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Abstract
As one of the most popular C++ extensions for developing
graphical user interface (GUI) based applications, Qt has
been widely used in desktops, mobiles, IoTs, automobiles,
etc. Although existing binary analysis platforms (e.g., angr
and Ghidra) could help reverse engineer Qt binaries, they still
need to address many fundamental challenges such as the
recovery of control flow graphs and symbols. In this paper,
we take a first look at understanding the unique challenges and
opportunities in Qt binary analysis, developing enabling tech-
niques, and demonstrating novel applications. In particular,
although callbacks make control flow recovery challenging,
we notice that Qt’s signal and slot mechanism can be used to
recover function callbacks. More interestingly, Qt’s unique
dynamic introspection can also be repurposed to recover
semantic symbols. Based on these insights, we develop
QTRE for function callback and semantic symbol recovery
for Qt binaries. We have tested QTRE with two suites of Qt
binaries: Linux KDE and the Tesla Model S firmware, where
QTRE additionally recovered 10,867 callback instances and
24,973 semantic symbols from 123 binaries, which cannot
be identified by existing tools. We demonstrate a novel
application of using QTRE to extract hidden commands
from a Tesla Model S firmware. QTRE discovered 12 hidden
commands including five unknown to the public, which can
potentially be exploited to manipulate vehicle settings.

1 Introduction
Qt [12] is a cross-platform software development framework
with rich software modules and libraries (e.g., graphical wid-
gets, networking, and database). It facilitates the development
of various C++ programs, especially applications with graph-
ical user interfaces (GUIs). So far, Qt has attracted millions
of developers worldwide, and together they have produced
numerous Qt applications across over 70 industries [13].
Today, Qt is ubiquitous not only in operating system interfaces
(e.g., Linux KUbuntu and BlackBerry mobile OS) and
commercial software (e.g., Adobe software, Teamviewer, and
VirtualBox), but also embedded IoT devices (e.g., LG smart

TV WebOS). Qt has also been increasingly used in security-
critical domains such as medical applications, industrial
automation, and automotive systems [13] (e.g., the in-vehicle
infotainment systems in Mercedes and Tesla vehicles).

Since Qt plays an important role in many modern
applications, it is imperative to ensure that Qt binaries are
free of vulnerabilities and hardened. Fundamentally, one key
approach to achieving these security goals is to enable reverse
engineering (RE) of Qt. Although there have been numerous
techniques and frameworks for binary RE (e.g., BitBlaze [63],
BAP [26], BinaryNinja [3], angr [61], and Ghidra [4]), which
can certainly be applied to Qt binary analysis, they are not
perfect and still need to address many fundamental RE
challenges. For example, control flow graph (CFG) recovery
is essential for any RE tasks but challenging due to the indirect
control flow transfers such as callbacks [23, 27, 53, 67].
Meanwhile, although program symbols are extremely useful,
they are often stripped in released binaries, making it
non-trivial to recover them from the binary code [44, 45,
59, 62, 66]. Therefore, any advancement towards CFG and
symbol recovery will tremendously help RE for Qt binaries.

Interestingly, new problems also come with new op-
portunities. We notice that the two unique features in
Qt: (1) the signal and slot mechanism for implementing
callbacks and (2) dynamic introspection for run-time class
member query and update, can be repurposed to resolve
the aforementioned two fundamental RE challenges for
Qt binary analysis. Specifically, while the signal and slot
mechanism provides a standard way for Qt programmers to
register function callbacks, it also enables reverse engineers
to identify function callback targets for CFG recovery. More
interestingly, we find that the semantic symbols (e.g., the
names of variables and functions, and their corresponding
addresses and types) can be recovered by repurposing
Qt’s dynamic introspection. Meanwhile, unlike existing
approaches which cannot guarantee 100% accuracy for
symbol recovery [38, 44, 45, 59, 62, 66], we can achieve
this for Qt because fundamentally these symbols must be
preserved in support of its dynamic introspection.



Based on these insights, we present QTRE, the first tool
that leverages Qt’s unique features for Qt binary RE. Although
it may seem trivial to realize QTRE, we still have to solve two
main challenges. First, identifying function callback targets re-
quires us to not only resolve the callback function signatures,
but also infer the correct class types due to the polymorphism
in C++ [53]. Second, after extracting symbol strings from
Qt’s internal data structures and tables, we still need to map
them (e.g., property symbols) to the corresponding addresses,
which are often relative and dynamically computed.

We have addressed these challenges through novel
approaches including a source-aware class inference to
resolve callbacks and a unit-level symbolic execution
to compute symbol addresses. We have implemented
QTRE atop the open-source binary analysis framework
Ghidra [4]. To evaluate QTRE, we selected two suites of
Qt software binaries: open-source KDE [6], and closed-
source infotainment software from a Tesla Model S. Among
the 123 binaries in total, QTRE additionally recovered
10,867 callback instances and identified 24,973 semantic
symbols, which cannot be extracted through other static binary
analysis tools such as Ghidra and angr. Through manual
validation with 16 binaries from the open-source KDE suite,
we successfully validated 598 callbacks and 1,161 symbols,
and we did not find any false positives. However, we did
observe 15% false negatives among the recovered callbacks
and three false negatives in symbol recovery, which are caused
by indirect function calls and memory aliasing [30, 46].

There could be multiple applications with QTRE, such
as coverage-based fuzzing to identify vulnerabilities in
GUI-rich Qt binaries. In this paper, we instead demonstrate a
novel application of using input validation analysis to extract
hidden commands from the Tesla infotainment software,
based on the Qt-unique callbacks and symbols recovered
by QTRE. To our surprise, among the 43 Tesla Qt binaries,
QTRE detected 12 hidden commands that can be triggered
by user inputs. Among them, five commands are unknown to
the public, which can be potentially exploited to manipulate
vehicle settings or leak sensitive user data of the vehicle.

Contributions. Our paper makes the following contributions:

• We are the first to propose effective techniques for CFG and
symbol recovery in Qt binary RE (§3), by leveraging Qt’s
unique signal and slot as well as its dynamic introspection.
• We designed (§4) and implemented QTRE (§5), an

open-source tool to facilitate Qt binary analysis. It uses a
source-aware class inference to resolve indirect call targets
of function callbacks, and a unit-level symbolic execution
to recover semantic symbols.
• We evaluated QTRE on KDE and Tesla Model S firmware,

where it additionally recovered 10,867 callbacks and
24,973 symbols (§6). From the Tesla firmware, it discov-
ered 12 hidden commands with five new to the public (§7).

2 Qt Primer

Qt has many powerful features and attracted millions of
developers [13]. In particular, Qt is cross-platform and
supports various architectures (e.g., x86 and ARM) and
operating systems (e.g., Windows, Linux, MacOS, Android,
iOS, and QNX). Meanwhile, Qt is cross-language and
provides bindings for many widely used programming
languages such as python, R, and Go [7]. In addition, Qt also
offers a number of unique mechanisms that allow developers
to easily implement functions not available in native C++,
such as dynamic object introspection. Fundamentally,
all of these important features are rooted on Qt’s Meta-
Object Compiler (MoC) [20]. Specifically, the MoC can
automatically generate C++ code (e.g., built-in functions and
special data structures such as string tables) for Qt-based
classes (i.e., those inherited from the Qt base class QObject).

Prevalence. To understand the prevalence of Qt among nu-
merous C++ programming frameworks, we conducted an em-
pirical measurement by counting the Github code repositories
developed based on different C++ frameworks. We provide
their distributions in Table 8 in Appendix for reader’s interest.
According to the results, Qt is arguably the most dominant
framework for developing C++ applications with over 45K
repositories, nearly 3X of the second-place ROS. The details
of the measurement study are presented in Appendix §A.

Application. Qt has been used by many applications. In
particular, Tesla uses Qt to develop its in-vehicle system (IVS).
Fundamentally, the Tesla IVS runs a Linux kernel-based
Ubuntu OS with Nvidia Tegra CPUs (ARM architecture) to
support high quality GUI [47]. At a high level, it can be di-
vided into the front-end (for direct Qt-based GUI interactions)
and the back-end (for internal network and control logic). On
the front-end side, there is a central information display (CID),
which is commonly known as the infotainment system, and
an instrument cluster (IC). By default, the CID has many
pre-installed Qt applications such as browser, navigation,
and hands-free calls. On the back-end side, the parrot and
sierra module handle network communications (e.g., Wi-Fi,
Bluetooth, and cellular network) including the Tesla cloud.

3 Overview

3.1 Objective

Reverse engineering (RE) of binaries is fundamental in
computer security. In addition to binary code comprehen-
sion [48, 68], RE has been the fundamental building block
of many security applications, including but not limited
to vulnerability discovery [27, 28, 61, 71, 78], malware
analysis [25, 33, 35, 73, 74], binary retrofitting [21, 29, 54,
55, 70, 72, 75] , and exploit generation [24, 36, 37, 61]. In
this paper, we present QTRE, a static binary analysis tool to
facilitate reverse engineering of Qt binaries. In particular, it



1  MainWindow::MainWindow() {
2 ...
3 // Create lineEdit instance
4 v0 = operator.new(0x30)
5 QLineEdit(v0)
6    *(this + 0x30) = v0
7 ...
8    // Register callbacks
9 connect(*(this+0x30),“2textChanged(QString)”
10           , this, “1updateText(QString)”, 0)
11
12 connect(*(this+0x30),“2editingFinished()”
13 , this, “1handleInput()”, 0)
14   ...
15 }

16 MainWindow::updateText(QString v1) {
17 // Slot
18 if (v1 != null)
19 *(this + 0x48) = v1 // this->text
20 }

21 MainWindow::handleInput() {
22 // Slot
23 v1 = *(this + 0x48)    // this->text
24 if (v1 == “secret”) {
25 // Dynamic introspection
26       this->setProperty(“text”, “test”)
27       qDebug() << v1  // Will print out “test”
28   }
29 }

textChanged editing
Finished

Index
Name 
Index

Type

0 0 QString

Index String

0 text

Property Table

String Table

30 MainWindow::qt_metacall(… int v1, void** v2) {
31 ...
32 if (v1 == 0) {
33 // Set property value by index
34 *(this + 0x48) = (QString) v2
35   }
36 }

Metadata

Query 
index

Invoke 
qt_metaCall
v1 = 0
v2 = “test”

Signals

Figure 1: An example illustrating Qt binary internals.

attempts to address two fundamental challenges of RE: (1)
control flow graph (CFG) recovery and (2) symbol recovery.

3.2 Key Insights
The recovery of CFG and symbols is fundamentally
challenging due to indirect control flow transfer and code
stripping [27, 53, 67]. Moreover, while existing analysis
tools [3–5, 61] can be applied to Qt binary analysis, they
will miss many Qt-specific callbacks and stripped symbols.
Interestingly, we observe that two unique Qt mechanisms:
(1) signal and slot, and (2) dynamic introspection can be
leveraged for QTRE’s objective, leading to two key insights.
First, Qt’s signal and slot mechanism provides a unique way
to efficiently implement function callbacks, which can also be
used to identify function callback targets for CFG recovery.
Second, while Qt’s dynamic introspection is for run-time
variable query and update, we surprisingly find that such
a process can be repurposed to recover symbols. In the
following, we present the details of these two key insights.

Insight 1: Leveraging Qt’s Signal and Slot. Function
callbacks are extremely common in GUI applications due
to the handling of UI events and asynchronous function calls.
However, C++ provides neither standard APIs nor official
guide for callback implementation, and thus programmers
have to use function pointers to implement callbacks, which
is error-prone and makes the code much less readable and
maintainable. As such, Qt introduces the signal and slot

mechanism [19] to address this issue. Essentially, signals
and slots are functions defined with special macros (signals
and slots), where a signal represents an event that an object
fires, and a slot captures the event of its interest.

We further illustrate exactly how Qt’s signal and slot work
with a running example in Figure 1. At lines 9-13, the program
registers two callback functions by invoking a Qt library
function connect. Using the call site at line 9 as an example,
the function takes five parameters as input, including the
signal class object (a QLineEdit object), the signal function
signature (2textChanged(QString))1, the slot class object
(a MainWindow instance pointed by a this pointer),
the slot function signature (1updateText(QString)), and
the connection type (0, indicating that the callback is
synchronous). After the connection is established, when a
user enters some text in the QLineEdit UI widget, the slot
function (lines 16-20) will be automatically notified to update
the text variable. Fundamentally, the registered callbacks
are stored in a connection list (i.e., a linked list) of the
involved class objects. When a signal is emitted, the class
object internally triggers a Qt library function activate to
invoke the slot function from the connection list [16].

The above example shows that Qt’s signal and slot can be
used to recover function callbacks, which cannot be identified
by other generic binary RE tools [4, 5]. Essentially, the task
is to analyze the standard connect function and resolve the
pair of the signal (i.e., caller) and the slot (i.e., callee) from
the function parameters to establish the callback connection.

Insight 2: Repurposing Qt’s Dynamic Introspection.
Another distinctive feature of Qt is its dynamic introspection,
a feature useful for run-time query and update of class
attributes. To use dynamic introspection, a class member first
needs to be registered as a property2 by using a Q_PROPERTY
macro [10]. Fundamentally, to support dynamic introspection,
the MoC will collect the necessary meta-information and
generate the corresponding code during compilation, which
will be invoked at run-time for introspection [14, 20].

We use lines 21-29 of Figure 1 to illustrate how dynamic
introspection works in Qt. First, the slot handleInput at line
21 is triggered by the signal editingFinished when the user
finishes entering a string from the GUI. The slot then takes
the input variable at memory location this+0x48 (line 23),
and compares it with a constant string “secret” (line 24).
If the variable matches the string, setProperty is invoked
to set the property value of text as “test” using dynamic
introspection at line 26. Since such an update occurs internally
in the Qt library (not directly visible to programmers) with
complicated procedures, we explain it in a simplified manner.
Specifically, the program first uses the property name “text”
to query its index from the metadata tables. By associating
the name index 0 from the string and property table, it

1Constants 1 and 2 are macros to indicate a slot or a signal function.
2A property is essentially a class member with additional features.



obtains the property index which is also 0. Next, the function
qt_metacall is invoked along with the property index 0
and the updated value “test” as arguments, and the purpose
is to store the value to the property’s memory address at
this+0x48 (line 34). Finally, the program at line 27 will
print out “test” on the console even though the input string
is “secret”, indicating that the variable has been updated.

Based on how dynamic introspection works, we notice
that unlike C++ binaries, Qt binaries must preserve semantic
symbols to support this feature, which makes the recovery
of actual semantic symbols possible. More specifically, by
repurposing the introspection process, we can reveal the
semantic symbols from the special data structures (e.g.,
metadata tables) and functions (e.g., qt_metacall) in Qt.
Compared with existing symbol recovery approaches [38,
44, 45, 59, 62, 66, 69, 70], our solution recovers the symbols
instead of inferring them, as the recovered symbols are indeed
the ones from the source code.

3.3 Scope and Assumption
We focus exclusively on Qt binaries and assume these binaries
are not stripped, and no anti-RE techniques are deployed so
that they can be disassembled using existing RE tools such
as Ghidra. For CFG recovery, we aim to identify callbacks
implemented by Qt’s signal and slot as they are Qt-specific,
whereas other CFG recovery challenges such as indirect
function calls are handled by existing approaches [46, 53, 67]
and are not unique to Qt. For symbol recovery, QTRE recovers
symbols that can only be extracted using Qt’s dynamic
introspection.

4 QTRE Design

This section presents the design of QTRE. First, we illustrate
how Qt’s signal and slot are used to recover function callbacks
(§4.1). Next, we describe how Qt’s dynamic introspection is
repurposed to recover semantic symbols (§4.2).

4.1 Identification of Function Callback Target

Challenges. Recall in §3.2, the essence of function callback
identification is to resolve the signal and slot [19] from the
connect function parameters. As shown in Table 1, the
connect function has five parameters: (1) the signal class
instance, (2) the signal function, (3) the slot class instance,
(4) the slot function, and (5) the connection type. Although
the signal and slot functions can be easily resolved as they are
hardcoded strings that represent the function signatures, this
is still not sufficient due to the polymorphism in C++ [53]. For
instance, if class A has a function foo, then any class inherited
from A can override function foo. Thus, only knowing the
function signatures cannot accurately resolve the callback
target, and we must use both the signature and class to

Type Name Param.0 Param.1 Param.2 Param.3 Param.4

Signal Class Signal Sig. Slot Class Slot Sig. Type

1 connect QObject* fptr* QObject* fptr* int
2 connect QObject* char* QObject* char* int

Table 1: Connect functions and argument types.

uniquely identify the target. However, as shown in the running
example, there are various ways to derive a class instance. For
example, the signal class object at line 9 is initialized by a
new operator (essentially a heap variable), whereas the slot
class object is pointed by a this pointer.

Solution. While there are many ways to derive a class object,
we observe that there are a finite number of sources. In
summary, there are six different sources, including (1) this
pointer, (2) function parameter, (3) function return value,
(4) global variable, (5) heap variable, and (6) stack variable.
Therefore, to resolve the signal and slot classes, we first trace
the use-def [22] chains of the corresponding parameters in
the connect function. Next, based on the data definition of
the class object, we use a set of source-aware inference rules
to infer the class. In the following, we illustrate in greater
detail how QTRE identifies function callbacks.

4.1.1 The connect Call Sites Identification

The first step of callback identification is to locate the
connect function call sites. To achieve comprehensiveness,
we exhaustively looked into the Qt’s official documentations
and found that there are only two types of connect functions
(i.e., type-1 and type-2) [19], as presented in Table 1. For
both functions, the parameters 0 to 3 correspond to the signal
class object, the signal function signature, the slot class
object, and the slot function signature, respectively. The last
integer parameter indicates the type of connection (whether
the connection is synchronous or asynchronous). These two
functions are different in parameters 1 and 3, as type-1 directly
uses function pointers to denote the functions, whereas type-2
uses strings as function signatures. Note that type-1 is only
available after Qt version-5 [19]. As a result, QTRE locates
these two types of connect functions in the binary based on
their signatures and then identifies their call sites.

4.1.2 Source-aware Class Inference

QTRE then resolves the signal and slot from the parameters
of connect. Since there are two types of connect functions,
QTRE uses two strategies accordingly: (1) for type-1
connect, by resolving the addresses to which the function
pointer points, QTRE can determine the signal and slot.
Therefore, it only needs to resolve parameters 1 and 3 in
Table 1; (2) for type-2 connect, QTRE has to resolve all the
pointer types (i.e., parameters 0-3) including the class object
pointers, since a callback target is determined by both the
class and the function signature due to the polymorphism.



THISPOINTER
p = this

this 7→ class FUNCPARAM
p 7→ v v ∈ Parameter( f )

Type(v) FUNCRETVAL
p 7→ v v = f (...)

ReturnType( f )

GLOBALVAR
p 7→ v v ∈ GlobalVariables

Type(v) HEAPVAR
p 7→ HeapAlloc(v,size)

Constructor(v)

STACKVAR
p 7→ v p ∈ Stack

Type(v) SIGMATCHING
∃! f , Signature( f ) = signature

Class( f )

Figure 2: Formal representation of source-aware class inference rules for callback target identification.

However, it is not so straightforward to resolve these
parameters, and QTRE has to perform a static analysis
and trace back to the data definitions. Specifically, for each
parameter, QTRE recursively traverses backward the use-def
chains until the data definition is reached. As such, it easily
obtains the signatures of the signal and slot functions of type-
2 connect as most of the char pointers point to hardcoded
strings. For the signal and slot class objects, QTRE further
infers their classes based on the data definitions. In summary,
there are six sources that can derive a class object according to
our observation, and QTRE also has one additional signature
matching inference rule (inspired by TypeArmor [67]) when
it fails to infer the class from these six sources. The formal
representations of the source-aware class inference rules are
presented in Figure 2 and explained in the following.

• This pointer. If the class pointer p is a this pointer (e.g.,
the slot class object at line 10 in Figure 1), then the corre-
sponding class of the this pointer is used as the class type.
• Function parameter. If p points to a parameter

of function f , the class type is inferred from the
corresponding parameter type.
• Function return value. If p points to the return object of

f , QTRE uses the return type of f .
• Global variable. If p points to an object located in data

segments where global variables reside (e.g., bss), QTRE
traces the definition of the global variable to infer its type.
• Heap variable. If p points to a heap object v initialized

through heap allocators such as new (e.g., line 4 in Figure 1)
or malloc family, QTRE searches the def-use chain of v
for any constructor functions, since a heap variable must
be initialized through a constructor (e.g., line 5 in Figure 1).
The class is thus inferred from the constructor name.
• Stack variable. If p is a pointer located on the stack,

QTRE traces the definition of its pointed variable v and
uses the above rules to recursively resolve the class type.
• Signature matching. If none of the above rules works

(e.g., the class object is the returned from a function that
cannot be concretely resolved), QTRE uses an additional
rule by matching the function signature, which is inspired
by TypeArmor [67]. Specifically, if there exists only one
function f that has exactly the same signature, the class of
f is our target. Otherwise, if there are multiple f s, QTRE
will not establish a callback to ensure soundness.

The type information is obtained directly from the symbols
(e.g., the types of function parameters and return values)
if available. If the binary is stripped, our approach still
works by recursively applying the inference rules (e.g.,
tracing the definition of a function parameter at the call site).
Additionally, the symbols can be contributed from QTRE’s
recovery approach (§4.2) as those cannot be fundamentally
stripped. After QTRE infers the class types and function
signatures using the inference rules, it constructs the concrete
function callback targets (i.e., signal and slot) by connecting
the inferred class (e.g., QLineEdit) with the function
signature (e.g., textChanged(QString)). Finally, to ensure
the soundness of the results, QTRE establishes a callback
connection only when both the signal and slot are resolved.

4.2 Semantic Symbol Recovery

Challenges. Next, QTRE recovers semantic symbols by
repurposing Qt’s dynamic introspection. First, as illustrated in
our running example (Figure 1), the symbol strings are stored
in metadata tables, and thus QTRE interprets them to extract
the symbol strings, as demonstrated in an existing tool [14].
Afterwards, with the symbol strings extracted, we still need
to map the property symbols to the corresponding memory
addresses (e.g., text is mapped to this+0x48 in Figure 1).
However, this is challenging for two reasons. First, the symbol
addresses are not available from the metadata tables, and are
hidden in deep program branches of the Qt binary code (e.g.,
line 34 of Figure 1). Thus, we infer such a symbol-address
association using a sophisticated binary analysis. Second,
the symbol addresses are dynamically computed, which are
derived from a base pointer this (lines 9 and 12 of Figure 1),
making them non-trivial to solve statically.

Solution. Motivated by the running example, our key
insight is that the symbol to address mapping must exist
in the Qt library function qt_metacall to support the
run-time query of class properties, which can be leveraged
to compute the symbol addresses associated with the symbol
strings. Specifically, in Figure 1 the setProperty function
invokes qt_metacall which guides the program to update
variable text at this+0x48. Although some static analysis
approaches, such as data flow analysis [23] could be applied,
it falls short due to the excessive number of branches in the
qt_metacall function and dynamically computed values
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Figure 3: Tables and data structures that store the metadata information of the QLineEdit class in our running example.

(e.g., this pointer), making them difficult to design and
implement. In contrast, we find that a light-weight unit-level
symbolic execution [42] is well-suited for this problem, as we
can leverage the code transition and arithmetic computation
logic in function qt_metacall to efficiently compute the
relative symbol addresses. Back to Figure 1, we apply this idea
by executing qt_metacall with the property index 1 (v1) and
a symbolic value assigned to the this pointer, which guides
the execution to line 34 and computes the desired symbol
address. In the following, we describe how QTRE extracts
the symbol strings and computes the symbol addresses.

4.2.1 Symbol String Extraction

To extract the symbol strings, QTRE interprets 3 key data
structures and 2 metadata tables. In Figure 3, we present a
real-world example of the QLineEdit class to explain how
its symbol strings are extracted from these five elements:

(I) Object hierarchy. For each instance of class QLineEdit,
the hierarchy starts with its virtual function table pointer,
followed by other pointers, functions, and member variables.
Note that the class also has a pointer pointing to a static mem-
ber staticMetaObject, which contains pointers pointing to
the metadata tables of the class, as illustrated in Figure 3.

(II) Virtual function table. Whenever a class defines a
virtual function (i.e., a function defined at the base class but
overridden in child classes), a virtual function table will be
generated and shared among all class instances. All classes
in Qt that inherit from the base class QObject will have a
virtual table, which contains built-in Qt functions such as
qt_metacast and qt_metacall [16].

(III) Static meta object. There is a static member named
staticMetaObject shared among all instances of the
same class. This member is created automatically by the
MoC when a class instance inherits from QObject [11].
As shown, staticMetaObject is a data structure that

consists of three pointers [16]. The first pointer points to
the staticMetaObject of its parent class QWidget. The
second pointer points to the data section of a structure
called qt_meta_stringdata_Counter, which contains the
metadata about the strings used by this class. The third
pointer points to the qt_meta_data_Counter structure,
which involves the metadata of its signals, slots, parameters,
and properties in different data sections. For simplicity, we
call the latter two string table and metadata table, respectively.

(IV) Metadata table. The metadata table consists of five
sections [16] and stores the metadata of the class, signals,
slots, parameters, and properties that are used in the class.

• Content section includes information about the Qt version,
class name, number of methods, properties, and signals
in the class, etc. For instance, the class name is represented
by an index 0. By looking up the index 0 at the string table,
we can know the class name is QLineEdit. Interpreting
the content table is quite simple, as each element is of type
UInt, and the size of the table is fixed.
• Signal section is right after the content section, which

stores the metadata of the signals in the class. It consists
of multiple signal entries, each of which has five UInt
elements to describe a signal. For simplicity, we only
show one entry in Figure 3 (the same as below). As
shown, this entry has five elements, representing the signal
name, argument count, parameter index, tag, and flags.
Similarly, the signal name is represented by an index 1,
which is interpreted as editingFinished() at the string
table. In addition, if the signal function has parameters, the
parameter entry offset (relative to the entry of the metadata
table) will be specified. Since the signal does not have
parameters, the parameter index is 0. The remaining two
elements represent the tags and flags of the signal. Note that
each signal is also indexed according to the order in which
it appears (e.g., editingFinished has an index of 0).



• Slot section is identical to the signal section, except that
each entry represents a slot. Thus, QTRE uses the same
strategy to interpret the slot table. As in the example, we
can interpret the slot as setText(QString) with one
parameter. In addition, the offset for parameter entry is
0xb0, which refers to the entry 0x085dbbc whose offset is
0xb0 from the entry of the metadata table at 0x085db0c.
• Parameter section stores the metadata for the parameters

of the signal and slot functions. Similarly, it also consists
of entries for each parameter, but the size of the section
depends on the number of parameters in the function. For
instance, in the example, the entry at 0x085dbbc has the
name index 3 and type 0x0A, which are interpreted as text
and QString (based on the special type encoding in the
Qt source code [16]). Combining with the extracted slot
function, we can construct a complete function signature:
setText(QString text).
• Property section stores the metadata for the defined

properties (i.e., class members that have been registered
as Qt properties). This section also has entries, and each of
them has three UInt elements that denote the name, type,
and flags, respectively. Using the same parsing strategy,
we know that the property at 0x085dbe4 has the name
text of QString type. The flag indicates the operational
attributes, such as whether the property is readable. Note
that each property is also uniquely identified by an index.

(V) String table consists of a list of strings used in the class
and their metadata. Specifically, it starts with the string meta-
data and each entry contains 24 bytes (including attributes
such as length). Next to these metadata there is the string
section, which consists of a list of strings, and each of them
is assigned an index for reference (e.g., editingFinished()
is indexed by 1). The string table can be easily located, as its
pointer is the second element of staticMetaObject.

4.2.2 Symbol Address Computation

To understand how symbol addresses are computed, we
present the code logic of qt_metacall to show how it
handles the dynamic introspection of the QLineEdit class in
Figure 4. Note that qt_metacall is generated automatically
by the MoC in each Qt class with the same structure, and
thus our unit-level symbolic execution handles it uniformly.
In general, qt_metacall takes three parameters: an integer
call, an integer index, and a pointer a. The first parameter
call specifies the intention of this call, and there are three
types as shown in the figure: 0 is for function invocation,
1 is for property value retrieval, and 2 is for property value
assignment [16]. Based on the index parameter, this function
further executes the corresponding branch to perform specific
operations. For example, if we need to obtain the value of
property 0 (i.e., property text as shown in Figure 3), we
invoke this function with call and index set to 1 and 0, re-

1 int QLineEdit::qt_metaCall (int call, int index, void** a) {
2     ...
3 if (call == 0) {
4 // call function by index
5 ...         
6 }
7 else if (call == 1) {
8 // get property by index
9 switch (index) {
10 case 0:
11 // Property 0: text
12 v2 = *(*(*(this+4)+300)+8) 
13             **a = v2
14 break
15 case 1:
16 // Property 1: maxLength
17 v2 = *(*(*(this+4)+300)+56)
18 **a = v2
19 break
20 ...
21 }
22 }
23 else if (call == 2) {
24 // set property by index
25       ...
26 }
27    return index
28 }

1 2

Name Value

call 1

index 1

this 		𝜆

**a
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Name Value
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**a 0

Name Value

call 1
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Figure 4: A typical example of qt_metaCall function
and two example symbolic execution traces ❶ and ❷.

spectively. As a result, this function will be directed to line 12
through a series of if and switch branches, and retrieves the
property from a relative address (*(*(*(this+4)+300)+8)),
and stores the value in **a (line 13). During the execution of
this code logic, the address of the property text is revealed,
since this function must retrieve the value from its address.

Based on the observations, we present a unit-level symbolic
execution in algorithm 1 to compute the symbol addresses
for a specific member at index in class c. Unlike normal
symbolic execution, which aims to solve the constraints
for reaching specific program states [42], our goal is to
compute only the relative address expressions derived from
the this pointer. To better understand how it works, we also
provide two concrete symbolic execution examples (❶ and
❷) in Figure 4. To begin with, our algorithm initializes three
parameters from line 2 to line 4. It assigns a symbolic value λ

to this pointer, sets the call parameter as 1 and the index
parameter as the target property index. For example, as shown
in the top two snapshots in Figure 4, trace ❶ and ❷ set the
index to 0 and 1 for properties text and maxLength, respec-
tively. Starting from line 5, the algorithm starts to execute
qt_metacall. For each instruction i to be executed, if the
source operand s of i is symbolic (i.e., calculated from λ), the
algorithm needs to further compute the symbolic expression
and propagate it to the destination operand d (line 9-line 15).
For example, if the opCode of i is arithmetic (e.g., ADD) or
logical (e.g., AND), we compute d based on the operation
(e.g., λ→ λ+4 for ADD). Similarly, for other opCode (e.g.,
data movement), the algorithm will compute the symbolic
expression based on the instruction semantics (e.g., λ→∗λ
for LOAD). However, if s is not symbolic, we take advantage
of an emulator to execute instruction i (line 19) and proceed to
the next instruction (line 23). Note that a variable could have
multiple symbol addresses computed at different branches
(e.g., the branch condition is symbolic), and the algorithm



executes each of them to derive each address accordingly
(line 17). Eventually, when i is the return instruction of
qt_metacall, then the algorithm ends (line 21) and retrieves
the relative symbol address (a symbolic expression) from **a
and returns (line 25). As shown in the bottom two snapshots in
Figure 4, when the execution ends, the value of **a is exactly
the symbol address expressions *(*(*(λ+4)+300)+8) and
*(*(*(λ+4)+300)+56) in trace ❶ and ❷.

5 Implementation

We have implemented a prototype of QTRE3 with 5K lines
of Java code based on Ghidra [4]. One key reason of building
atop Ghidra is its cross-platform support due to its P-Code In-
termediate Representation (IR) [8], which enables the analysis
of both ARM (Tesla firmware) and x86 (KDE) binaries.

P-Code IR. P-Code is a register-transfer language that can
translate processor instructions of different architectures into
unified operational P-Code instructions [8]. For instance,
function invocation instructions such as CALL in x86 and BL in
ARM will both be translated to a CALL instruction in P-Code
with a function address as its operand. Another key reason
of choosing Ghidra is that it provides APIs to obtain the
data def-use chain based on the P-Code, which is extremely
useful for our static analysis, such as the source-aware class
inference. Particularly in P-Code IR, each program variable
(e.g., a register and a memory address) will be translated
into a built-in type Varnode, which will then be formed into
an abstract syntax tree VarnodeAST that defines the def-use
relations among all Varnodes. Using APIs such as getDef(),
we can easily obtain the data-def of a Varnode object.

Symbolic Execution. While Ghidra does not directly
support symbolic execution, there are many other alternatives
such as Angr [61]. However, we still prefer to implement
symbolic execution with Ghidra for two reasons. First, our
proposed symbolic execution is light-weight and performs
within the qt_metacall function, and thus is different from
the existing symbolic execution and easier to implement.
Existing symbolic executions can cause overhead, such as
constraint solving, which is unnecessary for QTRE. Second,
implementing symbolic execution on top of Ghidra allows it to
be easily integrated with other components (e.g., the callback
recovery component) that are developed using Ghidra.

To implement our symbolic execution based approach for
symbol address computation, we need to interpret each P-
Code instruction semantics and execute them symbolically,
which requires significant engineering work. Fortunately,
Ghidra provides a built-in emulator that can automatically
interpret and execute P-Code instructions, which serves
perfectly as the building block for QTRE. Nevertheless, we
still need to implement our emulator-based symbol address

3The source code of QTRE is available at https://github.com/
OSUSecLab/QtRE.

Algorithm 1: Symbol address computation.
Input :F : qt_metacall for class c, index: the property index
Output :ADDR: the symbol address of property at index in c

1 Function
2 writeRegister(this, λ) ; //Init this as λ

3 writeRegister(param0, 1) ; //Init call param as 1
4 writeRegister(param1, index) ; //Init index param
5 while true do
6 i← currentInstruction
7 s← i.sourceOperand
8 d← i.destinationOperand
9 if s.isSymbolic() then

10 if i.opCode is Arithmetic or Logical then
11 d← s < opCode > i.operand
12 else if i.opCode is DataMovement then
13 d←< opCode > s
14 else
15 d← compute based on instruction semantics
16 else
17 if i.opCode is Branch/Jump then
18 Fork both branches for the execution
19 emulate(i)
20 if i == return instruction of F then
21 break ; //Execution ends
22 else
23 Go to next instruction
24 ADDR←∗∗a
25 return ADDR

computation algorithm, as Ghidra does not support it. In
particular, Ghidra’s program emulator allows programmers
to operate (e.g., read, and write) on registers and memory
during the execution of each instruction, by using APIs such as
writeRegister(). For instance, we can specify the starting
point of our symbolic execution by setting the value of
the PC register to the entry address of our target function
(i.e., qt_metaCall for each class of our interests), where
we initialize the function parameters by assigning values
to the registers, such as assigning a symbolic value to the
this pointer (e.g., the R0 register in ARM). To dynamically
compute the relative address based on the symbolic values, we
instrument each instruction logic to realize the computation
with symbolic addresses. Finally, we retrieve the symbol
address stored in the **a variable.

6 Evaluation

We seek to answer the following four research questions:
• RQ1. What is the false positive (FP) and false negative

(FN) rate for callback and symbol recovery in QTRE?
• RQ2. How many callbacks and semantic symbols can be

recovered by QTRE from Qt binaries?
• RQ3. How efficient is QTRE to analyze Qt binaries?
• RQ4. How is QTRE’s performance compared to other

existing RE tools?
To answer RQ1, we use the open-source KDE [6] code base
as ground truth data to validate the results of QTRE (§6.1.1).
To answer RQ2, we applied QTRE to both open-source KDE
programs and closed-source infotainment software from a
Tesla Model S (§6.1.2). To answer RQ3, we evaluate how

https://github.com/OSUSecLab/QtRE
https://github.com/OSUSecLab/QtRE


Binary Name Source Repo. # Ins.(K) Time(s) Callback Recovery Symbol Recovery

# Total # Recover % # Valid # Prop. # Signal # Slot # Param. # Total # Recover % # Valid

libKF5KHtml khtml 104,234 965 192 74 38.5% 74 9 14 96 68 187 185 98.9% 185
libKF5GlobalAccel kglobalaccel 63,560 244 4 1 25% 1 8 1 3 10 22 22 100% 22
libKF5KIOCore kio 119,425 96 146 137 93.8% 137 6 42 9 46 103 103 100% 103
libKF5ItemModels kitemmodels 14,906 26 51 42 82.4% 42 13 19 29 61 122 122 100% 122
libKF5IconThemes kiconthemes 185,804 43 21 8 38.1% 8 3 4 13 9 29 29 100% 29
libKF5CompactDisc libkcompactdisc 112,781 4 3 1 33.3% 1 0 9 17 17 43 43 100% 43
libKF5KDEGamesPrivate libkdegames 185,791 34 46 37 80.4% 37 0 44 25 101 170 170 100% 170
libKF5Baloo baloo 137,019 97 4 3 75% 3 20 10 0 0 30 30 100% 30
libKF5KDEGames libkdegames 185,789 52 28 24 85.7% 24 25 17 16 20 78 78 100% 78
libKF5People kpeople 112,808 10 9 6 66.7% 6 0 2 2 5 9 9 100% 9
libKF5ItemViews kitemviews 152,312 13 27 11 40.7% 11 7 6 17 25 55 55 100% 55
libKF5DBusAddons kdbusaddons 29,806 4 6 5 83.3% 5 0 8 2 11 21 21 100% 21
libKF5IdleTime kidletime 119,421 2 3 1 33.3% 1 0 5 14 9 28 28 100% 28
libKF5GuiAddons kguiaddons 56,404 6 8 8 100% 8 5 18 0 21 44 43 97.7% 43
libKF5Bookmarks keditbookmarks 180,235 17 44 38 86.4% 38 0 10 6 16 32 32 100% 32
libKF5KIOFileWidgets kio 185,799 199 204 202 99% 202 0 37 76 78 191 191 100% 191

Total N/A 2,093,399 1,568 796 598 75.1% 598 96 246 325 497 1164 1161 99.7% 1161

Table 2: Validated result of function callback recovery and semantics recovery in KDE ground truth evaluation.

long QTRE takes to analyze the KDE and Tesla binaries
(§6.2). To answer RQ4, we compare QTRE with two state-
of-the-art RE tools GHIDRA [4] and ANGR [61] (§6.3).

Qt binary acquisition. KDE is an open-source Linux GUI
desktop environment [6], and we use the KDE Plasma
desktop image of version 21.04, which is based on Qt 5.79.
We extracted 1,018 Qt binaries (including libraries) from the
image, and further filtered them by scanning whether connect
or qt_metacall function is used (as the binary code is not
obfuscated), which confirms that each of them has at least one
function callback or symbol. Finally, 80 binaries are selected
for evaluation. The Tesla firmware was extracted from a real
CID device (originally as a part of a Tesla Model S). The
CID runs 2.52.22 (v8.0) firmware version based on Qt 4.7.2,
which was released in 2017. The Tesla firmware contains 54
Qt binaries in total. We applied the same filtering strategy as
KDE, and got 43 binaries for evaluation. In total, we obtain
123 binaries from the two binary suites. We notice that more
KDE binaries were filtered due to the absence of Qt callbacks
and symbols, compared with the Tesla binaries, because these
two binary suites were engineered differently. Specifically,
among the 1,018 binaries in KDE, most of them are generic
C++ binaries and do not contain Qt classes, which are mainly
for non-GUI functions (e.g., back-end logic). In contrast, Tesla
binaries tend to use Qt for both front-end and back-end logic.

Experiment environment. QTRE’s analysis was conducted
on an Ubuntu 18.04.4 LTS desktop. The machine is equipped
with 12 Intel i7-8700 CPU cores and 32 GB RAM.

6.1 Effectiveness
6.1.1 Quantifying FP and FN with KDE Programs

Before presenting how many callbacks and symbols QTRE
can recover, we first evaluate its effectiveness, i.e., the false
positive (FP) and false negative (FN) rates. As such, we use
the open-source KDE binary suite [6] as our benchmark
with 80 Qt binaries in total. While we wish to use all of
them and develop an automatic validation tool, manual effort

is unfortunately inevitable. The major challenge lies in the
validation of symbol addresses that are only available in the
binary code and are often derived through convoluted program
logic such as nested function calls and branch statements,
which is difficult to automate even with debug symbols (e.g.,
DWARF) available. Therefore, we select a portion of the
binaries for manual validation using the following criteria.
First, we exclude standard Qt binaries (e.g., libQt5Svg) and
only include those directly compiled from the KDE source
code. Second, we choose binaries that have both at least one
callback and a recovered symbol, so that they can be used for
both callback and symbol validations. By applying these two
criteria, there are eventually 16 binaries selected for validation,
which took us two weeks to complete. The results are reported
in Table 2 and we detail them as follows.

Function callbacks validation. The validation of function
callback is by comparing the recovered callback targets with
the corresponding parameters of the connect function in the
source code. According to the bottom row of Table 2, among
the 16 binaries, QTRE successfully identified 598 callback
instances in total, and all of them are correct. However, there
are 796 callback instances in total among the 16 binaries (by
counting call sites of the connect function), indicating that
there are 198 callback instances that QTRE did not identify
(i.e., a 25% FN rate). However, later (§6.1.2) we show that
the FN rate is significantly lower when we measure the FN
rate for all 123 binaries in our dataset.

We further investigate the root causes of these FN cases,
and find that QTRE failed to accurately infer either their
signal or their slot classes, and thus did not construct callback
relationships as described in §4.1. However, the function
signatures in these cases were successfully recovered (as they
are mostly hardcoded strings), which are still useful, as they
can significantly narrow down the possible callback targets
based on the signature strings. To summarize, there are two
major causes that fail the source-aware class inference: (1)
memory aliasing where QTRE could not find the data source
(e.g., QTRE resolves the pointer of a class object which is



Result KDE Tesla

# % # %
# Total Binary 80 100% 43 100%

Callback Recovery
# Total callback 3,972 100% 8,845 100%
# Recovered callback 3,323 83.7% 7,544 85.3%

# Type-1 connect 2,992 75.3% 0 0
# Type-2 connect 331 8.3% 7,544 85.3%

Source of Class Objects
# This pointer 275 4.1% 7,433 49.3%
# Function parameters 113 1.7% 295 2.0%
# Function return value 88 1.3% 1,371 9.1%
# Global variable 83 1.2% 3,509 23.3%
# Stack variable 5,984 90.0% 389 2.6%
# Heap variable 88 1.3% 652 4.3%
# Signature matching 15 0.2% 1,439 9.5%

Symbol Recovery
# Total recovered symbols 4,362 100% 20,611 100%

# Property 817 18.7% 951 4.6%
# Signal 1,182 27.1% 9,266 45.0%
# Slot 841 19.3% 3,326 16.1%
# Function parameter 1,522 34.9% 7,068 34.3%

Table 3: Results of callback and semantics recovery.

initialized by another pointer pointing to it); (2) indirect calls
where a class object to be inferred is the return value of a
function that is indirectly called (e.g., through a CALL EAX
instruction). We note that these are common limitations in
binary analysis (not unique for Qt binaries), and there have
been many solutions such as aliasing analysis (e.g., [30])
and Multi-Layer Type Analysis (e.g., [41, 46]), which could
be integrated in QTRE in future work. Therefore, in short,
there is no false positive in the function callback recovery
among the 598 validated callbacks, while there exist 25%
false negatives due to memory aliasing and indirect calls.

Semantic symbols validation. The validation of semantic
symbols is by comparing the symbols of signals, slots, param-
eters, and properties with those in the corresponding source
code, including their names, types, and relative addresses.
However, since the relative addresses are available only in
binaries, we have to use both the source code and the decom-
piled binary code for the validation. As presented in Table 2,
among the 16 binaries, there are 1,164 semantic symbols in
total (by counting the entries at all symbol tables), and QTRE
successfully recovered 1,161 of them, in which all of them are
correct, including the symbol names and relative addresses.

For the remaining three (0.3%) cases, they are all property
symbols, and QTRE did not successfully recover their
relative addresses (though their symbol strings are still
correctly recovered). The root cause is that the addresses
of these three properties are returned from a virtual function
call [32] where QTRE cannot precisely locate the function
address as it is dynamically computed (derived from the this
pointer). We consider these three cases as FNs since QTRE
did not attempt to generate incorrect property addresses but
instead left them unresolved. As these FN cases only account
for a small portion of our results (three out of 96 properties
in total), addressing the indirect call limitation is thus left to
future work. On the other hand, there is no false positive as

Type Symbol String
QString text, key, ssid, plainText, carName, country, name, reason,

response, message, location, keyword, command
phoneNumer, debugMessage, errorMessage

QUrl url, baseUrl, requestedUrl
QByteArray data, userData
int sec, id, pId, deviceId, securityType, canID, canData
bool useCarLocation

Table 4: Selected symbols recovered from QTRE that
potentially contain sensitive information.

the 1,161 symbols are all validated. In summary, among the
1,164 validated symbols, there is no false positive and there
are only three (0.3%) false negatives in the recovered symbol
addresses due to indirect function calls.

6.1.2 Real-World Qt Binaries

We evaluated QTRE using real-world binaries from both
KDE and Tesla, as summarized in Table 3. In general, QTRE
identified 10,867 callback instances and 24,973 semantic
symbols from the 123 binaries in the two binary suites.
According to row 1 of the table, there are 80 binaries from
KDE and 43 from Tesla firmware. The detailed results of all
binaries from KDE and Tesla are presented in Table 12 and
Table 13 in Appendix, respectively, for readers of interests. In
the following, we zoom in on the results of function callback
target identification and semantic symbol recovery.

Recovered function callbacks. According to row 4 in Table 3,
among the 80 binaries from KDE and 43 Tesla binaries,
QTRE recovered 3,323 and 7,544 function callback instances,
respectively. However, the recovered callbacks account for
83.7% and 85.3% among all identified callbacks in KDE and
Tesla (obtained by counting the call sites of connect), and
correspondingly the FN rates among all binaries are 16.3%
and 14.7% respectively, which are much lower than the 25%
FN rate of the validated callbacks in §6.1.1. These FNs are
also caused by the same reasons as in our validation.

In terms of the callback types defined in Table 1, most of
the callbacks in the KDE binaries use type-1 connect, while
the Tesla binaries use type-2 connect because type-1 connect
is only available after Qt5. Furthermore, to show that our
source-aware class inference is useful, we further show the
contribution of the seven sources (as described in §4.1) in
§6.1.2. It can be inferred from the statistics that stack variable
is the dominating source among the KDE binaries, and we find
that it is frequently used by type-1 connects to store function
pointers of signals and slots. In contrast, Tesla binaries tend
to use this pointers to derive classes.

Recovered semantic symbols. According to row 14 in
Table 3, QTRE recovered 4,362 symbols from 80 KDE
binaries and 20,611 symbols from 43 Tesla binaries, showing
that the Tesla binaries use Qt’s metaobject system more
frequently than KDE. The recovered symbols include four
types: signals, slots, function parameters, and properties.



Result KDE Tesla Total
# Total call graph edges

# Recovered by ANGR [61] 791,907 1,395,093 2,187,000
# Callback recovered 0 0

# Recovered by GHIDRA [4] 432,843 987,263 1,420,106
# Callback recovered 0 0

# Recovered by GHIDRA [4] w/ QTRE 436,166 994,807 1,430,973
# Callback from QtRE 3,323 7,544 10,867

# Total symbols
# Recovered by ANGR [61] 97,109 1,171,990 1,269,099
# Recovered by GHIDRA [4] 97,109 1,171,990 1,269,099
# Recovered by GHIDRA [4] w/ QTRE 101,471 1,192,601 1,294,072

# Symbol from QTRE 4,362 20,611 24,973

Table 5: Comparison of QTRE, GHIDRA and ANGR.

Note that one slot can be registered to receive multiple
signals, which explains that the numbers of signals and slots
are not always identical. To show that the recovered symbols
are indeed useful for security analysis, we also present
the semantic symbols selected manually that potentially
contain sensitive information in Table 4. As shown, these
symbols indicate sensitive information for confidentiality
concerns, including personal identifiable information (e.g.,
id), confidential data (e.g., canData), and cryptography
parameters (e.g., key). One use case of these symbols would
be identifying privacy sensitive data leakage through taint
analysis [23, 27]. In addition, we show the top 10 most
frequent symbols of properties, parameters, and functions
in Table 9, Table 10, and Table 11, respectively, in Appendix.

6.2 Efficiency
On average, it takes QTRE 1.7 minutes to analyze a binary.
The average time to analyze KDE and Tesla binaries is
1.5 and 3.6 minutes, as Tesla binaries have more classes
and functions. In the worst case, QTRE spent 77 minutes
analyzing the most complicated binary libQtCarGUI, which
has almost 2,000 classes and more than 40K functions. To
better evaluate QTRE’s efficiency on each binary, we present
the analysis time of each binary in Table 12 and Table 13 in
Appendix for KDE and Tesla binaries, respectively.

6.3 Comparison with Other RE Tools
We compare QTRE with two state-of-the-art open-source RE
tools: GHIDRA (v9.2.2) [4] and ANGR (v9.1) [61] that can
also be applied to Qt binary analysis. The comparison was
conducted to evaluate each tool’s capability of recovering
CFG (including callbacks) and symbols. The results are
summarized in Table 5 and the detailed statistics per binary
are presented in Table 12 and Table 13 in Appendix for KDE
and Tesla binaries, respectively. As shown in Table 5, we show
the total number of function call graph edges and symbols
recovered by ANGR, GHIDRA, and GHIDRA with QTRE. As
expected, neither ANGR nor GHIDRA can recover any of the
callbacks and symbols identified by QTRE, because they are
not specifically tailored for Qt binary analysis (i.e., they can-
not recognize and interpret Qt-specific code generated by the

MoC). To clearly show QTRE’s contribution atop GHIDRA,
we present the total number of callbacks and symbols QTRE
have recovered, which are essentially the 10,867 callbacks
and 24,973 symbols (as reported in §6.1.2) from two binary
suites. Note that these callbacks and symbols cannot be iden-
tified by generic binary RE tools such as ANGR and GHIDRA.

7 Applications

Being an RE tool, QTRE can be useful for real-world
security problems. In particular, we demonstrate using QTRE
to perform input validation analysis and extract hidden
commands from a Tesla Model S firmware, because Tesla
vehicles are known to contain many Easter eggs [57]. To
perform the analysis, we make use of the recovered callbacks
and symbols in §6.1.2. These results are crucial to our analysis
as we leverage the recovered symbols to identify the user input
variables (e.g., the class members text). Additionally, as the
hidden commands are triggered by UI operations, it requires
the recovered callbacks to construct a complete CFG, and
otherwise we cannot identify those hidden commands.

Input Validation Analysis. First, we define a set of rules to
identify user-controllable input variables by using recovered
symbols. Next, starting from the identified input variables, we
perform an automated taint analysis [23] to extract the input
validations and resolve the corresponding compared variables.

• Symbol-guided input variable identification. According
to our observation, the input variables are members
of the UI widget classes (e.g., QLineEdit), and thus
they can appear in (1) return values of “get” functions
(e.g., getText()) and (2) class members variables (e.g.,
QLineEdit.text). In addition, they can be members of
either (1) standard Qt library classes or (2) programmer-
defined classes, and we need to focus on both. For standard
Qt library classes, we manually investigate the official Qt
documentation [11] to find the function and the class mem-
bers that convey user inputs, resulting in six such elements
in the Tesla Qt binaries, as shown in rows 1-6 in Table 6.
There are one function and five class members, with the
corresponding relative addresses shown in the 3rd column.

However, for the programmer-defined classes, it is not
straightforward to recognize the input variables, as there is
no documentation to rely on. Thus, we define two criteria
to identify the desired classes and locate the input variables
by utilizing the recovered symbols. The first criterion is that
the class of our interest should have implemented signals
that can monitor the input status. For instance, the standard
library class QLineEdit defines a signal textChanged()
to notify the callback function to update the text on the
screen. Note that all child classes that inherit from these
classes will be of our interest since they also hold these vari-
ables. The second criterion is that the desired classes should
have a member variable to hold the user input, which should



Class Name Var./Func. Name Symbolic Address In Qt Lib?
QLineEdit text() N/A ✔
QLineEdit text *(*(*(λ+4)+300)+8) ✔
QAbstractSpinBox text *(*(λ+4)+452) ✔
QDoubleSpinBox text *(*(λ+4)+452) ✔
QSpinBox text *(*(λ+4)+452) ✔
QDateTimeEdit text *(*(λ+4)+452) ✔
TextField text *(*(λ+796)) ✗
PasswordTextField text *(*(λ+796)) ✗
WebEntryField text *(*(λ+796)) ✗
NavigationSearchBox text *(*(λ+796)) ✗
CompleterTextField text *(*(λ+796)) ✗
ExtEntryField text *(*(λ+796)) ✗

Table 6: Taint analysis sources and their computed
symbolic variable addresses (λ denotes this pointer).

be of a string type (e.g., QString and char*). In addition,
these variables should have names inferring that they are
of string type and represent certain text variable, such as
text. As shown in row 7-12, we identify six such variables.
• Taint analysis. Finally, the standard taint analysis [23] is

automatically performed to analyze the input validation,
which is implemented based on Ghidra’s P-Code IR [8].
Prior to the analysis, we need to define the sources and
sinks, which determine where the analysis starts and ends.
As shown in Table 6, the input variables (i.e., function
return values and the class properties) identified are the
sources, and the comparison instructions (e.g., operator==
and QString.compare()) are the sinks. During the
analysis, we also consider the control flow transition
between the callback targets of the function identified
by QTRE. When the taint analysis is completed, QTRE
obtains a set of input validation instructions. Therefore, we
need to further resolve the compared variables, as they may
not be hardcoded and require computation. This problem
can be solved in the same way as we resolve the function
parameters as described in §4.1. Specifically, QTRE
traverses the use-def chains of the compared variable to find
the data definition, and further resolve their concrete values.

Experiment Result. By performing taint analysis, QTRE
was able to identify seven Easter eggs from the Tesla
firmware, four access tokens, and one master password, as
presented in Table 7. Although the seven Easter eggs are
already known to the public, the remaining five are actually
new, to our knowledge. We detail each type of these hidden
commands as follows.

• Easter egg. The seven Easter eggs can be entered from
the CID screen to trigger hidden behaviors on the vehicle,
such as changing the CID GUI. These Easter eggs are often
benign and do not have much security implication, as they
are intentionally designed to entertain users. For example,
by entering a string “mars” in the AccessPopup UI, the
navigation map will become the surface of Mars. Other
Easter eggs such as “showroom” and “performance” can
enable hidden modes such as service mode.
• Access token. The four access token can trigger developer

or diagnostic mode, which contains security-sensitive

Category Content Description Vehicle
Agnostic

“007” Submarine Easter egg ✔
“modelxmas” Show holiday lights ✔

Easter “42” Change car name ✔
Egg “mars” Turn map into Mars surface ✔

“transport” Transport mode ✔
“performance” Performance mode ✔
“showroom” Showroom mode ✔

SecurityToken1 Enable diagnostic mode ✗
Access SecurityToken2 Enable diagnostic mode ✗
Token crc(token)==0x18e5a977 Enable developer mode ✔

crc(token)==0x73bbee22 Enable developer mode ✔

Master Pwd “3500” Exit valet mode ✔

Table 7: Extracted hidden commands in Tesla binaries.

options such as limiting the vehicle speed, resetting the
vehicle modules, and reading system logs. Compared to
Easter eggs, access tokens are not intentionally left over
to users, but are possibly for developers and technicians
to debug and diagnose. As shown in rows 8-11 of
Table 7, there are four such tokens. The first two
can trigger diagnostic mode, and are different security
tokens in the local storage, which are unique for each
vehicle. The other two tokens that can enable developer
mode (with more security-critical functions) are slightly
more complicated, as their crc32 checksum needs to
match specific hexadecimal values (i.e., 0x18e5a977 and
0x73bbee22). To search for a feasible input, we wrote
a simple brute-force script that only took 30 minutes to
generate a valid string “987090324273775”.
• Master password. QTRE also reported one master pass-

word (i.e., “3500”) that can exit the valet mode regardless
of the password set by the vehicle owner. Specifically,
the valet mode is designed to preserve user privacy and
vehicle safety when the vehicle is parked by a valet driver.
When this mode is enabled, normal functions are no longer
accessible (e.g., speed will be limited, and personal data
will not be shown on the screen), unless the user enters
the 4-digit PIN code to exit the valet mode. Apparently,
the master password is also for testing and development
purposes and should not be available to any users.

Exploitation. We have successfully validated all the hidden
commands on a real CID device extracted from a Tesla Model
S. To exploit them, we consider any attackers on board with
physical access to the CID, such as a hotel valet, a repair
shop technician, or a designated driver. For instance, one can
leverage the master password to escape the valet mode, or use
access tokens to manipulate critical settings (e.g., speed limit).
However, these hidden commands require some preconditions.
The latter two access tokens and the master password require
setting an environment variable GUI_isDevelopmentCar as
true, and the former two access tokens require to dump the
vehicle-specific tokens from file system. These preconditions
can be satisfied by using prior exploits (e.g., remote browser
exploits [51, 52]) targeting unpatched Tesla firmware.



8 Discussions
False positive and false negative. As described in §6.1.1, we
did not observe any FPs among the validated results. However,
we did observe 15% FNs among the recovered callbacks and
three FNs in symbol recovery, due to indirect calls and mem-
ory aliasing, which prevent QTRE from accurately recovering
the callback target and symbol address. Another potential
source of FP is that the source-aware class inference may
not accurately infer the actual class type. More specifically,
when QTRE infers a class type A from function parameters
or return types, the actual class type at run-time can be any
class B inherited from A. However, this does not frequently
occur, and we did not observe such a case in our validation.
Future work. As a domain-specific RE tool, QTRE can
be applied to many other security-critical Qt applications,
such as medical and automotive systems where Qt has
played an essential role. Meanwhile, the callback and symbol
recovery techniques of QTRE can enable many other security
applications. In addition to the symbol-guided input validation
analysis demonstrated in this paper, an immediate future
work is to integrate QTRE with state-of-the-art fuzzers for
GUI-fuzzing [65] of Qt binaries, which can help identify
vulnerabilities triggered by external user input.
Responsible disclosure. We reported our findings in §7 to
Tesla in November 2021, and received a response in April
2022. The Tesla security team acknowledged our findings,
and claimed that they have eliminated the feasible paths for
exploiting these hidden commands, such as removing the
HTTP API for setting the GUI_isDevelopmentCar variable
since version 2021.44. For other commands that do not require
this precondition, they require invasive physical access (e.g.,
to leak access tokens from the file system) and thus are
difficult to exploit in practice. In conclusion, the best security
practice is to keep the firmware up-to-date.

9 Related Work
C++ binary analysis. MARX [53] uses vtables to recover
the hierarchy of classes, and DeClassifier [31] extends it to
optimized C++ binaries. OOAnalyzer [59] leverages coding
patterns to recover classes and methods. VirtAnalyzer [32]
reverse-engineers virtual inheritance among C++ classes.
OBJDIGGER [40] and PhASAR [58] use inter-procedural
data flow analysis for C++ binary analysis. Howard [62],
TIE [44], Rewards [45], DSIBin [56], Lego [64] perform
dynamic analysis to recover data structures. HexType [39]
and TCD [77] are two static analysis tools for detecting type
confusion bugs in C++ binaries (including Qt), but they do
not make use of any Qt’s unique mechanisms.
Qt binary analysis. Although not presented in formal
publications, there have been some tools for Qt binary
RE [9, 14, 18], in which two of them are open-source [14, 18].
Specifically, one provides an IDA-Python script to parse

metadata tables of Qt classes as QTRE does [14], but it
requires to identify metadata table entrances manually and
does not attempt to recover the relative addresses. Another
tool uses heuristics to extract the Qt class hierarchy from
memory at run-time [18]. However, as it targets an ancient
Qt version (v2), it cannot analyze binaries in our datasets
based on Qt4 or Qt5, due to significant changes in class
layout [11, 15]. The remaining one [9] briefly mentions some
RE observations, including using the qt_metacall function
to analyze how Qt signals are dispatched. QTRE instead
makes use of the qt_metacall function logic to compute
the relative symbol addresses. In summary, while these tools
provide some insight for Qt binary RE, they fail to (1) make
any attempts to take advantage of these insights to solve
fundamental binary RE challenges and (2) target any newer
Qt versions.

Hidden behavior detection. In relation to the extraction
of hidden commands, some works also detect hidden
behaviors in binary programs. For instance, SUPOR [34]
and UiPicker [49] detect sensitive user inputs in the Android
app UI. InputScope [76] and FirmAlice [60] reveal backdoors
through input validation analysis. AsDroid [35] uncovers
stealthy behaviors by contrasting the intended behavior with
the descriptions of the user interface. Many other works
detect malware by analyzing their hidden behaviors, such as
TriggerScope [33], IntelliDroid [73], and MineSweeper [25].

Security analysis of Tesla vehicles. The credentials used in
the early versions of Tesla firmware were vulnerable [47],
and the over-the-air (OTA) firmware update could be
intercepted [17]. In addition, the CID browser and kernel
had vulnerabilities that could lead to a remote root shell [51],
which enabled attacks on the CAN bus and the autopilot
system [43, 52]. Most recently, it has also been shown that
Model X’s keyless entry system can be hacked for car theft [2],
and the autopilot’s autonomous driving system is vulnerable
to phantom attacks [50]. Meanwhile, none of them attempted
to reverse engineer the Qt binaries for the GUI attack surface.

10 Conclusion

In this paper, we make the first look at the reverse engineering
of Qt binaries, and develop QTRE, a static binary analysis
tool that is capable of recovering function callback targets and
semantic symbols based on Qt’s unique mechanisms includ-
ing signal and slot, and dynamic introspection. We have tested
QTRE with two suites of Qt binaries: Linux KDE and Tesla
Model S firmware, from which QTRE additionally recovered
10,867 instances of callbacks and identified 24,973 semantic
symbols among 123 binaries in total. We further demonstrate
an application of using QTRE to extract hidden commands
from the Tesla Model S firmware, in which 12 unique hidden
commands are discovered with five new to the public.
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A Empirical Measurement of the Prevalence
of C++ Frameworks

We detail how we conducted an empirical measurement study
to understand the prevalence of C++ frameworks. First, we
obtained a list of C++ frameworks from a comprehensive
list [1]. As this list also contains a huge number of utility
libraries which cannot be directly used to develop C++
applications (e.g., the STL libraries), we exclude them
from the list. Eventually, we have 106 frameworks under
5 categories, namely framework, game engine, GUI, robotics,
and web, according to the list. In addition, we also manually
added a few popular C++ frameworks (e.g., MFC) missing
from the list (as they are not available on Github). Next,
we counted the C++ repositories after searching with the
framework’s name as a keyword on Github, and the top 20
results are shown in Table 8 (as of Jan 2022). Our results show
that Qt is dominant among all the studied C++ frameworks,
as it has 45,635 C++ repositories on Github, which is nearly
3X of the second place ROS.

Name Category # Repository %
Qt Framework 45,635 35.70%
ROS Robotics 16,796 13.14%
Boost Framework 6,205 4.85%
MFC Framework 4,409 3.45%
Cocos2d Game Engine 3,587 2.81%
OpenFrameworks Framework 3,264 2.55%
JUCE Framework 2,204 1.72%
PCL Robotics 1,719 1.34%
imgui GUI 1,557 1.22%
wxWidgets GUI 1,076 0.84%
Cinder Framework 1,042 0.82%
Allegro Game Engine 958 0.75%
Godot Game Engine 682 0.53%
GamePlay Game Engine 561 0.44%
dlib Framework 547 0.43%
FLTK GUI 518 0.41%
GTK++ GUI 436 0.34%
LibU Framework 425 0.33%
raylib Game Engine 376 0.29%
gtkmm GUI 349 0.27%

Table 8: Top 20 C++ frameworks from our empirical
measurement study.

B Recovered Symbols from QTRE

In this section, we show the top 10 most frequent symbol
names of properties and function parameters in Table 9 and
Table 10. As shown, the top 3 most frequent properties are
position, pressed, and title, and the top 3 parameter
names are index, current, and text. In addition, we show
the top 10 most frequent names of signals and slots in Table 11
from KDE and Tesla firmware. As shown, the function names
are often ended with changed and completed, which stand
for callbacks to monitor the state of a specific variable. For ex-
ample, whenever a URL gets changed, the corresponding slot
urlChanged with be invoked to perform specific updates, al-
lowing one to quickly locate the handling logic of the variable.

KDE Tesla

Name Type Count Name Type Count
position double 10 currentIndex int 8
pressed bool 9 text QString 8
title QString 9 orientation Qt::Orientation 8
count int 8 count int 7
palette QPalette 7 readOnly bool 7
visualPosition double 7 icon QIcon 7
contentHeight double 6 alignment Qt::alignment 7
hovered bool 6 enabled bool 7
font QFont 6 title QString 6
horizontal bool 6 iconSize QSize 6

Table 9: Top 10 property names with types recovered.
KDE Tesla

Name Type Count Name Type Count
index int 55 ctx ServiceCallContext* 3,114
current int 43 _rval_ int& 691
text QString 42 result bool 144
url QUrl 37 reason QString 136
previous int 37 index int 116
printerName QString 32 status QString 49
printerUri QString 23 routeID int 41
role QByteArray 21 id int 38
item QVariant 20 text QString 35
msg QByteArray 18 success bool 34

Table 10: Top 10 parameter names with types recovered.

KDE Tesla

Name Count Name Count
positionChanged 14 invokeObjectMethodCompleted 22
orientationChanged 9 findViewCompleted 22
pressedChanged 9 takeScreenshotOfViewCompleted 22
changed 9 flashViewCompleted 22
countChanged 8 changed 20
urlChanged 7 set_valet_modeCompleted 17
visualPositionChanged 7 set_tds_modeCompleted 17
selectionChanged 7 pop_questionCompleted 17
activated 7 reset_valet_pinCompleted 17
iconChanged 7 auto_conditioning_stopCompleted 17

Table 11: Top 10 function (signal & slot) names recovered.

C Detailed Results of Callback and Symbol
Recovery in KDE and Tesla Binaries

We present the detailed experiment results of callback and
symbol recovery for all KDE and Tesla binaries in Table 12
and Table 13, including the analysis time, number of symbols,
call graph edges recovered by ANGR, GHIDRA, and GHIDRA
with QTRE. Note that ANGR raised exceptions when
analyzing five Tesla binaries for call graph generation, and we
use N/A to denote the results as in the tables. In addition, we
also show the detailed statistics of the callbacks and symbols
contributed from QTRE, which cannot be identified by either
ANGR or GHIDRA. For callbacks, we show the number of
callbacks recovered by QTRE as well as the total number of
callbacks (by counting the connect call sites). For symbols,
we further present the statistics for each category including
signals, slots, parameters, and function arguments. As shown
in the tables, a Tesla binary has approximately 480 Qt symbols
and 206 callbacks on average, which also indicates that the
Tesla developers tend to use Qt’s callback and meta object
system more frequently than KDE.



Binary Name Time(s) # Symbol # CGE # CGE # CGE Callback From QTRE Symbols From QTRE

ANGR GHIDRA GHIDRA+QTRE # Recovered % # Total # Prop. # Signal # Slot # Param. # Total

libKF5KHtml 965 5,931 140,805 66,208 66,282 74 38.5% 192 9 14 96 68 187
libQt5MultimediaWidgets 37 434 1,888 869 869 0 0% 22 14 11 16 22 63
libkonsoleprivate 269 3,118 24,702 15,322 15,715 393 99.2% 396 0 0 0 0 0
libkbolt 4 275 2,571 1,200 1,205 5 100% 5 0 0 0 0 0
libkworkspace5 181 391 4,119 2,494 2,511 17 100% 17 9 20 12 3 44
libKF5Plasma 48 1,539 12,445 7,474 7,533 59 78.7% 75 0 0 0 0 0
libKF5GlobalAccel 244 271 2,355 1,514 1,515 1 25% 4 8 1 3 10 22
libQt5Svg 73 1,092 5,722 3,103 3,107 4 57.1% 7 6 1 7 11 25
libpolkit-qt5-core-1 4 370 2,145 1,073 1,073 0 0% 1 0 0 0 0 0
libQt5TextToSpeech 62 192 758 367 369 2 100% 2 6 8 9 14 37
libpackagekitqt5 12 416 5,166 2,230 2,236 6 50% 12 0 0 0 0 0
libsignon-extension 2 268 934 414 414 0 0% 3 0 0 0 0 0
libplasmacomicprovidercore 2 151 554 279 285 6 100% 6 0 2 0 2 4
libkdeinit5_klipper 39 996 6,251 3,693 3,764 71 94.7% 75 0 0 0 0 0
liboxygenstyleconfig5 4 281 834 452 457 5 33.3% 15 0 0 0 0 0
libKF5KIOCore 96 2,828 27,104 17,570 17,707 137 93.8% 146 6 42 9 46 103
libkcupslib 62 1,029 5,770 3,564 3,622 58 89.2% 65 11 39 43 230 323
libKScreenLocker 20 544 4,733 2,873 2,919 46 86.8% 53 0 0 0 0 0
libgwenviewlib 433 4,084 24,933 14,486 14,729 243 89.7% 271 0 0 0 0 0
libKF5ModemManagerQt 27 818 8,597 5,464 5,478 14 46.7% 30 0 0 0 0 0
libKF5Torrent 84 3,524 34,338 16,785 16,890 105 98.1% 107 0 0 0 0 0
libKF5ItemModels 26 640 4,368 2,521 2,563 42 82.4% 51 13 19 29 61 122
libKF5IconThemes 43 796 4,212 2,445 2,453 8 38.1% 21 3 4 13 9 29
libqaccessibilityclient-qt5 81 337 3,881 2,638 2,641 3 9.4% 32 0 0 0 0 0
libKF5Style 1 138 459 178 179 1 100% 1 0 0 0 0 0
libpowerdevilconfigcommonprivate 3 279 989 488 492 4 100% 4 0 1 3 1 5
libKF5CompactDisc 4 283 2,263 1,136 1,137 1 33.3% 3 0 9 17 17 43
libKF5WaylandClient 48 2,672 12,625 6,659 6,784 125 100% 125 0 0 0 0 0
libKF5Activities 16 397 3,379 2,036 2,068 32 72.7% 44 0 0 0 0 0
libQt5QuickTemplates2 1,778 4,196 25,336 14,735 14,871 136 92.5% 147 477 498 105 102 1,182
libKF5Sane 57 671 5,554 3,117 3,163 46 63.9% 72 0 0 0 0 0
libKF5Solid 44 828 13,389 8,434 8,475 41 50.6% 81 0 0 0 0 0
libkdeinit5_kcalc 84 728 11,607 5,159 5,328 169 99.4% 170 0 0 0 0 0
libKF5Cddb 10 466 3,991 2,153 2,168 15 93.8% 16 0 0 0 0 0
libKF5Su 3 254 1,364 826 826 0 0% 1 0 0 0 0 0
libKF5KDEGamesPrivate 34 1,586 9,134 5,130 5,167 37 80.4% 46 0 44 25 101 170
libkcardgame 9 800 3,531 1,942 1,951 9 100% 9 0 13 8 11 32
libKF5UnitConversion 9 220 1,834 1,134 1,134 0 0% 0 0 0 0 0 0
libQt5WebKitWidgets 104 1,154 5,268 2,419 2,428 9 31% 29 40 58 22 64 184
libKF5Baloo 97 532 3,244 1,812 1,815 3 75% 4 20 10 0 0 30
libkImageAnnotator 55 3,386 13,386 6,876 7,002 126 100% 126 0 0 0 0 0
libKF5Purpose 4 412 1,924 1,037 1,044 7 100% 7 0 0 0 0 0
libKF5KDEGames 52 1,341 6,411 3,444 3,468 24 85.7% 28 25 17 16 20 78
libksgrd 5 208 1,146 585 592 7 77.8% 9 0 0 0 0 0
libkdsoap 11 905 5,185 2,477 2,477 0 0% 12 0 5 7 16 28
libvclplug_qt5lo 25 1,526 12,692 6,270 6,282 12 60% 20 0 2 2 6 10
libOkular5Core 42 2,531 17,767 10,400 10,435 35 100% 35 0 0 0 0 0
libKF5PlasmaQuick 33 982 6,101 3,334 3,369 35 59.3% 59 0 0 0 0 0
libKF5Parts 16 1,335 5,914 3,392 3,412 20 87% 23 0 0 0 0 0
libQt5MultimediaQuick 35 344 1,976 1,045 1,046 1 16.7% 6 9 7 14 10 40
libKF5People 10 444 2,672 1,564 1,570 6 66.7% 9 0 2 2 5 9
libQt5Gui 862 9,964 85,017 45,416 45,423 7 38.9% 18 108 132 58 150 448
libdolphinprivate 156 3,480 20,525 12,644 12,871 227 100% 227 16 119 147 281 563
libmilou 8 555 2,387 1,284 1,302 18 100% 18 0 0 0 0 0
libKF5PulseAudioQt 25 697 5,062 2,838 2,870 32 97% 33 0 0 0 0 0
libplasma-geolocation-interface 1 88 344 168 169 1 100% 1 0 2 2 4 8
libkdeinit5_ksysguard 65 1,139 9,514 5,882 5,969 87 84.5% 103 0 0 0 0 0
libFcitxQt5DBusAddons 34 314 2,537 1,019 1,022 3 75% 4 6 10 13 35 64
libKF5ItemViews 13 787 3,625 2,011 2,022 11 40.7% 27 7 6 17 25 55
libKF5Package 6 387 2,861 1,626 1,629 3 100% 3 0 0 0 0 0
libKF5DBusAddons 4 277 1,407 750 755 5 83.3% 6 0 8 2 11 21
libplasmanm_internal 33 892 5,662 3,443 3,488 45 97.8% 46 12 5 22 32 71
libphonon4qt5 36 1,201 8,808 5,039 5,056 17 25.8% 66 0 0 0 0 0
libReviewboardHelpers 3 224 1,159 633 639 6 100% 6 0 0 0 0 0
libKF5IdleTime 2 170 722 341 342 1 33.3% 3 0 5 14 9 28
libKF5KrossUi 8 623 1,957 1,033 1,044 11 50% 22 0 0 0 0 0
libKUserFeedbackWidgets 31 329 1,167 632 647 15 78.9% 19 0 0 0 0 0
libkf5be1lo 3 134 912 460 461 1 100% 1 0 0 0 0 0
libdebconf-kde 8 343 2,508 1,467 1,475 8 66.7% 12 0 0 0 0 0
libKWaylandServer 272 2,725 30,498 18,326 18,422 96 100% 96 0 0 0 0 0
libQt5XcbQpa 55 2,180 22,374 13,190 13,201 11 42.3% 26 0 1 3 4 8
libKF5GuiAddons 6 481 2,334 1,141 1,149 8 100% 8 5 18 0 21 44
libprocessui 93 1,049 5,220 2,931 2,966 35 89.7% 39 7 2 23 27 59
libKF5Bookmarks 17 956 5,225 3,216 3,254 38 86.4% 44 0 10 6 16 32
libqca-qt5 44 2,438 20,023 9,898 9,965 67 100% 67 0 0 0 0 0
libKF5WaylandServer 64 3,061 17,154 10,029 10,186 157 100% 157 0 0 0 0 0
libpolkit-qt5-gui-1 2 146 635 277 281 4 66.7% 6 0 0 0 0 0
libkhotkeysprivate 30 963 4,796 2,762 2,768 6 40% 15 0 0 0 0 0
libKF5KIOFileWidgets 199 2,297 17,111 10,499 10,701 202 99% 204 0 37 76 78 191
libQt5HunspellInputMethod 4 266 2,037 1,068 1,069 1 100% 1 0 0 0 0 0

Table 12: Detailed results of callback and semantics recovery in KDE binaries (CGE stands for call graph edges).



Binary Name Time(s) # Symbol # CGE # CGE # CGE Callback From QTRE Symbols From QTRE

ANGR GHIDRA GHIDRA+QTRE # Recovered % # Total # Prop. # Signal # Slot # Param. # Total

libQtSql 0 671 4,206 2,207 2,207 0 0 0 0 5 9 13 27
QtCarCluster 337 40,712 69,025 23,503 23,636 133 84.2% 158 0 373 192 357 922
QtCarParrot 661 58,175 72,324 21,296 21,302 6 15.8% 38 0 673 185 378 1,236
QtCarNavServer 248 15,154 40,223 17,981 18,262 281 96.2% 292 0 160 82 223 465
libQtCarSim 298 45,882 57,169 21,430 21,464 34 100% 34 0 528 3 280 811
libQtCarServiceMgr 22 3,232 7,124 3,449 3,491 42 89.4% 47 0 14 12 11 37
libQtXmlPatterns 168 703 72,277 17,893 17,897 4 28.6% 14 0 0 0 0 0
libQtCore 200 4,191 34,100 18,773 18,783 10 24.4% 41 52 75 50 85 262
libQtGui 1,726 14,534 N/A 88,111 88,413 302 48.6% 622 649 349 602 546 2,146
QtCarMonitor 30 8,500 11,106 6,660 6,660 0 0% 3 0 114 0 87 201
QtCarNetManager 440 53,842 69,943 23,493 23,559 66 69.5% 95 0 626 49 355 1,030
libQtCarGUI 4,636 138,461 N/A 146,878 149,833 2,955 90% 3,282 15 845 1,160 1,022 3,042
QtCarSpeechRecognizer 410 51,547 68,072 24,277 24,322 45 95.7% 47 0 585 50 347 982
libQtCarCANData 0 12,712 N/A 1,539 1,539 0 0 0 0 12 0 18 30
libQtSvg 12 714 5,680 2,197 2,201 4 36.4% 11 5 1 7 11 24
QtCarEbServerIC 486 43,050 54,939 25,909 26,106 197 90.4% 218 0 449 37 228 714
libQtCarMediaV2 267 35,362 75,291 20,901 21,252 351 72.4% 485 0 64 18 78 160
QtCarEVLogService 194 34,420 38,690 15,775 15,781 6 75% 8 0 382 9 188 579
libQtNetwork 102 1,816 N/A 10,273 10,364 91 56.5% 161 1 96 78 73 248
QtCarScreenshot 0 465 421 219 219 0 0 0 0 0 0 0 0
QtCarMediaServerV2 64 13,811 20,655 11,705 11,758 53 84.1% 63 0 150 0 124 274
libQtCarUtils 99 17,161 32,439 12,650 12,695 45 67.2% 67 0 63 55 98 216
QtCarVehicle 1,567 41,296 48,564 29,204 30,779 1,575 100% 1,575 0 437 88 283 808
libQtDBus 17 726 9,858 4,769 4,783 14 51.9% 27 3 12 12 26 53
libQtOpenGL 16 1,477 8,479 4,716 4,720 4 66.7% 6 0 1 0 1 2
libQtCarAlerts 5 1,096 1,220 711 715 4 50% 8 0 12 5 13 30
libQtDesigner 43 6,724 73,650 36,919 36,919 0 0 0 7 31 29 51 118
libQtHelp 40 1,015 10,180 3,874 3,901 27 32.9% 82 3 20 16 20 59
libQtMultimedia 5 419 1,289 615 631 16 100% 16 0 11 0 2 13
libQtCarPower 18 4,594 8,060 4,914 4,918 4 100% 4 0 65 3 55 123
libQtWebKit 1,301 214,219 N/A 159,019 159,059 40 61.5% 65 38 57 23 46 164
QtCarGpsManager 359 48,125 63,677 23,226 23,242 16 84.2% 19 0 507 9 281 797
QtCarBrowser 59 14,966 23,097 10,580 10,606 26 92.9% 28 0 186 4 146 336
libQtCarUIFramework 653 61,679 80,410 49,863 49,991 128 84.8% 151 0 450 215 290 955
libQtMultimediaKit 193 13,970 12,977 6,835 6,835 0 0% 1 78 201 123 194 596
libQtLocation 38 2,192 11,654 6,649 6,661 12 12.9% 93 0 0 0 0 0
libQtDeclarative 64 3,652 57,123 29,555 29,555 0 0 0 100 83 38 47 268
libQtTest 0 276 1,773 940 940 0 0 0 0 0 0 0 0
QtCarServer 940 75,816 126,496 38,481 38,567 86 85.1% 101 0 878 117 744 1,739
libQtCarVAPI 308 46,571 54,498 21,917 21,936 19 95% 20 0 369 28 184 581
QtCarAudiod 305 35,108 41,079 25,310 25,405 95 88% 108 0 376 17 162 555
QtCarSimService 2,169 2,076 1,247 701 1,553 852 100% 852 0 5 0 0 5
libQtScript 131 878 26,078 11,346 11,347 1 33.3% 3 0 1 1 1 3

Table 13: Detailed results of callback and semantics recovery in Tesla binaries (CGE stands for call graph edges, N/A
indicates unavailable results due to exceptions when analyzing the binary).
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