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Abstract
To defeat security threats such as man-in-the-middle

(MITM) attacks, Bluetooth Low Energy (BLE) 4.2 and 5.x

introduced a Secure Connections Only (SCO) mode, under

which a BLE device can only accept secure pairing such as

Passkey Entry and Numeric Comparison from an initiator,

e.g., an Android mobile. However, the BLE specification

does not require the SCO mode for the initiator, and does

not specify how the BLE programming framework should

implement this mode. In this paper we show that the BLE

programming framework of the initiator must properly han-

dle SCO initiation, status management, error handling, and

bond management; otherwise severe flaws can be exploited

to perform downgrade attacks, forcing the BLE pairing pro-

tocols to run in an insecure mode without user’s awareness.

To validate our findings, we have tested 18 popular BLE

commercial products with 5 Android phones. Our experi-

mental results proved that MITM attacks (caused by down-

grading) are possible to all these products. More importantly,

due to such system flaws from the BLE programming frame-

work, all BLE apps in Android are subject to our downgrade

attacks. To defend against our attacks, we have built a pro-

totype for the SCO mode on Android 8 atop Android Open

Source Project (AOSP). Finally, in addition to Android, we

also find all major OSes including iOS, macOS, Windows,

and Linux do not support the SCO mode properly. We have

reported the identified BLE pairing vulnerabilities to Blue-

tooth Special Interest Group, Google, Apple, Texas Instru-

ments, and Microsoft.

1 Introduction
Bluetooth Low Energy (BLE) is a widely adopted wireless

communication technology and is broadly used in many

IoT applications such as retail (e.g., beacons), healthcare

(e.g., blood pressure monitor), and wearables (e.g., smart

watches). BLE has two salient features: (i) low energy con-

sumption, increasing the lifetime of battery-powered BLE

devices, and (ii) Generic Attribute Profile (GATT) based data

transmission, allowing mobile, tablet and PC applications

for arbitrary data transmission with peer BLE devices.

Being a wireless communication technology, BLE relies

on pairing, under which two paired devices authenticate each

other and negotiate a secret key, to encrypt the communi-

cation channel and ensure the secure communication. Lat-

est versions of the specification ([1, 2]) introduced four as-

sociation methods: (i) Just Works, (ii) Passkey Entry, (iii)
Numeric Comparison, and (iv) Out Of Band (OOB). How-

ever, Just Works uses a plain Elliptic-curve Diffie–Hellman

key exchange protocol without authentication of exchanged

public keys and it is therefore subject to the Man-in-the-

Middle (MITM) attack [3]. Out of Band (OOB) requires a

non-Bluetooth channel such as Near Field Communication

(NFC) for key exchanging to defeat passive eavesdropping

and MITM attacks. It is rarely used due to the requirement of

an extra non-Bluetooth channel [4]. Consequently, Passkey

Entry and Numeric Comparison are actually the two practi-

cal secure association methods.

In addition to these four association methods, the latest

BLE 4.2 [1] and 5.x [2] added a new Secure Connections

Only (SCO) mode for BLE enabled devices to address vul-

nerabilities found in the previous generations of Bluetooth.

For example, in Bluetooth Classic 2.1 and 3.0, Bluetooth

Secure Simple Pairing (SSP) is used [5]. Under SSP, two

Bluetooth devices use only input/output (I/O) capabilities

(such as display and keyboard) to determine the association

method. However, an attacker can falsely declare their I/O

capabilities and conduct an MITM attack [5]. Therefore,

with BLE 4.2 and 5.x, if a BLE device supports the SCO

mode, it can be forced to authenticate the user/mobile de-

vice with secure association methods, which are expected to

defeat the MITM attacks.

However, we discover that in the BLE specification, the

SCO mode only specifies that a BLE device needs to au-

thenticate the mobile device (typically the BLE connection

initiator), but the mobile device is not required to authen-

ticate the BLE device. Therefore, an attacker can spoof a

victim BLE device’s MAC address and other characteristics
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to create a fake BLE device and attack the initiators. We

further discover that a proper implementation of the SCO

mode is in fact quite challenging for the BLE programming

framework. That is, at least four capabilities are required:

(i) Initiation: An application shall have the capability of

instructing the BLE stack the specific secure association

method to enforce; (ii) Status management: The BLE stack

shall memorize the specified secure association method,

enforce it at the right time and notify the corresponding

result; (iii) Error handling: When errors occur during com-

munications, the BLE stack and application shall coordinate

to handle these errors and enforce the specified secure asso-

ciation method; and (iv) Bond management: The application

shall have the capability of removing its broken bond caused

by errors in order to initiate the enforcement process again.

The lack of the above capabilities in the BLE program-

ming framework leads to security flaws, as demonstrated

in this paper. Specifically, we show that the lack of proper

enforcement and handling of the SCO mode in the BLE

programming framework for the mobile device can lead to a

variety of attacks by a fake BLE device, including (i) expo-

sure of secret data from mobile apps, e.g., a user’s password

for device access, and from mobiles, e.g., a mobile device’s

Identity Resolving Key (IRK) and MAC address; (ii)
injection of false data to affect the mobile app data integrity.

As a concrete example, even if an Android mobile was

paired with a peer BLE device through secure pairing using

secure association methods, a fake device can downgrade

the association method into insecure ones, i.e., Just Works or

even communicating in plaintext. These attacks go beyond

mobiles. For instance, by stealing an Android mobile’s

IRK and MAC address with a fake device, an attacker can

pretend to be the legitimate mobile to bypass a peer device’s

whitelist if there is any. Not only the BLE programming

framework in Android has these security flaws, but also all

other major OSes including iOS, macOS, Windows, and

Linux contain them as well, as shown in our experiment.

Contributions. Our major contributions are summarized as

follows.

• Novel Discovery. We are the first to discover that in

the SCO mode, the BLE programming framework at

the mobile device side must properly handle initiation,

status management, error handling, and bound man-

agement during the life cycle of a BLE pairing process;

any flaws among them will allow a fake device to steal

secrets or tamper with sensitive data to mobile devices.

• Practical Attacks. We demonstrate with attacks on 18

commercial BLE devices to show the specific design

flaws in the BLE programming framework of Android.

These attacks also apply to all of the 18,929 BLE

Android apps we examined. Our extensive experiments

also confirm that the design flaws exist in all major

OSes including Android, iOS, macOS, Windows and

Linux while these flaws may vary in particular OSes.

The attack against mobiles and peer devices may be

deployed from tens of meters with off-the-shelf devices.

• Countermeasures. Security defenses are also pro-

posed and prototyped to enhance the SCO mode for

Android by enforcing secure association methods in

Android Open Source Project (AOSP) [6]. Our security

analysis with BLE keyboards further shows that Nu-

merical Comparison is more secure than Passkey Entry

when both the mobile and the peer device enforce

secure pairing.

Responsible Disclosures: We have reported our findings

to Bluetooth Special Interest Group (SIG), Google Android

Security Team, Apple, Windows, and Texas Instruments

(TI) Product Security Incident Response Team (PSIRT).

Googled rated the identified Android vulnerabilities as High
severity and released a patch in December 2019 Android

Security Bulletin, which fixes part of the issue. TI patched

its BLE stack [7]. Progress with Apple can be tracked

through CVE-2020-9770. The Microsoft Security Response

Center (MSRC) assigned a vulnerability tracking number

(VULN-012119) to the raised issues.

2 Background

2.1 BLE Protocol Stack
BLE is a short-range wireless communications technol-

ogy. Figure 1 shows its protocol stack using a BLE-equipped

blood pressure monitor as an example. As illustrated, there

are two apps involved: one running in the blood pressure

monitor, and the other running in the mobile device such

as Android. These two apps use the BLE core system for

communication, which consists of two building blocks: LE

controller and host. The LE controller uses the link layer

and physical layer to create a connection for sending/receiv-

ing data. The physical layer uses frequency hopping for

communication, where data is exchanged over a sequence

of hopping frequencies, which is negotiated between two

devices. The host implements multiple protocols including

the Security Manager Protocol (SMP) and Attribute Protocol

(ATT) for secure communication. The Host Controller Inter-

face (HCI) moves data, e.g., blood pressure measurements or

SMP control commands, from the host to the LE controller

through a physical interface, a function call or other venues

depending on specific implementations.

2.2 BLE Workflow
The typical workflow between a BLE master (e.g., the mo-

bile device) and slave (e.g., the blood pressure monitor) is il-

lustrated in Figure 2. In total, there are 11 steps within three

stages: (i) Connection, (ii) Pairing (which is optional), and

(iii) Communication. A typical BLE connection setup pro-

cess goes through steps 1 to 4. After the two BLE devices
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Figure 1: BLE protocol stack

establish the connection, if no device explicitly requests pair-

ing, the communication continues in plaintext. Otherwise,

pairing is started to negotiate keys and encrypt the commu-

nication. Steps 5 to 9 in Figure 2 illustrate a typical pairing

process. Afterwards, the two devices start to exchange data

and communicate via the ATT protocol as demonstrated in

Step 10 and 11. We will present the workflow in detail be-

tween a mobile and a blood pressure monitor as follows.

2.2.1 Connection Stage

In Step 1, when the blood pressure monitor tries to es-

tablish a connection, it first broadcasts advertising packets,

indicating its availability. In Step 2, when the mobile app

is launched, it receives the advertisements and then sends

a scan request to the monitor. In Step 3, the blood pressure

monitor responds with a scan response packet. During

this connection stage, the mobile app uses advertising and

scanning to collect information about the blood pressure

monitor such as the monitor’s name, MAC address, and

primary services. In Step 4, the mobile initiates a connection

with the blood pressure monitor of interest. Here the mobile

device is called the master/initiator for its role of initiating

the connection. The peer BLE device such as the blood

pressure monitor is called the slave/responder.

2.2.2 Pairing Stage

A mobile app and the system Settings app on most OSes

such as Android can initiate a pairing process through SMP

shown in Figure 1. As a slave device, the blood pressure

monitor may send a security request and ask the mobile de-

vice (i.e., the master) to initiate the pairing process, which

can be divided into the following three phases.

Phase 1 – Pairing feature exchange In Step 5, the two

devices announce their pairing features as follows to nego-

tiate a common association method. 1. Authentication re-
quirements – Authentication requirements include bonding
and MITM protection. Bonding means that the keys gener-

ated during the pairing process will be saved for later use to

reduce delay caused by a future pairing process. MITM pro-

tection indicates the preference of defense against MITM at-

tacks. If two devices explicitly set MITM protection as false,

Just Works is selected as the association method. If one de-

Mobile Blood Pressure Monitor
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3. Scan response
4. Connection request

ood Pressure Moni

5. Pairing features exchange

9. Transport specific key distribution

(ii). Pairing (optional)

(i). Connection

(Encrypted communication begins)

M
as
te
r Slave

Phase 1

Phase 2

Phase 3

(iii). Communication

6. Public key exchange
7. Authentication stage 1: (Just Works,
Passkey-Entry, Numeric Comparison, OOB)
8. Authentication stage 2 & LTK calculation

10. Write data
11. Read data

Figure 2: BLE workflow

vice sets MITM protection as true, then there will be two

potential cases: (i) Passkey Entry or Numeric Comparison is

chosen if I/O capabilities of both devices support the asso-

ciation method; or (ii) Just Works is used. 2. I/O capabili-
ties – The exchanged I/O capabilities determine a association

method with authentication requirements. Different associa-

tion methods require different I/O capabilities as introduced

in §2.3.1. 3. BLE version – BLE version is indicated in the

Secure Connections (SC) bit. If the mobile and peer device

set the SC bit, BLE 4.2 and above will be adopted. Other-

wise, the BLE legacy pairing protocol is used.

Phase 2 – Key exchange and authentication This phase

includes three steps (Steps 6, 7, and 8) as follows. 1. Public
key exchange: In Step 6, the master and slave use the Elliptic-

Curve Diffie–Hellman (ECDH) key exchange protocol to ob-

tain each other’s public key and generate a symmetric key,

known as the Diffie–Hellman Key (DHKey). 2. Authentica-
tion stage 1: In Step 7, depending on the exchanged I/O ca-

pabilities and authentication requirements of the two devices,

one of the following four association methods is adopted, in-

cluding “Just Works”, “Passkey Entry”, “Numeric Compar-

ison” and “Out of Band (OOB)”. 3. Authentication stage
2 and LTK calculation: In Step 8, the two pairing devices

use previously exchanged authentication information includ-

ing DHKey to generate MacKey and Long Term Key (LTK).

MacKey is used to ensure both devices generate the same

LTK. If the pairing feature bonding is required, LTK is saved

for future SessionKey generation and link encryption.

Phase 3 – Transport specific key distribution In Step 9,

the communication after Phase 2 will be encrypted with a

SessionKey generated from LTK. In this phase, the Identity

Resolution Key (IRK) may be distributed from one device

(either the master or the slave) to the other and is used for

privacy preserving.
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2.2.3 Communication Stage

The ATT protocol is a server/client protocol with the slave

as the server and the master as the client. For example, the

app on the mobile device is a client and the blood pressure

monitor is a server in Figure 2. A server maintains services

in the format of attributes. The client accesses the values of

attributes from the server. An attribute has four properties:

an attribute handle, a universally unique identifier (UUID), a

value, and a set of permissions. To access an attribute at the

server in Steps 10 and 11, a client can issue a read/write re-

quest to the server with the attribute handle, which uniquely

identifies the attribute. The UUID refers to the data type.

The permission protects attributes on a device and specifies

the security levels required to access attributes.

2.3 BLE Security and Privacy
2.3.1 Association Methods in BLE

Passkey Entry: During the pairing process, one device

such as a mobile needs to display a 6-digit pin, and the user

inputs the pin on the other device using a keypad/keyboard.

The authentication stage 1 (i.e., Step 7) in Figure 2 fails if

the attacker does not know the pin.

Numeric Comparison: This association method is ap-

plicable when both devices have displays and confirmation

buttons. A function converts the exchanged public keys and

nonces into a six-digit number. Each device displays the

number [1] and the user confirms that these two displayed

numbers match by pressing a “Yes” button on each device

to proceed the pairing process. The fact that both displayed

numbers are the same ensures that the exchanged two pubic

keys are from the two intended pairing devices.

Out of Band (OOB): In OOB, a secret is shared through

an out-of-band venue such as near-field communication

(NFC) and the LTK is derived from this secret. If the OOB

venue is secure, the MITM attack can be defeated.

Just Works: It is designed for devices without I/O

capabilities [1] and is unfortunately subject to MITM

attacks. Just Works has almost the same pairing process

as Numeric Comparison except that the generated number

is not displayed and the user is not involved to ensure the

exchanged pubic keys are the same.

2.3.2 Attribute Permission
The client (master) may access the attributes at the server

(slave). The permission specifies the security level required

to access attributes and may be read/write, encrypted read-

/write, authenticated read/write, or authorized read/write.

Authorized read/write is unspecified in the BLE specifica-

tion yet while the first three security levels correspond to the

adopted association methods. Different association methods

result in different types of keys, and a specific type of key

may have access to an attribute with a particular permission.

Specifically, BLE defines two types of keys:

unauthenticated-and-no-MITM-protection keys correspond-

ing to Just Works and authenticated-and-MITM-protection

keys corresponding to Passkey Entry, Numeric Comparison

and OOB. A read/write attribute can be accessed with no re-

striction. An encrypted read/write attribute can be accessed

with an unauthenticated-and-no-MITM-protection key or

authenticated-and-MITM-protection key. An authenticated

read/write attribute can only be accessed when the link is

encrypted with an authenticated-and-MITM-protection key.

If the attribute such as the keyboard input is sensitive, a high

security level like authenticated read/write shall be used so

that secure pairing protocols are required to counter eaves-

dropping and MITM attacks, and prevent keystroke leaking.

We find that the permission is often misused in practice,

causes security issues, and will discuss the misuse in §4.4.2.

2.3.3 Identity Privacy
Identity Resolving Key (IRK) shall be shared during

pairing for device identity privacy. A BLE device such

as a mobile can be tracked if its MAC address is used in

advertisement and later communication. BLE addresses this

privacy issue by IRK and a suite of protocols. In particular,

IRK is used to generate resolvable private addresses in

advertisement and communication. Only a device with

privacy requirements needs to distribute its IRK and real

MAC address to its peer device. For example, if a mobile

needs to protect its MAC address, it distributes its IRK and

real MAC address to its peer device first. Then, the mobile

uses this IRK to generate a resolvable private address for its

packets and the peer device uses the mobile’s IRK to resolve

the private address. If the mobile’s peer device needs to

protect its MAC address, it sends its own IRK and MAC

address to the mobile for private address generation and

resolution although this practice is rare.

2.4 BLE Profiles
A Bluetooth profile specifies functionalities and features

of all layers in Figure 1 for a particular class of applications.

For example, the Human Interface Device Profile (HID)

defines rules that allow a HID device, such as a keyboard, to

accept inputs from humans and shows the output to humans

through Bluetooth. A profile may contain other profiles and

protocols as its building blocks. The Generic Access Profile

(GAP) defines the basic requirements of a Bluetooth device

and all Bluetooth devices implement GAP. For example,

GAP performs advertising and scanning.

A smart device can implement the Generic Attribute Pro-

file (GATT), which is built upon the ATT protocol, to ex-

change arbitrary data in the format of attributes with its peer

devices. GATT organizes attributes into services. A ser-

vice contains zero or more characteristics, which are also

attributes and user data containers. A characteristic contains

zero or more descriptors, which provide more metadata. A
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primary service provides the primary functionality of the de-

vice. A secondary service can work as a building block and

should be included in the primary service.

3 SCO Mode Design Flaws
In this section, we first discuss specification deficiency and

introduce four key capabilities required to support the SCO

mode at initiators such as mobile devices. Next, we show the

design flaws in the Android BLE programming framework

due to the lack of these capabilities while similar issues in

other OSes are presented in §7.

3.1 Specification Deficiency
For a slave device such as a blood pressure monitor in Fig-

ure 2 that provides services, the BLE specification defines

the SCO mode. This mode provides the highest BLE se-

curity level (Mode 1, Level 4 [8]), in which only the three

secure association methods, Passkey Entry, Numeric Com-

parison and secure OOB, can be used and the BLE Legacy is

not allowed. In this mode, if secure pairing is not used, the

device shall send Pairing Failed packets with the error code

“Authentication Requirements”. According to Page 373, Vol

3, Part C of the BLE specification [8], when a device is in the

SCO mode, “The device shall only accept new outgoing and
incoming service level connections for services that require
Security Mode 1, Level 4 when the remote device supports
LE Secure Connections and authenticated pairing is used.”,

where the service level connection refers to the application

layer connection.

It can be observed that although BLE specifies the SCO

mode for a slave that provides services, it does not explicitly

define (or require) the SCO mode for a master, which is

also the airing initiator such as the mobile in Figure 2.

Unfortunately, without such a requirement at the initiator,

an attacker can spoof a victim BLE device (e.g., using a

fake blood pressure monitor) and connect to the initiator to

launch various attacks as shown in this paper.

In our analysis, we find that the following four stages are

critical to implement the SCO mode at the initiator, which

includes initiation, status management, error handling, and

bond management. Correspondingly, we propose four re-

quired capabilities at the initiator as follows:

• Initiation – A mobile application/app shall have the ca-

pability of instructing the OS, i.e., the BLE stack, a se-

cure association method to enforce.

• Status management – The OS shall memorize the

specified secure association method, enforce it at the

right time and notify the application of the result. The

right time is between Step 5 and Step 6 in Figure 2 when

the peer device sends its I/O capabilities and the initia-

tor determines the association method correspondingly.

• Error handling – When errors happen during com-

munication, the OS and application shall coordinate

Pairing stage Design flaws

Initiation Flaw 1 – No mechanism to specify a association method

Status

management

Flaw 2 – No mechanism to enforce a specified association

method or for an app to obtain the negotiated

association method in time

Error

handling

Flaw 3 – No mechanism for an app to handle errors while

the BLE stack mishandles pairing errors

Bond

management

Flaw 4 – No mechanism to programmatically remove a

suspicious/broken bond and start re-pairing.

Table 1: Design flaws that an OS may have

to handle these errors and enforce the specified secure

association method.

• Bond management – The app shall have the capability

of removing a broken bond caused by errors in order to

initiate the enforcement process again.

Table 1 lists four design flaws that an OS may have corre-

sponding to the four capabilities.

3.2 Design Flaws in Android
We now show how the BLE specification shortcoming

leads to security issues in Android. We focus on Android be-

cause of its prevalence and rich set of BLE applications. We

later also show that security issues in Android endanger peer

BLE devices in §6.3 and similar issues exist in non-Android

OSes in §7. Android has all the four design flaws in Table 1

as follows.

Flaw 1 – No mechanism to specify a association method.
The function createBond() in Listing 1 is the only function

an Android app can use to start a pairing process with a peer

BLE device. It does not accept any input parameter and the

app cannot specify any particular association method even if

it knows its peer BLE device’s I/O capabilities. The return

value of this function, true or false, indicates if the pair-

ing process has been successfully started. createBond()

also checks if the mobile device has an LTK in the device. If

yes, createBond() returns false and will not re-pair with

the peer device since the mobile device was paired with the

device. In addition, createBond() is an asynchronous call

and does not wait for the pairing process to complete.

1 boolean createBond () {

2 ...

3 DeviceProperties deviceProp = mRemoteDevices.

getDeviceProperties(device);

4 //if already paired , return false

5 if (deviceProp != null && deviceProp.

getBondState () != BluetoothDevice.BOND_NONE) {

6 return false;

7 }

8 ...

9 //put a create bond message into the message

processing queue

10 Message msg = obtainMessage(BondStateMachine.

CREATE_BOND);

11 sendMessage(msg);

12 return true;

13 }

Listing 1: The function createBond() (Android 9.0)
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Flaw 2 – No mechanism to enforce a specified associ-
ation method or for an app to obtain the negotiated
association method in time. From source code, we

find Android only relies on exchanged I/O features to

determine the association method. An app may use

the following asynchronous mechanisms to obtain the

status of a pairing process after pairing is completed.

Through the intent ACTION_BOND_STATE_CHANGED, the

app knows pairing status including pairing in progress

(BOND_BONDING), pairing failure (BOND_NONE), or

pairing succeeded (BOND_BONDED). Through the intent

ACTION_PAIRING_REQUEST, the app knows either Passkey

Entry or Numeric Comparison is adopted. By regis-

tering both intents ACTION_BOND_STATE_CHANGED and

ACTION_PAIRING_REQUEST, an app knows the adopted

association method, Passkey Entry, Numeric Comparison,

Just Works or plaintext communication only after the pairing

process is completed. Therefore, an app cannot use Listing 2

to enforce a specified association method in time. This flaw

can be exploited to steal a mobile’s MAC address and IRK,

as shown in §4.3.

Flaw 3 – No mechanism for an app to handle errors
while the BLE stack mishandles pairing errors. The

Android BLE programming framework does not memorize

a negotiated association method. Further, Android does not

provide APIs for apps to properly process pairing errors.

Pairing errors of interest are introduced below.

“Pin or Key Missing (0x06)”: When an Android

mobile and its peer BLE device are paired, their communica-

tion link is encrypted with the negotiated keys including the

LTK. If a peer BLE device’s LTK is intentionally removed,

the device will send an error code “Pin or Key Missing

(0x06)” to the mobile. However, the Android mobile does

not notify the user of this error. Instead, it automatically

communicates with the peer device in plaintext. Moreover,

there are no APIs or mechanisms for an Android App to de-

tect the 0x06 error. An app cannot use the Android reflection

technique [9] to call a system level function isEncrypted()

and check if the communication is in plaintext since it is pro-

hibited [10]. We also find when this error occurs, Android

does not remove the corresponding LTK. It should have re-

moved the LTK since the communication is in plaintext and

the LTK is supposed to encrypt the communication.

“Insufficient Authentication (0x05)” or

“Insufficient Encryption (0x0f)”: When an ini-

tiator tries to access an attribute with the “encrypted

read/write” or “authenticated read/write” per-

mission at its peer device, if the link is not encrypted,

the peer device may send either an “Insufficient

Authentication (0x05)” or “Insufficient

Encryption (0x0f)” error code. If the attribute’s

permission is “authenticated read/write” and the

link is only encrypted with an unauthenticated-and-no-

MITM-protection key as introduced in §2.3.2, the peer

device sends the 0x05 error code. When an Android

mobile’s Bluetooth service receives either 0x05 or 0x0f

error code, it automatically starts re-pairing, ignoring the

previously adopted association method. Although the app

can learn if the 0x05 or 0x0f error occurs via a callback

function onCharacteristicRead(), the app cannot stop

the re-pairing process in this callback function. Therefore,

an attacker may spoof a paired device, utilize this error to

start a pairing process with an Android mobile, and obtain

the Android mobile’s MAC address and IRK.

1 boolean numericcomparison=false;

2 boolean passkey=false;

3 boolean justworks=false;

4 boolean plaintext=true;

5 // Activity starts; register intents

6 public void OnCreate (){

7 IntentFilter pairingRequestFilter = new

IntentFilter ();

8 pairingRequestFilter.addAction(BluetoothDevice.

ACTION_BOND_STATE_CHANGED);

9 pairingRequestFilter.addAction(BluetoothDevice.

ACTION_PAIRING_REQUEST);

10 registerReceiver(mPairingRequestRecevier ,

pairingRequestFilter);

11 }

12 //Once connected call createBond ()

13 device.createBond ();

14 // Process intents and determine association method

15 public void onReceive(Context context , Intent intent

) {

16 if (BluetoothDevice.ACTION_PAIRING_REQUEST.equals(

intent.getAction ())){ // either numeric

comparison or passkey is used

17 int pairingtype = intent.getIntExtra(

BluetoothDevice.EXTRA_PAIRING_VARIANT ,

BluetoothDevice.ERROR);

18 if(pairingtype == BluetoothDevice.

PAIRING_VARIANT_PASSKEY_CONFIRMATION){

19 numericcomparison=true;

20 plaintext=false;

21 }

22 if(pairingtype == BluetoothDevice.

PAIRING_VARIANT_PIN){

23 Passkey=true;

24 plaintext=false;

25 }

26 }

27 if (BluetoothDevice.ACTION_BOND_STATE_CHANGED.

equals(intent.getAction ())) { // Bonding ,

bonded , or bonding none (failure)?

28 int bondstate = intent.getIntExtra(

BluetoothDevice.EXTRA_BOND_STATE ,

BluetoothDevice.ERROR);

29 if(bondstate == BluetoothDevice.BOND_BONDED){

30 if(! numericcomparison && !passkey){

31 justworks=true;

32 plaintext=false;

33 }

34 }

35 }

36 }

Listing 2: Android determining association method after

bonding

Flaw 4 – No mechanism to programmatically remove a
suspicious/broken bond and start re-pairing. A third-

party Android app cannot remove a bond from the mobile’s

list of bonded devices although the user can manually re-

move a bond with the system settings app. The app can-
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not use the prohibited reflection technique to call the system

level API removeBond() and delete an LTK, i.e., a bond.

Even if the app is able to tear down an insecure connection

that uses Just Works, breaking the connection does not re-

move the bond. The app cannot start a new secure pairing

process with a bonded device using createBond() either

since the LTK/bond still exists.

4 Downgrade Attacks
In this section, we present the threat model, attack

overview, and detailed downgrade attacks against Android

mobiles and ensuing attacks against their peer devices.

4.1 Threat Model

Threat model for Android mobiles. Our attacks against

Android mobiles take the following assumptions. (i) An at-

tacker can obtain the same type of victim devices to explore

the applications and communication protocols. (ii) The at-

tacker cannot physically access the mobile. (iii) Our attacks

do not need malicious apps installed on the mobile while

many other attacks require malicious apps for Bluetooth ex-

ploits [11–13]. (iv) Before the attack, the Android mobile

and its peer device are paired using secure association meth-

ods such as Passkey Entry and Numerical Comparison. This

assumption presents a more reasonable and harder scenario

for attackers. Note that all attacks introduced in this paper

can also be deployed if the Android and its peer device have

not paired or paired with Just Works.

Threat model for peer devices. The threat model for the

attacks against peer BLE devices is different from the threat

model for attacks against mobiles, and it has following as-

sumptions: (i) Before the attack, the Android mobile and

its peer device are paired using secure association methods.

This assumption is the same as the one for attacks against

mobiles. (ii) We also assume that the attacker cannot touch

or unlock victim mobiles, but the attacker may have phys-

ical access to BLE devices, which could be true in various

scenarios. For example, IoT products such as smart lights

may be placed outside a house. Few people physically lock

away their BLE keyboards and attackers may press keys of

those BLE keyboards. Regardless, we consider the follow-

ing two attack scenarios against peer BLE devices of mo-

biles: (a) The attacker can physically access victim BLE de-

vices briefly, for example, for a few minutes or even seconds;

(b) The attacker cannot physically access the BLE device.

Our defense in §5 will defeat attacks even if the attacker can

physically access victim BLE devices.

4.2 Attack Overview
Our attacks against mobiles involve four adversarial

parties: sniffer, fake BLE device, fake mobile, and blocker.

The sniffer sniffs BLE communication and collects basic

information such as the device’s MAC address and name

from advertising packets and scan response packets. The

fake BLE device and fake mobile are full-fledged BLE

devices and also called the spoofing device and spoofing

mobile. A fake device emulates a victim device. The

attacker uses a sniffer to obtain the MAC address and name

of a BLE device. A fake device is then configured to have

the same MAC address and name as the victim BLE device.

It can forge advertising and scan response packets that

contain the same device name and service description as

those of the victim device. The fake device can implement

the same attributes of the victim device and manipulate the

permissions of these attributes. A fake mobile emulates a

victim mobile. This requires that the fake mobile know the

victim mobile’s MAC address and IRK which is proved

possible and will be demonstrated later in this section.

A blocker can launch a Denial of Service (DoS) attack

and block a victim BLE device from connecting to a victim

mobile so that a fake/spoofing device can connect to the

victim mobile. The blocker can be implemented as follows.

(i) A blocker can be a customized initiator. The number of

connections to a victim device is often limited to one. There-

fore, when a blocker connects to the victim BLE device,

other mobiles cannot connect to the victim device any more.

If the victim device allows multiple connections, multiple

blockers can be used [1]. (ii) If a whitelist is used by the

victim device, a blocker may fail to connect to it, since the

victim device only accepts an initiator that has paired with

it before. To subvert such a defense, a fake/spoofing BLE

device can increase its advertising frequency and will have

a better chance connecting to the victim mobile than the

victim device with the same MAC address. Our experiments

in §6.3 have validated this approach. (iii) A jammer can also

work as a blocker although we do not use it in this paper.

The four adversarial parties collaborate to deploy attacks

against victim mobiles and peer devices as shown in Fig-

ure 3. For example, to attack a victim mobile, a blocker

can be used to block a victim device so that a fake device

can connect to the victim mobile. The fake device can then

manipulate the BLE protocol such as device I/O capabilities

and intentionally create errors to poke the mobile. With the

stolen IRK and MAC address of the victim mobile through

attacks against mobiles, the fake mobile can connect to the

victim device, which can work with the fake device to per-

form attacks such as MITM attacks.

4.3 Attacks against Android Mobiles
Figure 3 gives steps of each attack and the relationship

between different attacks. One attack can be a building block

of other attacks. The name of an attack indicates its goal.

Attack I – False data injection via Design Flaw 3. The

fake device intentionally creates an error code Pin or Key

Missing (0x06). The communication between the An-

droid mobile and the fake device is downgraded to plaintext
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as discussed in Design Flaw 3. We configure the permission

of the attributes of the fake device as read/write so that ac-

cess to the attributes does not require any pairing. The fake

device can then inject false data to the mobile. This attack

cannot be easily detected since the Android mobile does not

delete the original LTK. Therefore, even if the user checks

the list of bonded devices at the Android mobile’s system

settings, the list will not show any aberrations.

Attack II – Spoofing attack on sensitive information
via Design Flaw 3. By using Design Flaw 3, the attacker

downgrades the communication between the fake device

and the Android mobile to plaintext. The fake device

is positioned to receive any sensitive information from

the Android mobile. We find that many IoT applications

implement an application layer password mechanism for

user authentication. When a user inputs the password, the

fake device can collect this password.

Attack III – Stealing Android mobile’s IRK and MAC
address via Design Flaws 1, 2 and 3. To prevent the MAC

address from leakage, an Android mobile with API 23 or

above uses IRK by default [14]. According to our experi-

ments, the IRK is generated when the mobile is configured

for the first time starting from the factory settings. It will

not change until the mobile is reset to the factory settings.

Any peer BLE device paired with the mobile will receive

the same IRK and MAC address of the mobile.

To obtain the IRK and MAC address of a victim Android

mobile, the fake device can intentionally create a “Pin or

Key Missing (0x06)” error so that the communication be-

tween the mobile and fake device is downgraded to plain-

text. The attacker also configures the attribute permission of

the fake device as “encrypted read/write”. When the

Android app tries to access these attributes, the fake device

sends an “Insufficient Authentication (0x05)” or

“Insufficient Encryption (0x0f)” error to the victim

mobile, which starts a re-pairing process according to De-

sign Flaw 3. The fake device is configured to have no I/O

capabilities so that the victim mobile and fake device pair

with Just Works because of Design Flaws 1 and 2. The mo-

bile then distributes the IRK and MAC address to the fake

device in Step 9 in Figure 2. With the IRK, the attacker can

perform the private address resolution and trace the identity

of the Mobile every time the mobile uses BLE. This attack

defeats the purpose of IRK, which is used to prevent an An-

droid mobile from being tracked.

Attack IV – Denial of Service (DoS) via Design Flaws 1,
2, 3 and 4. To perform Attack IV, the attacker first performs

Attack III stealing the mobile’s MAC and IRK, in which an

attacker can pair a fake device with a victim Android mobile

using Just Works. This pairing process creates a new LTK for

the mobile. The attacker then turns off the fake device and

blocker. The victim mobile will try to communicate with the

victim device. However, since the LTK on the mobile and

the LTK on the victim device are now different, we find that

Android cannot detect the inconsistency and the communi-

cation enters into a deadlock. However, as mentioned in De-

sign Flaw 4, there is no public API for an app to remove a

bond on the mobile. The app cannot remove the bond or start

re-pairing. The deadlock can only be resolved by manually

removing the bond in the Android system setting.

alt

alt

Figure 3: Sequence diagram of downgrade attacks w/o phys-

ical access in Unified Modeling Language (UML). The alt
frame is the alternative combined fragment, modeling the if-

then-else logic. Steps of Attacks against victim mobile: (I)

Fake data Injection Attack (1–4); (II) Sensitive Information

Stealing Attack (1–3 and 5); (III) Stealing IRK and MAC

Address Attack (1–3 and 7–9); (IV) DoS Attack (1–3, 7–9

and 15). Steps of Attacks against victim device: (V) Eaves-

dropping Attack (1–3 and 6); (VI) Whitelist Bypassing At-

tack (1–3 and 7–11); (VII) Data Manipulation Attack (1-3

and 7-13); (VIII) Man-in-the-Middle Attack; (1–3 and 7–14)

4.4 Attacks against Peer Devices
Attacks against an Android mobile will affect its bonded

peer BLE device. We now discuss the attacks beyond mo-
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biles, i.e., Attacks V–VIII in Figure 3. The fake mobile that

obtains the victim mobile’s MAC address and IRK can con-

nect to the victim device and deploy different attacks under

the two different threat models.

4.4.1 Attacks with Brief Access to Victim Device
Given that a mobile cannot enforce secure pairing, a fake

device connects to the victim mobile using the scheme in

Attack I (false data injection attack). Since an attacker can

touch a victim peer device, the attacker can always pair a

fake mobile with the victim device even if the victim device

enforces the SCO mode. Now the fake mobile and fake de-

vice can launch an MITM attack.

4.4.2 Attacks without Access to Victim Device
In §2, we show that two secure measures can be adopted

to protect sensitive data on a device, namely pairing and

attribute permissions. While secure pairing protects the

communication and attribute permissions limit access to at-

tributes based on adopted association methods, we find that

attribute permissions are often misused and the misused per-

missions will cause security issues.

Attack V – Passive eavesdropping attack. This attack

works when the victim device has only read/write attributes.

We assume that before the attack, the mobile pairs with the

peer device that uses the SCO mode. To launch this attack,

the attacker first blocks the victim device. A fake device then

performs the “Pin or Key Missing (0x06)” error attack

so that the communication between the fake device and the

victim mobile is downgraded to plaintext. The fake device

then goes offline and the blocker is turned off. We find that

the victim mobile then communicates with the victim peer

BLE device in plaintext and can access the peer device’s

read/write attributes. Since the communication is in plain-

text, the attacker can eavesdrop on the communication and

retrieve sensitive information using a sniffer. Similar to the

false data injection attack, even if the user checks the bonded

devices list at the mobile’s system settings, no abnormalities

will be observed.

Attack VI – Bypassing the whitelist. A BLE device may

use a whitelist of MAC address and IRK, and allow connec-

tions only from already paired mobiles. Since an attacker

can steal a victim mobile’s MAC address and IRK, a fake

mobile with the same MAC address and IRK can bypass the

whitelist and connect to the victim peer BLE device. We will

use this attack to bypass a keyboard’s whitelist and perform

further attacks.

Attack VII – Data manipulation. The fake mobile may

attempt to access sensitive services once it connects to the

victim device. If the permission of the attributes of the BLE

device is encrypted read/write or authenticated read/write,

the fake mobile has to pair with the peer device first. If

the BLE device enforces the SCO mode or the attribute

permission is authenticated read/write, the fake mobile has

to perform secure pairing with the peer BLE device and may

not be able to perform the attack. Recall that an authenticated

read/write attribute requires secure pairing from the mobile.

Attack VIII – MITM attacks. If the data manipulation at-

tack is possible on a peer device, the MITM attack can then

be deployed. To this end, a fake device connects to the An-

droid mobile using the fake data injection attack and a fake

mobile sets up another connection with the peer device using

the data manipulation attack. The fake device and the fake

mobile can now communicate with each other, and work as

the MITM to relay or manipulate the messages between the

victim device and mobile.

5 Countermeasures
In this section, we address the design flaws discussed in §3

and present countermeasures to enforce secure pairing within

Android. For compatibility, we implement the SCO mode as

a configurable option for the BLE programming framework,

allowing apps to defeat the presented attacks. If the option

is not used, BLE on an Android mobile follows the current

BLE specification to support legacy devices. We have im-

plemented a prototype on Android 8 based on the Android

Open Source Project (AOSP) [6]. Please note the issue of

multiple apps (including malware) using the same peer BLE

device with one connection has been addressed in co-located

attacks [11–13]. Our defense measure still works if we ig-

nore the danger of co-located attacks and allow multiple apps

per connection. For example, all apps connecting to the same

peer device shall follow our defense measure mechanism to

enforce the SCO mode and deal with errors. Other imple-

mentations are possible too and will be up to the policy us-

ing the peer device. Our defense measure can also be directly

applied in the scenario that one app may connect to multiple

devices. The detailed discussion of dealing with these two

cases is out of the scope of this work.

5.1 Overview
For a mission critical application, the app knows the peer

device’s I/O capabilities, which should support secure pair-

ing. With the SCO mode enabled at the mobile, the user has

to physically authenticate the BLE device. If the negotiated

association method between the mobile and its peer device

is not the specified one, the communication shall be rejected

and a critical security warning shall be directed to the user.

The principle of the proposed defense measures is also ap-

plicable to system wide devices such as keyboards managed

by a system settings app. The system settings app manages

BLE profiles. A profile specifies aspects of a class of BLE

devices. For example, keyboards follow the HID profile

specification, which recommends association methods for

keyboards as part of the specification. Therefore, a profile

USENIX Association 29th USENIX Security Symposium    45



Design flaw Pairing stage Defense

Flaw 1 Initiation
Specifying a secure association

method

Flaw 2
Status

management

Enforcing a specified association

method and notifying the app of the

association method in time

Flaw 3
Error

handling

Allowing apps to handle errors;

Enforcing specified association

method through stack when errors

occur

Flaw 4
Bond

management

Removing suspicious bond and

starting secure re-pairing.

Table 2: Enforcing Secure Pairing on Android

can be updated if the class of BLE devices requires the SCO

mode and the systems setting app will also be updated to

enforce the SCO mode.

Our solution will not affect user experience much as it

takes effect only when there are errors caused by attacks. A

mobile app using our proposed solution works no different

than a traditional one when there are no errors or attacks.

Prompting users under attacks is apparently very necessary

and improves security. For apps that do not have security

concerns, they can just communicate with no pairing, but in

plaintext. In this case, the proposed solution will not prompt

users and affect user experience. Our proposed solution has

the flexibility of dealing with different use cases while those

cases with no security are not the focus of this paper.

5.2 Enabling the SCO mode

Table 2 summarizes how we address the four design flaws

listed in Table 1 in the four stages of a pairing process respec-

tively. We present the detailed defense measures as follows.

Addressing Design Flaw 1: Specifying a secure associa-
tion method. An Android mobile can enforce a secure as-

sociation method after the mobile and peer device have de-

termined the association method through the exchanged I/O

capabilities between Step 5 and Step 6 in Figure 2. If the

negotiated association method is not the specified one, An-

droid should reject further actions and give the user a security

warning. The Android BLE stack shall cache the specified

secure association method in memory and save it in a config-

uration file on its nonvolatile storage if bonding is requested.

To address Design Flaw 1, an app can use our func-

tion specifyPairing() to store the specified associa-

tion method in a configuration file scm.conf through the

Java Native Interface (JNI). Our specifyPairing() is

a system API. It can programmatically obtain the app’s

package name. File scm.conf is located in the system

folder /data/misc/bluedroid/ and stores the app’s pack-

age name and metadata including the specified association

method. An app cannot manipulate metadata of another app.

(ii)

(i)

(iii)

123456 (iv)

123456

Fake tablet

Fake keyboardVictim tablet

Victim keyboard

User
Attacker

123456

Pair with Passkey Entry

Sees

12
34

56

Inputs123456
Sends 123456

Pair with Passkey Entry

Request pairing using
Passkey Entry

123456

Figure 4: Workflow of attacking the Keyboard with Passkey

Entry enforced

Addressing Design Flaw 2: Enforcing a specified associ-
ation method; Notifying the app association method in
time. When the pairing process starts, Android uses the

system function smp_proc_pair_cmd() to exchange pair-

ing features with the peer device. The bits in an integer

peer_io_caps are used to indicate the peer device’s I/O ca-

pabilities. Therefore, smp_proc_pair_cmd() can know the

negotiated association method through announced I/O capa-

bilities. In smp_proc_pair_cmd(), we read the configura-

tion file scm.conf and obtain the app’s specified association

method. If the specified association method and negotiated

association method do not match, smp_proc_pair_cmd()

sends the error code SMP_PAIR_AUTH_FAIL to the peer

BLE device, halts the pairing process, breaks the connec-

tion and sends warning messages to the user. Note that

smp_proc_pair_cmd() can obtain the negotiated associ-

ation method at the earliest possible time. This also ad-

dresses Design Flaw 2. An app knows its specified asso-

ciation method will be enforced. If it cannot be enforced, the

user will receive a security warning.

Addressing Design Flaw 3: Allowing an app to handle
errors; Enforcing the specified association method
through the stack when errors occur. The “Pin

or Key Missing” error occurs because the fake de-

vice does not have the LTK. The “Insufficient

Authentication/Encryption” error occurs because

the BLE connection does not have the permission to access

the attributes on the fake device. Android does not notify the

user these errors and starts a vulnerable association method.

We address the design flaw as follows. If there is any such

pairing related error, the Android BLE stack shall notify the

user and ask the user whether to pair with the peer device.

If the app has a specified association method in the configu-

ration file and the user chooses to pair with the peer device,

Android will enforce the specified association method, but

give the user a security warning if it cannot be enforced.

Addressing Design Flaw 4: Removing a suspicious bond
for secure re-pairing. An app shall be able to remove

its own bonded devices whenever needed. We make

the system API removeBond() available to applications.

removeBond() is redesigned so that an app can only re-
move its own bond, not bonds of other apps. Therefore,
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Association method Brief physical access

Yes No

Passkey Entry (Enforced) � �

Numerical Comparison (Enforced) � �

Table 3: Security of enforced secure association methods. �:

vulnerable (e.g., to MITM attacks although not necessarily

all attacks). Note: not meaningful to enforce Just Works.

a bond shall maintain metadata including the app’s package

name. removeBond() will obtain the calling app’s package

name and can remove only its own bond.

5.3 Security Analysis
We now discuss BLE pairing security if Android addresses

the design flaws and enforces secure pairing, and the peer

BLE device also enforces secure pairing. Under the assump-

tion that an attacker cannot physically access the mobile or

peer BLE device, the attacks in §4 will fail since secure pair-

ing requires the attacker (operating the fake mobile and fake

device) to see and work on the victim device and mobile.

Unfortunately, when an attacker can physically touch

a BLE keyboard that uses the Passkey Entry association

method, even if both the keyboard and mobile enforce

Passkey Entry, the attacker can still perform the MITM at-

tack as follows. Passkey Entry is secure only if the attacker

cannot obtain the passkey. However, the BLE keyboard is

a human input device, which sends keystrokes to a mobile

device as long as the mobile device is paired with the key-

boards. As shown in Figure 4, (i) if the attacker has brief

physical access to the keyboard, the attacker can pair a fake

mobile with the keyboard by entering a chosen passkey when

the user is away from the device. (ii) The fake keyboard

later pretends to be the real one and starts a pairing process

with the victim mobile. The victim mobile enforces Passkey

Entry and requires the user to enter a passkey displayed on

the victim mobile. (iii) However, when the user enters the

passkey on the victim keyboard, the fake mobile receives the

user entered passkey. (iv) The fake mobile then sends the

passkey to the fake keyboard, which can then use the passkey

to connect to the victim mobile. The attacker can now per-

form the MITM attack.

The MITM attack above will fail when the victim mobile

and keyboard enforce the Numeric Comparison association

method even under the assumption that the attacker can

physically access the keyboard. To implement Numerical

Comparison, the keyboard must have a display. The

attacker’s fake mobile can still be paired with the victim

keyboard because of the assumption of physical access.

However, when the user pairs the victim keyboard with the

victim mobile, the user has to compare the two numbers

displayed on the victim keyboard and the victim mobile.

With the underlying Numerical Comparison protocol, if

the attacker performs the MITM attack with a fake mobile

Figure 5: The Tested BLE devices

and a fake keyboard in the middle, the two numbers on the

victim keyboard and the victim mobile will be different. The

MITM attack will be detected and fail.

Based on the analysis above, it can be observed that un-

der the assumption that the attacker can physically access

the keyboard, Numerical Comparison is more secure than

Passkey Entry. When we enforce secure pairing, Numeri-

cal Comparison provides the strongest pairing security. The

BLE specification treats Passkey Entry and Numeric Com-

parison equally and these two secure association methods

have the same security level - authenticated-and-MITM-

protection. In the specification, if either of the two proto-

cols is applied, the connection is considered as authenticated.

This term is not accurate based on our analyses. Table 3 sum-

marizes the security of enforced association method.

6 Evaluation
In this section, we first present experiment setup, and then

evaluate the presented attacks and countermeasures.

6.1 Experiment Setup
We use Adafruit Bluefruit LE Sniffer [15] to sniff BLE

communication and collect basic information such as a de-

vice’s MAC address and name from advertising packets

and scan response packets. We use Texas Instruments (TI)

CC2640 [16] development boards to emulate the blocker,

fake BLE device, and fake mobile.

To measure the generality of our attacks against differ-

ent mobile devices and apps (§6.2), we used five mobiles

from mainstream Android versions from 7.0 to 9.0 as listed

in Table 4 in our experiment, along with 18,929 Android

BLE apps, which were also used in [12], from the Andro-

zoo database [17]. The cumulative user installation of these

BLE apps including those in categories of health & fitness,

business, medical and finance reaches about 9 billions [12].

To evaluate the attacks beyond the mobile devices (§6.3),

we selected 18 popular commercial BLE products and three

CC2640 development boards, which are presented in Fig-

ure 5 from various vendors to demonstrate our findings.
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6.2 Attacks against Mobiles

Generality of the attacks against different Android mo-
biles. We tested all design flaws on mainstream Android ver-

sions, from 7.0 to 9.0 as shown Table 4 and find that all our

attacks work with no adjustments. Recall that a fake device

may use the “Insufficient Authentication (0x05)”

error or “Insufficient Encryption (0x0f)” error in §3

to stealthily pair with the victim mobile through Just Works.

This approach works under all versions of Android we tested.

On Android 7.0, a fake device can also send a security re-

quest to stealthily pair with the victim mobile while the secu-

rity request on higher versions of Android will raise a pairing

request dialog window asking the user for permission. Such

a dialog Window may alert the user.

Brand Version

Samsung Galaxy S8+ Samsung Official Android 7.0

Google Pixel 2 AOSP Android 8.0

Samsung Tablet Samsung Official Android 8.1

Samsung Note 8 Samsung Official Android 8.1

Google Pixel 2 AOSP Android 9.0

Table 4: Tested Android mobiles

Generality of the attacks against BLE apps. In §3, we

show that the Android BLE programming framework has

four design flaws. Intuitively, all Android BLE apps using

the framework are vulnerable to attacks presented in this

paper. We also want to find if apps use any pairing intents

(presented in Listing 2) to determine the association method

after pairing, and thus detect the MAC address and IRK

stealing attack for the purpose of intrusion detection. Recall

Listing 2 cannot prevent the MAC address and IRK stealing

attack and other attacks as discussed in Flaw 2 in §3.

We build a tool named BLE pairing scanner (BLEPS)
based on soot [18] to statically enumerate functions used

in an app, construct call graphs and then determine how

the app performs pairing and uses intents. Table 5

shows among all the BLE apps, 6282 apps use pair-

ing related functions and intents. 2581 apps use create-
Bond() to explicitly start a pairing process. 6117 apps

use getBondState() to determine if the mobile is bonded

with the peer device before data transmission. 2005

apps use only the ACTION_BOND_STATE_CHANGED intent to

check if the mobile is bonded with the intended device.

239 apps use both ACTION_BOND_STATE_CHANGED and

ACTION_PAIRING_REQUEST. 152 out of the 239 apps use in-

tents to determine if Passkey Entry or Numeric Comparison

is used. These apps then automatically input a fixed passkey

for Passkey Entry via setPin() or programmatically “click”

the confirmation button via setPairingConirmation()

when Numeric Comparison is used as the association

method. These strategies make Passkey Entry and Numeric

Comparison useless. 87 of the 239 apps register intents for

BLE apps Quantity Radio

All apps 18929 100%

Apps using pairing related functionalities/intents 6282 33.10%

Apps using createBond() for pairing 2581 13.60%

Apps using getBondState() for pairing status 6117 32.31%

Apps using ACTION_BOND_STATE_CHANGED

intent for pairing status
2005 10.59%

Apps using intents for automatic pairing 152 0.80%

Apps using intents for debuging 87 0.45%

Apps using intents for intrusion detection 0 0

Table 5: BLE apps using pairing related functions and intents

Device Name Type Permission Attacks

I II III IV V VI VII VIII

APPLights-1 Light read/write � � � � � � � �
APPLights-2 Light read/write � � � � � � � �
APPLights-3 Light read/write � � � � � � � �
Magic Hue Light read/write � � � � � � � �
Magc Light Light read/write � � � � � � � �

Flux Light read/write � � � � � � � �
NPoW Light read/write � � � � � � � �
iLux Light read/write � � � � � � � �

FORA TNG Medical read/write � � � � � � � �
iHealth-1 Medical read/write � � � � � � � �
iHealth-2 Medical read/write � � � � � � � �
iBalance Medical read/write � � � � � � � �

Omron 10 Medical read/write � � � � � � � �
Qradio Aram Medical

encrypted
read/write

� � � � � � � �
Logitech

K830
Keyboard

encrypted
read/write

� � � � � � � �
Logitech

K380
Keyboard

encrypted
read/write

� � � � � � � �
Logitech

K780
Keyboard

encrypted
read/write

� � � � � � � �
Microsoft
Designer

Keyboard
encrypted
read/write

� � � � � � � �
CC26XX with

SCO mode
enabled

Development
board

authenticated
read/write

� � � � � � � �

Table 6: Attacks against commercial products. � means vul-

nerable. � means not vulnerable. All the attacks are launched

without physical access to mobiles and peer devices.

debugging purposes by printing pairing status via Log.d(.).

We also perform manual analysis of these apps that involve

both the two intents and find that none of the apps imple-

ments Listing 2 for intrusion detection.

Attacks against the mobiles and apps of the tested BLE
devices. We have also successfully deployed Attacks I-IV in

Figure 3 against mobiles installed with the apps of all the 18

commercial BLE products in Figure 5 and the results are pre-

sented in Table 6. Example attacks are presented as follows.

(i) Attack I. We can deploy the downgrade attack and inject

false measurements into the mobile app of iBalance Blood

pressure monitors. (ii) Attack II. We can steal the APPLights

app’s passwords that are used for application layer user au-

thentication. (iii) Attack III. A fake keyboard has the same

MAC address and name as a victim Logitech 780 BLE key-

board and utilizes a higher advertising frequency so that it

has a better chance to connect to a victim tablet than the vic-
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tim keyboard. Here a blocker is not used to block the victim

BLE keyboard because a BLE keyboard often implements a

whitelist and accepts only a previously paired mobile. Once

paired with the victim tablet, the fake keyboard can obtain

the IRK and MAC address of the victim tablet. (iv) Attack

IV. We are able to deploy the DoS attack against a smart-

phone installed with the smart light app from Flux so that the

communication between the mobile and the real light fails

since the mobile’s LTK is manipulated and LTKs on the two

sides are different. Note that the light from iLux does not

support pairing at all. Therefore, an attacker can not create

an LTK on the light, and the DoS attack fails.

6.3 Attacks beyond Mobiles
Attacks against BLE devices. Table 6 also shows the re-

sults of the attacks against the 18 commercial BLE prod-

ucts and the CC2640 development board. In particular, we

have identified various vulnerabilities on the peer BLE de-

vices, which may exist in other BLE products too: (i) Lack

of SCO mode. All 18 commercial BLE devices do not en-

able the SCO mode, and an attacker can pair with these de-

vices using Just Works without physical access. (ii) Mis-

used permissions. 13 devices configure their attributes as

read/write, and these attributes can be accessed without pair-

ing. The current BLE Human Interface Device (HID) pro-

file [19] does not enforce the SCO mode and requires only

the encrypted (not authenticated) read/write permission for

keyboard services. Therefore, the attacker may pair a fake

tablet with a victim keyboard remotely using Just Works.

Intuitively, all keyboards should be subject to our MITM

attack given it is an HID specification flaw. (iii) Incorrect

implementation of the SCO mode. Although TI’s SDK al-

lows an application to set an SCO mode flag, it only checks

if the incoming pairing request enables the Secure Connec-
tions (SC) bit and does not check if the negotiated association

method is Passkey Entry or Numerical Comparison. (iv) In-

correct implementation of attribute permission. An LTK can

be an unauthenticated-and-no-MITM-protection key created

by Just Works or an authenticated-and-MITM-protection key

created by Passkey Entry, Numeric Comparison and OOB.

Assume that a victim mobile has used secure pairing to pair

with a victim BLE device based on TI chips and generated an

authenticated-and-MITM-protection LTK. We find when a

fake mobile with the victim mobile’s MAC address uses Just

Works and pairs with the victim device, TI’s BLE stack does

not update the key property, the generated LTK is still an

authenticated-and-MITM-protection key, and the fake mo-

bile can access attributes with the authenticated read/write

permission. We have tested and proved the vulnerabilities

on TI’s CC2640, CC2640R2F, and CC2650, and reported

the identified vulnerabilities to TI and a patched SDK was

released recently [7].

We present example attacks beyond mobiles against the

18 commercial BLE products as follows. (i) Attack V. The

passive eavesdropping attack requires the victim device have

read/write attributes. It fails if the peer device has attributes

of encrypted read/write or authenticated read/write as shown

in Table 6. For example, with Attack V, an attacker can sniff

blood pressure readings sent from an iBalance blood pres-

sure monitor, breaching user privacy. (ii) Attack VI. The at-

tack bypassing the whitelist works against BLE devices with

a whitelist enabled such as the K780 keyboard. (iii) Attack

VII. The data manipulation attack works against all BLE de-

vices. For example, we can access and manipulate attributes

with authenticated read/write permission of any device based

upon TI CC26XX chips, even if the SCO mode is enabled.

(iv) Attack VIII. The MITM attack works against all devices.

For example, we have implemented the MITM attack against

the k780 BLE keyboard and a tablet with two TI CC2640

development boards hosted in a case. One board works as a

fake tablet connecting to the victim keyboard, and the other

works as the fake BLE keyboard connecting to the victim

tablet with the stolen IRK and MAC address.

Maximal attack distance Although BLE is designed for

short-range communication, the attack distance against BLE

devices depends on factors such as antenna gain and trans-

mission power of involved devices. The attacker can use a

large antenna to increase the attack distance. We use the

CC2640R2F chips as the attacking fake devices and fake mo-

biles and find these off-the-shelf chips can achieve a reason-

able long maximal attack distance, which is measured with

a Bosch GLR825 laser distance measurer as the farthest dis-

tance at which the attacking device and target can be paired

together. Figure 6 gives the cumulative distribution func-

tion (CDF) of the maximal attack distance against 20 differ-

ent Android mobiles including Google Pixel 4, Samsung S10

and HUAWEI P30 Pro and the 18 devices in Figure 5. The

maximal attack distance mean and maximum are 77.2 me-

ters (m) and 94.0m against mobiles, and 46.5m and 77.1m

against devices.

Keyboard connection competition As discussed earlier,

when both a victim keyboard and a fake keyboard try to con-

nect to a victim mobile, the one with a higher advertising

frequency has a better chance. We now present the impact of

the advertising frequency on the success rate of the fake key-

board connecting to the victim mobile. In our experiments,

the victim keyboard is put close to an Android mobile as in

a normal use scenario, while the fake keyboard is 10 meters

away from the keyboard. For each advertising frequency,

we perform the connection competition game 20 times. The

success rate is the number of successful connections by our

fake keyboard over 20. Figure 7 shows the success rate ver-

sus the advertising frequency. The success rate is 50% when

the advertising frequency of the fake keyboard is 30HZ. The

BLE specification sets the highest advertising frequency as

50 HZ, at which the success rate by the fake keyboard is

75%. We use CC2640 for the fake keyboard, which does not

work when the advertising frequency is beyond 50HZ.
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Maximal attack distance

Figure 6: Maximal attack distance

against mobiles and devices
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Figure 8: Defense performance

6.4 Countermeasure Evaluation
We have implemented our proposed defenses on a Google

Pixel 2 mobile through the AOSP. We launched all our

attacks and confirmed that they failed under the patched

Android system. For example, in the case of the BLE

keyboard, when Numerical Comparison is enforced, the user

finds that the two numbers displayed on the victim mobile

and keyboard (emulated by a CC2640) are different when

the MITM attack is deployed. The user should reject the

pairing and investigate the possibility of attacks.

We also evaluated the performance of our secure pairing,

i.e., the overhead caused by the query of the configuration

file scm.conf for a specific app’s metadata such as the spec-

ified association method. We tested three cases: 10, 20 and

30 BLE apps using our defense mechanisms on the security

enhanced Android mobile. The app of interest is always set

as the last one in scm.conf. That is, we consider the worst

case of time needed to find the metadata of the app of in-

terest. We run the test for each case 10 times and derive

the average time. Figure 8 shows the average delay is from

550.6μs to 892.5μs and is feasible for typical use of BLE

apps in a mobile [20].

7 Flaws and Attacks in Other OSes
While we have demonstrated the flaws and attacks in

Android systems, we also discover that these issues also

exist in other major OSes including iOS, macOS, Windows,

and Linux. This gives more evidence that no SCO mode at

initiators is not an implementation issue but rather a BLE

specification flaw. We argue all operating systems shall

provide an option of enforcing the SCO mode in a similar

way to the programming framework we have proposed for

Android. In this section, we present the detailed discovery

with these OSes.

In particular, Table 7 compares the design flaws and at-

tacks against different OSes of latest releases and peer de-

vices. Unless explicitly stated otherwise, we use the same

threat model in §4.1: Before the attack, the initiators and

their peer devices are paired using secure association meth-

ods. The attacker does not have physical access to either

the initiator or responder. We summarize the differences be-

tween OSes regarding the four design flaws and attacks as

follows: (i) A specific OS may not have all the four flaws.

(ii) Some OSes such as Android may know the adopted as-

sociation method after pairing, while others such as iOS does

not know it at all. (iii) An OS may not have Flaw 3, but al-

lows an app to handle errors. However, given that all OSes

have Flaws 1 and 2, the app handles the errors in various vul-

nerable ways. (iv) Personal computer operating systems such

as macOS, Windows and Linux do not use IRK by default as

initiators, while a Linux device may programmatically adopt

IRK [21]. Without the protection from IRK, an attacker may

sniff a BLE connection, obtain the MAC address of a ma-

cOS/Windows/Linux device, and deploy attacks against peer

devices as introduced in §4.4.2.

7.1 iOS and macOS
According to design guidelines for Apple devices [22]

and our experiments, iOS and macOS use the same SDK

Core-Bluetooth [23] to handle BLE communication. Core-

Bluetooth does not provide functions for BLE pairing al-

though a function IOBluetoothDevicePair.start() is

provided by the programming framework IOBluetooth for

Bluetooth Classic on macOS [24]. In iOS and macOS, when

an initiator tries to access an attribute that requires pairing at

a peer device, the peer device sends error codes to the ini-

tiator, which then starts pairing exclusively through its BLE

stack in the kernel. Therefore, Apple devices have four sim-

ilar design flaws to Android: (i) Flaw 1. Apple devices can

not specify a secure association method. (ii) Flaw 2. There

is no mechanism to enforce a specified association method

or for an app to obtain the negotiated association method.

(iii) Flaw 3. There is no mechanism for an app to handle

errors while the BLE stack mishandles pairing errors. An

Apple app can learn whether Insufficient Authentication/En-
cryption errors occur by checking the CBATTError object,

and the Pin or Key Missing error is not defined by the Apple

programming framework. (iv) Flaw 4. There is no public
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OS Programming framework flaws Attack against the Initiator Attack against the peer device

Flaw 1 Flaw 2 Flaw 3 Flaw 4 Attack I Attack II Attack III Attack IV Attack V Attack VI Attack VII Attack VIII

Android � � � Flaw 3 Flaw 3 Flaws1,2,3 Flaws 1,2,3,4 Flaws 3 Flaws 1,2,3 Flaws 1,2,3 Flaws 1,2,3
iOS � � � � Flaw 3 Flaw 3 Flaws 1,2,3 Flaws 1,2,3,4 � Flaws 1,2,3 Flaws 1,2,3 Flaws 1,2,3

macOS � � � � Flaw 3 Flaw 3 No IRK Flaws 1,2,3,4 �
These attacks can be deployed

without stealing IRK;

Windows � � � � Flaw 1,2 Flaw 1,2 No IRK � �
These attacks can be deployed

without stealing IRK;
Linux � � � � � Flaws 1,2 � � Flaws 1,2 Flaws 1,2 Flaws 1,2

Table 7: Flaws and downgrade attacks across OSes with the assumption of no physical access to both initiators and peer devices.

means the app may know the adopted association method after pairing. ∗ means the attack fails when the peer device enforces

the SCO mode; � means yes, � means no, and their specific meaning should be clear in the context.

API for Apple devices to remove a bond or initiate a new

pairing process even when errors occur.

Next, we discuss attacks against Apple devices as initia-

tors of BLE communication. (i) The false data injection

and spoofing attack for sensitive information are the same

against iOS and macOS. When the “Pin or Key Missing

(0x06)” error occurs, iOS and macOS do not notify the

app, and will communicate with its peer device in plaintext.

(ii) The downgrade attack stealing the IRK and MAC ad-

dress works against iOS devices as follows. We find that

an iOS device does not respond to the “ Insufficient

Authentication (0x05)” error, but initiates pairing if its

peer device sends a security request and the “Insufficient

Encryption (0x0f)” error code. Therefore, a fake device

can utilize the 0x0f error, pair with the victim iOS device us-

ing Just Works and steal its IRK and Mac address. Since

macOS does not use IRK, an attacker can just sniff BLE

communication to obtain the MAC address and spoof the ini-

tiator. (iii) The DoS attack can be deployed with no change

on iOS and macOS because Apple devices can not resolve

the issue of inconsistent LTK.

We now present attacks against the peer BLE device of an

Apple device. Without physical access to the peer device of

an iOS device, the attacker may use the whitelist bypass at-

tack and deploy the data manipulation attack as introduced in

§4.4.2). However, the passive eavesdropping attack does not

work against iOS devices for the following reason. When a

victim BLE device reconnects to an iOS device, the iOS de-

vice encrypts the connection rather than communicates with

the peer device in plaintext as an Android device does. For

macOS devices, since IRK is not used, the initiator can be

easily spoofed and the spoofing device can then deploy all

the attacks except passive eavesdropping.

7.2 Windows

Windows 10’s SDK supports the Universal Windows Plat-

form (UWP) [25], which provides a common platform for

various devices, including laptops, desktops, and embed-

ded devices including BLE devices. With UWP, the same

source code can be compiled to run on different platforms.

We find Windows 10 has the following flaws: (i) Flaw 1.

UWP provide a function PairAsync(ProtectionLevel),

which has a parameter ProtectionLevel specifying

the minimal protection level of a pairing process, in-

cluding None (Plaintext), Encryption (Just Works),

or EncryptionAndAuthentication (Secure association

methods). However, according to our experiments on lat-

est Windows 10, whatever the protection level is, Win-

dows 10 always determines the association method based

on the I/O capabilities of the peer device. The param-

eter ProtectionLevel does not work on personal com-

puter Windows OS while it may be designed for par-

ticular embedded devices with a BLE stack supporting

ProtectionLevel. (ii) Flaw 2. It can be observed

from Flaw 1 that personal computer Windows OS can-

not enforce secure pairing. There is also no mecha-

nism for an application to obtain the negotiated asso-

ciation method. PairAsync(.) returns an instance

of DevicePairingResult. DevicePairingResult has a

member variable ProtectionLevelUsed, which shall re-

turn the pairing protection level. In our experiments,

ProtectionLevelUsed is always set to None, no matter

what association method is adopted. (iii) Windows does

not have Flaw 3. When errors occur, Windows always tears

down the connection and returns the error codes to the ap-

plication through an instance of ProtocolError. The ap-

plication can determine how to process the errors on its

own.(iv) Windows has the function UnpairAsync() to re-

move a bond and does not have Flaw 4.

We now discuss possible attacks against a Windows 10

device as an initiator. Recall that to deploy attacks, a fake

device shall spoof a victim device and connect to the victim

initiator. Errors will occur as discussed in §3.2. Windows

is different from Android. It tears down the connection and

reports the error to the application. The application has two

options: (i) removes the bond and initiates re-pairing with

the fake device; (ii) does not respond to the error and stops

working, i.e. halting. Since Windows can not enforce secure

pairing, if the application chooses option (i), the communica-

tion is subject to false data injection and spoofing attack for

sensitive information. If the application chooses option (ii),

the communication is vulnerable to the DoS attack for the

following reasons. First, since IRK is not used by Windows,

an attacker can obtain the MAC address by sniffing and then
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spoof the initiator. The fake initiator pairs with the victim

device and changes its LTK if the victim device does not en-

force the SCO mode. Now the two LTKs on the victim ini-

tiator and victim device are different. The victim Windows

initiator cannot pair with the victim device any more. Sec-

ond, the LTK of the victim device can be lost due to device

reset and the user will not be able to use the device because

of the inconsistent LTK issue. Once the communication is

stuck for the two reasons above, intuitively a user wants to

continue his/her work, may manually remove the bonded de-

vice and initiate pairing again to move forward. The result

of this practice is equivalent to option (i). This is why Ta-

ble 7 only shows option (i). To attack the peer device of a

Windows device, an attacker can easily implement the fake

initiator since Windows does not use IRK. All the attacks

in §4.4.2 can be deployed except eavesdropping, which does

not work for the same reason under macOS.

7.3 Linux
Linux device uses BlueZ [21] as the Bluetooth stack for

BLE communication. We use the official BlueZ program-

ming framework, which is based on Python and C, to dis-

cuss its flaws: (i) Flaw 1. Linux devices can not specify a

secure association method. For the purpose of pairing, an

application can register a pairing agent via a Python func-

tion RegisterAgent(agent, capability), where agent
is an instance of pairing agent org.bluez.Agent1 and ca-
pability is the I/O capability of the Linux initiator. Once reg-

istered, a Linux device calls a Python function Pair() to

initiate pairing. Other than the default pairing agent, a cus-

tomized agent written in C can also be programmed to han-

dle the pairing process. Similar to other OSes, under Linux

the association method is determined by the I/O capability

of the peer device and the configured I/O capability of the

initiator. Therefore, Linux devices are subject to Flaw 1. (ii)

Flaw 2. There is no mechanism to enforce a specified as-

sociation method or for an application to timely obtain the

negotiated association method. If a fake device pairs with

the victim Linux computer using Just Works, Linux may use

a customized Linux pairing agent, modify the C function

bluez_agent_method_call(.) and learn the adopted as-

sociation method only after pairing while the default pairing

agent does not provide this capability. (iii) Flaw 3. Since a

Linux device tears down the connection and notifies the ap-

plication when errors occur as Windows behaves, it does not

have Flaw 3. (iv) Flaw 4. A Linux device is able to remove

a bond via RemoveDevice(.) and has no Flaw 4.

We now present possible attacks against Linux devices.

As discussed in §7.2, although an application has two op-

tions of processing errors, we argue they are equivalent.

Therefore, when errors occur, the application chooses re-

pairing. With the default pairing agent, a Linux initiator is

subject to Attacks I, II and III. With a customized pairing

agent, since the application can know the adopted associa-

tion method after pairing, the application may tear down the

connection if the association method is not the intended one

to avoid false data injection and sensitive information steal-

ing attacks. Since Linux cannot know Just Works timely, the

IRK stealing attack still works if a Linux device employs

IRK to prevent tracking for privacy.

To attack the peer device of a Linux device, an attacker can

easily implement the fake initiator since Linux does not use

IRK by default. If Linux programmatically adopts IRK, the

attacker can use the IRK stealing attack to obtain the MAC

address of the initiator. All the attacks in §4.4.2 can then be

deployed except eavesdropping, which does not work for the

same reason under macOS.

8 Lessons Learned
Standardization process. Bluetooth has been subject to

varieties of attacks and a more rigid standardization process

may help security and privacy of Bluetooth including BLE.

During our study of the specification, we find it is often con-

fusing and not consistent across chapters as our partner TI

finds too. The confusion may lead to the fact that different

vendors implement BLE protocols in quite different ways,

for example, for error handling, IRK use and interaction be-

tween an application and the BLE stack. A similar standard-

ization process to RFC (request for comments) for Internet

standards would help protocol verification.

Secure framework for pairing. BLE has a suite of pro-

tocols addressing different aspects of this wireless personal

area network technology. Our paper focuses on pairing. De-

feating other attacks such as co-located attacks requires extra

remedies [11, 12, 26]. These remedies often rely on the as-

sumption that the communication is secure the first time the

user configures the mobile and device, which can share a se-

cret to protect later communication at the application layer.

However, the assumption may not be true without proper

pairing. We believe both initiators and peer devices shall

have the option of the Secure Connections Only mode so

that we can achieve mutual authentication between an initia-

tor and its peer device. This SCO mode requires the support

in the four stages of the pairing process. In this paper, we

have carefully addressed the SCO mode at initiators. We

also find some vendors do not correctly implement the SCO

mode at the peer device as discussed in §6.3. Correct imple-

mentation of this mode at initiators and peer devices will be

able to defeat attacks presented in this paper.

9 Related Work

Vulnerabilities in Bluetooth. Bluetooth before the Sim-

ple Secure Pairing (SSP) is not secure [27, 28] and is out of

the scope of this paper. The Simple Secure Pairing is also

vulnerable. For example, Haataja et al. [5] proposed MITM

attacks against SSP of Bluetooth Classic in 2010. They as-

sumed that the victim devices use only I/O capabilities to
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determine the association method and the attacking devices

can pair with victim devices using Just Works. The latest

BLE introduces the Secure Connections Only mode to defeat

those attacks. Our work focuses on the Secure Connections

Only mode.

Mike Ryan [29] built a BLE sniffer over Ubertooth and

demonstrated that the Passkey Entry for LE legacy connec-

tions is not secure. His tool crackle can crack such connec-

tions and target BLE 4.0 and 4.1. Our paper addresses the

latest BLE 4.2 and 5.x, which are considered secure against

his attacks. The work by Rosa [30] is similar to Mike Ryan’s

work. Zegeye et al. cracked the BLE temporary key used

in the pairing process by using a brute-force attack [31],

which also extends the attack in [29]. Dazhi Sun et al. [32]

proposed a method that can break Passkey Entry when the

passkey is reused. The similar problem was also discussed

in [4]. However, reusing a passkey is not recommended

in BLE, which requires a random passkey shall be used in

each pairing session with Passkey Entry. We assume a ran-

dom passkey in this paper. Antonioli et al. [33] identified

Bluetooth Classic specification authentication vulnerabilities

and can downgrade the Secure Connections protocol into the

Legacy Secure Connections protocol.

Bluetooth attacks on mobiles. Jasek et al. [34] studied

possible attacks between a Bluetooth smart device and its

mobile app. However, they study BLE 4.0 and 4.1, which

do not have the Secure Connections Only mode for BLE.

They attacked Passkey Entry with Mike Ryan’s approach

[29]. Many works reverse engineer particular products [35–

37] and exploit faulty app protocols while we focus on the

operating system level and programming framework issues.

For example, Britt Cyr et al. performed a security analysis

of wearable fitness devices [35]. They reverse engineered

the devices, BLE communication traffic, and app, and used

Mike Ryan’s attacks against pairing. Zhang et al. analyzed

the commands from four popular smart wristbands by sniff-

ing packets without reverse engineering the apps [36], and

presented replay and MITM attacks against those particular

wristbands. BlueBorne [38] explored faulty BLE implemen-

tations. our attacks are not based on those issues. William et

al. [39] and Melamed et al. [40] studied the spoofing attack

and MITM attack between a Bluetooth smart device and its

mobile app. They presented software based and hardware

based attacks, but did not address how to attack two paired

devices with a secure association method. Fawaz et al. [41]

collected and analyzed the advertisement packets from 214

BLE devices and found that the poor design and implemen-

tation of BLE advertisements may lead to privacy leaks. We

address pairing security in this paper. Muhammad Naveed et

al. [11], Xu et al. [13] , Zhang et al. [26] and Sivakumaran et

al. [12] also addressed Bluetooth security but not on pairing.

Zuo et al. [42] fingerprint via UUIDs vulnerable IoT devices

that use insecure pairing.

10 Conclusion

BLE 4.2 and 5.x have an SCO mode to enforce secure

pairing such as Passkey Entry and Numerical Comparison

for BLE devices. However, the BLE specification does not

explicitly require an initiating device such as a mobile to sup-

port the SCO mode. This creates potential security vulner-

abilities against both mobiles and their peer BLE devices.

In this paper, we have systematically investigated Android’s

BLE programming framework and discovered four design

flaws. We then present a suite of downgrade attacks and case

studies exploiting these design flaws. To defend against these

attacks, we patch Android to enforce secure pairing. We also

explored other major OSes including iOS, macOS, Windows

and Linux, and found all OSes have similar security issues

and they all need to adopt the SCO mode at the initiators. We

have performed extensive experiments to validate the identi-

fied attacks and proposed defense measures. We believe for

mission critical BLE systems, the SCO mode shall be en-

forced on both initiators and responders.
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