
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

SelectiveTaint: Efficient Data Flow Tracking With
Static Binary Rewriting

Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang, The Ohio State University
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-sanchuan

SELECTIVETAINT: Efficient Data Flow Tracking With
Static Binary Rewriting

Sanchuan Chen Zhiqiang Lin Yinqian Zhang
The Ohio State University

{chen.4825, lin.3021, zhang.834}@osu.edu

Abstract
Taint analysis has been widely used in many security applica-
tions such as exploit detection, information flow tracking, mal-
ware analysis, and protocol reverse engineering. State-of-the-
art taint analysis tools are usually built atop dynamic binary
instrumentation, which instruments at every possible instruc-
tion, and rely on runtime information to decide whether a par-
ticular instruction involves taint or not, thereby usually having
high performance overhead. This paper presents SELECTIVE-
TAINT, an efficient selective taint analysis framework for bi-
nary executables. The key idea is to selectively instrument the
instructions involving taint analysis using static binary rewrit-
ing instead of dynamic binary instrumentation. At a high level,
SELECTIVETAINT statically scans taint sources of interest in
the binary code, leverages value set analysis to conservatively
determine whether an instruction operand needs to be tainted
or not, and then selectively taints the instructions of interest.
We have implemented SELECTIVETAINT and evaluated it
with a set of binary programs including 16 coreutils (focusing
on file I/O) and five network daemon programs (focusing
on network I/O) such as nginx web server. Our evaluation
results show that the binaries statically instrumented by SE-
LECTIVETAINT has superior performance compared to the
state-of-the-art dynamic taint analysis frameworks (e.g., 1.7x
faster than that of libdft).

1 Introduction

One of the mostly used techniques in software security is
dynamic taint analysis [28], also called dynamic data flow
tracking (DDFT), which tracks the data flow of interest
during program execution and has been widely used in many
security applications, such as exploit detection [14, 28–30],
information flow tracking [34, 41], malware analysis [18, 39],
and protocol reverse engineering [10, 19]. However, the
implementation of taint analysis often has high performance
overhead. For instance, a state-of-the-art dynamic taint
analysis framework libdft [17] imposes about 4x slowdown
for gzip when compressing a file.

There has been a body of research that seeks to improve
the performance of taint analysis. For instance, Jee et al. [16]
applied compiler-like optimizations to eliminate redundant
logic in taint analysis code. SHADOWREPLICA [15] improved

the performance by decoupling taint logic from program
logic, minimizing the information needed to communicate,
and optimizing the shared data structures between them.
TAINTPIPE [25] explored a parallel and pipeline scheme.
STRAIGHTTAINT [24] combined an online execution
state tracing and offline symbolic taint analysis for further
performance improvement.

Interestingly, these general DDFT frameworks and their
optimizations are built atop dynamic binary instrumentation
(DBI), particularly Intel’s PIN [22], to instrument the taint
analysis logic at runtime. We believe a fundamental reason of
using DBI for these frameworks is to basically avoid the code
discovery challenge from static binary analysis. Note that PIN
is a DBI tool, and it dynamically disassembles, compiles, and
reassembles the executed code at runtime without any code
discovery issues. The core module of PIN is a virtual machine
(VM) that consists of a just-in-time (JIT) compiler, an emula-
tor, and a dispatcher. PIN also has a rich set of APIs used for
Pintool’s implementations. However, the VM and APIs both
add additional performance overhead to a taint analysis tool.

Unlike DBI, static binary instrumentation (SBI) inserts the
analysis code directly into the native binary and thus avoids
the unnecessary DBI overhead incurred by JIT and emula-
tion. Meanwhile, SBI would have fewer context switches,
since the rewritten binary has a better code locality. While
it is challenging to perform static binary analysis, recently
there are substantial advancements in static binary rewrit-
ing and reassembling (e.g., UROBOROS [37], RAMBLR [36],
MULTIVERSE [6], and recently Datalog Disassembly [13]).
Therefore, it is worthwhile revisiting the taint analysis and
study the feasibility of using static binary rewriting for more
efficient taint analysis.

In addition to the use of DBI, existing taint analysis
frameworks also instrument the binary code at every possible
instruction that can contribute the information flow, and rely
on the execution context to determine whether there is a
need to taint the corresponding operand. However, if a static
analysis could figure out precisely the instructions that will
never get involved in taint analysis (e.g., via some conser-
vative static analysis), it would have not instrumented them.
Therefore, enabling taint analysis to selectively instrument
the binary code statically is viable and highly desired.

USENIX Association 30th USENIX Security Symposium 1665

In this paper, we propose SELECTIVETAINT, an efficient se-
lective taint analysis framework for binary code with static bi-
nary rewriting. There are two salient features in SELECTIVE-
TAINT. First, it directly removes the overhead from dynamic
binary translation, and is built atop SBI instead of DBI. Sec-
ond, it scans taint sources of interest in the binary, statically
determines whether an instruction operand will be involved in
taint analysis by leveraging the value set analysis (VSA) [3,4],
and then selectively taints the instructions of interest. There
are well-known challenges that SELECTIVETAINT must ad-
dress, such as how to deal with point-to (i.e., alias) analysis
inside binary code. SELECTIVETAINT solves this problem
by conservatively identifying the memory addresses that will
never be involved in taint, and then taint the rest.

We have implemented SELECTIVETAINT atop SBI and
evaluated it with a variety of applications consisting of 16
coreutils, and five network daemon programs such as Nginx
web server. We use these programs as the benchmarks because
they represent both file I/O and network I/O, the two most
common input channels used by real world programs. The
evaluation results show that SELECTIVETAINT is 1.7x faster
than that of libdft, a state-of-the-art dynamic taint analy-
sis framework. We formally prove that SELECTIVETAINT is
soundy (mostly sound) [21], and also confirm the soundness
of SELECTIVETAINT by using it to detect real-world exploits
against the memory corruptions vulnerabilities in a variety of
software including image decoder, audio normalization, and
assembler.

In short, we make the following contributions:
• We propose SELECTIVETAINT, the first static-binary-

rewriting based selective taint analysis framework, to
substantially improve the performance overhead incurred
by earlier DBI-based approaches.

• We also present a conservative tainted instruction
identification approach, which statically identifies the
instructions that will never involve tainted memory or
registers by using VSA and then conservatively taints
the rest instructions.

• We have implemented SELECTIVETAINT, and tested
with 16 coreutils and five network daemons. The
evaluation results show that SELECTIVETAINT has
superior performance compared to the state-of-the-art
taint analysis tools such as libdft.

2 Background

2.1 Taint Analysis
Taint analysis is a widely used program analysis technique
that tracks the flow of data of interest as they propagate during
the program execution [28]. It is also referred as dynamic
data flow tracking (DDFT) or dynamic taint analysis (DTA),
which is usually implemented using virtualization or DBI
and can be performed per-process [17] or system-wide [39].

1 void process(int client_sock, char *buffer, int size)
2 {
3 char ch;
4 int read_size = recv(client_sock, buffer, 2048, 0);
5 if(read_size > 0)
6 {
7 ch = buffer[0];
8 if(ch >= 'a' && ch <= 'z')
9 buffer[0] = ch -32;

10 write(client_sock, buffer, read_size);
11 memset(buffer, 0, 1024);
12 }
13 }
14

15 int server(int client_sock)
16 {
17 int i = 0;
18 char buffer[1024] = {0};
19 for(i = 0; i < 3; i++)
20 {
21 process(client_sock, buffer, 1024);
22 }
23 return 0;
24 }

Figure 1: A simplified running example

Taint analysis needs taint tags, which are markings
associated to registers and memory to indicate their taint
status. Taint tags can have different (1) granularities to mark
the taintedness for a bit, a byte, a word, or a block of data, and
(2) sizes to indicate the taintedness to be a bit—tainted or not,
or an integer—which input byte tainted the data. A finer gran-
ularity enhances taint analysis precision but adds performance
costs, e.g., the storage cost for tag-related data structure,
whereas a coarser granularity offers less precision but better
performance. When a tag size is a single bit, it can be used
to represent whether a corresponding register or memory
location is tainted or not; when it is an integer, it can represent
which part of the input (e.g., a particular byte offset) has been
propagated to the tainted registers or memory locations.

A taint analysis typically consists of three components:
taint sources, taint propagation, and taint sinks. In the
following, we use a simplified networking program illustrated
in Figure 1, as a running example, to demonstrate how a
typical taint analysis works.

• Taint sources. Taint sources are program points or
memory locations where data of interest is introduced.
Typically, taint analysis is interested in user input com-
ing from locally or remotely. For example, in Figure 1,
if we are interested in the remote input, we will taint
the data stored in buffer right after entering the system
when calling libc function recv at line 4.

• Taint propagation. Taint tags are propagated during
the program execution according to the taint propagation
rules, which are specified with respect to the semantics
of each instruction, e.g., the specific operands in the
instruction, and also the side-effect of the instruction.
For instance, for instruction ADD src, dst, a taint
propagation rule could specify that the new tag of dst

1666 30th USENIX Security Symposium USENIX Association

is a bit-wise OR of the tags of src and dst. In Figure 1,
at line 7 ch is assigned the tainted data of buffer[0]
and at line 9 buffer[0] is calculated based on tainted
ch, which has a data dependency, whereas at lines 8-9
whether buffer[0] is assigned or not depends on the
outcome of the predicate in the if statement, which
involves a tainted ch with a control dependence between
buffer[0] and ch. Note that most of the DDFT works
(e.g., [15–17, 24, 25]) only consider taint propagation
based on data dependencies.

• Taint sinks. Taint sinks are specific program instructions
where taint analysis checks the existence of taint tags
of interest for various security applications such as de-
tecting control flow hijacks or information flow leakage.
Common taint sinks are control flow transfer instructions
for detecting control flow hijack attacks, or output system
calls (e.g., write, send) for detecting information leak-
age attack (e.g., a tainted secret leaked out). In Figure 1,
line 10 could be a taint sink for information leakage
detection, since it is the libc function write that writes
the content starting at buffer to client_socket.

2.2 Value Set Analysis

Value set analysis (VSA) [3, 4] is a static program analysis
technique. It over-approximates the set of possible values that
each data object of the program could hold at each program
point, and it uses a value set to represent the set of memory
addresses and numeric value quantities.

Memory regions and abstract locations. VSA uses an ab-
stract memory model that separates the address space into
multiple disjoint areas that are referred to as memory regions.
Memory regions in VSA consist of: a global region for mem-
ory locations storing uninitialized and initialized global vari-
ables, a stack region per function for memory locations of acti-
vation record of a procedure, and a heap region per heap allo-
cation for memory locations allocated by a particular malloc-
type of function call site. An abstract location, i.e., an a-loc, is
a variable-like entity which spans from one statically known
location to next statically known location (not including it).

Abstract addresses and value sets. An abstract address in
VSA is represented by a pair (memory-region, offset). A set
of abstract addresses can be represented using:

{i∣rgni↦{oi
1,o

i
2, . . . ,o

i
ni
}}

More specifically, when there are at most one stack memory
region and one heap memory region, the value set can be
specified as 3-tuple [4]:

(global↦Og,stack↦Os,heap↦Oh
)

abbreviated as (Og,Os,Oh
). A set of memory offsets in

each memory region is represented by a strided-interval
(SI): s[l,u], where s is the stride, l and u are lower bound
and upper bound. For instance, ({1,3,5},�,�) could be
represented using SI as (2[1,5],�,�).

The analysis is performed on a control-flow graph (CFG)
in which each node represents an instruction (not a basic
block as VSA is calculated for each instruction) and each
edge represents a control flow transfer. A transfer function
that characterizes the instruction semantics is associated with
each edge. Note that since the address values and numeric
values are interleaved in the binary, VSA tracks address values
and numeric values at the same time.

2.3 Binary Instrumentation
Binary instrumentation is the process of instrumenting binary
with additional analysis code added and meanwhile maintain-
ing the original functionality. It is a widely used technique
for many important security applications such as malware
analysis and binary code hardening. Binary instrumentation
could be either static or dynamic.
Static binary rewriting. Static binary instrumentation (SBI),
also known as static binary rewriting, modifies the binary file
directly. Static binary rewriting can be performed in three
ways, as summarized in RAMBLR [36]: (1) trampoline-based,
(2) lifting and recompiling, (3) symbolization [40] and
reassembling [37]. Specifically, in trampoline-based ap-
proaches, hooks which detour the control flow to trampolines
are added to the binary. In contrast, for lifting and recompil-
ing, the binary code will be first lifted into an intermediate
representation (IR), then inserted with the code of interest in
the IR, and finally compiled back. The first two approaches
have been known in the community for years. Recently,
symbolization and reassembling approach was proposed, in
which a rewriter needs to identify the locations pointed by
memory references first, and then symbolize those references.
The process of converting numeric references back to sym-
bols is called symbolization. After symbolization, the rewriter
could correctly relocate binary in reassembling. The first two
approaches impose significant overhead and the last approach
may mix code with data and may not correctly separate them.
Dynamic binary instrumentation. Dynamic binary in-
strumentation (DBI) recovers the code while program is
executing, which can correctly separate program code from
data. However, compared with static approaches, DBI has
high performance overhead. There are generally two ways
to implement DBI: using a trampoline, or using just-in-time
(JIT) compiling. The trampoline approach replaces the
instruction with a trampoline at run-time which jumps to the
instrumented analysis code, and the JIT compiling approach
dynamically compiles the binary on the fly.

3 Challenges and Insights

3.1 Challenges
To clearly illustrate the challenges of selective taint analysis,
we still use the example code shown in Figure 1. This

USENIX Association 30th USENIX Security Symposium 1667

program receives three messages from a client (line 19-22),
capitalizes the first character in each message if needed (line
8-9), and sends the messages back to the client (line 10). It
has a buffer overflow vulnerability at line 4, when receiving
the input with size larger than 1,024 bytes. The taint source
of our interest is the network input stored in array buffer,
which is tainted right after the execution of libc function
recv. The taint sink of our interest is the control flow transfer
instruction ret of function server at line 23, assume our
objective is to detect the control flow hijacks.

Performing selective binary code taint analysis using static
binary rewriting is by no means trivial. Unlike DBI-based
approaches where taint analysis logic is instrumented at run-
time, a SBI-based approach has to analyze and rewrite the
binary statically. In addition to the challenges from static bi-
nary disassembling and rewriting (they are orthogonal to the
problem we aim to solve in this paper), SELECTIVETAINT
has to address at least the following unique challenge—how
to determine whether a disassembled instruction needs to be
instrumented by taint analysis. If so, we have to also rewrite
it accordingly based on the taint semantics (e.g., whether
this instruction introduces a taint sources, contributes to taint
propagation, or it is a taint sink).

Essentially, the problem becomes how to determine the
taintedness of an instruction according to its operands includ-
ing both memory addresses and registers without executing
the binary. Determining the taintedness of registers is easier
compared to memory addresses, since registers can be directly
identified based on names whereas a memory address cannot
be easily resolved. Therefore, determining the taintedness for
memory addresses is much harder in SBI. More specifically,
different from DTA in which a memory address has a single
runtime address at each program point, static binary taint anal-
ysis can only conservatively infer the possible values for a
symbolic memory address at each program point. Except for
global memory addresses, symbolic addresses of stack and
heap are only in relative addresses when performing the static
analysis. In addition, there are also unknown inputs (from a
command line, local files and keystrokes, or remote network
packet) that also make the problem hard.

3.2 Insights

It is obvious that in order to address the aforementioned chal-
lenges, it requires the inference of possible values of both
registers and memory cells at each program point. Fortunately,
a key enabling technique in this direction is the VSA [3, 4],
which seeks to compute the possible values at each symbolic
memory address and register. Therefore, with VSA, we could
determine whether a particular memory address or register in-
volves taint or not, e.g., whether it is an alias to the address of
our interest, or it will hold the propagations of the tainted data.

To see exactly how VSA helps our analysis, we show the
value set analysis results of our running example along with

its assembly code in Table 1. At the prologue of function
server, the initial esp has a value set of (�, 0x0, �), since
the stack pointer address for a function is unknown statically.
After executing push %ebp at 0x8048687, esp has a value
set of (�, -0x4, �). The analysis continues, and computes
the rest of the VSA for each register and memory operand.
With the statically computed VSA, we can easily see that ebx
at 0x80486a9 and eax at 0x80486c6 have the same value
sets (�, -0x410, �), and thus these two registers are actually
aliased. In fact, both of them refer to the address of the local
variable buffer defined in function server.

To statically analyze which instructions need to be tainted,
a straw-man approach is to statically maintain tainted value
sets (i.e., value sets of registers and symbolic memory that
need to be tainted) at each program point. In particular,
this approach checks whether the value set of any of the
operand of an instruction is a subset of the tainted value set,
if so, this instruction is added into the tainted instruction
set; meanwhile the register or symbolic memory of the
corresponding operand is also added to the tainted value
sets if the taint will be propagated to this operand, and the
corresponding taint rule is used to taint this instruction.

However, when analyzing real-world binaries, VSA may
lose its precision due to various factors such as imprecise con-
trol flow graph (CFG), sophisticated static point-to analysis
(which is an undecidable problem [31]), and unknown inputs.
Consequently, as illustrated in Figure 2, we may not be able
to get the ideal tainted instruction set I for the instructions
that need to be tainted, and instead the VSA identified the
must-tainted instruction set It (i.e., instructions must be
tainted) can have false negatives because of the imprecision
mentioned, but it will not have false positives for the must-
analysis (the worst case is it can be empty, if the must-analysis
cannot decide anything). On the other hand, by using VSA,
we can also identify must-not-tainted instruction set Iu that
will never be involved in taint analysis. Therefore, in order not
to have any false negatives (no missing of attacks) when using
taint analysis, we eventually decide to taint the instructions
that are not in Iu. The worst case of our algorithm is that
the identified Iu is ∅, which means we taint all instructions
similarly to other DBI-based taint analysis. Our key objective
is to confidently enlarge Iu as much as possible (note that
we will not have false positives when being conservative).

As in our running example, in Table 1, the instructions
in light gray are identified as in must-not-tainted instruction
set Iu, the instructions in dark gray are identified as in must-
tainted instruction set It , and all instructions not in light gray
are our conservatively tainted instructions. For each instruc-
tion, a must-not-tainted value set Vu is maintained and if the
value set of any of its operand is a subset of Vu, this instruction
is added to Iu. For instance, for instructions at 0x804861a
and 0x804861d before taint introduction at 0x8048620, must-
not-tainted value set Vu equals value set S, which contains
all possible values at this execution point (recall VSA is a

1668 30th USENIX Security Symposium USENIX Association

Assembly Value Set Examples Assembly Value Set Examples
<server>: <process>:
8048687 push %ebp esp:(�,-0x4,�) 80485fd push %ebp ebp:(�,-0x434,�)
8048688 mov %esp,%ebp ebp:(�,-0x4,�) 80485fe mov %esp,%ebp ebp:(�,-0x434,�)
804868a push %edi 8048600 sub $0x28,%esp esp: (�,-0x45c,�)
804868b push %ebx 8048603 movl $0x0,0xc(%esp)
804868c sub $0x420,%esp esp:(�,-0x42c,�) 804860b movl $0x800,0x8(%esp) buffer size:(0x800,�,�)
8048692 movl $0x0,-0xc(%ebp) 8048613 mov 0xc(%ebp),%eax
8048699 lea -0x40c(%ebp),%ebx 8048616 mov %eax,0x4(%esp) buffer addr:(�,-0x410,�)
804869f mov $0x0,%eax 804861a mov 0x8(%ebp),%eax
80486a4 mov $0x100,%edx 804861d mov %eax,(%esp)
80486a9 mov %ebx,%edi ebx:(�,-0x410,�) 8048620 call 80484f0<recv@plt> Vu= S - (�,[-0x410,0x3f0],�)
80486ab mov %edx,%ecx 8048625 mov %eax,-0xc(%ebp)
80486ad rep stos %eax,%es:(%edi) 8048628 cmpl $0x0,-0xc(%ebp)
80486af movl $0x0,-0xc(%ebp) 804862c jle 8048685
80486b6 jmp 80486d9 804862e mov 0xc(%ebp),%eax
80486b8 movl $0x400,0x8(%esp) 8048631 movzbl (%eax),%eax
80486c0 lea -0x40c(%ebp),%eax 8048634 mov %al,-0xd(%ebp)
80486c6 mov %eax,0x4(%esp) eax:(�,-0x410,�) 8048637 cmpb $0x60,-0xd(%ebp)
80486ca mov 0x8(%ebp),%eax 804863b jle 8048651
80486cd mov %eax,(%esp) 804863d cmpb $0x7a,-0xd(%ebp)
80486d0 call 80485fd<process> 8048641 jg 8048651
80486d5 addl $0x1,-0xc(%ebp) 8048643 movzbl -0xd(%ebp),%eax
80486d9 cmpl $0x2,-0xc(%ebp) 8048647 sub $0x20,%eax
80486dd jle 80486b8 804864a mov %eax,%edx
80486df mov $0x0,%eax 804864c mov 0xc(%ebp),%eax
80486e4 add $0x420,%esp 804864f mov %dl,(%eax)
80486ea pop %ebx 8048651 mov -0xc(%ebp),%eax
80486eb pop %edi 8048654 mov %eax,0x8(%esp)
80486ec pop %ebp 8048658 mov 0xc(%ebp),%eax inst. is tainted, as (�,-0x410,�) ⊈ Vu
80486ed ret 804865b mov %eax,0x4(%esp)

804865f mov 0x8(%ebp),%eax
8048662 mov %eax,(%esp)
8048665 call 80484a0<write@plt>
804866a movl $0x400,0x8(%esp)
8048672 movl $0x0,0x4(%esp)
804867a mov 0xc(%ebp),%eax
804867d mov %eax,(%esp)
8048680 call 80484c0<memset@plt>
8048685 leave
8048686 ret

Table 1: The assembly code snippets of our running example. Instructions in light gray are identified by our analysis as in

must-not-tainted instruction set Iu, and Instructions in dark gray are in must-tainted instruction set It .

flow sensitive analysis). At taint source 0x8048620, must-
not-tainted value set Vu is updated by removing value set
(�,[-0x410,0x3f0],�) from Vu, as the tainted buffer starts at
(�, −0x410, �) with a buffer length 0x800. At 0x8048658,
[ebp+0xc] has value set (�, -0x410, �), which is not a subset
of must-not-tainted value set Vu and thus this instruction is
not added to Iu and will be instrumented instead. Eventually
SELECTIVETAINT will conservatively taint all instructions
not in Iu, i.e., instructions not in light gray, which consists of
all instructions in It , i.e., instructions in dark gray, with five
additional instructions in white.

Scope and Assumptions. In this work, we focus on x86
binaries with ELF format running atop Linux platform. We
assume the binary code is not obfuscated, and we are able
to get their correct disassembly. For proof-of-concept, we
demonstrate the use of taint analysis to track the untrusted

𝐼௨: must-not-tainted insn.

𝐼௧: must-tainted insn.

I: ideally-tainted insn.

Figure 2: The Essence of SELECTIVETAINT

user input through static binary rewriting, and detect the
memory exploits by just using a single bit (tainted or not) in
our taint record. Also, our static binary rewriting is based on
DYNINST [7]. While it is not perfect, it has been widely used

USENIX Association 30th USENIX Security Symposium 1669

Selective Binary Taint Analysis

Binary
Rewriting

Value Set
Analysis

CFG
Reconstruction

Taint Instruction
Identification

Original
Binary

Rewritten
Binary

Figure 3: Overview of SELECTIVETAINT

in building many static binary rewriting-based prototypes,
e.g., TYPEARMOR [35], and most recently UNTRACER [27].

4 Detailed Design

In this section, we present the detailed design of SELECTIVE-
TAINT. As illustrated in Figure 3, there are four key compo-
nents inside:

• CFG Reconstruction (§4.1). When given an applica-
tion binary, we will first disassemble and build its CFG
starting from the main function. If there is a library call,
we will resolve the calling target and use the function
summaries to decide whether further instrumentation
of the library is needed. If an indirect jmp/call is
encountered, we will perform backward slicing [36] and
use the VSA and type information to resolve the target.

• Value Set Analysis (§4.2). VSA [3] has become a stan-
dard technique in static binary analysis for determining
the possible values of a register or a symbolic memory
address. We use the VSA to help identify the instruction
operands that are never involved in the taint analysis.

• Taint Instruction Identification (§4.3). Selective
tainting essentially aims to identify the instructions that
are involved in the taint analysis. With the identification
of Iu by VSA, we then start from the instructions that
introduce the taint sources, and systematically identify
the rest of instructions that are not in Iu.

• Binary Rewriting (§4.4). Having identified the instruc-
tions that need to be tainted, we then use the static binary
rewriting to insert the taint analysis logic including
tracking of the taint sources and taint propagations as
well as the taint checks at the taint sinks.

4.1 CFG Reconstruction
The first step of SELECTIVETAINT is to disassemble and
rebuild the CFG, when given an application binary. This is
quite a standard process and the only additional challenge is to
identify the control flow targets of the indirect calls and jumps,
as they are important to compute the VSA. To get the CFG,
we first reconstruct the possible control flow targets using the
RAMBLR [36] approach, and in case of undecided target (e.g.,
jmp/call eax), we use the following approaches:

Handling Indirect Call. We adopt and implement two
forward-edge CFI identification approaches, namely

TYPEARMOR [35] and τCFI [26], to recover the type
information (i.e., parameter count and parameter type) about
actual and formal parameters at the callsites and callee
functions. By connecting the matching callsites and callees
regarding these type information, we build a CFG which is
an over-approximation of actual CFG. The type information
is generated by running liveness analysis at indirect callsites
and use-def analysis at callees.

Handling Indirect Jump. We first use VSA to resolve the
indirect jump target and connect the jump target if it is
solved. Otherwise, we determine whether the function that
contains the indirect jump uses any external data references
(e.g., global variable addresses): if not, we connect all of the
possible basic block starting address in this function as the
potential jump target (we still consider it local); otherwise,
we connect the jump target with all function entry addresses.
The rationale is we notice the inter-procedural jumps we
encountered are from compiler optimizations, and basically
compiler optimizes the call instruction with an indirect jump.
We therefore connect the indirect jump in this way to get an
over-approximation of the CFG.

4.2 Value Set Analysis

Our VSA Algorithm. A key technique inside SELECTIVE-
TAINT is the VSA [3], which is a context-sensitive and flow-
sensitive whole program analysis. As described in algorithm 1,
our whole_program_VSA first initializes the ValueSet for
each instruction in the program with an initial esp, initial
empty heap, and initial memory cell values resolved from
original binary. Then, function VSA is called to analyze each
function func, which is of work list style with multiple it-
erations on each individual instruction until no changes are
discovered (i.e., reached a fixed point). The context and value
sets are adjusted depending on the type of instruction opcode,
e.g., for call/ret instruction, inter-procedural analysis is per-
formed and the environment is adjusted accordingly including
changing the current stack region and matching formal and
actual parameters.

Practical Challenges. While the idea of calculating VSA is
simple, it has a number of practical challenges when used for
data flow tracking, such as context-sensitive, flow-sensitivity,
and alias analysis. In the following, we describe these
challenges and also how we have addressed them below:

1670 30th USENIX Security Symposium USENIX Association

Algorithm 1: Whole Program Value Set Analysis
1 Function whole_program_VSA(CFG, ValueSet):
2 ValueSet, context← init()
3 VSA(entryFunc, context)
4 Function VSA(CFG, ValueSet, func, context):
5 worklist← {entryInst}
6 while worklist ≠ ∅ do
7 i← pop(worklist)
8 if callInst(i) then
9 newContext← adjustContext(context, callee(i))

10 VSA(CFG, ValueSet, callee(i), newContext)
11 if retInst(i) then
12 adjustContext(context, caller(i))
13 if condInst(i) then
14 ValueSetiexitn ← ValueSetientry ⊓V S ValueSetcn

15 else
16 if uninitialized(opi) then
17 ValueSetiexit [addr(opi)]← (⊺,⊺,⊺)
18 newValueSetiexit ← EXE(i, ⊔

entryn∈entry
ValueSetientryn

)

19 if newValueSetiexit ≠ ValueSetiexit then
20 ValueSetiexit ← ValueSetiexit ⊔ newValueSetiexit
21 push(worklist, succs(i))

(I) Handling context-sensitivity. It will be overly compli-
cated if a function is called multiple times when performing
the inter-procedureal analysis in a CFG. We therefore
augment our VSA with a cloning-based context sensitivity
analysis [38]. Basically, we have a separate analysis for
each function clone per calling context. More specifically,
we generate a function clone for every acyclic path through
a program call graph and, for cyclic paths, we merge all
functions in a strongly connected component to have a single
function context for them as in [38].

(II) Handling flow-sensitivity. Since VSA is flow-sensitive
and per-instruction, it is an engineering challenge to inspect
each instruction statically. We therefore borrow the idea
of how symbolic execution interprets each instruction and
updates the corresponding symbolic states. Essentially,
when perform our flow sensitivity analysis, we need to
interpret each instruction, and updates the VSA based on
its semantics. Since symbolic execution is well studied
(with many open source tools), we do not describe how
we implement our interpreter and instead we abstract it as
a simple EXE operation (line 18) in algorithm 1, which is
responsible to capture the value set changes for each analyzed
instruction (working as a transfer function in static analysis).
In particular, all incoming value sets are merged on a per
register and memory cell basis as input value sets and are
fed into the static reasoning engine EXE to update the value
sets of each registers and memory cells for this analyzed
instruction i according to its semantics, and this updated
value set forms the output of our static analysis for this
particular instruction. A work list keeps looping and works
on each instruction as such, until a fixed point is reached.

(III) Handling a-locs with unknown values or addresses.
Performing VSA on binary suffers from the lack of dynamic
information (e.g., calling context, and concrete memory
addresses). One major issue when applying VSA on
real-world binary is uninitialized variables and their aliases.
Among these uninitialized variables, some are used in address
calculation, which leads to a-locs with unknown addresses.
To conservatively taint instructions, we need to infer the
value set of these unknown addresses; otherwise the reads
and writes to them would indicate the reads and writes to the
whole address space.

In case VSA encounters an a-loc with uninitialized values
or addresses due to system inputs for instance, the special
handling is shown in line 16-17 in algorithm 1. In particular,
our analysis will assume the uninitialized a-loc to have any
value, i.e., with the value set (⊺,⊺,⊺). In practice, we have
identified the following three cases in which VSA cannot
determine the corresponding addresses:

(i) Unknown values from command line input (CLI),
e.g., argv[]. The argv elements are pointers which
is uninitialized at analysis-time. As shown in Figure 4a,
instruction at 0x804b362 reads argv[0] which is
unknown at analysis-time.

(ii) Unknown addresses or values passed from missing
callers. Even we use approaches such as TypeArmor
to recover CFG, there are still some callee functions
without callers and the calling context is missing for
these callee. As shown in Figure 4b, the function
version_etc_arn has no identified callers, and thus,
the value of parameter at instruction 0x804b7a7 is
uninitialized.

(iii) Unknown addresses or values due to library func-
tions and system calls. For instance, fopen64 function
returns a pointer which is a pointer to FILE struct that is
uninitialized at analysis-time as illustrated in Figure 4c.

4.3 Taint Instruction Identification

After our whole program VSA analysis, we next need to iden-
tify the instructions that need to be instrumented for the taint
analysis with the computed VSA. To this end, we have to
decide whether a memory address involves taint or not, which
essentially leads to problem of point-to (i.e., alias) analysis.
However, due to the imprecision of the static point-to analy-
sis, we may not be able to resolve all memory addresses with
VSA [3, 4], and instead we focus on identifying the addresses
that will never be involved in taint analysis for each specific
instruction (since VSA is flow sensitive). Initially, all instruc-
tions will be marked tainted (i.e., they will all be instrumented
for taint analysis). As described in §3.2, our key objective is to
minimize this set, by identifying and enlarging the must-not
tainted set. In the following, we describe how we achieve this.

USENIX Association 30th USENIX Security Symposium 1671

bzip2
0804b296 <main>:
804b296: push %ebp
804b297: mov %esp,%ebp
...
804b2a2: mov 0xc(%ebp),%esi
...
804b362: mov (%esi),%edx

(a) Entry-function uninitialized variable

comm
0804b7a0 <version_etc_arn>:
804b7a0: push %ebp
804b7a1: push %edi
804b7a2: push %esi
804b7a3: push %ebx
804b7a4: sub $0x5c,%esp
804b7a7: mov 0x74(%esp),%eax
804b7ab: mov 0x70(%esp),%esi
804b7af: mov 0x78(%esp),%edx
804b7b3: mov 0x7c(%esp),%ecx
804b7b7: test %eax,%eax
804b7b9: mov 0x80(%esp),%ebx
804b7c0: mov 0x84(%esp),%edi

(b) Incomplete CFG caused uninitialized variable

cut
08049dd0 <cut_file>:
8049dd0:push %ebp
8049dd1: push %edi
8049dd2: push %esi
8049dd3: push %ebx
8049dd4: sub $0x4c,%esp
...
8049df3: call 8048e70 <fopen64@plt>
8049df8: test %eax,%eax
8049dfa: mov %eax,%ebp

(c) fopen64 uninitialized variable

Figure 4: Example code of uninitialized variable in whole
program VSA

4.3.1 Must-not Tainted Analysis

In order to statically identify instructions never involved in
taint analysis, we should know the must-not tainted value
set, which is an opposite, more conservative counter-part of
the intuitive tainted value set, at each program point. This
is also a data flow analysis problem, and we have to inspect
each instruction to decide whether its operand will never be
involved in taint or not.

Identification Policy. Must-not-tainted set is based on the fol-
lowing policy: (1) instructions unreachable from taint sources
are removed from the must-not-tainted set (which is one of the
differences compared to DBI-based taint implementations),
e.g., in Figure 5a, the instruction at 80491b7, which is at the
beginning of the program, is removed from must-not-tainted

set as 804b4e1 is the first instruction that introduces the
taint; (2) instructions with operands of potentially tainted or
unknown value sets are removed from must-not-tainted set
such as the instruction at 8055c41 that may contain tainted
data from __IO_getc function return value in Figure 5b; (3)
instructions whose operands hold literal values are added
to must-not-tainted set since none of the operands will be
tainted, e.g., instruction inc %ebp whose operand contains a
literal value in register ebp as shown in Figure 5c is added to
must-not-tainted set; (4) instructions whose opcode indicates
they will not be involved in taint propagation are added to
must-not-tainted set, e.g., control-flow instructions (e.g., jmp
in Figure 5d) and compare and test instructions (e.g., cmp,
and test). The must-not tainted value set will propagate
along with data flow, and it is a must analysis.

80491b7: mov %eax,0x8052160
...
804b4e1: call 8048d70 <read@plt>

(a) Unreachable instructions

8055c3c: call 8048f30 <_IO_getc@plt>
8055c41: mov %eax,%edx

(b) Potentially tainted instructions

8096a07: inc %ebp
(c) Untainted operand instructions

8062456: jmp 806238b <mbslen+0x8b>
(d) None taint-propagation instructions

Figure 5: Example code of the corresponding identifica-
tion policy

Resolving operand’s addresses. To conservatively track the
must-not tainted value sets, we have to look into different
types of memory access of an instruction operand: (1) for con-
stant memory address, e.g., [0x8000200], we can easily infer
that it is a global variable rather than a local variable or a heap
variable and the must-not tainted value sets of that address
can be updated based on the constant memory address, e.g.,
if this constant memory address may be tainted, the constant
memory address would be removed from our must-not-tainted
set; (2) for a memory access based on ESP register, which we
call stack pointer addressing, e.g., [esp + 0x4], we identify
it as a stack variable, the stack region and offset can be ob-
tained through our whole program analysis caller/callee stack
information; (3) for a memory access without ESP register,
e.g., [eax], this is tricky since we may not know whether it is
a stack, global or heap variable; we thus use the VSA result to
decide the value set of the memory access: if the VSA cannot
decide whether the memory access address is tainted or not,
we conservatively remove it from the must-not tainted set.

Resolving operand’s values. Once the algorithm meets an
instruction operand that is uninitialized (it can lead to an

1672 30th USENIX Security Symposium USENIX Association

alias that cannot be resolved), as mentioned in §4.2, we
conservatively taint the associated variables, depending on
the specific cases:

(i) Unknown value from CLI (e.g., Figure 4a). Based on
where the input value is going to be stored, we assign
a corresponding uninitialized value for these variables.
For instance, we will assign an uninitialized value for a
stack varaible which belongs to the stack of the caller
of main and is prior to the stack of main function, and
proceed the must-not analysis as usual.

(ii) Unknown value passed from missing callers (Fig-
ure 4b). A caller function passes function parameters
to a callee function, causing aliasing between actual
parameters and formal parameters. When CFG recon-
struction cannot determine the callers for a callee, it
results in unknown value from the missing callers.
We conservatively remove all of the memory access
instructions in the function and all of the data uses of
these variables outside the function from the must-not
tainted set. To optimize our analysis, we do not taint
all global variables, and instead we taint the data based
on their types (the type inference is described below)
in global sections such as .data and .bss.

(iii) Unknown value due to library function calls and
system calls (Figure 4c). We taint these unknown
variables according to the semantics of library functions
and system calls. For instance, the pointer returned by
fopen is put in the must-not tainted set at the program
point right after the library call and the pointer returned
is assigned a value set in a special heap region.

Variable type inference. To taint instructions more precisely,
we perform a simple variable type inference to determine
whether a variable is a pointer or not. We care them because
we want to identify the potential pointers that can hold the
tainted buffer. The analysis is based on whether a variable
is dereferenced or whether it is a pointer type parameter or
return value of known library functions as type sinks [20]. For
instance, movzbl (%ebx),%eax indicates the variable stored
at ebx is a pointer, and also variable stored at edi in the fol-
lowing snippet is a pointer as it is passed to the first parameter
of strchr library function. With variable type inference, we
could only taint poniter variable of interest when an unknown
pointer is dereferenced instead of tainting all variables.

movl $0xa,0x4(%esp)
mov %edi,(%esp)
call <strchr@plt>

Our Algorithm. Specifically, the must-not tainted analysis
algorithm as shown in algorithm 2 first scans the whole bi-
nary for possible taint sources, e.g., read system call and
recv system call (line 2). Each identified taint source serves
as a starting point of our analysis. The initial tainted buffer
has two major characteristics: start address and length. As

Algorithm 2: Must-not Tainted Analysis
1 Function MustNotTainted(UntaintedSet, TaintedInst, ValueSet):

input :set of must-not tainted data object UntaintedSet, set of
tainted instructions TaintedInst, value set ValueSet

output :set of tainted data object UntaintedSet, set of tainted
instructions TaintedInst

2 Source← TaintSourceScan(Bin)
3 Init(buffer_start_addr, buffer_length, ValueSet, Source)
4 if unbounded(ValueSetientry[buffer_startaddr]) ⋁

unbounded(ValueSetientry[buffer_length]) then
5 exit()
6 while changed do
7 foreach instruction i do
8 if ValueSetientry[opaddr] /⊆ UntaintedSet then
9 TaintedInst← TaintedInst ⊔ {i}

10 Transfer(UntaintedSet, ValueSet)

11 Function Transfer(UntaintedSet, ValueSet, i):
12 switch rule(i) do
13 case tag(opaddrdest)← tag(opaddrdest) ∣ tag(opaddrsrc) do
14 case tag(opaddrdest)← tag(opaddrsrc) do
15 case tag(opaddrunary)← tag(opaddrunary) do
16 UntaintedSet← UntaintedSet −

ValueSetientry[opaddrdest]
17 if ValueSetientry[opaddrsrc] ⊆ UntaintedSet ⋀

evalToConcrete(ValueSetientry[opaddrdest]) then
18 UntaintedSet← UntaintedSet ⊔

ValueSetientry[opaddrdest]
19 else if ValueSetientry[opaddr] = (⊺,⊺,⊺) then
20 UntaintedSet← UntaintedSet −

ValueSetientry[Overtaint(opaddrdest)]

our evaluation shows, we are able to identify the value set of
the starting address and length of the buffer that introduces
the taint. Otherwise, if either upper bound or lower bound
of buffer’s starting address or buffer length cannot be deter-
mined, our analysis triggers a warning and terminates, since
it may indicate program vulnerability (line 4-5). The analysis
is of a work-list style and iterates over each instruction un-
til the UntaintedSet and TaintedInst remain unchanged
(reached a fixed point). For each instruction i in the program
(line 7-10), we first compare the incoming value sets of in-
struction operand address with our must-not untainted value
sets. If the former is not a subset of the latter, the instruction
is identified as a possible tainted instruction for the later taint
propagation logic instrumentation (line 9). We then process
UntaintedSet with respect to the taint propagation rule of
each instruction (line 10). Particularly, if the taint propagation
rule for instruction i decides that i has a data flow dependence
between instruction operand(s), i.e., the taint propagation rule
is in the form of:

tag(opaddrdest) ← tag(opaddrdest) ∣ tag(opaddrsrc)
tag(opaddrdest) ← tag(opaddrsrc)
tag(opaddrunary) ← tag(opaddrunary)

we taint the destination operand and remove it from
UntaintedSet as shown in line 16. If the source operand

USENIX Association 30th USENIX Security Symposium 1673

is deemed untainted and we know the exact concrete address
of the destination operand, we enlarge our UntaintedSet
by adding destination operand value set to UntaintedSet as
illustrated in line 17-18. Otherwise, we conservatively taint
all of the possible memory address involved in instruction i.
Example. We use the instruction 0x8048634: mov
%al,-0xd(%ebp) listed in Table 1 to demonstrate how to
use our propagation rules to update the must-not tainted
set. Specifically, since the source operand of instruction
0x8048634 is not in UntaintedSet, this instruction is
added to TaintedInst for further taint propagation logic
instrumentation and since the taint propagation rule for this
instructions is in the form of:

tag(opdest) ← tag(opdest) ∣ tag(opsrc)

According to algorithm 2, UntaintedSet is updated:

UntaintedSet = UntaintedSet − ValueSetientry[opaddrdest]
= UntaintedSet − (�, -0x440, �)

4.3.2 Soundness Analysis of SELECTIVETAINT

We define false negatives to be the instructions that SELEC-
TIVETAINT considers to not be tainted but the ground truth
indicates it should, and false positives to be the instructions
that SELECTIVETAINT considers to be tainted but the ground
truth indicates it should not. Therefore, we can afford to have
false positives, since the overly tainted instructions will only
impact the performance overhead (we could have avoided
tainting them). In contrast, we should avoid having false neg-
atives; otherwise, we could miss the attacks if we do not taint
these instructions.

In the following, we provide a formal analysis of our must-
not tainted analysis to prove that it is soundy [21] (mostly
sound), i.e., it hardly introduces false negatives, which
means all instructions in the must-not-tainted instruction
set Iu generated by our must-not tainted analysis are indeed
not-tainted. It is soundy, as there could be the imprecise CFG
and VSA in practice.

Figure 6 shows the formal representation of must-not
tainted analysis. Basically, for removing or adding an in-
struction i in Iu, one of the four primary inference rules, i.e.,
rule UNREACHABLE, UNKNOWNOPERAND, UNTAINTED-
OPERAND, or NONPROPAGATEOPCODE has to be applied:

• In UNREACHABLE rule, if there is no path from taint
sources to instruction i and no path from instruction i to
taint sources, then i is removed from the must-not-tainted
instruction set Iu;

• In UNKNOWNOPERAND rule, if there exists an operand
with unknown value set, then i is removed from the must-
not-tainted instruction set Iu;

• In UNTAINTEDOPERAND rule, if for each operand o of
instruction i, its value set is a subset of must-not-tainted
value set Vu, then i is added to the must-not-tainted
instruction set Iu;

• In NONPROPAGATEOPCODE rule, if for each operand
o of instruction i, there is no side effect on operand o
after executing i, then i is added to the must-not-tainted
instruction set Iu.

The rest rules of Figure 6 are auxiliary inference rules.
Rule REACHABLE indicates, if instruction i2 is a successor
of instruction i1, then i2 is reachable from i1. Similarly,
TRANSREACHABLE rule indicates, if instruction i3 is a
successor of instruction i2 and instruction i2 is a successor of
instruction i1, i3 is reachable from i1. Note the succ predicate
in TRANSREACHABLE rule includes the control flow transfer
for fall-throughs, unconditional jumps, conditional jumps,
calls, returns, and other control flow transfer which is rep-
resented as an edge in the whole program control flow graph.
LITERALOPERAND rule indicates, if the operand value set
has a type of literal, it is added to must-not-tainted value
set Vu and LABELOPERAND rule indicates, if the operand’s
value set has a type of label, it is added to must-not-tainted
value set Vu. TAINTSOURCE and TAINTPROPAGATE rules in-
fer that the tainted value set is removed from must-not-tainted
value set Vu and when taint propagates from source operand
to destination operand of an instruction, the destination
operand is also tainted. PCREGCHANGEOPCODE and
STATUSREGCHANGEOPCODE rules indicate that, if after
executing instruction i, the value sets of instruction operands
are not changed and only the value sets of program counter
or status registers are changed, then instruction i is added to
must-not-tainted instruction set Iu.

Theorem 1. Must-not-tainted analysis is sound, except for
the precision loss due to imprecise CFG and VSA results
(thereby making it soundy or mostly sound).

Proof. We prove this theorem with induction.

(1) In the first iteration of the analysis, the must-not-tainted
set Iu is ∅. Must-not-tainted analysis is sound since every
instruction is tainted.

(2) We next prove that if in the kth iteration, the must-not-
tainted analysis is sound, w.r.t, precise CFG and VSA results,
it also holds in (k+1)th iteration.

Suppose the must-not-tainted set Iu in the kth and (k+1)th

iteration are Ik
u and Ik+1

u , respectively. Given any instruction
i, whether instruction i is added to or removed from the
must-not-tainted instruction set Ik

u has four cases:

(2.1) Instruction i cannot be reached from taint sources
and taint sources cannot be reached from instruction i. The
UNREACHABLE rule will remove i from Ik

u . In this case,
no paths lies between instruction i and taint sources, which
indicates incomplete CFG and thus instruction i can be
potentially tainted, and therefore safely removing i from Ik

u
will result in a sound Ik+1

u .

CFG imprecision. As reconstructing CFG is a hard problem
in practice, case 2.1 is sound except for the imprecise CFG.

1674 30th USENIX Security Symposium USENIX Association

Primary Inference Rules

Instructions:

UNREACHABLE
∄is ∈ source, is ; i, i ; is

Iu −= {i} UNKNOWNOPERAND
∃o ∈ op(i), V [o] = (�,�,�)

Iu −= {i}

UNTAINTEDOPERAND
∀o ∈ op(i), V [o] ⊆ Vu

Iu ∪= {i} NONPROPAGATEOPCODE
∀o ∈ op(i), V [o] i≡ V [o]

Iu ∪= {i}

Auxiliary Inference Rules

Control-flows:

REACHABLE
succ(i1, i2)

i1 ; i2
TRANSREACHABLE

succ(i1, i2) succ(i2, i3)
i1 ; i3

Operands:

LITERALOPERAND
l ∈ op(i) l ∶ literal

Vu ∪= V [l] LABELOPERAND
l ∈ op(i) l ∶ label
Vu ∪= V [l]

TAINTSOURCE
o ∈ taintedop(is) is ∈ source

Vu −= V [o] TAINTPROPAGATE
o1 ∈ sourceop(i) o2 ∈ destop(i) V [o1] ⊆ Vu

Vu −= V [o2]
Opcodes:

PCREGCHANGEOPCODE
V [pc]

i
≢ V [pc] ∀o ∈ op(i), V [o] i≡ V [o]

Iu ∪= {i}

STATUSREGCHANGEOPCODE
V [status]

i
≢ V [status] ∀o ∈ op(i), V [o] i≡ V [o]

Iu ∪= {i}

Figure 6: The formal inference rules of our must-not tainted analysis. Vu: Must-not-tainted value set, Iu: Must-not-tainted

instructions,
i
≡: Equal values after executing i, V: VSA result map.

As shown in §4.1, SELECTIVETAINT matches callers and
callees based on forward-edge CFI identification approaches
and matches jumps and jump targets with basic block
starting addresses within the same function or function entry
addresses. These methods may introduce false negatives and
produce imprecise CFG for real-world binaries.

(2.2) One or more operands of instruction i have an unknown
value set. The UNKNOWNOPERAND rule will remove i from
I

k
u . In this case, instruction i can propagate taints, and there-

fore safely removing i from Ik
u will result in a sound Ik+1

u .

VSA imprecision. Though VSA may introduce imprecision,
this rule conservatively removes all instructions with
unknown value sets from Ik

u .

(2.3) All operands of instruction i are subsets of must-not-
tainted value set Vk

u . Vk
u is updated based on rules in the

Operands rule group in Figure 6. Per rule LITERALOPERAND
and LABELOPERAND, if an operand is of type literal

or label, its value cannot propagate taint and it is added
to Vk

u . Per rule TAINTSOURCE and TAINTPROP, at taint
source and taint propagation instructions, Vk

u gets updated by
removing the tainted value set. If all operands of instruction
i are subsets of must-not-tainted value set Vk

u , it means all
values in the operands are must-not-tainted, and it is sound
after adding it to Ik+1

u from Ik
u .

VSA imprecision. As VSA is an undecidable problem, it may
introduce imprecision when VSA fails to identify whether
an operand is actually a subset of Vk

u and when Vk
u is updated.

Thus, in practice, this rule leads to a soundy analysis, i.e.,
mostly sound except for the imprecision caused by imprecise
VSA.

(2.4) Instruction opcode has no impact on taint propagation.
In this case, instruction i should be added to Iu, as the
instruction does not involve in any explicit handling of tainted
data. Particularly, an instruction may only have side effects
on program counter or status register but not its operands, and
in these cases no taint is involved and instruction i should be
added to Ik

u , as in rules PCREGCHANGEOPCODE and STA-
TUSREGCHANGEOPCODE, which results in a sound Ik+1

u .
Therefore, must-not-tainted analysis of SELECTIVETAINT

is soundy, due to the imprecision introduced by current
limitations of undecidable CFG reconstruction and VSA
results in binary (otherwise, it is sound).

4.4 Binary Rewriting

Based on the identified tainted instructions, we instrument
taint propagation logic via binary rewriting for each instruc-
tion just as how a conventional DFT performs. The only

USENIX Association 30th USENIX Security Symposium 1675

Algorithm 3: SELECTIVETAINT Algorithm
1 Function SelectiveTaint(Bin):

input :original bianry Bin
output : instrumented binary NewBin

2 Init (UntaintedSet, TaintedInsn, ValueSet)
3 while changed do
4 CFG← CfgReconstructtion(Bin, CFG, ValueSet)
5 ValueSet← whole_program_VSA(CFG, ValueSet)
6 UntaintedSet, TaintedInsn←MustNotTainted(UntaintedSet,

TaintedInst, ValueSet)
7 NewBin← Rewriting (Bin, TaintedInst)

difference is that conventional DFTs instrument at run-time
through dynamic binary instrumentation, whereas we instru-
ment the binary statically to track how taints are introduced
at the taint sources, propagated, and checked at taint sinks.

With the support from our CFG reconstruction, value
set analysis, and taint instruction identification, we then
sequentially combine these three analyses in a loop body
and the set of ValueSet, UntaintedSet and TaintInst get
gradually changed until a fixed point is reached. In particular,
as illustrated in algorithm 3, at line 2, we first initialize the
three sets of ValueSet, UntaintedSet and TaintInst with
the taint source information. We will reach a fixed point
after iterations of sequentially applying CFG reconstruction,
value set analysis and taint instruction selection algorithm
(line 3-6). When all the taint sources are processed, at line 7,
our binary rewriter rewrites the original binary with taint
propagation logic on selected instructions.

Note that for performance reasons, we use a function
summary approach to process standard libraries such as libc,
which is inspired by how RAMBLR [36] handled libraries.
That is, we will not statically rewrite the instructions in the
library, and instead we rewrite the callers to perform direct
taint tracking, e.g., introducing taint, and propagating taint
according to the corresponding parameters. For instance,
when we notice memcpy call, we will directly taint the
destination memory based on the data in the source memory.

5 Implementation

We have implemented an open source version of SELECTIVE-
TAINT atop angr [33] and Dyninst [7]. Specifically, (1) we
used angr to build a CFG for the binary, then implemented
our own forward-edge control flow target identification based
on TYPEARMOR [35] and τCFI [26], i.e., using our own VSA
to determine unsolved call sites targets, connecting unsolved
call sites to functions with the same parameter count and
parameter type, and connecting unsolved indirect jumps with
basic block starting address or all function entry addresses; (2)
we implemented our own flow-sensitive and context-sensitive
whole program VSA, which is used to determine the value
set held at each program point; (3) based on the generated
CFG and VSA results, we implemented taint instruction

identification using the rules described in Figure 6 to identify
the untainted instructions; and (4) after that we use Dyninst,
which is widely used in recent studies [27, 35], to statically
rewrite the binary. The total implementation of SELECTIVE-
TAINT consists of 7,000 python code, and 22,000 C/C++
code. SELECTIVETAINT is tested in Ubuntu 14.04 32 bit OS
to be compatible with the legacy 32 bit version libdft.

CFG Reconstruction. To implement the analyzer, first, we
recover the control flow graph (CFG) of the binary using
angr. Basically, we use angr to find every basic block
address, its containing instructions and the predecessors and
successors of each basic block. Afterwards, the remaining
unsolved indirect control flow transfer targets are further
resolved using our method described in §4.1.

Value Set Analysis. We first initialize the corresponding
ValueSet with the data extracted from original binary,
e.g., section and segment information, initial data values in
.rodata and .data sections. With respect to the variables in
different memory region: for (1) stack variable, we track the
value set of stack pointer SP in different calling context, ex-
amine and identify whether a variable is a stack variable and
in which function the variable is defined, i.e., in whose stack
frame the variable resides; for (2) global variable, we track the
value set of variables and check if it could be evaluated to an
address in code segment or data segment as a global variable;
for (3) heap variable, we track the call instructions for malloc-
family library calls to determine whether it is a heap variable.

In intra-procedural analysis, the value set for each a-loc is
calculated in a worklist algorithm until a fixed point is reached.
In inter-procedural analysis, a function summary is generated
based on intra-procedural analysis results to summarize the
value set changes of each function. The static analysis finishes
when all value sets in the whole program remain unchanged.

Taint Instruction Selection. We examine and maintain a
must-not tainted a-loc set for each program point based on the
value sets generated by VSA and the type of each instruction
generated by CAPSTONE [2] disassembler. When must-not
tainted a-loc sets reach a fixed-point, each instruction is
examined as tainted or untainted based rules in Figure 6, i.e.,
we conservatively assume an a-loc is tainted whenever we
cannot determine its taintedness. Unlike libdft which is
implemented using PIN [22], we do not go into the dynamic
library functions, and instead, we use a function summary
for each library functions to track taint propagation.

Binary Rewriting. Our rewriter is implemented with a bit
tag size and a byte tag granularity using Dyninst [7] bi-
nary instrumentation and analysis framework. Dyninst is an
anywhere, anytime binary instrumentation framework which
could be used in both static binary rewriting at compile-time
or dynamic instrumentation at run-time. We favor Dyninst
as it is a the-state-of-the-art tool in binary rewriting which is
used in a variety of tools and its robust API implementation.

1676 30th USENIX Security Symposium USENIX Association

Benchmark Input Functions # Func. # Inst. # SELECTIVETAINT
Instrum. Inst. (%)

libdft Executed
Tainted Inst. (%)

Analysis
Time (s)

Utilities
tar read, fscanf 967 65,795 45,630 (69.35%) 4,083 (6.21%) 688
gzip read, _IO_getc 220 15,173 10,076 (66.41%) 2,067 (13.62%) 40
bzip2 fread, fgetc 127 16,195 11,160 (68.91%) 3,524 (2.18%) 51
scp read 145 6,390 4,238 (66.32%) 1,875(29.34%) 10
cat read, fscanf 174 8,003 5,366 (67.05%) 548 (6.85%) 19
comm fscanf 150 4,659 3,254 (69.84%) 918 (19.70%) 9
cut fgetc, fscanf, __fread_chk 181 6,587 4,343 (65.93%) 742 (11.26%) 13
grep read, fscanf, fread_unlocked 410 28,858 19,500 (67.57%) 3,693 (12.80%) 129
head read, fscanf 149 6,533 4,517 (69.14%) 497 (7.61%) 13
nl fscanf 252 20,677 14,082 (68.10%) 684 (3.31%) 77
od fgetc, fscanf, fread_unlocked, __fread_unlocked_chk 188 10,696 7,143 (66.78%) 1,640 (15.33%) 24
ptx fread, fscanf 297 25,906 17,503 (67.56%) 5,478 (21.15%) 106
shred fscanf, __read_chk, fread_unlocked 198 9,195 6,404 (69.65%) 1,673 (18.19%) 21
tail read, fscanf 216 10,966 7,251 (66.12%) 825 (7.52%) 26
truncate fscanf 168 8,952 6,006 (67.09%) 491 (5.48%) 22
uniq fscanf 165 5,539 3,822 (69.00%) 815 (14.71%) 12

Network daemons
exim fgetc, fread, fscanf, _IO_getc, recv 876 140,847 93,058 (66.07%) 8,160 (5.79%) 2,843
memcached read, fgets, recvfrom 286 19,319 13,676 (70.79%) 852 (4.41%) 62
proftpd read, fgets, __read_chk 1,037 153,306 106,821 (69.68%) 19,181 (12.51%) 3,048
lighttpd read, fread 466 31,130 21,713 (69.75%) 5,437 (17.47%) 156
nginx server read, pread64, readv, recv 1,277 133,666 92,041 (68.86%) 12,905 (9.65%) 2,249

Other applications
SoX 14.4.2 read,fread,fgets,_IO_getc,__isoc99_scanf,__isoc99_fscanf 1,159 112,762 67,808 (60.13%) 9,583 (8.50%) 1,791
TinTin++ 2.01.6 read,fread,fgets,_IO_getc,gnutls_record_recv,fgetc 831 93,618 74,389 (79.46%) 9,839 (10.51%) 975
dcraw 9.28 fread,fscanf,__fread_chk,_IO_getc,fgets,jpeg_read_header 292 70,358 42,840 (60.89%) 967 (1.37%) 510
ngiflib 0.4 fread,_IO_getc 43 2,135 1,477 (69.18%) 649 (30.40%) 3
Gravity 0.3.5 read,getline 1,124 86,783 65,636 (75.63%) 16,959 (19.54%) 773
MP3Gain 1.5.2 fread,_IO_getc 144 17,573 9,900 (56.34%) 5,934 (33.77%) 53
NASM 2.14.02 fread,fgets,fgetc 826 87,456 66,601 (76.15%) 7,276 (8.32%) 838
Jhead 3.00 fread,fgetc 118 9,815c 6,805 (69.33%) 621 (6.33%) 19

Table 2: Statistics of the instrumented instructions by SELECTIVETAINT and libdft

6 Evaluation

In this section, we present the evaluation results. To see
the improvements over dynamic taint analysis, we compare
SELECTIVETAINT with libdft [17]. The version of Intel Pin
used to build libdft was 2.14 (build 71313), and we slightly
modified the nullpin and libdft tool and adopted them in
our experiment settings. Also, to see the advancements of the
selective taint analysis, we also implemented a static taint anal-
ysis by instrumenting all instructions, and we call this system
STATICTAINTALL. We use four commnly used Unix utilities,
i.e., the GNU versions of tar (version 1.27.1), gzip (version
1.3.13), bzip2 (version 1.0.3), scp from OpenSSH (version
3.8), 12 file content processing utilities cat, comm, cut,
grep, head, nl, od, ptx, shred, tail, truncate, uniq from
coreutils (version 8.21) and grep (version 2.16), and we
also use email server exim (version 4.80), general-purpose dis-
tributed memory caching system Memcached (version 1.4.20),
FTP server ProFTPD (version 1.3.5), web server lighttpd
(version 1.4.35) and nginx (version 1.4.0), and eight recent
programs (each of which contains a memory corruption vul-
nerability) to evaluate SELECTIVETAINT. We first evaluate
its effectiveness by looking into the details of how SELEC-
TIVETAINT performs in §6.1, and then report the performance

overhead of the rewritten binaries in §6.2. Finally, we demon-
strate its security applications with real world binaries in §6.3.

6.1 Effectiveness

We report the effectiveness of how SELECTIVETAINT
performs with the common Unix utilities tar, gzip, bzip2,
scp, cat, comm, cut, grep, head, nl, od, ptx, shred, tail,
truncate, uniq, network daemons exim, memcached,
proftpd, lighttpd, nginx, and eight other applications in
Table 2. The first column shows the 29 C/C++ programs in
the benchmark we used in our evaluation, followed by the 2nd
column of the input functions detected by SELECTIVETAINT.
Note that the input function is the function that introduces the
taint sources. Next, we report the total number of functions
contained in the benchmark program in the 3rd column, which
provides an estimation of the complexity of the program.
Then, we show the total number of instructions identified
in the binary in the 4th column. Our STATICTAINTALL
statically rewrites all of these instructions, similarly to how
dynamic taint analysis instruments them. This will provide
an upper bound of how SELECTIVETAINT would perform
in the worst case (by statically taint them all). Next, we show
the total number of instructions that need to be statically

USENIX Association 30th USENIX Security Symposium 1677

instrumented by SELECTIVETAINT in the 5th column
followed by the total number of executed unique instructions
that really involved in taint analysis in the 6th column,
and this number is obtained by running the corresponding
benchmark by using the default configured input with
libdft, which will provide a lower bound of the number of
unique tainted instructions. For fair comparison, we did not
count the instructions in the library from the libdft trace
since SELECTIVETAINT will not instrument them. Finally,
we report how long SELECTIVETAINT performs to process
each of the benchmarks in the last column.

We can observe from Table 2 that our static analysis works
well in these benchmarks, and we have reduced the possible
tainted instructions to about 56.34% - 79.46% compared to
STATICTAINTALL. While ideally we would like to instrument
only the instruction involved in the taint analysis (which is a
subset of the instructions identified by SELECTIVETAINT), as
detected by the libdft which shows about 1.37% - 33.77%
of these instructions are essentially needed in the taint analysis
at run-time with an average of 6.85% instructions, we will
not be able to achieve this by purely static analysis.

False Positives and False Negatives. We have defined false
positives and false negatives in Section 4.3.2. By examining
the instructions tainted by SELECTIVETAINT and libdft,
we observe SELECTIVETAINT reports no false negative but
false positives. False positives indicate SELECTIVETAINT
is conservative and has over-tainted instructions, and such
false positives are acceptable (it will not miss any attacks).
Meanwhile, no false negative indicates our approach is a
sound over-approximation of the tainted instructions. This
is attributed to the conservative rules in Figure 6; for instance,
we remove the value set from untainted value set whenever
we cannot determine the taintedness of that value set. Note
the 6th column in Table 2 is generated by running the tested
benchmarks, which may not explore all instructions that
should be tainted and thus the ground truth is unavailable and
we only observe false positives without quantifying them.

Internal Statistics. We also measured the statistics of SE-
LECTIVETAINT in Table 3 to understand its inner-workings.
Columns 2-3 are CFG construction details, i.e., the number of
initial CFG edges and the number of final CFG edges after our
CFG construction. We can observe our CFG construction can
add hundreds of edges to the CFG using the techniques de-
scribed in §4.1. Columns 4-8 are value set analysis statistics,
which are the number of a-locs in the analysis, the unknown
a-locs due to command line parameters, argument aliasing
when missing callers, and library function calls. We can ob-
serve our approach identifies a large number of unknown
a-locs in each category. Columns 9-12 are numbers in taint
instruction identification, such as the number of initially un-
tainted value sets in the first iteration, the number of final
untainted value sets, the intra-procedural iteration times, and
the inter-procedural iteration times. We can observe that the

number of untainted value sets get smaller through analysis
iterations, which means our analysis does propagate untaint-
edness and remove potentially tainted value sets from the
must-not-tainted set Vu. The intra-procedural analysis gen-
erally has hundreds of iterations while the inter-procedural
analysis has significantly fewer iterations, from which we can
observe the intra-procedural analysis reaches the fixed point
with more iterations than inter-procedural analysis.

Performance. With respect to the performance (e.g., the anal-
ysis time) of SELECTIVETAINT itself, we notice it sometimes
consumes tens of minutes to finish analyzing a program. This
is understandable, since SELECTIVETAINT will inspect each
instruction and calcaulate VSA for each of them. Meanwhile,
the analysis has to be run twice: first calculating the VSA,
and then determining the taintedness. We notice it took more
than 50 minutes to process the proftpd FTP server, whereas
for small binaries, e.g., scp, it could take just a few seconds.

6.2 Efficiency

Next, we measure the performance overhead of the rewritten
binaries. To compare with libdft, we run the binaries
with the default configured input, with nullpin (a simple
implementation to evaluate Intel PIN platform overhead),
and libdft with a bit level taint. We run the corresponding
benchmark with and without rewriting to understand the
additional overhead. All of the experimental results were
obtained with 10 runs and then normalized by dividing each
average result against native unmodified executables.

Unix Utilities. Figure 7a shows the normalized runtime over-
head of nullpin, libdft, STATICTAINTALL, SELECTIVE-
TAINT, when running with 16 Unix Utilities, compared
with the native execution. We can notice that libdft im-
poses a slowdown ranging from 1.39 (tar) to 5.86x (scp),
whereas STATICTAINTALL and SELECTIVETAINT impose
1.10x (tar) to 3.85x (bzip2) and 1.02x (tar) to 3.41x (grep),
respectively. STATICTAINTALL outperforms libdft in all
benchmarks with 1.26x - 1.87x faster with an average of 1.53x
and similarly SELECTIVETAINT performs even 1.36x - 2.41x
faster than that of libdft with an average of 1.77x.

Network Daemons. One ideal use case for SELECTIVE-
TAINT would be for the protection of network daemons.
We thus use exim, memcached, proftpd, lighttpd, nginx
as benchmarks to thoroughly evaluate its overhead. In
particular, we tested nullpin, libdft, STATICTAINTALL, and
SELECTIVETAINT on these five daemons, in which exim
is tested by sending email messages, memcached by getting
values with keys from database, and ftp and http daemons via
requesting files from the daemons. All four tools including
libdft performs no more than 4x slowdown. The biggest
slowdown for libdft is 3.76x (exim). STATICTAINTALL
imposes 1.25x-2.23x slowdown and outperforms libdft by

1678 30th USENIX Security Symposium USENIX Association

CFG Reconstruction Value Set Analysis Taint Instruction Identification
Benchmark Init. Updated A-Loc Uninit. Uninit. Uninit. Uninit. 1st-pass Last-pass #Intra. #Inter.

Edges Edges CLI Arg. Alias Lib Total Untaint-V Untaint-V Iteration Iteration
Utilities

tar 34,893 64,479 18,428 6 243 2,217 2,376 11,237 8,441 6,216 5
gzip 7,389 7,792 3,506 6 97 253 356 3,272 1,892 1,345 5
bzip2 6,465 6,825 2,182 6 43 283 332 2,005 1,387 887 6
scp 3,315 3,501 1,837 7 67 246 320 1,834 1,834 289 2
cat 4,069 4,242 2,195 6 153 388 547 1,828 1,361 1,168 6
comm 2,163 2,321 1,630 6 126 199 331 1,408 1,086 1,203 7
cut 3,109 3,796 1,940 6 80 203 289 1,497 1,338 1,071 5
grep 14,730 17,444 6,709 7 101 951 1,059 5,451 4,196 2,460 5
head 3,014 3,141 1,795 7 118 252 377 1,602 1,085 1,023 6
nl 10,256 10,711 4,453 6 191 421 618 3,608 3,038 1,776 6
od 5,003 5,274 2,577 6 130 342 478 2,122 1,768 1,099 5
ptx 13,264 14,187 5,553 7 197 706 910 4,565 3,593 1,789 5
shred 4,103 4,484 2,340 6 102 328 436 1,881 1,233 1,188 5
tail 5,457 6,404 2,862 6 72 394 472 2,102 1,772 1,271 5
truncate 4,418 4,582 2,263 6 145 389 540 1,907 1,338 1,142 6
uniq 2,584 2,854 1,862 6 114 217 337 1,521 1,280 1,325 7

Network daemons
exim 69,233 80,395 36,011 7 214 3,311 3,532 16,598 7,181 6,521 6
memcached 9,774 11,336 5,435 7 38 866 911 3,865 1,772 1,380 4
proftpd 88,876 155,908 43,670 8 228 4,633 4,869 10,559 4,667 5,633 4
lighttpd 15,044 27,788 9,466 7 217 598 814 8,215 3,303 2,817 5
nginx server 59,105 219,880 31,199 6 807 1,100 1,913 19,051 13,874 8,363 5

Other applications
SoX 14.4.2 47,078 67,608 26,241 7 1,196 1,828 3,031 16,898 13,586 9,580 7
TinTin++ 2.01.6 34,367 34,431 17,725 7 465 2,023 2,495 8,908 1,130 4,593 4
dcraw 9.28 24,912 26,071 9,470 6 137 1,506 1,649 4,401 4,190 1,233 3
ngiflib 0.4 1,024 1,040 454 7 17 94 118 393 393 97 2
Gravity 0.3.5 36,439 53,220 22,185 7 1,415 537 1,959 10,806 6,277 4,645 4
MP3Gain 1.5.2 6,320 6,463 2,947 6 19 514 539 1,842 1,523 989 6
NASM 2.14.02 36,706 42,782 15,529 6 154 1,032 1,192 6,712 1,863 4,316 4
Jhead 3.00 4,813 4,927 2,127 6 18 495 519 1,605 827 679 5

Table 3: The internal statistics of SELECTIVETAINT for the tested benchmarks

1.10x-1.77x. SELECTIVETAINT performs even better with
1.12x-1.91x which outperforms libdft by 1.12x-2.08x.

6.3 Security Case Studies

Protecting nginx web server. To show that our tools could
be used to detect real-world attacks, we first implemented
a buffer overflow attack detector and used it to protect the
nginx web server. To test its effectiveness, we generated
an exploit based on the buffer overflow vulnerability
CVE-2013-2028. By leveraging this vulnerability, an attacker
could send a malformed request that triggers an integer
signedness error which further causes a stack-based buffer
overflow. This bug can be used in a denial-of-service attack
or cause arbitrary code execution. Without any surprise, our
SELECTIVETAINT detects the exploit at the ret instruction
because the return value stored on the stack is tainted.

Protecting other binaries against recent memory exploits.
We further tested eight recent real world software vulnera-
bilities from Common Vulnerabilities and Exposures (CVE)1,
which are listed in Table 4. The collected vulnerabilities
covered a broad range of software vulnerabilities, including
buffer overflow vulnerability, double free vulnerability,
and integer underflow vulnerability, which manifested in

1https://cve.mitre.org/

varied programs such as sound processing utilities SoX,
programming language interpreter Gravity, and audio
normalization software MP3Gain.

We implemented the corresponding exploits to compromise
these vulnerabilities and validate whether SELECTIVE-
TAINT is able to detect the attacks. For instance, to exploit
CVE-2017-1000437 vulnerability in Gravity 0.3.5, we
developed a malformed gravity programming language
source code file, which overflowed the program stack to
rewrite the return address with payloads in source code
file. To exploit CVE-2019-7629 vulnerability in TinTin++
2.10.6, we set up a simple game server with exploits
that keep sending crafted message which overflowed the
multiplayer online game client TinTin++. Then, the tested
binaries were instrumented with SELECTIVETAINT. In all
cases, SELECTIVETAINT successfully detects the exploits
which shows SELECTIVETAINT can facilitate real world
vulnerability detection in various software.

7 Limitations and Future Work

Augmenting static analysis with dynamic information. As
static analysis lacks dynamic information, SELECTIVETAINT
has unknown values from multiple sources as shown in §4.2
and also VSA is an over-approximation of the possible values

USENIX Association 30th USENIX Security Symposium 1679

tar
gzip

bzip2 scp cat
comm cut

grep
head nl od ptx

shred tail

truncate uniq
average

0

1

2

3

4

5

6

S
lo

w
do

w
n

(n
or

m
al

iz
ed

ru
nt

im
e)

(a) UNIX utilities

exim

memcached
proftpd

lighttpd
nginx

average
0

1

2

3

4

5

6
native
nullpin
libdft
StaticTaintAll
SelectiveTaint

(b) Network daemons

Figure 7: The performance overhead of the tested benchmarks

Program Category Vulnerability CVE ID STATICTAINTALL SELECTIVETAINT
SoX 14.4.2 Sound Processing Utilities Buffer Overflow CVE-2019-8356 ✓ ✓

TinTin++ 2.01.6 Multiplayer Online Game Client Buffer Overflow CVE-2019-7629 ✓ ✓

dcraw 9.28 Raw Image Decoder Buffer Overflow CVE-2018-19655 ✓ ✓

ngiflib 0.4 GIF Format Decoding Library Buffer Overflow CVE-2018-11575 ✓ ✓

Gravity 0.3.5 Programming Language Interpreter Buffer Overflow CVE-2017-1000437 ✓ ✓

MP3Gain 1.5.2 Audio Normalization Software Buffer Overflow CVE-2017-14411 ✓ ✓

NASM 2.14.02 Assembler and Disassembler Double Free CVE-2019-8343 ✓ ✓

Jhead 3.00 Exif Jpeg Header Manipulation Tool Integer Underflow CVE-2018-6612 ✓ ✓

Nginx 1.4.0 Web Server Buffer Overflow CVE-2013-2028 ✓ ✓

Table 4: The tested vulnerable software and their vulnerabilities

each data object could hold. Dynamic information such as
concrete values from run-time could further help SELEC-
TIVETAINT. For instance, if we have some concrete inputs
for a function, the binary rewriting could be tailored to those
concrete inputs. In fact, recent taint improvement system Io-
dine [5] has used such a static and dynamic approach. Inspired
by Iodine, we could similarly elide unnecessary taint prop-
agation logic with the help from the dynamic information.

Context-aware instrumentation. Current binary instru-
mentation of SELECTIVETAINT is context-insensitive, i.e.,
SELECTIVETAINT instruments taint propagation logic
disregarding the calling context of the binary function.
However, we notice there could be cases that a function
may need taint propagation in some contexts but not others
(e.g., the function called from the beginning of program
execution to the first taint introducing instruction). Therefore,
it could be an improvement if we make the instrumentation
context-aware or use multiple copies of the function (some
contains taint, and some never). We plan to validate whether
this could be a viable approach in one of our future works.

Improving static binary analysis. We have made several
assumptions about the binary code to ease our binary analysis,
e.g., we assume the code under analysis is not obfuscated
and we do not consider dynamic generated code, since
they are current obstacles and challenges for static binary
analysis in general. That is, any improvement from static
binary code analysis could benefit SELECTIVETAINT. In

our implementation, we use Dyninst [7] and successfully
rewrite all binaries in our evaluation without encountering
corner cases described in Dyninst’s limitations. Future work
may include implementations using other binary rewriters
such as MULTIVERSE [6] and DDISASM [13].

Improving CFG reconstruction for a more precise alias
analysis. As we have seen in the soundness analysis of
SELECTIVETAINT (§4.3.2), improving the precision of alias
analysis and CFG reconstruction can improve the soundness
of SELECTIVETAINT. For instance, in instruction call eax
where there could be aliasing between formal parameters
and actual parameters, a precise alias analysis result would
greatly affect the control flow targets and thus the CFG
reconstruction. Though we use the approaches in §4.1 and
§4.2 to improve the precision, a more precise alias analysis
can largely benefit our analysis.

8 Related Work

Dynamic Data Flow Tracking (DDFT). Over the past
decades, many DDFT systems were built. DYTAN [11] is one
of the first such a tool that allows customized taint analysis,
and it can also track implicit information flows due to control
dependences. However, its performance overhead can be as
high as 50x when performing dynamic taint analysis with
both control- and data-flow based propagation and 30x for
data-flow based propagation alone. Saxena et al. [32] propose

1680 30th USENIX Security Symposium USENIX Association

a static technique that recovers higher level structures from
x86 binaries and apply it to the context of taint tracking.
Unlike our approach, their stack analysis trades off analysis
accuracy over performance, e.g., stack analysis ignores global
and heap memory while VSA tracks global and heap memory.
Also, Saxena et al.’s analysis mainly enables optimizations
such as tag-sharing, but our analysis is the first static taint
analysis to selectively instrument instructions. MINEMU [8]
aims to design efficient emulator, using new memory layout
and SSE registers to improve the taint analysis. Being a
highly-optimized DDFT framework, libdft [17] shows a
faster performance than previous efforts; for instance, libdft
imposes about 4x slowdown for gzip when compressing or
decompressing files.

Recent efforts [5, 15, 16, 24, 25] further improve the
performance overhead of DDFT. For instance, Jee et al.
propose Taint Flow Algebra (TFA) [16] that separates the
program logic from data flow tracking, transforms the data
flow tracking logic into an intermediate representation,
and then performs classic compiler optimizations. SHAD-
OWREPLICA [15] runs DFT in parallel in a shadow thread
for each application thread and uses an off-line application
analysis phase which leverages both static and dynamic
analysis approaches to minimize the information needed to
communicate between both threads. TAINTPIPE [25] uses
pipelined symbolic taint analysis that both parallelizs and
pipelines taint analysis. STRAIGHTTAINT [24] logs control
flow profiling and execution state when taint seeds were first
introduced. Most recently, IODINE [5] uses an optimistic hy-
brid analysis which restricts predicated static analysis to elide
a runtime monitor only when it is proven to be a safe elision.
Different from our approach, Iodine is built atop LLVM IR,
which requires source code of the target application, whereas
SELECTIVETAINT is a binary only approach.

Binary Rewriting. There is also a large body of work
on static binary rewriting. Most recent efforts include
UROBOROS [37], RAMBLR [36], MULTIVERSE [6],
probabilistic disassembly [23], and DDISASM [13].
UROBOROS [37] is a tool which repeatedly dissembles the
executable such that the generated code could be reassembled
back to working binaries. RAMBLR [36] further analyzes the
assumptions of UROBOROS and finds multiple complex cor-
ner cases that must be considered in symbolization. RAMBLR
applies advanced static analyses, e.g., VSA, and achieves
great performance for a static rewriter. MULTIVERSE [6]
is the first static binary rewriting tool that systematically
rewrites x86 COTS binaries without heuristics. Probabilistic
disassembly [23] uses probabilities to model the uncertainty
caused by the information loss during compilation and assem-
bling. Features such as data flow and control flow features
are leveraged to compute a probability for each address in
the code space to indicate the likelihood to be an instruction.
DDISASM [13] combines static analysis and heuristics in
Datalog and shows that Datalog’s inference process suits for

the disassembling. In our implementation, while we could
have used the most recent work such as MULTIVERSE, we
use Dyninst [7] instead due to its rich APIs.

Alias Analysis on Binary. Prior efforts on binary alias anal-
ysis either introduce an IR and use Datalog to reason about
points-to relations [9], or introduce sets for values held at
each program point (e.g., abstract address sets [12], or sym-
bolic value sets [1]). The alias relation of two variables is
determined by whether the abstraction sets of these two vari-
ables intersect, e.g., intersection of abstract address sets [12],
symbolic value sets [1], and points-to predicates results [9],
respectively. Also, a number of earlier efforts (e.g., [1, 12])
do not further resolve indirect jumps in CFG and reconstruct
more CFG edges and yet this limits the analysis precision.
They also assume no system calls. However, system calls
may introduce uninitialized value sets into the system, and
the work by Debray et al. [12] uses less general sets of val-
ues, which is residue-based (module k), whereas we use all
possible values.

9 Conclusion

We have presented an efficient static analysis based data
flow tracking framework SELECTIVETAINT. Unlike previous
taint analysis that uses dynamic binary instrumentation, SE-
LECTIVETAINT is built atop static binary rewriting. The key
insight is to use VSA to identify the instructions that never
involve taint analysis, and then rewrite the rest to implement
the taint analysis. We have tested SELECTIVETAINT with
29 binary programs including 16 Unix utilities, five network
daemons, and eight vulnerable applications and observed a
superior performance, which is 1.7x faster than that of the
state of the art dynamic taint analysis tools.

Acknowledgment

We are grateful to our shepherd Vasileios P. Kemerlis as well
as the anonymous reviewers including those from the artifact
evaluation committee for their very constructive feedback.
We also would like to thank Haohuang Wen for his assistance
during the evaluation. This research was supported in part by
DARPA award N6600120C4020, NSF awards 1750809 and
1834215, and ONR award N00014-17-1-2995.

Availability

The source code of SELECTIVETAINT and also the
benchmark programs used during the evaluation have
been made public available at https://github.com/
OSUSecLab/SelectiveTaint.

USENIX Association 30th USENIX Security Symposium 1681

https://github.com/OSUSecLab/SelectiveTaint
https://github.com/OSUSecLab/SelectiveTaint

References
[1] W. Amme, P. Braun, E. Zehendner, and F. Thomasset. Data dependence analy-

sis of assembly code. In Proceedings of the 1998 International Conference on
Parallel Architectures and Compilation Techniques, PACT ’98, pages 340–347,
Washington, DC, USA, 1998. IEEE Computer Society.

[2] Q. N. Anh. Capstone: Next generation disassembly framework. In Proceedings
of the 2014 Black Hat USA, Black Hat USA ’14, 2014.

[3] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables.
In Proceedings of the 2004 International Conference on Compiler Construction,
CC ’04, pages 5–23, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[4] G. Balakrishnan and T. Reps. WYSINWYX: What You See is Not What You eX-
ecute. ACM Transactions on Programming Languages and Systems, 32(6):23:1–
23:84, Aug. 2010.

[5] S. Banerjee, D. Devecsery, P. M. Chen, and S. Narayanasamy. Iodine: Fast dy-
namic taint tracking using rollback-free optimistic hybrid analysis. In Proceed-
ings of the 40th IEEE Symposium on Security and Privacy, SP ’19, pages 712–
726, 2019.

[6] E. Bauman, Z. Lin, and K. Hamlen. Superset disassembly: Statically rewriting
x86 binaries without heuristics. In Proceedings of the 25th Annual Network and
Distributed System Security Symposium, NDSS ’18, San Diego, CA, Feb. 2018.

[7] A. R. Bernat and B. P. Miller. Anywhere, any-time binary instrumentation. In
Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis for Software Tools, PASTE ’11, pages 9–16, New York, NY, USA, 2011.
ACM.

[8] E. Bosman, A. Slowinska, and H. Bos. Minemu: The world’s fastest taint tracker.
In Proceedings of the 14th International Symposium on Recent Advances in In-
trusion Detection, RAID ’11, pages 1–20, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[9] D. Brumley and J. Newsome. Alias analysis for assembly. Technical report,
Carnegie Mellon University, 2006.

[10] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic extraction
of protocol message format using dynamic binary analysis. In Proceedings of
the 14th ACM conference on Computer and Communications Security, CCS ’07,
pages 317–329. ACM, 2007.

[11] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis frame-
work. In Proceedings of the 2007 International Symposium on Software Testing
and Analysis, ISSTA ’07, pages 196–206, New York, NY, USA, 2007. ACM.

[12] S. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’98, pages 12–24, New York, NY, USA, 1998.
ACM.

[13] A. Flores-Montoya and E. Schulte. Datalog disassembly. In Proceedings of
the 29th USENIX Security Symposium, USENIX Security ’20, pages 1075–1092.
USENIX Association, Aug. 2020.

[14] W. G. J. Halfond, A. Orso, and P. Manolios. Using positive tainting and syntax-
aware evaluation to counter sql injection attacks. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE ’14, pages 175–185, New York, NY, USA, 2006. ACM.

[15] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis. ShadowReplica:
Efficient parallelization of dynamic data flow tracking. In Proceedings of the
20th ACM Conference on Computer and Communications Security, CCS ’13,
pages 235–246, New York, NY, USA, 2013. ACM.

[16] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D.
Keromytis. A general approach for efficiently accelerating software-based dy-
namic data flow tracking on commodity hardware. In Proceedings of the 19th
Annual Network and Distributed System Security Symposium, NDSS ’12, 2012.

[17] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: Practical
dynamic data flow tracking for commodity systems. In Proceedings of the 8th
ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments, VEE
’12, pages 121–132, New York, NY, USA, 2012. ACM.

[18] K. H. Lee, X. Zhang, and D. Xu. High accuracy attack provenance via binary-
based execution partition. In Proceedings of the 20th Annual Network and Dis-
tributed System Security Symposium, NDSS ’13, 2013.

[19] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format reverse engi-
neering through context-aware monitored execution. In Proceedings of the 15th
Annual Network and Distributed System Security Symposium, NDSS ’08, San
Diego, CA, February 2008.

[20] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data structures
from binary execution. In Proceedings of the 17th Network and Distributed Sys-
tem Security Symposium, NDSS’10, 2010.

[21] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-Y. E.
Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. In defense of
soundiness: a manifesto. Communications of the ACM, 58(2):44–46, Jan. 2015.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’05, pages
190–200, New York, NY, USA, 2005. ACM.

[23] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin. Probabilistic disas-
sembly. In Proceedings of the 41st International Conference on Software Engi-
neering, ICSE ’19, page 1187–1198. IEEE Press, 2019.

[24] J. Ming, D. Wu, J. Wang, G. Xiao, and P. Liu. StraightTaint: Decoupled offline
symbolic taint analysis. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE ’16, pages 308–319, New
York, NY, USA, 2016. ACM.

[25] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu. TaintPipe: Pipelined symbolic
taint analysis. In Proceedings of the 24th USENIX Security Symposium, USENIX
Security ’15, pages 65–80, Washington, D.C., 2015. USENIX Association.

[26] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert. τCFI:
Type-assisted control flow integrity for x86-64 binaries. In Proceedings of the
21st International Symposium on Research in Attacks, Intrusions, and Defenses,
RAID ’18, pages 423–444. Springer International Publishing, 2018.

[27] S. Nagy and M. Hicks. Full-speed fuzzing: Reducing fuzzing overhead through
coverage-guided tracing. In Proceedings of the 40th IEEE Symposium on Secu-
rity and Privacy, SP ’19, pages 787–802, May 2019.

[28] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analy-
sis, and signature generation of exploits on commodity software. In Proceedings
of the 12th Annual Network and Distributed Systems Security Symposium, NDSS
’05, 2005.

[29] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automat-
ically hardening web applications using precise tainting. In Proceedings of the
2005 IFIP International Information Security Conference, IFIP SEC ’05, pages
295–307, Boston, MA, 2005. Springer US.

[30] T. Pietraszek and C. V. Berghe. Defending against injection attacks through
context-sensitive string evaluation. In Proceedings of the 9th International Sym-
posium on Recent Advances in Intrusion Detection, RAID ’06, pages 124–145,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[31] G. Ramalingam. The undecidability of aliasing. ACM Transactions on Program-
ming Languages and Systems, 16(5):1467–1471, Sept. 1994.

[32] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained binary instrumentation
with applications to taint-tracking. In Proceedings of the 2008 International
Symposium on Code Generation and Optimization, CGO ’08, page 74–83, New
York, NY, USA, 2008. ACM.

[33] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In Proceedings of the 37th
IEEE Symposium on Security and Privacy, SP ’16, 2016.

[34] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. RIFLE: An architectural frame-
work for user-centric information-flow security. In Proceedings of the 37th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 37,
pages 243–254, Washington, DC, USA, 2004. IEEE Computer Society.

[35] V. van der Veen, E. Göktaş, M. Contag, A. Pawlowski, X. Chen, S. Rawat, H. Bos,
T. Holz, E. Athanasopoulos, and C. Giuffrida. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In Proceedings of the 37th IEEE Sympo-
sium on Security and Privacy, SP ’16, pages 934–953, 2016.

[36] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna. Ramblr: Making reassembly great again. In Proceed-
ings of the 24th Annual Network and Distributed System Security Symposium,
NDSS ’17, 2017.

[37] S. Wang, P. Wang, and D. Wu. Reassembleable disassembling. In Proceedings
of the 24th USENIX Security Symposium, USENIX Security ’15, pages 627–642,
Washington, D.C., 2015. USENIX Association.

[38] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation, PLDI ’04,
pages 131–144, New York, NY, USA, 2004. ACM.

[39] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing
system-wide information flow for malware detection and analysis. In Proceed-
ings of the 14th ACM Conference on Computer and Communications Security,
CCS ’07, pages 116–127, New York, NY, USA, 2007. ACM.

[40] J. Zeng, Y. Fu, K. Miller, Z. Lin, X. Zhang, and D. Xu. Obfuscation-resilient
binary code reuse through trace-oriented programming. In Proceedings of the
20th ACM Conference on Computer and Communications Security, CCS ’13,
Berlin, Germany, Nov. 2013.

[41] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. TaintEraser: Protecting
sensitive data leaks using application-level taint tracking. ACM SIGOPS Operat-
ing Systems Review, 45(1):142–154, Feb. 2011.

1682 30th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Taint Analysis
	Value Set Analysis
	Binary Instrumentation

	Challenges and Insights
	Challenges
	Insights

	Detailed Design
	CFG Reconstruction
	Value Set Analysis
	Taint Instruction Identification
	Must-not Tainted Analysis
	Soundness Analysis of SelectiveTaint

	Binary Rewriting

	Implementation
	Evaluation
	Effectiveness
	Efficiency
	Security Case Studies

	Limitations and Future Work
	Related Work
	Conclusion

