mac-OS-Xploitation.pdf, 2009.

USENIX Association 27th USENIX Security Symposium    133




