
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Playing Without Paying:
Detecting Vulnerable Payment Verification
in Native Binaries of Unity Mobile Games

Chaoshun Zuo and Zhiqiang Lin, The Ohio State University
https://www.usenix.org/conference/usenixsecurity22/presentation/zuo

Playing Without Paying: Detecting Vulnerable Payment Verification in

Native Binaries of Unity Mobile Games

Chaoshun Zuo
The Ohio State University

zuo.118@osu.edu

Zhiqiang Lin
The Ohio State University

zlin@cse.ohio-state.edu

Abstract
Modern mobile games often contain in-app purchasing

(IAP) for players to purchase digital items such as virtual cur-

rency, equipment, or extra moves. In theory, IAP should have

been implemented securely; but in practice, we have found

that many game developers have failed to do so, particularly

by misplacing the trust of payment verification, e.g., by either

locally verifying the payment transactions or without using

any verification at all, leading to playing without paying

vulnerabilities. This paper presents PAYMENTSCOPE, a static

binary analysis tool to automatically identify vulnerable IAP

implementations in mobile games. Through modeling of its

IAP protocols with the SDK provided APIs using a payment-

aware data flow analysis, PAYMENTSCOPE directly pinpoints

untrusted payment verification vulnerabilities in game

native binaries. We have implemented PAYMENTSCOPE

on top of binary analysis framework Ghidra, and tested

with 39,121 Unity (the most popular game engine) mobile

games, with which PAYMENTSCOPE has identified 8,954

(22.89%) vulnerable games. Among them, 8,233 games do

not verify the validity of payment transactions and 721 games

simply verify the transactions locally. We have disclosed the

identified vulnerabilities to developers of vulnerable games,

and many of them have acknowledged our findings.

1 Introduction

Mobile platforms have become the largest segment of the

computer game industry today. In 2021, mobile games have

generated 79 billion (52%) USD in global revenue, sur-

passed the rest of the game industry combined, including

boxed and downloaded PC games, tablet games, and browser

PC games [18]. There are various ways to monetize a mo-

bile game, such as premium (players have to pay upfront),

freemium (players only pay when needed), subscription (play-

ers pay monthly fees), and in-app advertisement. Increasingly,

freemium, powered by the in-app purchasing (IAP) service

provided by the app stores, has become the dominating moni-

tization way for mobile games [15]. Today, both Google Play

and Apple AppStore have provided IAP APIs for in-game

purchasing of various digital items such as virtual currency,

equipment, extra moves, or removing of the advertisements

for enhanced gaming experience.

However, the APIs provided by Google Pay and Apple App-

Store only handle the payment services for the IAP (e.g., by

communicating with the credit card companies or banks, and

finishing the financial transactions). The game developers still

have to be responsible for the delivery of the purchased items.

To alleviate the developer’s efforts, many SDK providers,

e.g., Unity [16], the leading game engine provider [2], have

provided wrapped APIs on top of Apple’s or Google’s. With

these wrapped APIs, mobile games can also enjoy the portable

benefit of across different platforms such as Android and iOS.

Obviously, any in-game purchasing must be securely de-

signed and implemented. While app stores have secured the

payment transactions, the validation of the transactions is

completely left to the developers. However, an in-game pur-

chasing transaction is a complicated multi-party transaction.

At a high level, it involves at least three parties: (i) mobile

game app, (ii) game server, and (iii) payment provider. In

theory, all these parties should have verified the validity of the

purchasing transaction between each other, since both mobile

games and mobile operating systems could have been com-

promised (e.g., the games could be repackaged or executed in

a virtual environment with apps such as Parallel Space [26]).

Unfortunately, in practice, we have observed that many

game developers have failed to validate the transactions, even

though there is a large body of work (e.g., [40, 44, 48]) that

have pointed out the potential security risks in multi-party

transactions [49]. For instance, we found multiple extremely

popular games (each with more than 100 million installs)

do not verify the validity of the IAP transactions or simply

rely on the client side verification to check whether the

transaction is valid, allowing attackers to completely playing

without paying. Even worse, the SDK providers (e.g., Unity)

have provided such APIs for client side verification, whose

execution cannot be trusted at all. Considering the increased

amount of mobile games integrating with the IAP service, it

USENIX Association 31st USENIX Security Symposium 3093

3094 31st USENIX Security Symposium USENIX Association

Payment Processing2

Transaction Validation

Verification Result

Payment Request

Payment Response

Transaction Verification

Products Distribution

5

6

7

4

3

1

5

Game ServerApp StoreMobile Game

Figure 2: A Typical IAP Protocol in Mobile Games.

developers, and the app store will use this ID to look

up its price.

• Step ❷: When receiving the purchasing request from

the game app, the app store will validate the player’s

identity and pop up a dialog to ask the player to confirm

the payment, and then the app store will communicate

with either the banks or the credit card company to

finish the money transfer. To ensure the integrity of

this financial transaction, the app store will sign it,

with the app-specific private key for Android [13] or

developer-specific privatey key for iOS [11] (developers

have the corresponding public key when they register

their development accounts), and then return the

signature to the game app.

• Step ❸: Once the app store finishes the payment

transaction, the game will receive a payment response

callback, which is either UnityEngine. Purchas-

ing.IStoreListener.ProcessPurchase if the

transaction succeeds, or UnityEngine.Purchasing.

IStoreListener.OnPurchaseFailed if the transac-

tion fails (e.g., insufficient funds, or cancelled by the

user) in Unity games.

• Step ❹: If the transaction succeeds, the game client

typically will send the transaction to the game server to

validate the transaction and distribute the digital items.

• Step ❺: To validate the integrity of the transac-

tion, the game server can either ask the app store

to verify the transaction (e.g., by using REST API

purchases.subscriptions.get [12] for Google

Play), and go to Step ❻, or alternatively, the game server

can verify the transaction by validating the signature of

the transaction using the app-specific public key owned

by the developer, and in this case the server directly

goes to Step ❼.

• Step ❻: The app store validates the transaction

and returns the transaction details (e.g., transaction

timestamp, payment state, item price, expiration date)

to the game server.

Game APK

├── ...
├── AndroidManifest.xml
├── classes.dex
├── assets
│ └── bin
│ └── Data
│ ├── ...
│ └── Managed
│ ├── ...
│ └── Metadata
│ └── global-metadata.dat
└── lib

└── arm64-v8a
├── libil2cpp.so
├── libmain.so
└── libunity.so

· · · · · · · ·[39K]

· · · · · · · · · · · ·[7.8M]

· · ·[5.7M]

· · · · · · · · · ·[30M]

· · · · · · · · · · ·[6.0K]

· · · · · · · · · ·[15M]

Figure 3: The APK Structure of Game Run Race 3D.

• Step ❼: Having verified the transaction by the game

server, the server finally distributes the digital items if

the transaction is valid.

The game binaries developed by Unity. Many mobile games

today are developed using C# and with the Unity engine [3].

There are two ways to run a C# program. One is to compile the

C# code to .NET Common Intermediate Language (CIL) [36],

and then use a virtual machine (VM) to interpret the CIL code

at runtime. The other is to translate the CIL code to C++ code

via tool IL2CPP [14] and then compile the C++ code to native

binaries. Unity has largely moved to the second approach since

it is more efficient.

However, translating CIL code to C++ code is not trivial,

as C# has many features that C++ does not have such as

reflection and garbage collection, and IL2CPP needs to

support those features in C++ and make the native binary

work as CIL code. In particular, IL2CPP will translate not

only the game code, but also C# system libraries and Unity

libraries to C++ code. Each function in C# will be translated

into a corresponding function in C++. Also, IL2CPP will add

additional code for error checks (e.g., detecting NULL point-

ers). While typically symbol names such function names can

be stripped in native binaries, IL2CPP will keep them. This

is because the binary still needs them to provide consistent

features as C#. For instance, it needs the function name and

its address when handling a reflection call, and provides a full

call stack trace (including function names) when handling an

exception. As such, IL2CPP also stores symbol information

in a separate file named global-metadata.dat and packs

it into the game, though game developers might encrypt

or hide this file, to defend against the reverse engineering

attempt. Ultimately, at runtime, the binary will load this file

along with libil2cpp.so (which is generated via IL2CPP

translation) and then use it during game execution.

In Figure 3, we present the file structure of a game APK,

which is an archive file in ZIP format. The sub-file li-

bil2cpp.so is the eventually compiled game binary, which

contains the game logic and the compiled C# libraries code.

We can see that it occupies a large space of a game APK. An-

other sub-file worth mentioning is global-metadata.dat,

USENIX Association 31st USENIX Security Symposium 3095

which contains the metadata of the game including the

mapping between the addresses in the binary and the

functions, the classes definitions (e.g., fields), and the strings

that used by the game binary. Unlike debugging symbols

that have source code information, global-metadata.dat

does not include this (that is why we must perform binary

analysis). In addition, while there are multiple so files in the

APK, we only need to focus on libil2cpp.so since this is

what IL2CPP eventually translated.

Ghidra. There are many frameworks that can be used

to perform static binary analysis such as Angr [46], IDA

Pro [27], and Ghidra [5]. Increasingly, Ghidra becomes more

and more popular due to its ease of use, and multi-architecture

(e.g., ARM64, ARM32, x86) support with an intermediate

representation called P-Code [10]. More specifically, P-Code

is a register transfer language, and to generate the P-Code

of a binary, Ghidra will translate each assembly instruction

to one or multiple P-Code instructions. For instance, in

Figure 5, instruction in the second column will be translated

to one or multiple P-Code in the third column. For each

P-Code, it has an opcode (e.g., CALL in the example), one or

more input, and an optional output. Each input or output is

called Varnode. There are two types of Varnode: register,

e.g., (register, 0x4000, 8), and memory location, e.g.,

(ram, 0x02212258, 8). Each Varnode is composed of the

address space (e.g., register or ram), the offset within the

space (e.g., 0x4000), and the size of the Varnode (e.g., 8).

3 Overview

3.1 The Problem, Threat Model, and Scope

The problem. To complete a payment transaction, it is crucial

for mobile games to verify the transactions signed by the app

store to ensure its integrity. As discussed in §2, after receiv-

ing a payment request from a game app, the payment service

provider (e.g., Google Pay) will complete the financial trans-

action transparently, and when it succeeds, the transaction’s

metadata will be signed and returned to the game. Then, the

game service provider will distribute the purchased products

after verifying the transaction from the game server since a

game client cannot be trusted. Any failure or missing such

verification from the game server will lead to playing with-

out paying vulnerability. This paper seeks to identify this

vulnerability, which usually has the following two forms:

• Lack-of-verification. When the game app receives

the payment receipt from the payment provider, it

may simply check the payment receipt (in Step ❸) to

see whether the payment succeeded or not without

validating the integrity of the receipt at all. In other

word, the Step ❹, ❺, ❻ are skipped.

• Local-verification. While the game app can validate

the receipt locally by using the public key of the signer

(by moving Step ⑤ to mobile game and skip Step ❹, ❺,

❻), this validation is fundamentally flawed. Specifically,

there are multiple ways for attackers to subvert such lo-

cal validation, e.g., by replaying an old transaction, or

directly tampering with the return value of the local val-

idation, or removing the validation via binary patching.

Threat model. We assume a threat model in which the game

client is untrusted, and the attacker is a game player who owns

the client and has the incentive of playing without paying.

There are multiple ways to launch the attack (detailed in

§6.3), from the simplest, by using an app-level virtualization

tool [26] such as Parallel Space or using repackaged victim

game from 3rd parities, to the most sophisticated, by rooting

the phone to tamper with anything of attacker’s interests.

Our threat model is realistic for at least three reasons.

First, it is consistent with many other payment security works

(e.g., [39, 44, 49]). In particular, when studying payment se-

curity in traditional mobile apps, Reynaud et al. [44] assume

the attackers can repackage the apps; when inspecting the

validation consistency between the client and the server of

banking apps, WARDROID [39] assumes the client app is

not trusted. Similarly, when analyzing payment security in

the web domain, Wang et al. [49] assume the web clients (i.e.,

the web browsers) can be malicious and they can cheat the

web servers for shopping for free. Second, this threat model

is also consistent with the reality. While a game player does

not have the skills to root the phone, he or she can use the

repackaged games. For instance, we have found several web-

sites (e.g., [1, 8]) host repackaged games. In addition, a game

player can also use app-level virtualization [26] without any

root privilege to full control the game. Third, the assumed

threat is indeed threatening game developers, and many secu-

rity companies actually offer commercial solutions (such as

NHN AppGuard [9]) to defend against this.

Scope and assumptions. While there are a variety of mobile

games available in the mobile platform, we focus exclusively

on the native Android games developed by Unity SDK for

multiple reasons. First, Unity is the most popular game engine

with a 71.94% market share according to our measured re-

sult reported in Figure 1. Second, Unity is not a special case,

and many other game engines (e.g., Unreal Engine, Cocos2d)

have the same issue—namely it allows developers to verify

payment transactions locally. Third, each game engine has its

own specific APIs and runtime environment. Uncovering the

flawed payment verification for all of the games would require

game-engine specific analysis. While we could have also fo-

cused on analyzing Cocos2d or Unreal Engine games, this would

require significant amount of additional engineering effort.

Therefore, we eventually decided to focus on Unity games

for proof-of-concept. Also, when analyzing game binaries

developed with Unity, we assume the game developers will use

3096 31st USENIX Security Symposium USENIX Association

1 class unityInAppPurchase_LS : IStoreListener
2 {
3 ...
4 private string m_LastReceipt; // 0x30
5 public PurchaseProcessingResult ProcessPurchase(
6 PurchaseEventArgs args)
7 {
8 this.m_LastReceipt = args.purchasedProduct.get_receipt()
9 ...

10 }
11 }

1 class PurchaseManager : IStoreListener
2 {
3 public PurchaseProcessingResult ProcessPurchase(
4 PurchaseEventArgs args)
5 {
6 ...
7 StoreReceipt receipt = JsonUtility.FromJson<StoreReceipt>(
8 args.purchasedProduct.get_receipt());
9 GooglePayload gpayload = JsonUtility.FromJson<GooglePayload>(

10 receipt.Payload);
11 httpRequest.AddField("signature", gpayload.signature)
12 ...
13 }
14 ...
15 }

（B）

（C）

1 class IAPManager : IStoreListener
2 {
3 public PurchaseProcessingResult ProcessPurchase(
4 PurchaseEventArgs args)
5 {
6 CrossPlatformValidator validator = new CrossPlatformValidator(
7 GooglePlayTangle.Data(), AppleTangle.Data(),
8 Application.identifier);
9 try

10 {
11 validator.Validate(args.purchasedProduct.get_receipt());
12 ...
13 }
14 catch (IAPSecurityException)
15 {
16 Debug.Log("Invalid receipt, not unlocking content");
17 }
18 return PurchaseProcessingResult.Complete;
19 }
20 }

（A）

Figure 4: Running Examples of In-game Purchase with De-

compiled or Manually Constructed Code (in C#).

the APIs to develop the game for the common logic such as

logging and network communication. In addition, we assume

there is no encryption or hiding of global-metadata.dat

(which is true for 99.69% of the game we have analyzed).

3.2 Running Examples

To clearly illustrate the problem we aim to solve, we use

three real-world games (the corresponding game names are

removed since the vulnerable games have not been patched at

this time of writing) shown in Figure 4 as running examples.

Note that, the C# code in the figure is manually constructed

from native binaries for clear illustration, and the excerpt of

the corresponding binaries can be found in Figure 5.

At a high level, we can see that game (A) verifies the

payment receipt from payment providers locally with API

validator.Validate (line 11). Note that this API uses the

public key of the payment provider (acquired by Google-

PlayTangle.Data() at line 7) to verify the signature of the

signed receipt by the app store. If the verification succeeds,

the app will then complete the purchasing process (line 12);

otherwise, it will generate a debug log tracking the invalid

receipt (line 16). Since the entire purchasing verification can

be executed in an untrusted game client, it is insecure (and

can be bypassed). Game (B) extracts the receipt (line 7 and

8), adds it into an httpRequest object (line 11), sends the

receipt to the server for the verification, which is considered

to be a correct approach (though we cannot inspect its server

side implementation). Game (C) stores the receipt to field

m_LastReceipt (line 8), which tracks the last receipt,

3.3 Challenges and Insights

In this study, we focus on two vulnerable in-game pur-

chases: lack-of-verification (i.e., no-verification) and local-

verification. Since in both cases it refers to how data is used,

obviously we need to leverage the meanings from the APIs to

infer the semantics of the data use of the receipt as well as its

propagation. For instance, as shown in Figure 4, we can easily

detect the receipt is validated locally if the app uses Valida-

tor.Validate, it is logged if Debug.Log is invoked, it is sent

to the server if it is passed to API UnityWebRequest.Post,

and so on. Therefore, we have to solve at least two challenges:

(i) pinpointing specific APIs in the game binary, and (ii) track-

ing the data flow [41, 45] of the payment-data.

(I) How to pinpoint target APIs in game binaries. APIs are

crucial to infer the meaning of the data use. However, unlike

with source code where we can see the names of variables

and APIs and easily infer the semantics of data-use, for binary

analysis, the input is often just hexadecimal code and data, and

there are no symbol names as they can be stripped. Therefore,

we have to reconstruct the high level abstraction from the

binary code and recognize the specific APIs of our interest.

Interestingly, due to the nature of how Unity binaries

are compiled and executed, it has surprisingly made the

symbol recovery easier. Specifically, the association between

the method name including APIs and the entry address

has actually been recorded into the metadata file (i.e.,

global-metadata.dat), which keeps all the missing

symbols including even class names that are optimized by

the compiler of Unity SDK. Although the metadata file is not

directly readable, we can parse it with tool Il2CppDumper [6]

to extract the information we need. The details of how we

extract the function and classes metadata is presented in §4.

(II) How to identify the payment-data definition, use, and

their propagation. Apparently, we need a payment-aware

data flow analysis to identify the data-definition, propagation,

and data-use of the payment receipt returned by the app store.

While the use of P-Code has made the development of our

analysis easier, we still have to locate the instructions that

define the payment data, the propagations of the data (includ-

ing through JSON object parsing and creation as shown in

USENIX Association 31st USENIX Security Symposium 3097

0x02212258 System.String* UnityEngine.Purchasing.Product.get_receipt (UnityEngine.Purchasing.Product* _this, const MethodInfo* method)
0x021cdebc UnityEngine.Purchasing.Security.IPurchaseReceipt.array* UnityEngine.Purchasing.Security.CrossPlatformValidator.Validate

(UnityEngine.Purchasing.Security.CrossPlatformValidator* _this, System.String* unityIAPReceipt, ...)

0x02509f9c System.String* UnityEngine.Purchasing.Product.get_receipt(UnityEngine.Purchasing.Product* _this, const MethodInfo* method)
0x0163cdf4 Il2CppObject* UnityEngine.JsonUtility.FromJson(System.String* json, const MethodInfo_2855* method)
0x025082d4 void UnityEngine.WWWForm.AddField(UnityEngine.WWWForm* _this, System.String* fieldName, System.String* value, ...)

0x01329390 int32_t unityInAppPurchase_LS.ProcessPurchase(unityInAppPurchase_LS* _this, UnityEngine.Purchasing.PurchaseEventArgs* e, ...)
0x013b8cdc System.String* UnityEngine.Purchasing.Product.get_receipt(UnityEngine.Purchasing.Product* _this, const MethodInfo* method)

（B）

（C）

（A）

Address Function Name

Shadow Memory at {1}

0x0130d49c c0f24794 bl 0x02509f9c (register, 0x4000, 8) CALL (ram, 0x02509f9c, 8), (register, 0x40b0, 8), (const, 0x00, 8)

0x0130d4ac 52be0c94 bl 0x0163cdf4 (register, 0x4000, 8) CALL (ram, 0x0163cdf4, 8), (register, 0x4000, 8), (register, 0x4008, 8)

0x0130d4c0 c01240f9 ldr x0, [x22, #0x20] (unique, 0x100004b4, 8) INT_ADD (register, 0x4000, 8), (const, 0x20, 8)

(unique, 0x00000c90, 8) CAST (unique, 0x100004b4, 8)

(register, 0x4000, 8) LOAD (const, 0x01b1, 4), (unique, 0x00000c90, 8)

0x0130d4cc 4abe0c94 bl 0x0163cdf4 (register, 0x4000, 8) CALL (ram, 0x0163cdf4, 8), (register, 0x4000, 8), (register, 0x4008, 8)

0x0130d510 d70e40f9 ldr x23, [x22, #0x18] (unique, 0x100004d4, 8) INT_ADD (register, 0x4000, 8), (const, 0x18, 8)

(unique, 0x00000c90, 8) CAST (unique, 0x100004d4, 8)

(register, 0x40b8, 8) LOAD (const, 0x01b1, 4), (unique, 0x00000c90, 8)

0x0130d538 67eb4794 bl 0x025082d4 --- CALL (ram, 0x025082d4, 8), ..., (register, 0x40b8, 8), (const, 0x00, 8)

Address

0x0132946c 1c3e0294 bl 0x013b8cdc (register, 0x4000, 8) CALL (ram, 0x13b8cdc, 8), (register, 0x4000, 8), (const, 0x00, 8) {1}

0x01329470 601a00f9 str x0, [x19, #0x30] (unique, 0x00000c90, 8) INT_ADD (register, 0x4098, 8), (const, 0x30, 8)

--- STORE (const, 0x01b1, 4), (unique, 0x00000c90, 8), (register, 0x4000, 8) {2}

（C）

（B）

0x00ffa794 bl5e4894 bl 0x02212258 (register, 0x4000, 8) CALL (ram, 0x02212258, 8), (register, 0x4000, 8), (const, 0x00, 8)

0x00ffa7b4 c24d4794 bl 0x021cdebc (register, 0x4000, 8) CALL (ram, 0x021cdebc, 8), (register, 0x4000, 8), ...
（A）

Machine Code Disassemble P-Code Output Opcode P-Code Input

Index Tag Type

(register, 0x4000, 8) 1 •

(register, 0x4098, 8) 0 •

(unique, 0x00000c90, 8) 0

...

Class Tag

• String N/A

• unityInAppPurchase_LS
• ...
• -(0x28) String
• -(0x30) String

0
0
0
0

Shadow Memory at {2}GCT GCT

Index Tag Type

(register, 0x4000, 8) 1 •

(register, 0x4098, 8) 0 •

(unique, 0x00000c90, 8) 1 •

...

Class Tag

• String N/A

• unityInAppPurchase_LS
• ...
• -(0x28) String
• -(0x30) String

0
0
0
1

Figure 5: The Excerpt of the Disassembled Code, the Corresponding P-Code, and the State of Our Shadow Memory.

Figure 4 (B)), identify the corresponding class fields that store

them (e.g., in the last instruction of Figure 5 (C), the payment

data has been stored to a memory address, i.e., (unique,

0x00000c90, 8), and we need to know the definition of this

memory address, which is essentially the class field this.m_-

LastReceipt), and infer the use of them based on APIs.

To identify the payment data definition, we can rely on the

key APIs such as args.purchasedProduct.get_receipt.

While directly identifying the payment data propagation in-

side JSON parsing functions is challenging, we can skip the

detailed analysis inside these functions and instead use the

API summary (an approach that has been widely used in many

other applications such as symbolic execution [46]). To infer

whether a class field (typically organized as an abstract base

address plus an offset) stores the payment data or its prop-

agations, we can design a taint-tracking algorithm for class

field based on the taintedness of return values or arguments

of well-defined APIs. Finally, to infer whether a field belongs

to a particular class, we can use backward slicing [52] to iden-

tify the base address of the class, and then identify the class

types using the argument types of functions extracted from the

metadata. The details of how we perform our payment-aware

data flow analysis is presented in §5.

Also, note that due to the nature of how game binaries are

generated with Unity SDK, we have all the symbols of binary

functions and classes, and we do not face the hard problems as

in traditional binary analysis such as the aliasing. In particular,

since the game binaries are translated from C# to C++ and

there is no global variable in C#. The only data flow is through

the access of fields of classes. For example, in Figure 4 (C),

the field m_LastReceipt of class unityInAppPurchase_LS

has been assigned with the payment receipt at line 8, and the

3098 31st USENIX Security Symposium USENIX Association

data flow should continue from any other instructions that

read this field. Since we have the symbols and their types, we

can pinpoint exactly the class name of each variable in all the

functions. As such, we can simply locate variables that are of

type unityInAppPurchase_LS and continue analyzing from

there to find out which instruction accessed field m_LastRe-

ceipt through a lightweight type-based data flow analysis.

4 Metadata Extraction

Since a game built with Unity contains rich information in

file global-metadata.dat about its function signatures

(types of arguments and return value) and class definitions

(including fields offset and their types) of the final executables

due to the use of IL2CPP, we can leverage this information

to facilitate our payment-aware data flow analysis. In the

following, we describe how we extract such information.

Extracting function metadata. The metadata of a function

includes the starting address of the function, the type

of the return value, the number of arguments, and the

corresponding type for each argument. All of this information

can be retrieved from global-metadata.dat. There is

also a function name associated, and this name reveals

both the original C# Class and function, from which

this function was translated. As mentioned earlier, while

global-metadata.dat cannot be directly read, we can use

tool IL2CPPDumper [6] parse it. Since the function address

is static, we store the extracted functions and their types in

a global function table GFT , indexed by the address.

With the extracted function argument type, it makes our in-

terprocedure analysis much easier. More specifically, assume

we have identified a class type of our interest, then we can

directly scan our GFT to locate all of the functions that have

an argument referencing this class, and these functions are

all possible callees. Meanwhile, we also scan all functions to

identify each possible caller that has invoked these callees.

The instructions of both identified callers and callees will be

iterated again to identify whether there is any data-use of the

payment data (and its propagations), as well as propagation

of the payment data to any other class objects if there are any.

Some examples of the extracted functions and their types

can be found in the top half of Figure 5. For instance, in

running example (B), the function at address 0x02509f9c is

UnityEngine.Purchasing.Product.get_receipt. From

this function name, we can easily identify that this function

was translated from the C# function get_receipt of C#

Class UnityEngine.Purchasing.Product and the type of

its return value is System.String.

Extracting class metadata. Unlike function’s metadata

where we can extract the function’s address, class’ metadata

is just the abstract definition of the class, and there is no con-

crete address associated. What we can extract only includes

the class name, the field offset, and the field types. We use the

class name to index them, and store the extracted class types

in a global class table GCT , which will be updated to record

the taintedness whenever a class field stores tainted data.

5 Payment-Aware Data Flow Analysis

In order to identify the vulnerable payment verification, we

need to first identify where the payment data is defined (§5.1),

how it propagates (§5.2), and whether the propagated data

is sent to the server (for server-side verification), or used by

local-verification APIs, or no-verification at all (§5.3). In this

section, we present the details of our lightweight payment-

aware data flow analysis.

5.1 Identifying Payment-Data Definition

Since we need to track the data flow of the payment receipt,

our taint sources should be the APIs that receive this data.

After systematically examining the documentation, we found

that UnityEngine.Purchasing.Product.get_receipt

is the only API that can be used to access the receipt. As

such, we focus on this API exclusively as the taint source.

More specifically, we first find the address of this function

by checking the extracted metadata in the global function

table. For example, in Figure 5 (A), by looking up the

corresponding GFT , we find its address is 0x02212258.

Then we locate the callers of this function by traversing

the call graph of the game binary. There might be several

callers and each of them will be located. At each call site, the

variable assigned with the return value (i.e., receipt) of this

function call is the source of the payment-data.

5.2 Tracking Payment-Data Propagation

A receipt can be propagated to other objects, e.g., via JSON

APIs; can be assigned to local variables, e.g., to variable re-

ceipt and gpayload in running example (B) of function

ProcessPurchase; or can be assigned to a class field such as

m_LastReceipt in class unityInAppPurchase_LS in run-

ning example (C). We therefore have to systematically iden-

tify these propagations. The algorithm of how we perform

this analysis is presented in Algorithm 1.

At a high level, starting from the caller of payment-data

definition function (line 3-5 of Algorithm 1), we iterate

each instruction to handle propagations (line 9-24), resolve

object base address, and infer field taintedness (line 25-

39). We repeat this process by iterating all of the func-

tions in GFT (line 7-8, and line 40-55), until reaching a

fixed point where the taintedness of the classes and their

fields will not be updated any more (line 6). For exam-

ple, when analyzing the instruction at 0x00ffa794 in Fig-

ure 5 (A), we know it is a call instruction, and by retriev-

ing its callee with address 0x02212258, we know it is Uni-

tyEngine.Purchasing.Product.get_receipt. Then our

USENIX Association 31st USENIX Security Symposium 3099

analysis will get started at line 3. Based on the API summary,

we know its return value is the payment receipt data, and

we therefore perform the data propagation by adding a taint

tag (line 4), basically just a single bit, to the return value, i.e.,

(register, 0x4000, 8), of this function in the correspond-

ing shadow memory (line 5), and then perform the analysis

further. In the following, we describe the key procedures of

our analysis.

Algorithm 1 Payment-aware Data Flow Analysis (PDFA)

1: Input: GCT : global class table; GFT : global function table; SM: shadow memory
2: procedure PDFA
3: for (f , inst) in GetCaller(Purchasing.Product.get_receipt) do

4: UPDATESHADOWMEMORY(SM, TargetOperand(inst))
5: TAINTPROPAGATION(f , inst, TargetOperand(inst))

6: while HASUPDATES(GCT) do

7: for func in GFT do

8: PROCESSFUNCTIONWITHTAINTEDCLASSES(func)

9: procedure TAINTPROPAGATION(f unc, inst,v0)
10: for (inst1)← FindDataUse(f unc, inst,v0) do

11: if opcode(inst1) is Data Move then

12: v1← TargetOperand(inst1)
13: UPDATESHADOWMEMORY(SM, v1)
14: (v2, o f f set2)← FIELDBASEADDRESSRESOLUTION(f unc, v1)
15: cls1← BASECLASSRESOLUTION(f unc, v2)
16: TAINTGCT(GCT , cls1, o f f set2)
17: TAINTPROPAGATION(f unc, inst1,v1)
18: else if opcode(inst1) is CALL then

19: f0← GetCallee(inst1); index← GetParameterIndex(inst1, v0)
20: if isSystemAPI(f0) then

21: TAINTWITHAPISUMMARY(f0, inst1, TargetOperand(inst1))
22: else

23: for (inst2,v2)← GetInstructUseParameter(f0, index) do

24: TAINTPROPAGATION(f0, inst2,v2)

25: procedure BASECLASSRESOLUTION(f unc,v0)
26: vde f ← FindDataDef(f unc, v0)
27: if isParameter(vde f) then

28: index← GetParameterIndex(vde f)
29: return GETFUNCPARAMETERTYPE(GFT , f unc, index)
30: else if opcode(vde f) is CALL then

31: f0← GetCallee(vde f)
32: return GETFUNCRETURNTYPE(GFT , f0)
33: else if opcode(vde f) is LOAD then

34: vx ← SourceOperand(vde f)
35: (v1, o f f set1)← FIELDBASEADDRESSRESOLUTION(f unc, vx)
36: cls1← BASECLASSRESOLUTION(f unc, v1)
37: return GETCLASSFIELDTYPE(GCT , cls1, o f f set1)
38: else if opcode(vde f) is COPY or CAST then

39: return BASECLASSRESOLUTION(f unc, SourceOperand(vde f))

40: procedure PROCESSFUNCTIONWITHTAINTEDCLASSES(f unc)
41: for (cls0, o f f set) in GETTAINTEDFIELDS(GCT) do

42: indexes← FindObjectIndexinFunc(f unc, cls0)
43: if indexes! = /0 then

44: for indexi in indexes do

45: for (f , inst) in GetCaller(f unc) do

46: vi ← GetOperand(inst, indexi)
47: for insti in FINDRELATEDINSTRUCTOF(f , vi) do

48: if ISLOADING(insti, vi, o f f set) then

49: vt ← TargetOperand(insti)
50: TAINTPROPAGATION(fCaller, insti,vt)

51: for vi ← GetParameter(f unc, indexi) do

52: for insti in FINDRELATEDINSTRUCTOF(f unc, vi) do

53: if ISLOADING(insti, vi, o f f set) then

54: vt ← TargetOperand(insti)
55: TAINTPROPAGATION(f unc, insti,vt)

Handling taint propagation. Our taint needs to be prop-

agated for data movement instructions (e.g., LOAD, STORE,

INT_ADD), and we update the shadow memory of the reg-

ister and object memory accordingly based on the tainted-

ness of data source (line 13). However, when encounter-

ing a function call (line 18-24), we will check whether this

function is a system or Unity provided API (line 20). If so,

we will skip the analysis of this function, and instead di-

rectly apply the propagation rule based on the API summary

(line 21). Otherwise, we will process this callee function

as usual to analyze each instruction that access the tainted

parameter for taint propagation (line 23-24). For instance,

for the instruction at 0x0130d4ac in Figure 5 (B), by check-

ing the corresponding GFT , we find this function is Uni-

tyEngine.JsonUtility.FromJson. Based on the API sum-

mary, the propagation rule is to add a taint tag to the return

value if the first parameter is tainted. Therefore, we add a taint

tag to (register, 0x4000, 8).

Tracking taintedness for classes. When encountering an in-

struction that propagates taint to a class field, we also need to

know the specific class to which the destination field belongs.

However, at the instruction level, we only observe memory

addresses (due to the nature of IL2CPP), which is always in

the form of a base address plus an offset, and we have to

therefore first identify its base address, then identify the class

of the base address. With the identified class information and

the offset we can identify the field in GCT , then we taint the

corresponding field and track the taintedness of the classes.

As such, it eventually becomes a three-step process:

• Step-I: Identifying the base address of a field. When

a tainted value is stored to a memory address, e.g.,

(unique, 0x00000c90, 8) in Figure 5 (C), we need

to identify how this address is generated (or defined).

To this end, we perform backward slicing [52] starting

from the current instruction to find out its definition.

In this example, we find (unique, 0x00000c90, 8)

comes from (register, 0x4098, 8) with an offset

0x30, and (register, 0x4098, 8) comes from the

first parameter of the current function. With backward

slicing, we resolve the base address of field address

(unique, 0x00000c90, 8) as (register, 0x4098,

8). This procedure is referred as FIELDBASEADDRESS-

RESOLUTION. Note that P-Code has made dependence

analysis such as slicing easier by simply inspecting

the data-def and use chain. For instance, the Ghidra

API Varnode.getDef can be used to find the P-Code

instruction that defines a particular variable.

• Step-II: Resolving the corresponding class of the base

address. Having recognized the base address of the tar-

get field, we need to identify its class types, e.g., to find

the class definition of (register, 0x4098, 8). Fortu-

nately, this is also an easy process given the metadata

we have collected. In particular, a base address accessed

in a function usually comes from three sources: a) the

address of other class object passed from the function

parameter, b) a return value of a function call, and c) a

field from another class. Therefore, we resolve the class

information based on its definition. This procedure is

3100 31st USENIX Security Symposium USENIX Association

referred as BASECLASSRESOLUTION (line 25-39). In

this procedure, we first locate the definition of the base

address (line 26), if it is from either a) or b) (line 27, 30),

we directly get its class by querying the GFT (line 29,

32) since GFT has the class type for the function param-

eters and return value. If the base address is from c) (line

33), we apply FIELDBASEADDRESSRESOLUTION to

find the base address of this new field (line 35) and apply

BASECLASSRESOLUTION to find the class of the new

field (line 36), then we get the class of the base address by

querying GCT (line 37). Finally, if it is copied from an-

other variable, we will resolve it recursively (line 38-39).

• Step-III: Tainting the class field. With the identified

class of the destination field, we then taint the destination

memory address in the shadow memory, and also taint

the corresponding field of the identified class in the

GCT (line 16). Note that the purpose of having GCT

is to track the tainted classes (and its fields), and iterate

all of the functions that access any of the tainted classes.

Also, we do not taint the single primitive type (e.g., the

first String type entry in the GCT at shadow memory

{1} in Figure 5, and we mark it N/A), as primitive type

will be used in many other fields, and instead we taint

the class and the offset at that particular class (as shown

in shadow memory {2}, our algorithm has tainted the

field at offset 0x30 of class unityInAppPurchase_LS.

Repeating the propagation analysis. After identifying the

tainted classes, we next iterate each instruction of the func-

tions that have accessed these classes (in both the caller and

the function itself), to identify whether there are any other

class fields to which the tainted data can be propagated. If so,

we add these classes into our tainted class as well. We call this

process PROCESSFUNCTIONWITHTAINTEDCLASS (line 40-

55). In particular, for each function in GFT (line 7), we iterate

on the tainted class-field in GCT (line 41), to find which func-

tions used the class (line 42-43). Then we a) iterate on the

caller of the function call (line 45) to find out who read the

class-field (line 46-48), and then we perform taint propagation

from that point (line 50); b) iterate on the function itself (line

51) to perform the same actions (line 52-55) in our algorithm.

5.3 Vulnerability Detection

With the identified tainted classes and their corresponding

tainted fields, we then iterate all of the functions again, to

identify whether the known taint sinks have accessed any

tainted fields. At a high level, we have two types of known

taint sinks: (1) the APIs that send out data (e.g., flowing into

network related APIs) and these APIs include HTTP/HTTPS

and Socket, and (2) payment local verification API (e.g.,

UnityEngine.Purchasing.Security.CrossPlatformVa-

lidator.Validate). If any of these taint sinks have

accessed the payment (and its propagation), we use the

following security policies to identify the vulnerabilities.

• Identifying local-verification vulnerability: During

the iteration of each function, if we notice the tainted

data (by querying the corresponding class field) is used

by Unity API CrossPlatformValidator.Validate,

and also there is no program path that also sends

the tainted data to networking APIs, we conclude a

local-verification vulnerability is detected.

• Identifying no-verification vulnerability: We check

every function to make sure there is no payment data

(or its propagation) sent to the outside (e.g., through

network APIs) and meanwhile no local-verification

APIs involved. If so, we conclude it is a no-verification

vulnerability.

Therefore, we have used a very conservative policy to de-

tect the vulnerability: if a game neither belongs to local veri-

fication nor no-verification, it will be classified into remote-

verification, which includes the cases that we cannot identify

the receipt data-use and the receipt is sent to the server. How-

ever, it is not guaranteed that those games are secure. Because

we cannot confirm that the server will verify the transaction

due to the lack of access to server side code. As such, we as-

sume it is remote-verification, to avoid having too many false

positives. Certainly, this will lead to false negatives. Being a

vulnerability detection tool, we consider this is acceptable, as

we cannot guarantee to detect all the vulnerabilities.

6 Evaluation

We have implemented PAYMENTSCOPE based on Ghidra,

and its source code has been made available at https:

//github.com/OSUSecLab/PaymentScope. In this section,

we present the evaluation results. We first describe how we

collect the game apps and set up our testing environment in

§6.1. Then, we provide our detailed results of the identified

vulnerabilities and also how PAYMENTSCOPE performs in

§6.2. Finally, we present the security analysis including case

studies of these identified vulnerabilities in §6.3.

6.1 Experiment Setup

Dataset. We aim to understand the developer’s practice at

scale, and therefore we would like to test all the Android apps

on Google Play as what we have done in our prior works such

as LeakScope [58]. Interestingly, instead of crawling apps di-

rectly from Google Play, we notice that we can actually lever-

age an existing app repository, AndroZoo [21]. However, there

are more than 10 million apps in AndroZoo, many of which no

longer exist in Google Play. Therefore, we only focus on the

apps that are still in Google Play, which eventually resulting

USENIX Association 31st USENIX Security Symposium 3101

3102 31st USENIX Security Symposium USENIX Association

Disjoint (by Supported Architectures) Joint (by Supported Architecture)

↓ # Game A32 % A64 % X86 % A32, A64 % A32, X86 % A64, X86 % A32, A64, X86 % A32 % A64 % X86 %

1B - 5B 1 1 100.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 100.00 0 0.00 0 0.00
500M - 1B 2 2 100.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 100.00 0 0.00 0 0.00
100M - 500M 27 4 14.81 10 37.04 0 0.00 10 37.04 0 0.00 0 0.00 3 11.11 17 62.96 23 85.19 3 11.11
50M - 100M 67 3 4.48 26 38.81 0 0.00 33 49.25 2 2.99 0 0.00 3 4.48 41 61.19 62 92.54 5 7.46
10M - 50M 534 19 3.56 189 35.39 0 0.00 297 55.62 18 3.37 0 0.00 11 2.06 345 64.61 497 93.07 29 5.43
5M - 10M 579 24 4.15 216 37.31 0 0.00 305 52.68 13 2.25 0 0.00 21 3.63 363 62.69 542 93.61 34 5.87
1M - 5M 2,293 94 4.10 811 35.37 1 0.04 1,266 55.21 67 2.92 1 0.04 53 2.31 1,480 64.54 2,131 92.94 122 5.32
500K - 1M 1,372 54 3.94 413 30.10 0 0.00 790 57.58 67 4.88 1 0.07 47 3.43 958 69.83 1,251 91.18 115 8.38
100K - 500K 3,707 149 4.02 1,116 30.11 0 0.00 2,187 59.00 126 3.40 0 0.00 129 3.48 2,591 69.89 3,432 92.58 255 6.88
50K - 100K 1,820 64 3.52 584 32.09 0 0.00 1,035 56.87 52 2.86 1 0.05 84 4.62 1,235 67.86 1,704 93.63 137 7.53
10K - 50K 4,482 148 3.30 1,229 27.42 0 0.00 2,699 60.22 131 2.92 2 0.04 273 6.09 3,251 72.53 4,203 93.78 406 9.06
5K - 10K 2,112 52 2.46 544 25.76 0 0.00 1,309 61.98 72 3.41 0 0.00 135 6.39 1,568 74.24 1,988 94.13 207 9.80
1K - 5K 5,156 135 2.62 1,183 22.94 0 0.00 3,314 64.27 154 2.99 0 0.00 370 7.18 3,973 77.06 4,867 94.39 524 10.16
500 - 1K 16,969 231 1.36 2,805 16.53 0 0.00 12,195 71.87 404 2.38 12 0.07 1,322 7.79 14,152 83.40 16,334 96.26 1,738 10.24

Table 1: The Supported Architectures of the Analyzed Games (A32: arm32; A64: arm64; ↓: Download times)

has any association with the game category (based on what

has been assigned by Google Play), and this result is presented

in Figure 6b. Interestingly, we can see that the vulnerable rate

for different categories varies a lot (from 64.68% to 93.10%),

and there are two categories, namely “Arcade” (90.05%)

and “Trivia” (93.10%), which have an extremely high

vulnerability rate. A possible reason is that games in these

two categories are more likely single-player games, and these

games depend less on the servers (i.e., mostly off-line games).

As such, developers are very likely to implement the in-game

purchasing with only local verification or without verification

at all. In contrast, games in the category of “Card” (64.68%)

often provide multi-player features that heavily depend on

the network service, and developers are more likely to verify

the in-game purchasing using server-side verification.

Efficiency. When conducting the experiments, we run 24

instances of Ghidra in parallel to analyze the games. It took

669 hours (almost 28 days) to perform the analysis. Among

the processing time, it took Ghidra 665 hours to pre-process

the inputs (e.g., converting binary to P-Code), and only took

4 hours to actually perform the payment-aware data flow

analysis. Also, for each game, Ghidra created a project, and

those projects occupied 5.8 TB hard drive space in total.

To zoom in the internals of how PAYMENTSCOPE analyzed

each game, we present a set of intermediate results in Table 2.

For simplicity, we chose the top game in each category, if there

are multiple games with the same download number, we ran-

domly pick one up from them to show the result. Specifically,

as shown in the table, we particularly present the binary file

size of libil2cpp.so, the number of extracted classes and

the number of extracted functions from the metadata (namely

the size of GCT and GFT), the total number of tainted items,

the total number of instructions involved in taint analysis, the

total number of functions that are iterated by our data flow

analysis, and finally the total number of identified traced paths.

We can see that all the binaries are bigger than 15MB (one

game is even more than 80MB) which is the main reason why

it took Ghidra so long to pre-process. For |GCT | and |GFT |,
we can see that they both contain thousands of items. But for

the taintedness identification, we do not see many instructions

(maximum less than two thousand instruction) are involved,

partially because the payment data will not propagate to too

many other variables. Also, interestingly, for game Happy

Glass, the numbers are all 0. With further investigation, we

found that the game never calls API get_receipt.

6.3 Vulnerability Analysis

(I) False positive and false negative analysis. Being a static

analysis tool, PAYMENTSCOPE could have false positives

(FPs) and false negatives (FNs). Specifically, the FPs in our

context are the games that are secure but reported as vulner-

able and the FNs are the games that are vulnerable but re-

ported as secure (i.e., we consider it uses remote-verification

as described in §5.3). To quantify FPs and FNs, we have to

manually examine the games. In particular, to quantify FPs,

we need to test whether the identified vulnerable games can

indeed purchase for free; to quantify FNs, we need to test

whether the games identified non-vulnerable indeed secure

(containing remote verification). However, such a manual

analysis will be very time consuming and it is not practical to

test all games. For instance it took us more than 30 minutes to

play the game EGGLIA until the IAP option shows up. There-

fore, we have to sample the games for our manual analysis. To

avoid potential biases, we eventually sampled 280 games (220

for FPs and 60 for FNs) with the following two strategies:

• Targeted selection. We first select the games in the tar-

geted group based on the number of installs. Specifically,

to test FPs, we select the top 10 no-verification games

and the top 10 local-verification games; to test FNs, we

select the top 10 remote-verification games.

• Random selection. We then randomly select the games.

In particlar, to test FPs, we randomly selected 200 games

from 8,954 vulnerable games; to test FNs, we select 50

games from 1,686 secure (remote-verification) games.

Techniques to launch the attacks. To confirm the vul-

nerability of these games, there are multiple ways such as

USENIX Association 31st USENIX Security Symposium 3103

|Size| # Classes # Functions # Tainted # Instruction in # Iterated # Traced

Game Name # ↓ (MB) in GCT in GFT Items Tainting Functions Paths

aquapark.io 100,000K 31.6 8,149 76,743 295 385 11 125
Critical Action 50,000K 30.0 6,810 57,446 20 26 5 10
Crowd City 100,000K 27.4 5,630 51,839 527 671 11 207
Onnect 10,000K 19.8 4,252 36,528 860 1,073 9 370
RummyCircle 10,000K 21.1 4,717 44,182 45 64 6 27
GSN Casino 10,000K 84.6 17,510 132,353 58 68 8 18
Hello Kitty Nail Salon 100,000K 34.8 7,071 67,915 1,589 1,739 21 782
Little Panda’s Restaurant 10,000K 17.5 5,184 42,727 11 18 5 9
Dot n Beat 10,000K 26.5 5,830 49,911 130 176 9 69
Happy Glass 100,000K 26.2 5,802 52,955 0 0 0 1
Moto Rider GO 100,000K 22.3 5,021 44,175 48 66 6 18
Gun Strike 50,000K 26.3 6,408 52,562 19 26 5 10
Real Cake Maker 3D 50,000K 30.7 6,878 63,386 553 720 13 224
Run Race 3D 100,000K 29.6 5,677 51,171 38 51 4 20
Game of Warriors 10,000K 26.8 5,996 56,311 7 11 3 5
MEGA QUIZ GAMING 2020 1,000K 23.4 4,681 43,173 265 331 12 97
Word Connect 10,000K 15.6 3,820 27,806 56 75 6 22

Table 2: The Statistics of How PAYMENTSCOPE Performed for Each Analyzed Game.

Vul. Game MD5 Version # ↓ # Reviews “Purchased” Item Price

N
o

-v
er

ifi
ca

ti
o

n

AE74936431D1268E6F1814F41393E916 4.3.18 100,000K 4,432,126 Android Robot $0.99
765A97DB5AC1D8C11DDEBFCAC50805FE 1.0.55 100,000K 909,418 900 Coins $0.99
C6D1E7DB5D3DAD11F3DD097260F52A9C 1.4.5 100,000K 1,142,902 1000 Coins $1.99
E6D852636E3A5B4EDB87AF70758B3405 1.3.5 100,000K 1,744,386 Remove Ads $4.49
5AAD7FF4794457E90F68BD34894FDCE7 1.1.4 50,000K 416,650 Remove Ads $1.99
1D591C2FA5687DF35D7B0F39B94D94E7 2.10 50,000K 1,502,696 5000 Coins $1.99
4D3502CEFAB5699073D64F9343A405A8 4.1.0 50,000K 230,424 6000 Coins $0.99
4FDA1515973B164603928AC80E3C57CB 2.6.9 50,000K 115,886 Remove Ads $2.99
9204AEDD6665A1BA5374A064AD2E49D6 1.185 50,000K 444,558 15 Power $1.99
22A40571718A137EA646F0073CDAD361 1.2.5 50,000K 778,685 Remove Ads $2.99

L
o

ca
l-

v
er

ifi
ca

ti
o

n

4057B81EFE3BAFEA151AF910E92AF015 1.27.1 100,000K 648,749 Special Case $1.99
9F63D671E0812355CE39CF7D1EE15BF0 4.3.39 50,000K 665,712 200 Diamonds $1.99
86D4E0E5C9DB42253A26D48A3ADCB4E1 1.21.1 50,000K 1,822,549 50 Gold $5.99
A4BE318C5CCF94FFFA74E6041A3F4632 1.4.44 10,000K 3,457,150 Bunch of Gems $0.99
A2CE43BF4E99D429ADDBB169E24928BA 1.36.05.0 10,000K 110,187 Pile of Gems $0.99
2B6D5AA12FB0D4AE3FC2303C9410E218 1.4.6 10,000K 142,123 Remove Ads $2.99
B7AB0E7969CD1E8D9D5C231769E0CF35 1.3.9 10,000K 300,158 Remove Ads $3.99
7943CD8FB582625871BC1645680D8FAB 9 10,000K 552,885 Double Coins $1.99
205F76E38A5A91E7E5FB08D4D3CE2F47 1.2.4 10,000K 464,386 125 Coins $1.99
6562953B4FAEFA34AEC3779EE2DE828E 4.4.35 10,000K 83,784 200 Diamonds $1.99

Table 3: The Detailed Case Study of the Top-10 Vulnerable Games in Each Vulnerability Category.

virtualization and repackaging. In the following, we describe

how to test them to confirm the vulnerabilities:

• Injecting fake transaction using virtualization. A

fake transaction needs to be injected to the game when

a purchase request has been initialized. In particular, we

need to hijack the return value of the purchasing API

(Step ❸ in Figure 2), and replace it with a fake success

transaction so that the game believes the transaction

has succeeded. To this end, we first launch the Payment

Request (Step ❶ in Figure 2), but we then cancel the

payment when the purchasing confirmation dialog

pops up. Through the use of virtualization [26], we

dynamically hook the Android system APIs by using

our prior work AutoForge [59], to hijack the Intent

which contains the return values (e.g., state, receipt) of

the payment transaction, this attack succeeds.

• Disabling local-verification using code patching.

Some tested games would verify the transaction locally.

Therefore, when this fake transaction receipt is passed

to CrossPlatformValidator.Validate API, it will

certainly fail the validation check if we use the original

code, but we can first patch this API to make the

validation always return true regardless of the receipt.

Note that the static binary code patching will change the

signatures of the entire game APK, and the games that

check their integrity [29] may refuse to run. As such, we

use Frida [4] to instrument the code at run time. Frida

will be enabled right before we trigger the IAP.

With the above attack techniques, we then run these 280

games to launch an in-app purchasing request. To minimize

the damages to the developers, we immediately cancel the

transaction while interacting with app store (basically at

Step ❷ shown in Figure 2). Note that this cancelling process

is through a pop-up dialog, which is transparent to the

game (and handled by the Android framework). If we can

“purchase” these virtual products for free, then we confirm

the game is indeed vulnerable.

Results. When analyzing the 220 games to quantify FPs,

we found that 30 games could not be tested. Some of them

crashed when running in our test phone; some needed an

3104 31st USENIX Security Symposium USENIX Association

Anonymized # Vul. No Local # Total Vul.

Developer ID Games Verification Verification Games Rate ∑(#↓)

1 91 91 0 91 100.00 169K
2 69 69 0 69 100.00 41,130K
3 35 35 0 35 100.00 182,321K
4 34 34 0 34 100.00 120,550K
5 33 33 0 33 100.00 37,850K
6 28 28 0 28 100.00 554K
7 25 25 0 25 100.00 1,126K
8 24 24 0 24 100.00 65,910K
9 23 23 0 23 100.00 998K
10 22 17 5 23 95.65 32,410K

Table 4: Top 10 Vulnerable Game Developers Ranked Based

on Total Number of Vulnerable Games.

update that was not available in our Google Play (i.e., United

States) due to region restriction. For the other 190 games,

all of them were vulnerable and the attacks succeeded. We

show the detailed information of the top games in Table 3.

The “purchased” item and its price are reported in last two

column of Table 3. Although the experiment shows that

PAYMENTSCOPE has no FPs, theoretically it may still have

FPs. For instance, the game may load additional code at

runtime which will perform remote-verification, or the game

uses reflection call to access receipt which is hard to detect,

though we did not witness such cases in our manual analysis.

When analyzing the 60 games to quantify FNs, we found

that 9 games cannot be tested due to the same reasons. Among

the rest of the 51 games, 37 of them are secure. The attacks

failed and some games show dialog, such as “invalid pur-

chase”. Therefore, we confirmed that the games performed

receipt verification at the server side. By intercepting the traf-

fic of the tested games, we found that the response included

both the verification result and the game state such as the

number of coins. For the other 14 games, we were still able

to purchase for free. Consequently, this eventually leads to

the FNs of 29%. By performing manual reverse engineer-

ing on the games, we found that, in some games the receipts

have indeed been sent to the servers but the responses do not

indicate that the receipts are invalid. The servers may have

just used the receipts for the logging purpose without any

receipt verification, but PAYMENTSCOPE cannot confirm this

automatically since the code of the server side is unavailable.

Therefore, it has a high FN. However, on the other hand, this

just indicates that the true rate of this vulnerability could be

even higher, which further shows how prevalent this problem

is.

(II) Top vulnerable game developers. After confirming the

FPs and FNs of PAYMENTSCOPE, we next seek to understand

why there are so many vulnerable games, who developed

them, and how many total installs these vulnerable games

have accumulated (to estimate potential losses for develop-

ers). To this end, we retrieve the developerName (as well

as the email address used for responsible disclosure) from

the metadata returned by Google Play when querying each

Anonymized No Local # Total Vul.

Developer ID ∑(#↓) Verification Verification Games Rate

A 321,100K 7 1 11 72.73
B 198,150K 11 1 16 75.00
C 182,321K 35 0 35 100.00
D 125,215K 13 1 17 82.35
E 120,550K 34 0 34 100.00
F 112,500K 4 2 14 42.86
G 100,000K 1 0 1 100.00
H 95,000K 3 3 8 75.00
I 90,000K 5 0 28 17.86
J 87,710K 17 0 31 54.84

Table 5: Top 10 Vulnerable Game Developers Ranked by

Total Number of Downloads of Vulnerable Games.

vulnerable game. We then cluster the vulnerable games by

developerName, and also accumulate the total number of

downloads. Then we rank the developers based on the to-

tal number of vulnerable games they have developed, and

also the total number downloads their vulnerable game have

accumulated.

The top 10 developers who produced the most number of

vulnerable games are listed in Table 4. We can see that the

top developer has 91 vulnerable games. Also, except the 10th

developer who has one game that is not vulnerable, all of

mobile games developed by these developers are vulnerable

to no-verification attack. The top 10 developers whose vulner-

able games have gained the most downloads are presented in

Table 5. We can see that the vulnerable games developed by

the top 7 developers have more than 100 million downloads.

Most of the vulnerabilities in these games are no-verification.

Also, interestingly, by looking at all of the games from the

corresponding developers, we found that not all of their games

are vulnerable. It could be the reasons that these games are

developed by different individuals or teams.

(III) Potential Financial Impact. To understand the financial

impact, we would like to estimate, if the vulnerabilities were

exploited, and if so, what the potential financial losses for

developers could have been. To this end, we created a heat

map in Figure 7 to show the distribution of product prices

of the vulnerable games. Specifically, we group the games

based on the number of downloads in the X-axis. Each item

in the Y-axis represents a price range. The color of each cell

indicates the percentage of the vulnerable games out of all of

the vulnerable games that provide products whose prices fall

into the corresponding price range in that specific download-

ing category. Also, for simplicity, for each game, we directly

retrieve the minimum price and maximum price of the sold

products for each game from Google Play, and use this price

information to fill the corresponding cell. According to the re-

sult presented in Figure 7, we can see that less popular games

usually sell cheaper products, and high price products are

usually sold in extremely popular games. This result makes

sense since it is more likely to have profit when having large

USENIX Association 31st USENIX Security Symposium 3105

3106 31st USENIX Security Symposium USENIX Association

to initialize a transaction, and the APIs will perform call

backs (e.g., On Success, On Failure) when the payment

provider succeeded or not to process the transaction. Then

the game can verify the transaction at the server side, or

it can perform local verification or no verification at all,

which will lead to payment bypass. To confirm this, we have

downloaded the top 5 games that are developed based on

UE4 and performed a manual study to check whether they

are vulnerable to our payment bypass attacks. Through dy-

namic analysis of the games, we found two of them (i.e.,

games with MD5 6cd6314b084514647c8f067fe34dad32

and 6e260f7d5ba30cf2c78d61b2e007a6e0) are also vul-

nerable.

Our future work will aim to automate PAYMENTSCOPE

for these games. Although PAYMENTSCOPE is targeting Unity

based games, the key observation of abstracting the payment-

bypassing vulnerability detection problem to a data flow anal-

ysis problem and solving it using taint analysis can be applied

to other game engines. However, we anticipate there will be

at least two game-engine specific challenges:

• Selecting a proper static analysis framework. Note

that game engines are often language specific. For

instance, Unity based games can be compiled to native

binary or IL bytecode (older version), libGDX based

game is in Java bytecode format, and Cocos2d based

game may in Lua script format. For a particular file

format, a proper static analysis framework is needed to

parse the game and implement the analysis algorithm.

There are some existing mature frameworks such

as Ghidra for binary and Soot for Java bytecode.

Therefore, we have to properly select the corresponding

static analysis framework for each specific engine.

• Recognizing the specific APIs in the framework.

Different game engines provide different APIs for

IAP and other functionalities. We have to identify

the corresponding APIs for the taint source (i.e., the

payment receipt definition APIs), taint sinks (e.g.,

networking APIs, receipt validation APIs), and taint

propagations (e.g., string or JSON data manipulation

APIs). However, not all of the symbols are available as

in Unity, and how to recognize them will be non-trivial.

Handling other platforms. Certainly, the identified vulner-

abilities not only exist in Android games but also iOS games.

To confirm that, we have downloaded two iOS games: Game

A with MD5 86D4E0E5C9DB42253A26D48A3ADCB4E1 and

Game B with MD5 A2CE43BF4E99D429ADDBB169E24928BA

from Table 3, through AppleJam [50]. By analyzing these two

games we found that they are consistent with the correspond-

ing Android version and vulnerable to payment-bypassing

attack.

7.4 Ethics and Responsible Disclosure

We did take ethics seriously when conducting this study. First,

when confirming FPs and FNs of the vulnerabilities (§6.3),

we did launch playing without paying attack and we chose

to “purchase” the cheapest product in the tested games for

proof-of-concept. However, in order not to cause any damages

to the developers, we then did a real purchase in a separate

transaction for the tested games. Therefore, from developer’s

perspective, there is no financial loss and they even gained

income because of our test. Second, we shared our findings

with Unity. We also learned from Unity that they have acquired

a startup company recently to particularly focus on alleviating

the developers’ efforts of server side verification. Finally, we

disclosed our identified vulnerabilities, with detailed explana-

tion (including the root cause, game detail) to all the vulner-

able games through the email they left on the Google Play.

In total, we contacted 5,494 game developers who

developed these 8,954 vulnerable games (note that some

developers developed multiple vulnerable games). Many of

the developers have acknowledged our findings. More specif-

ically, some developers promised to patch the vulnerability

as soon as possible; some replies indicate that the team will

investigate the reported issue; some developers asked for

articles where they can find more detailed information about

this attack. Also, one developer mentioned that they have

already switched to remote-verification in a later version of

the tested version; one developer stated that he/she cannot

update the game anymore due to that the source code having

been lost; one developer shared with us that there is a game

hacking tool named Lucky Patcher [20] that can actually be

used to attack no-verification games.

8 Related Work

Payment security. Wang et al. [49] studied the shopping web-

sites that allow users to use 3rd-party payment services, and

discovered that several websites (e.g., Buy.com and JR.com)

allow a malicious customer to purchase products with low

price or even for free due to the logic flaw in the payment

integration, which also exists in many e-commerce applica-

tions [47]. When moving to mobile payment, many of the

old problems such as authentication and malware threats still

exist [51], but the directly integration of payment via app store

also introduces new threats. For instance, Reynaud et al. [44]

and Lai et al. [33] found a vulnerability which can lead to pay-

ment bypassing in mobile apps with in-app purchasing. Also,

Mulliner et al. [40] designed a framework to protect the apps

from automatic in-app billing attacks. In addition, Yang et

al. [54, 55] found several flaws in 3rd-party payment SDKs in

mobile apps, rather than the Unity SDKs focused by our work

with novel native binary analysis. There are also efforts to

study the security of the mobile payment protocols [31] [56]

including the video-on-demand subscription services [35].

USENIX Association 31st USENIX Security Symposium 3107

Game security. There has been an arms race between

game cheating and anti-cheating [38]. Particularly, in the

desktop online games, numerous efforts have been made to

fight for game bots by exploiting inconsistencies [23, 37],

similarities [34], and human observational proofs [28]. There

are also efforts to defeat secret revealing in game states

such as exploring private set intersection protocols as in

OpenConflict to protect game maps [24], and also Intel SGX

to defeat wallhacks as in BlackMirror [42]. In the mobile

games, Tian et al. [48] studied the existing attacks such as

modification of memory and network traffic in the mobile

game cheating, and also provided a reference framework

for the game defense. This study has particularly mentioned

the untrusted client attack, and our work provides concrete

evidences for such attacks and their potential impact.

Binary analysis. Binary analysis is a powerful technique for

vulnerability identification. Over the past decades, a large

body of research has been carried out of either improving

the binary analysis itself or applying binary analysis for

vulnerability discovery, as summarized by Shoshitaishvili

et al. [46]. Built with foundation techniques including pro-

gram slicing [52], data flow analysis [32, 53] (or taint analy-

sis [25,41,57]), PAYMENTSCOPE complements existing work

by exploring the direction of mobile game binary analysis

and focusing on detecting the in-game purchasing bypassing

vulnerabilities.

9 Conclusion

We have presented PAYMENTSCOPE, a static binary analysis

tool built on top of Ghidra to automatically identify vulnerable

in-app purchasing implementations in mobile games binaries

developed by the Unity SDK. The key idea is to model the

vulnerability detection problem using a payment-aware data

flow analysis, and leverage the metadata inside Unity game for

the binary analysis. We have implemented PAYMENTSCOPE

and tested with 39,121 games. Surprisingly, our tool has iden-

tified 8,233 games that do not verify the validity of payment

transactions and 721 games that simply verify the transactions

locally. Such a high rate of vulnerability shows how preva-

lent the insecure programming practice (by misplacing the

trust) is for in-app purchasing. Finally, to really make in-game

purchasing secure, we believe SDK providers should provide

APIs to ease the server side payment verification.

Acknowledgment

We thanks the anonymous reviewers for their invaluable feed-

backs. This research was supported in part by NSF award

1834215. Any opinions, findings, and conclusions or recom-

mendations in this paper are those of the authors and do not

necessarily reflect the views of the NSF.

References

[1] “Apkmody - download mod apk games & premium apps,” https://

apkmody.io/, (Accessed on 2/12/2022).

[2] “The best 10 mobile game engines and development platforms & tools

in 2019 | computools,” https://computools.com/the-best-10-mobile-

game-engines-and-development-platforms-tools-in-2019/.

[3] “Creating and Using Scripts,” https://docs.unity3d.com/Manual/

CreatingAndUsingScripts.html.

[4] “Frida - Dynamic instrumentation toolkit for developers, reverse-

engineers, and security researchers.” https://github.com/frida/frida.

[5] “Github - nationalsecurityagency/ghidra: Ghidra is a soft-

ware reverse engineering (sre) framework,” https://github.com/

NationalSecurityAgency/ghidra, (Accessed on 2/13/2022).

[6] “Il2CppDumper,” https://github.com/Perfare/Il2CppDumper.

[7] “Microsoft Azure PlayFab | Full Stack LiveOps, Real-time Control,”

https://playfab.com/pricing/.

[8] “News, free games and program for android,” https://an1.com, (Ac-

cessed on 2/12/2022).

[9] “NHN AppGuard,” https://www.toast.com/kr/service/security/nhn-

appguard.

[10] “P-code reference manual,” https://github.com/

NationalSecurityAgency/ghidra/blob/master/GhidraDocs/languages/

html/pcoderef.html, (Accessed on 2/13/2022).

[11] “Receipt validation programming guide,” https://developer.apple.com/

library/archive/releasenotes/General/ValidateAppStoreReceipt/

Chapters/ValidateLocally.html#//apple_ref/doc/uid/TP40010573-

CH1-SW9, (Accessed on 2/13/2022).

[12] “Rest resource: purchases.subscriptions,” https://

developers.google.com/android-publisher/api-ref/rest/v3/

purchases.subscriptions, (Accessed on 2/12/2022).

[13] “Setting up a publisher account,” https://developer.android.com/google/

play/licensing/setting-up#account, (Accessed on 2/13/2022).

[14] “The future of scripting in Unity,” https://blogs.unity3d.com/2014/05/

20/the-future-of-scripting-in-unity/.

[15] “The ultimate mobile in-app purchases guide,” https://instabug.com/

blog/mobile-in-app-purchases/, (Accessed on 2/12/2022).

[16] “Unity real-time development platform | 3d, 2d vr & ar engine,” https:

//unity.com/.

[17] “Using in-app purchases,” https://docs.unrealengine.com/en-US/

SharingAndReleasing/Mobile/InAppPurchases/index.html, (Accessed

on 2/12/2022).

[18] “Video game market revenue worldwide in 2021,” https:

//www.statista.com/statistics/292751/mobile-gaming-revenue-

worldwide-device/, (Accessed on 2/12/2022).

[19] “Multiple APK support | Android Developers,” Dec 2019,

[Online; accessed 18. Feb. 2022]. [Online]. Available:

https://developer.android.com/google/play/publishing/multiple-apks

[20] “Lucky Patcher Official Website By ChelpuS - Lucky Patcher,”

Jan 2021, [Online; accessed 18. Feb. 2022]. [Online]. Available:

https://www.luckypatchers.com

[21] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:

Collecting millions of android apps for the research community,” in

Proceedings of the 13th International Conference on Mining Software

Repositories, ser. MSR ’16. New York, NY, USA: ACM, 2016, pp. 468–

471. [Online]. Available: http://doi.acm.org/10.1145/2901739.2903508

[22] E. Bauman and Z. Lin, “A case for protecting computer games with sgx,”

in Proceedings of the 1st Workshop on System Software for Trusted

Execution (SysTEX’16), Trento, Italy, December 2016.

3108 31st USENIX Security Symposium USENIX Association

[23] D. Bethea, R. A. Cochran, and M. K. Reiter, “Server-side verification

of client behavior in online games,” ACM Transactions on Information

and System Security (TISSEC), vol. 14, no. 4, pp. 1–27, 2008.

[24] E. Bursztein, M. Hamburg, J. Lagarenne, and D. Boneh, “Opencon-

flict: Preventing real time map hacks in online games,” in 2011 IEEE

Symposium on Security and Privacy. IEEE, 2011, pp. 506–520.

[25] S. Chen, Z. Lin, and Y. Zhang, “{SelectiveTaint}: Efficient data flow

tracking with static binary rewriting,” in 30th USENIX Security Sympo-

sium (USENIX Security 21), 2021, pp. 1665–1682.

[26] D. Dai, R. Li, J. Tang, A. Davanian, and H. Yin, “Parallel space trav-

eling: A security analysis of app-level virtualization in android,” in

Proceedings of the 25th ACM Symposium on Access Control Models

and Technologies, 2020, pp. 25–32.

[27] C. Eagle, The IDA pro book. no starch press, 2011.

[28] S. Gianvecchio, Z. Wu, M. Xie, and H. Wang, “Battle of botcraft: fight-

ing bots in online games with human observational proofs,” in Proceed-

ings of the 16th ACM conference on Computer and communications

security, 2009, pp. 256–268.

[29] M. Ibrahim, A. Imran, and A. Bianchi, “Safetynot: on the usage of

the safetynet attestation api in android,” in Proceedings of the 19th

Annual International Conference on Mobile Systems, Applications, and

Services, 2021, pp. 150–162.

[30] S. Jeon and H. K. Kim, “Tzmon: Improving mobile game security with

arm trustzone,” Computers & Security, vol. 109, p. 102391, 2021.

[31] S. Kadhiwal and A. U. S. Zulfiquar, “Analysis of mobile payment

security measures and different standards,” Computer Fraud & Security,

vol. 2007, no. 6, pp. 12–16, 2007.

[32] U. Khedker, A. Sanyal, and B. Sathe, Data flow analysis: theory and

practice. CRC Press, 2017.

[33] Y.-c. Lai and M. Husain, “A holistic approach for securing in-app

purchase (iap) vulnerability in mobile applications.”

[34] E. Lee, J. Woo, H. Kim, A. Mohaisen, and H. K. Kim, “You are a game

bot!: Uncovering game bots in mmorpgs via self-similarity in the wild.”

in Ndss, 2016.

[35] S. Lee, J. Kim, S. Ko, and H. Kim, “A security analysis of paid sub-

scription video-on-demand services for online learning,” in 2016 In-

ternational Conference on Software Security and Assurance (ICSSA).

IEEE, 2016, pp. 43–48.

[36] S. Lidin, Inside Microsoft. net il assembler. Microsoft Press, 2002.

[37] D. Liu, X. Gao, M. Zhang, H. Wang, and A. Stavrou, “Detecting passive

cheats in online games via performance-skillfulness inconsistency,” in

2017 47th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN). IEEE, 2017, pp. 615–626.

[38] G. McGraw, Exploiting online games: cheating massively distributed

systems. Addison-Wesley, 2008.

[39] A. Mendoza and G. Gu, “Mobile application web api reconnaissance:

Web-to-mobile inconsistencies & vulnerabilities,” in 2018 IEEE Sym-

posium on Security and Privacy (SP). IEEE, 2018, pp. 756–769.

[40] C. Mulliner, W. Robertson, and E. Kirda, “Virtualswindle: An auto-

mated attack against in-app billing on android,” in Proceedings of the

9th ACM symposium on Information, computer and communications

security, 2014, pp. 459–470.

[41] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic

detection, analysis, and signaturegeneration of exploits on commodity

software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3–4.

[42] S. Park, A. Ahmad, and B. Lee, “Blackmirror: Preventing wallhacks

in 3d online fps games,” in Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security, 2020, pp. 987–

1000.

[43] E. Peckham, “Unity ipo aims to fuel growth across gaming and be-

yond,” https://techcrunch.com/2020/09/10/how-unity-built-a-gaming-

engine-for-the-future/, (Accessed on 2/12/2022).

[44] D. Reynaud, D. X. Song, T. R. Magrino, E. X. Wu, and E. C. R. Shin,

“Freemarket: Shopping for free in android applications.” in NDSS, 2012.

[45] M. Sharir, A. Pnueli et al., Two approaches to interprocedural data flow

analysis. New York University. Courant Institute of Mathematical

Sciences . . . , 1978.

[46] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,

A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state

of) the art of war: Offensive techniques in binary analysis,” in 2016

IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp.

138–157.

[47] F. Sun, L. Xu, and Z. Su, “Detecting logic vulnerabilities in e-commerce

applications.” in NDSS, 2014.

[48] Y. Tian, E. Chen, X. Ma, S. Chen, X. Wang, and P. Tague, “Swords

and shields: a study of mobile game hacks and existing defenses,” in

Proceedings of the 32nd Annual Conference on Computer Security

Applications, 2016, pp. 386–397.

[49] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to shop for free

online–security analysis of cashier-as-a-service based web stores,” in

2011 IEEE Symposium on Security and Privacy. IEEE, 2011, pp.

465–480.

[50] Y. Wang, Y. Xie, and J. Li, “Applejam: An open dataset for ios app

binary code analysis,” https://github.com/xros-wyz/AppleJam, 2021,

accessed: 2021-06-01.

[51] Y. Wang, C. Hahn, and K. Sutrave, “Mobile payment security, threats,

and challenges,” in 2016 second international conference on mobile

and secure services (MobiSecServ). IEEE, 2016, pp. 1–5.

[52] M. Weiser, “Program slicing,” IEEE Transactions on software engi-

neering, no. 4, pp. 352–357, 1984.

[53] H. Wen, Z. Lin, and Y. Zhang, “Firmxray: Detecting bluetooth link

layer vulnerabilities from bare-metal firmware,” in Proceedings of the

2020 ACM SIGSAC Conference on Computer and Communications

Security, 2020, pp. 167–180.

[54] W. Yang, J. Li, Y. Zhang, and D. Gu, “Security analysis of third-party in-

app payment in mobile applications,” Journal of Information Security

and Applications, vol. 48, p. 102358, 2019.

[55] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu, “Show

me the money! finding flawed implementations of third-party in-app

payment in android apps.” in NDSS, 2017.

[56] Q. Ye, G. Bai, N. Dong, and J. S. Dong, “Inferring implicit assumptions

and correct usage of mobile payment protocols,” in International Con-

ference on Security and Privacy in Communication Systems. Springer,

2017, pp. 469–488.

[57] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:

capturing system-wide information flow for malware detection and

analysis,” in Proceedings of the 14th ACM conference on Computer

and communications security, 2007, pp. 116–127.

[58] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak? uncovering

the data leakage in cloud from mobile apps,” in Proceedings of the

2019 IEEE Symposium on Security and Privacy, San Francisco, CA,

May 2019.

[59] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic forgery of cryp-

tographically consistent messages to identify security vulnerabilities

in mobile services,” in Proceedings of the 23rd Annual Network and

Distributed System Security Symposium (NDSS’16), San Diego, CA,

February 2016.

USENIX Association 31st USENIX Security Symposium 3109

Shared Object File Name # Appearances Type Game Engine?

libmain.so 108,408 Unity ✓

libunity.so 107,694 Unity ✓

libmono.so 65,105 Unity ✓

libil2cpp.so 39,121 Unity ✓

libgpg.so 15,851 Library
libgdx.so 9,480 libGDX ✓

libCore.so 9,428 Adobe Air ✓

libysshared.so 9,427 Adobe Air ✓

libc++_shared.so 8,691 Library
libswappy.so 6,973 Library
libswappyVk.so 6,967 Library
libopenal.so 6,811 Library
libplayer.so 6,118 Buildbox ✓

libFirebaseCppAnalytics.so 5,304 Library
libstlport_shared.so 4,680 Library
libMyGame.so 4,668 Cocos2d ✓

libyoyo.so 4,406 GameMaker ✓

libjs.so 4,373 Library
libcocos2dcpp.so 4,145 Library
libadcolony.so 4,132 Library
libgdx-box2d.so 3,858 libGDX ✓

libmonobdwgc-2.0.so 3,655 Unity ✓

libstagefright_froyo.so 3,632 Adobe Air ✓

libstagefright_honeycomb.so 3,632 Adobe Air ✓

libgdx-freetype.so 3,574 libGDX ✓

libgnustl_shared.so 2,409 Library
liblua.so 2,367 Library
libmpg123.so 2,355 Library
libFirebaseCppMessaging.so 2,338 Library
libads.so 2,230 Corona ✓

libjnlua5.1.so 2,196 Library
libxwalkcore.so 2,179 Library
libxwalkdummy.so 2,091 Library
libalmixer.so 2,064 Corona ✓

libcorona.so 2,064 Corona ✓

libanalytlibgameNetworkics.so 2,052 Library
libgameNetwork.so 2,047 Library
liblicensing.so 2,047 Library
libMonoPosixHelper.so 1,695 Library
libAnalytics.so 1,651 Library
libcocos2djs.so 1,578 Cocos2d ✓

libApp.so 1,547 Unity ✓

libsqlite3.so 1,526 Library
libplugins.so 1,487 Corona ✓

libeasymobile.so 1,467 Library
libimagepipeline.so 1,407 Library
libUE4.so 1,319 Unreal Engine 4 ✓

libgsengine.so 1,295 GameSalad ✓

libFirebaseCppRemoteConfig.so 1,279 Library
libgame.so 1,237 Cocos2d ✓

libmonosgen-2.0.so 1,223 Unity ✓

libmonodroid.so 1,216 Unity ✓

libBugly.so 1,177 Library
libgodot_android.so 1,147 Godot ✓

libNativeABI.so 1,138 Adobe Air ✓

libandengine.so 1,136 AndEngine ✓

libfb.so 1,126 Library
libfolly_json.so 1,123 Library
libglog.so 1,123 Library
libreactnativejni.so 1,123 Library
libglog_init.so 1,121 Library
libFirebaseCppCrashlytics.so 1,113 Library
libcrashlytics.so 1,110 Library
libyoga.so 1,100 Library
libFirebaseCppAuth.so 1,084 Library
libjsc.so 1,070 Library
libVuforia.so 1,067 Vuforia Engine ✓

Shared Object File Name # Appearances Engine Name Market Share

libmain.so 108,408 Unity 71.94%
libgdx.so 9,480 libGDX 6.29%
libCore.so 9,428 Adobe Air 6.26%
libplayer.so 6,118 Buildbox 4.06%
libMyGame.so 4,668 Cocos2d 3.10%
libyoyo.so 4,406 GameMaker 2.92%
libads.so 2,230 Corona 1.48%
libUE4.so 1,319 Unreal Engine 4 0.88%
libgsengine.so 1,295 GameSalad 0.86%
libgodot_android.so 1,147 Godot 0.76%
libandengine.so 1,136 AndEngine 0.75%
libVuforia.so 1,067 Vuforia Engine 0.71%

Table 6: Detailed Information about Shared Objects in Mobile

Games with the Estimated Game Engine Market Share.

A Measuring the Popularity of Game Engines

Today, there are many mobile game engines, such as Unity,

Unreal Engine and Cocos2D. However, it is unclear how popular

mobile game engines really are among the mobile games. To

answer this question, we have thus performed a measurement

study with 293,019 mobile games crawled from Google Play.

Our key insight is that the shared objects in the games that

developed with the same engine should have the same names.

For instance, the games developed with Unity should have

shared objects libmain.so; the games developed with Unreal

Engine should have shared objects libUE4.so.

As such, we first unpacked each game and collected its

shared objects. For each shared object name, we count the

number of games that contains it. Then we focus on the shared

objects that appeared in more than 1,000 games as presented

in the first column of Table 6. However, for many shared

objects, it is hard to tell which game engines they belong to

based on their names. So we performed a manual investigation

to find out such information with two strategies.

• Reverse engineering of popular game engine based

on the available games (bottom-up). For each popular

game engine, we downloaded 5 games that have devel-

oped with it. Through reverse engineering, we find out

the names of shared objects they should have in the re-

leased games. In addition, by looking at the strings or the

exported method names of the shared objects, we find

clues about the game engine such as the engine name.

• Search engine, such as Google (top-down). A game

engine typically has a forum, while developers dis-

cussing bugs, they may post logs (may contain shared

object names). And the search engine will collect such

information. So searching the shared object name may

lead us to the forum. And eventually help us identify the

game engine.

With our manual investigation, we find out that a shared object

can fall into two category: (1) a game engine, (2)a general

library (e.g., libc++, advertisement library). The detailed re-

sults are presented in Table 6. From this information, we have

identified 12 popular game engines. For each game engine,

we use the appearance number of its highest shared object as

its market share. Then we created a pie chart for the market

share as shown in Figure 1. It is clear that Unity Engine is

holding the dominant market position.

Note that, not all the games are developed with games

engines. We found that 116,084 (39.62%) games that do not

contain shared objects. Those games are normally simple

games (e.g., puzzles such as com.puzzle.mathpuzzle) that

do not need fancy UI, and they are developed in pure Java. In

addition, the binaries of some games are missing in AndroZoo

due to Multiple APK feature as mentioned in §6.1.

3110 31st USENIX Security Symposium USENIX Association

	Introduction
	Background
	Overview
	The Problem, Threat Model, and Scope
	Running Examples
	Challenges and Insights

	Metadata Extraction
	Payment-Aware Data Flow Analysis
	Identifying Payment-Data Definition
	Tracking Payment-Data Propagation
	Vulnerability Detection

	Evaluation
	Experiment Setup
	Evaluation Results
	Vulnerability Analysis

	Discussion
	Root Causes
	Limitations
	Future Work
	Ethics and Responsible Disclosure

	Related Work
	Conclusion
	Measuring the Popularity of Game Engines

