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Abstract—It is generally believed to be a tedious, time-
consuming, and error-prone process to develop a virtual ma-
chine introspection (VMI) tool manually because of the semantic
gap. Recent advances in Virtuoso show that we can largely nar-
row the semantic gap. But it still cannot completely automate
the VMI tool generation. In this paper, we present VMST, an en-
tirely new technique that can automatically bridge the semantic
gap and generate the VMI tools. The key idea is that, through
system wide instruction monitoring, we can automatically iden-
tify the introspection related data and redirect these data ac-
cesses to the in-guest kernel memory. VMST offers a number
of new features and capabilities. Particularly, it automatically
enables an in-guest inspection program to become an introspec-
tion program. We have tested VMST over 15 commonly used
utilities on top of 20 different Linux kernels. The experimental
results show that our technique is general (largely OS-agnostic),
and it introduces 9.3X overhead on average for the introspected
program compared to the native non-redirected one. 1

I. INTRODUCTION

Motivation Virtual Machine Introspection (VMI) [1] pulls

the in-guest OS state to the outside virtual machine monitor

(VMM), thereby offering an additional layer of isolation and

opening new opportunities for security, reliability, and admin-

istration [2]. For example, in recent years we have witnessed a

widespread adoption of VMI in intrusion detection (e.g., [1],

[3], [4]), malware analysis (e.g., [5], [6]), process monitoring

(e.g., [7]), and memory forensics (e.g, [8]).
However, when performing the introspection, we often have

to interpret the in-guest hardware-layer state such as pro-

cessors, physical memory, and devices at the outside VMM

layer. Such interpretation typically requires detailed, up-to-

date knowledge of the internal OS kernel workings. For ex-

ample, to introspect the pid of a running process in a Linux

kernel, one has to traverse the corresponding task_struct
to fetch its pid field. Acquiring such knowledge is often te-

dious and time-consuming even for an open source OS. For

a closed source OS, one may have to reverse engineer the in-

ternal kernel workings for the introspection, which may be

error-prone.
The difficulty in interpreting the low level bits and bytes

into a high level semantic state of an in-guest OS is called

1Authors are in alphabetic order.

the semantic gap [9]. An early solution [1] to bridging the

semantic gap leverages the Linux crash utility (a kernel

dump analysis tool), but this approach requires the kernel to be

recompiled with the debugging symbols. The other approach

involves locating, traversing, and interpreting known structures

of the in-guest memory. While the latter approach has been

widely adopted (e.g., [5], [10], [11]), it relies on a manual

effort to locate the in-guest kernel data and develop the in-

guest semantic-equivalent code to introspect. Moreover, such

a manual process has to be repeated for different kernels, which

may suffer from frequent changes due to the new releases or

patches. Furthermore, it may also introduce vulnerabilities for

attackers to evade these hand-built introspection tools [12],

[13].

To ease the burden of the manual process and develop more

secure VMI tools, most recently Dolan-Gavitt et al. [13] pre-

sented Virtuoso, a system for automatically generating intro-

spection programs with minimum human effort. The key idea

of Virtuoso is to create introspection programs from the traces

of the in-guest trusted programs. More specifically, given an

introspection functionality (e.g., list all processes), Virtuoso

will train and trace the system wide execution of the in-guest

programs (e.g., ps) by an expert, automatically identify the

instructions necessary in accomplishing this functionality, and

finally generate the introspection code that reproduces the

same behavior of the in-guest programs.

While Virtuoso has made a large step in narrowing the

semantic gap, as acknowledged by the authors [13], one of

its fundamental limitations is that it is only able, due to the

nature of dynamic analysis, to reproduce introspection code

that has been executed and trained. Meanwhile, it is still not

fully automated and requires the intervention from a human

expert. Thus, in this paper we present VM-Space Traveler

(VMST for short), a new system to automatically bridge the

semantic gap and generate the VMI tools.

Key ideas and techniques The key insight of our technique

is that a program P(x) is often composed of code P and data
x; for the same program, P is usually identical across different

machines, and the only difference is the run-time consumed

data x. Normally, for a machine A, its P always consumes
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the x in A. Thus, if we can make P (suppose an inspection

program such as ps) in A transparently consume the data y in

B (i.e., without the awareness that y comes from B), then we

automatically generate an introspection program P ′ such that

P ′(x)=P(y).
However, it turns out to be a challenging task to enable

P ′(x) using P(y) when y is kernel data. Note that an in-
trospection program usually inspects kernel data. We cannot

simply redirect2 all kernel memory access because kernel code

may get redirected too, but in-guest kernel code is usually un-

trusted. Meanwhile, not all kernel data can be redirected. For

example, an interrupt handler expects to read some hardware

states, but after the redirection it may receive an inconsistent

state leading to kernel panics. Also, data in the kernel stack

cannot be redirected, otherwise kernel control flow will be

disrupted. As such, we have to identify where the redirectable

data is and only redirect introspection related data. To this

end, we have developed a number of OS-agnostic enabling

techniques, including syscall execution context identification,

redirectable data identification, and kernel data redirection at

the VMM layer.

Usage scenarios VMST is designed with transparency to the

guest OS in mind, and it has achieved nearly full transparency

against an in-guest OS kernel. For example, without any mod-

ification, VMST directly supports a number of most recent

released Linux kernels. Note that in this paper, we mainly fo-

cus on the in-guest Linux/UNIX OS. Meanwhile, when using

VMST for introspection, for a particular OS, end-users will

only need to install the corresponding trusted version of the

guest OS in the VM shipped with our VMST, and attach (or

mount) the in-guest memory. The in-guest memory could be

a live memory for VMI or a memory snapshot for memory

forensic analysis. Subsequently, end-users can use a variety

of OS utilities (e.g., ps, lsmod) to inspect the state of the

in-guest OS.

New features VMST offers a number of new features and ca-

pabilities. In particular, (1) it enables the automatic generation

of secure introspection tools. Such security is achieved by the

nature of VMI [1] and the technique of our automatic tool

generation. Similar to Virtuoso [13], our VMI-tools are liter-

ally generated from the trusted OS code as well as the widely

used and tested utilities without any modification, and hence

our VMI tools are more secure than many other manually

created ones. (2) Our tools are also more reliable than tools

generated from Virtuoso, because Virtuoso cannot guarantee

the path coverage in their training, yet we have retained all

the code. (3) Meanwhile, we directly generate a large volume

of VMI tools for free, but Virtuoso has to train each program

one by one to get the new VMI tools. (4) In addition, VMST

allows the user-level programmers to develop new user-level

2“Redirect” means intercept and direct the access to the data traveled from
other machines, which also actually leads to the name of our VM Space
Traveler.

programs natively to monitor system status for the introspec-

tion. (5) Further, it also allows the kernel-level programmers

to develop native device drivers for inspecting the kernel states

for the introspection. In short, VMST automatically enables an
in-guest legacy inspection program to become an introspec-
tion program, without any involvement from end-users and
developers.

We have implemented our VMST, and tested it over a variety

of Linux distributions including Ubuntu, Redhat, Debian, and

OpenSuse, with 20 different kernel versions to evaluate the

generality of our approach. Our experimental results show that

(1) redirecting the kernel data access is entirely feasible for

automatic VMI tool generation, (2) such an approach directly

supports many of the inspection utilities in the guest OS, (3)

allows end-users to easily develop new VMI tools by reusing

the native APIs, or the native device drives (or kernel modules),

and (4) finally it introduces reasonable performance overhead

(with 9.3X on average) for the introspection applications.

Contributions In summary, this paper makes the following

contributions.

• We introduce a new binary code reuse technique. Unlike

existing techniques that extract the code outside [13]–

[15], we retain the code in original form but dynamically

instrument the code and redirect the data access to achieve

our goal.

• We show such code reuse is truly feasible in the VMI

domain and demonstrate that end-users can automatically

get a variety of VMI tools without any knowledge of the

OS kernel internals.

• We devise a set of novel OS-agnostic enabling techniques,

including syscall execution context identification (§III),

redirectable data identification (§IV), and kernel data
redirection (§V), to achieve nearly the full transparency

of our techniques against an OS kernel.

• We have implemented these techniques into our prototype

VMST (§VI), which automatically bridges the semantic

gap in VMI. Meanwhile, we have applied it to automati-

cally generate a number of VMI tools for the Linux OS

as shown in our experiment (§VII).

II. PROBLEM STATEMENT AND SYSTEM OVERVIEW

A. Problem Statement

Observations The goal of our VMST is to bridge the semantic-

gap and enable automated VMI tool generation. The basic

observation is that many introspection tools are mainly used

to query the guest-OS state, e.g., listing all the running pro-

cesses, opened files, installed drivers, and connected sockets.

In fact, these program-logics P have been shipped in an OS

kernel with the corresponding user level utilities. Thus, in-

stead of building an introspection tool P ′ from scratch, we can

actually reuse the user level as well as OS kernel code P to

automatically implement P ′.
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  1 execve("./getpid", ["./getpid"], [/* 38 vars */]) = 0
  2 brk(0)                                  = 0x83b8000
  3 access("/etc/ld.so.nohwcap", F_OK)      = -1 ENOENT
  4 mmap2(NULL, 8192, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x4001d000
  5 access("/etc/ld.so.preload", R_OK)      = -1 ENOENT
  6 open("/etc/ld.so.cache", O_RDONLY)      = 3
  7 fstat64(3, {st_mode=S_IFREG|0644, st_size=50205, ...}) = 0
  8 mmap2(NULL, 50205, PROT_READ, MAP_PRIVATE, 3, 0) = 0x4001f000
  9 close(3)                                = 0
 10 access("/etc/ld.so.nohwcap", F_OK)      = -1 ENOENT
 11 open("/lib/tls/i686/cmov/libc.so.6", O_RDONLY) = 3
 12 read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\340g\1"..., 512) = 512
 13 fstat64(3, {st_mode=S_IFREG|0755, st_size=1425800, ...}) = 0
 14 mmap2(NULL, 1431152, PROT_READ|PROT_EXEC, ..., 0) = 0x4002c000
 15 mmap2(0x40184000, 12288, PROT_READ|PROT_WRITE, ..., 0x158) = 0x40184000
 16 mmap2(0x40187000, 9840, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x40187000
 17 close(3)                                = 0
 18 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x4018a000
 19 set_thread_area({entry_number:-1 -> 6,...}) = 0
 20 mprotect(0x40184000, 8192, PROT_READ)   = 0
 21 mprotect(0x4001b000, 4096, PROT_READ)   = 0
 22 munmap(0x4001f000, 50205)               = 0
 23 getpid()                                = 13849
 24 fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1), ...}) = 0
 25 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x4001f000
 26 write(1, "pid=13849\n", 10)             = 10
 27 exit_group(0)                           = ?

Figure 1. System level behavior (in terms of syscall trace) of a typical user
level getpid program.

Let us take a specific example to better understand our obser-

vation. Without introspection, normally when we run a utility

program to inspect an OS state, e.g., get a current process ID

(getpid) from a Linux kernel, as shown in Fig. 1, the OS

kernel will execute a series of system calls such as create a

new process (execve), set the end of the data segment (brk),

check (access) the library (e.g., ld.so.nohwcap), map
the standard shared library (open, fstat, map, map2), ex-

ecute the getpid system call (syscall for short), output the

result (write), and exit the process (exit_group).

With introspection, we can see that in order to fully reuse the
OS as well as user level program code P , we should redirect
the data read that is only related to the desired introspection
functionality. In our getpid example, it should be the data

x within the getpid system call. For data in user space and

other irrelevant kernel space, there should be no redirection and

we should keep both kernel and other user processes running

correctly.

Problem Definition As such, the central problem in our sys-

tem is how to (1) automatically identify the introspection exe-

cution context, (2) automatically identify the data x in kernel

code that is related to the introspection, (3) automatically redi-

rect x, and (4) keep all the processes running, at the VMM

layer.

Challenges However, this is a challenging task in reality since

the OS kernel is designed to manage computer hardware re-

sources (e.g., memory, disk, I/O) and provide common services

(i.e., syscalls) for application software, it has a very compli-

cated control flow and data access.

In particular, the kernel usually contains many routines for

resource (e.g., page tables) management, interrupt and excep-

tion handling (e.g., timer, keyboard, page fault), context switch,

and syscall service. When serving a system call, an interrupt

could occur, a page fault (an exception) could occur, and a con-

text switch could occur. Obviously, we do not want to redirect

the kernel data access in context switches, page fault handlers,

or interrupt service routines. Also, we do not want to redirect

the data access in the execution context of any other processes.

Data access may be code reads or data reads. One of the

advantages for VMI is that attackers usually cannot modify the

introspection code. Thus, we do not want to load any code from

an untrusted guest and we have to differentiate kernel code

and data. Also, data could be in kernel global, heap, or stack

regions. Obviously, we cannot redirect the kernel stack read,

otherwise it will lead to a kernel crash (because of control data

such as return addresses in the stack). We have to thus identify

where the redirectable data is. Moreover, when redirecting

the data, we have to perform the virtual to physical address

translation. Otherwise it will not be able to find the correct

in-guest memory data. Further, we have to perform copy on

write (COW) of the redirected data to ensure there is no side

effect of the in-guest memory.

B. Scope and Assumptions

Being OS-agnostic as much as possible is one of our de-

sign goals. That is, when designing our VMST, we should use

the general knowledge from the OS design principles [16],

[17], and we would avoid, if possible, hard coding any spe-

cific kernel addresses (otherwise it would be too kernel spe-

cific). However, we cannot blindly support all OSes because

we rely on some OS knowledge – particularly the system call

interfaces and conversions (i.e., the syscall number, argument,

return value), which are OS-gnostic. Therefore, in this paper,

we focus on Linux/UNIX OS, on top of the widely used x86

architecture.

Meanwhile, we assume our own VMM can intercept the

system-wide instructions, because we need to dynamically

instrument the instructions and redirect the data access if in-

structions are introspection related.

In addition, similar to Virtuoso [13], we also assume end-

users have a trusted in-guest OS copy. The trusted copy will be

installed in our VMST, and executed along with the utilities

to provide the introspection. The reason is that without the

trusted copy, when we redirect the introspection data, it will

lead to a wrong in-guest memory address.

C. System Overview

An overview of our VMST is presented in Fig. 2. For any

untrusted OS running in a product-VM, suppose end-users

want to perform its introspection. They only need to install

the corresponding trusted version of the in-guest OS on top of

our own secure-VM (shipped in our VMST) and invoke the

commonly used standard utility programs without any mod-
ification. They do not have to perform any manual effort to

understand (or reverse engineer) the OS kernel and write the in-

trospection program. Meanwhile, if they do want to customize

an introspection program, they can develop these programs
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Figure 2. An architecture overview of our VMST.

natively (e.g., invoking native APIs/system calls) without wor-

rying about any OS kernel internals. Note that the product-VM

and our secure-VM in Fig. 2 can be completely different, and

VMST is only bounded with our own secure-VM and is trans-

parent to the guest product-VM, which can be a VM running

on top of XEN/KVM/VMWare/VirtualBox/VirtualPC/QEMU,

or even be a physical machine as long as we have its memory

access.

There are three key techniques in our VMST: (1) syscall
execution context identification, (2) redirectable data iden-
tification, and (3) kernel data redirection. Syscall execution
context identification is used to identify only the system call

execution context relevant to the introspection, and ensure the

kernel data redirection only redirects the data x in the context

of interest. Redirectable data identification pinpoints only the

x (and its closure) that needs to be redirected under the con-

text informed by the syscall execution context identification.

Kernel data redirection performs the final redirection of x.

Copy-on-write (COW) will be performed if there is any data

write on x. In the next three sections, we present the detailed

design of each technique of our VMST.

III. SYSCALL EXECUTION CONTEXT IDENTIFICATION

Because of the complicated kernel control flow, we have

to first identify the precise system call execution context, in

which we perform the redirection for the necessary system

call. When an introspection program is running, there are two

spaces: user space and kernel space. In the x86 architecture,

each process (and kernel thread, which essentially is a process)

has a unique CR3 value (to locate the page directory). We

could hence isolate the corresponding kernel as well as user

space by inspecting the CR3 value.

Then the question is how to acquire the right CR3 value of

the monitored process, given only the name of an introspected

process. Note that our secure-VM needs to be transparent

to the in-guest OS, and we should not traverse any specific

task_struct to get the process name field even though

Interrupt
Handler

sysenter/int 0x80

sysexit/iretd

Syscall Service
Routine

Context
Switch

Exception
Handler

Figure 3. Typical kernel control flow when serving a system call.

we could. This turns out to be a challenging task, but before

describing our solution let us first walk through what we could

do at the VMM layer.

It is trivial to identify the syscall entry point. In Linux, user

level programs invoke int 0x80 or sysenter instructions

to enter the kernel space. Therefore, by intercepting these two

instructions at the VMM layer, it suffices to identify the begin-

ning of a syscall execution context. However, the real difficulty

is identifying the exit point of a system call. A naive approach

may directly intercept the sysexit or iret instruction to

determine the exit point. However, this approach would not

work because of interrupt and exception handling as well as the

possibility of a context switch happening during the execution

of a system call.

As illustrated in Fig. 3, at a high level, when serving a

system call, an interrupt could occur and kernel control flow

may go to the interrupt handler. An exception such as a page

fault (when a system call routine accesses some unmapped

memory region of the process) could also occur. Also, at the

system call exit point or during the service of a system call, a

context switch could occur (e.g., a process has used over its

time slice). A context switch could also occur in the interrupt

and exception handler.

Fortunately, since our secure-VM virtualizes all hardware re-

sources (e.g., through emulation), we could easily observe and

control these hardware states including the interrupt and timer

at the VMM layer, as long as we can keep our own introspec-

tion process and kernel running correctly. More specifically,

we use the following approaches to handle interrupt, exception,

and context switch.

Interrupt and Exception Handling Generally, there are two

kinds of interrupts: synchronous interrupts generated by the

CPU while executing instructions, and asynchronous interrupts

generated by the other hardware devices at arbitrary times. In

the x86 architecture, synchronous interrupts are designated as

exceptions, and asynchronous interrupts as interrupts.

When an interrupt occurs (if it is not disabled), whether it is

an exception or a hardware interrupt, it will first issue an inter-

rupt vector number in the hardware interrupt controller. This
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controller will pick up the corresponding interrupt handler,

to which the kernel control flow will transfer. By monitor-

ing this controller and tracking the interrupt number, we can

differentiate system calls (int 0x80) and other interrupt

or exception handlers, and we can track the beginning of an

interrupt service.

In our design, right before the interrupt handler gets exe-

cuted (not the system call), we will set a global flag to indicate

data in the current execution context is not redirectable (as the

kernel control path will be in the interrupt context). Also, as an

interrupt always ends with an iret instruction, we are able

to track the end of an interrupt. However, the interrupt could

be nested. That is, when serving an interrupt, the kernel could

suspend the execution of the current interrupt in response to a

higher priority interrupt. Therefore, we use a stack data struc-

ture to track the execution status of the interrupt handler. In

particular, we use a counter to simulate the stack. Whenever

an interrupt other than a system call occurs, we increase the

counter; when an iret instruction executes, we decrease

the counter. If the counter becomes zero, it means all the

interrupt service has finished. Note that the counter is only

updated when the execution context is within the introspection

process, and initially it is zero.

Another possible design is to track the next program counter

(PC) in the system call routine to determine the end of an in-

terrupt, since after an interrupt handler finishes, it will transfer

the kernel control flow back to the system call routine (the

next PC). However, we observe that such a simple design will

have a problem. For example, in Linux kernel 2.6.32-rc8 (the

working kernel we used during the design of VMST), the sys-

tem call routine will call the cond_reschedule function

to determine whether a context switch is needed (in particu-

lar checking the _TIF_NEED_RESCHED flag in the kernel

stack), and it is also called in the interrupt and exception han-

dler routine [16]. If an interrupt occurs during the execution of

cond_schedule in the system call context, this approach

will mistakenly identify the end of an interrupt handler. There-

fore, using kernel call stack and PC together could be a feasible

approach as they precisely define the execution context.

The stack-based approach above is able to determine the

interrupt handler context, or more specifically, the top half of an

interrupt. However, one may worry about how we identify the

bottom half of an interrupt as most UNIX systems, including

Linux, divide the work of processing interrupts into two parts

or halves [16]. Fortunately, the execution of the bottom half of

an interrupt is usually bounded with a working queue and will

be scheduled by a context switch that is discussed below.

Context Switch Controlling Context switches are one of the

key techniques to allow multiple processes to share a single

CPU. Basically, it is a procedure of storing and restoring the

context state (including CPU registers, CR3, etc.) of a process

(or a kernel thread) such that execution can be resumed from

the same point at a later time [16], [17].
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Figure 4. Statistics of context switch when running ps

A context switch could occur in a variety of cases in

Linux/UNIX including:

• Case-I: arbitrary places, when an asynchronous interrupt

happens (could be timer) and the process has used its

CPU time slice (preempted);

• Case-II: when a process voluntarily relinquishes their

time in the CPU (e.g., invoking sleep, waitpid or

exit system call);

• Case-III: when a system call is about to return;

• Case-IV: other system call subroutine places (besides

system call return point), in which the kernel pro-actively

checks whether a context switch is needed;

• Case-V: in exception (e.g., page fault) handler; or

• Case-VI: when a system call gets blocked

During our design, we profiled one execution of the ps
command, and the statistics of where a context switch happens

is reported in Fig. 4. Among these six cases, four (Case-I, Case-

III, Case-IV, and Case-V that account for 99.3% in our profile)

are triggered due to the time slice. Case-II (0.7% because

of the exit syscall) is not of concern because the entry of

the sleep or waitpid system call can be detected and the

redirection in these system calls’ execution context, including

any other possible context switches, can be disabled. After

context switching to other process, it will switch back to these

system calls execution context and we are able to detect it

by just looking at the CR3. Also, an introspection program

typically will not invoke the blocking-mode system calls (Case-

VI). Meanwhile Case-V can be detected by our exception

handler. Therefore, one of the key ideas of VMST is that as

long as we can keep the running introspection process always

owning the CPU, we can prevent context switch happening

until the monitored process exits, or we can allow context

switch as long as we can pro-actively detect it (such as the

case of sleep system call). Note that at VMM layer we own

the hardware and we can modify the timer such that the process

will not feel it has gone beyond its time slice.

Also, Virtuoso mentioned an approach to disable the context

switch by running the training programs with a higher priority

(e.g., using start /realtime on Windows and chrt on
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Linux) [13]. However, this approach alone will not work in

VMST as the determination of a context switch will still be

executed, and the data access in the determination context will

hence be redirected (that is not desirable). Also, it might not

always be true that a user-level process can get the highest

priority.

Acquiring the right CR3 Now we are ready to describe how

we acquire the right CR3 when only given a to-be-executed

process name. Notice in Fig. 1, when a process is executed,

it will first call the execve system call. By inspecting the

value in ebx at the moment when this system call gets exe-

cuted, we are able to determine the process name. However,

the value of CR3 when executing this system call belongs to

its parent process. During the execution of this system call,

it will release almost all resources belonging to the old pro-

cess (flush_old_exec) and update the CR3, which is the

right moment to acquire the CR3 for our monitored process.

Therefore, by monitoring the update of CR3 (a mov instruc-

tion) in execve syscall context, we are able to get our desired

value because there is no other CR3 update since we disabled

context switching.

There is also an alternative approach to monitor all CR3

(essentially pgd) values from the boot of our secure-VM and

detect the newly used CR3 since a new CR3 certainly belongs

to a new process, as the above design is a bit OS-gnostic to

Linux kernel (e.g., what happens if other OSes’ “execve”

does not update the CR3?). For this approach, we need to track

the life time of a pgd. Our instrumentation is to maintain a

map between the CR3 and the process. Whenever a process

dies (detected through such as exit_group system call as

noticed in Fig. 1), we remove its CR3 from our map. As such,

we are able to determine whether a given CR3 belongs to a

new process.

By tracking the interrupt service routine and disabling

the timer for context switches, our syscall context identifi-
cation is able to largely identify the system call execution

context of the monitored process. However, it still does not

fully isolate all the syscall service routines. For example: the

cond_schedule function will be called in many places to

determine whether a context switch is needed, including all of

the system call exit points. Obviously, we will redirect the data

access of this function if we do not have any other techniques

to remedy this. We cannot white list this specific function

(OS-gnostic, though that is a viable option). Fortunately, our

second technique, redirectable data identification, solves this

problem and will automatically tell the data in such a function

is not redirectable.

IV. REDIRECTABLE DATA IDENTIFICATION

The goal of our redirectable data identification is to identify

the kernel data x that can be redirected to the in-guest memory.

Thus, we have to first determine what kind of data should be

redirected. Normally, when writing an introspection program

manually, we traverse the kernel memory starting from the

global memory location (exported in the system.map file

for instance) to reach other memory locations including the

kernel heap by following pointers.

As such, one of the intuitive approaches would be to track

and redirect the data x that is from kernel global variables

and derived from global variables through pointer dereference

and pointer arithmetic instructions. Note that at the instruction

level, we can easily identify the kernel global variables, which

are usually literal values after the kernel is compiled and iden-

tical for the same OS version for a given global address. By

dynamically instrumenting each kernel instruction and check-

ing whether there is any data transitively derived from global

variables (a variant of widely used taint analysis [18]–[21]), we

are able to identify them. Our early design naturally adopted

this approach. However, we found another design that is sim-

pler and can save more shadow memory space for the data

flow tracking.

Since it is a boolean function to determine whether some

data is redirectable, instead of tracking all the redirectable

data, we can track which data is unredirectable. Certainly, it

is the data dereferenced from stack variables or derived from

them because some kernel stack variables manage the kernel

control path, and they vary from machine to machine even for

an identical OS at a different time.

Though our redirectable data identification is a variant of

taint analysis, there are still significant differences. Below we

sketch our design and highlight them.

Shadow Memory Similar to all taint analysis, we need a

shadow memory to store the taint bits for memory and CPU

registers. We keep taint information for both memory and

registers at byte granularity by using only one bit to indicate

whether they are redirectable (with value 1) or not (with value

0).

However, we have to use three pieces of shadow memory,

shadow S and shadow V for the memory data and shadow

R for registers. S is used to track the unredirectable stack

addresses, and V and R are used to track whether the value

stored in the corresponding memory addresses or registers

when used as a memory address needs to be redirected. Con-

sidering our working example shown in Fig. 5, if we only have

S, for the instruction at line 17 mov 0xc(%ebp),%ecx,

we will move the taint bit 0 to ecx. When the kernel subse-

quently dereferences a memory address pointed to by ecx,

we will not redirect it. However, we should redirect it as this

address is actually a global memory address. Therefore, we

will keep taint information for both the stack address and its

value because of pointers.

Taint Source Right before the introspection process enters the

first monitored system call, we initialize the taint bits for the

shadow state. ForR, all are initialized with 0, as the parameters

passed from the user space are local to our secure-VM. For

S and V , the taint bits are allocated and updated on demand
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  1 c1001178:   a1 24 32 77 c1          mov    0xc1773224,%eax
  2 ...
  3 c1001196:   50                      push   %eax
  4 c1001197:   68 21 a4 5c c1          push   $0xc15ca421
  5 c100119c:   68 20 30 77 c1          push   $0xc1773020
  6 c10011a1:   e8 9d 78 18 00          call   c1188a43              <1>
  7 ...
  8 c100295c:   bd 00 e0 ff ff          mov    $0xffffe000,%ebp
  9 c1002961:   21 e5                   and    %esp,%ebp
 10 ...
 11 c100297d:   8b 4d 08                mov    0x8(%ebp),%ecx
 12 ...
 13 c1188a43:   55                      push   %ebp
 14 c1188a44:   ba ff ff ff 7f          mov    $0x7fffffff,%edx
 15 c1188a49:   89 e5                   mov    %esp,%ebp
 16 c1188a4b:   8d 45 10                lea    0x10(%ebp),%eax       <2>
 17 c1188a4e:   8b 4d 0c                mov    0xc(%ebp),%ecx
 18 c1188a51:   50                      push   %eax
 19 c1188a52:   8b 45 08                mov    0x8(%ebp),%eax
 20 c1188a55:   e8 c5 fc ff ff          call   c118871f              <3>
 21 ...
 22 c118871f:   55                      push   %ebp
 23 c1188720:   89 e5                   mov    %esp,%ebp
 24 ...
 25 c118880d:   8b 4d 08                mov    0x8(%ebp),%ecx        <4>

ce657024

ce657020

ce65701c

ce657018
ce657014

ce657010

ce65700c

ce657008

ce657004

ce657000
...

ce657024

ce657020

ce65701c

ce657018
ce657014

ce657010

ce65700c

ce657008

ce657004

ce657000
...

ce657024

ce657020

ce65701c

ce657018
ce657014

ce657010

ce65700c

ce657008

ce657004

ce657000
...

ce657024

ce657020

ce65701c

ce657018
ce657014

ce657010

ce65700c

ce657008

ce657004

ce657000
...

Figure 5. Shadow memory state of our working example code.

when the kernel uses the corresponding addresses.

The taint bit for the esp register is always 0. When loading

a global memory address (a literal value that falls into kernel

memory address space), the taint information for the corre-

sponding register or memory will be set to 1. Some special

instructions (e.g., xor eax,eax, sub eax,eax) will re-

set register value, and consequently we will set their taint bits

with 0.

Propagation Policy The propagation policy determines how

we update the shadow state. Similar to all other taint analyses,

based on the instruction semantics, we update it. However, as

we have three pieces of shadow memory (i.e., S, V , and R),

we have significantly different policies.
In particular, for S, we always update its shadow bit with

0 whenever we encounter a stack address. We can regard S
as a bookkeeping of all the exercised stack address. Later on,

when dereferencing a memory address, we will query S about

whether we have seen such an address before. The taint-bit
value in S (which is always 0) is not involved in any data
propagation.

In fact, we could eliminate S because, in practice, nearly

all the stack addresses (involved in an x86 instruction) are

computed (directly or indirectly) from esp. For example, as

shown in the last two instructions (line 23-25) of our working

example, we can easily infer 0x8(%ebp) is a stack address,

and we do not need to query any S . The main reason we keep

it is to make sure that the stack address will not be redirected.

For example, it may have an instruction that actually has a

stack address but does not use esp (or its derivation such as

ebp) in certain context for address computation. In this case,

our system will fail, though we have not encountered such a

case in practice.
For V and R, we use the following policies.

• Data Movement Instruction For one directional data

movement A → B, such as mov/movsb/movsd,

push, and pop, we update the corresponding R(B) or

V(B), with the taint bit in R(A) or V(A). For data ex-

change instructions A ↔ B, such as xchg, xadd (add

and exchange), we update shadow state for both operand.

Note lea may be a special case of “data movement”. It

does not exactly load any data from memory, but it may

load a memory address. Therefore, we will check if the

source operand generates a stack address, and if so we

will update V or R of the destination operand with 0. For

example, at line 16, it loads a stack address to eax, and

we will consequently update R(eax) with 0.

• Data Arithmetic Instruction As usual, for data arith-

metic instructions such as add, sub, or, we should

update shadow state by ORing the taint bit of the two

operands. However, this is only true for operands that are

both global and heap addresses as well as their propaga-

tions. Note that if one of the operands in these instructions

is a literal value but not within kernel address space, there

is no need to update any shadow state. If either of the

operands is stack address related, we will update the taint

bit with 0. Considering the instructions in line 8-11, we

will first taint ebp with 1 as 0xffffe000 is a literal

and within kernel address space; at line 9 when we exe-

cute and %esp,%ebp, because the taint bit for esp is

always 0, we will get the new taint bit for ebp as 1; next

at line 11 when we dereference memory 0x8(%ebp),

we will redirect it, which is wrong. Therefore, the stack

address will hijack the normal propagation policy and

clear the operand taint.

• Other Instructions A large body of instructions do not

contribute to any taint propagation, such as nop, jmp,
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jcc, test, etc. For them, we will only check whether

any memory address involved in these instructions needs

to be redirected.

One may wonder whether we could get rid of this compli-

cated data flow analysis scheme, given that our secure-VM

already intercepts each instruction and knows the stack base

address when entering the kernel; it should be straightforward

to check if a memory access is on the secure-VM kernel stack.

However, there is a big issue that an in-guest kernel heap

address could also be in the range of the secure-VM stack

address, because there is no explicit boundary between kernel

stack and kernel heap. In fact, a process’ kernel stack is dynam-

ically allocated when a process is created. As such, we have

to track the flow; otherwise, we cannot differentiate whether a

given address is in a secure-VM kernel stack or in-guest heap.

V. KERNEL DATA REDIRECTION

Having been able to identify the syscall execution context

and pinpoint the data x that needs to be redirected, in this

section we present how we redirect the kernel memory ac-

cess. As discussed in §II that not all system calls need to be

redirected, we first describe our syscall redirection policy in

§V-A. Next we discuss how we perform the virtual to physical

address translation including COW handling in §V-B. Finally,

we present our redirection algorithm in §V-C.

A. System Call Redirection Policy

Back in the syscall trace of our getpid process (Fig. 1),

we noticed our syscall redirection policy has to be fine-grained.

That is, based on the semantics of each system call, we decide

whether we will redirect the data access during the execution.

As such, we have to systematically examine all the system calls.

This has been widely studied in security literature, especially

in intrusion detection (e.g., [12], [22], [23]).

System calls in general can be classified into the fol-

lowing categories according to a comprehensive study

made by Sekar [24]: file access (e.g., open, read,

write), network access (e.g., send/recv), message queues

(e.g., msgctl), shared memory (e.g., shmat), file de-

scriptor operations (e.g., dup, fcntl), time-related (e.g,.

getitimer/setitimer), process control related (e.g.,

execve, brk, getpid), and other system-wide function-

ality related including accounting and quota (e.g., acct).

In our introspection settings, as we are interested in pulling

the guest OS state outside, (1) system calls dealing with re-

trieving (i.e., get) the status of the system and (2) system calls

related to file access are of particular interest. Specifically, our

introspected system calls are summarized in Table I. We are

interested in the file access related system call because of the

proc files in Linux/UNIX. Note that the proc file system

is a special file system which provides a more standardized

way for dynamically accessing kernel state. Actually, standard,

important utility programs such as ps, lsmod, netstat all

read proc files to inspect the kernel status. Also, for disk

Category System Calls

get(p|t|u|g|eu|eg|pp|pg|resu|resg)id
getrusage, getrlimit,sgetmask, capget
gettimeofday,getgroups,getpriority

State Query getitimer,get_kernel_syms, getdents
getcwd,ugetrlimit,timer_gettime,
timer_getoverrun,clock_gettime

clock_getres,get_mempolicy, getcpu
open, fstat, stat, lstat, statfs

File System fstatfs, oldlstat, ustat, lseek, _llseek
read, readlink, readv, readdir

Table I
INTROSPECTED SYSTEM CALL IN OUR VMST.

files, there is no redirection (because VMI largely deals with

memory), and we have to differentiate them by tracking the

file descriptors. To this end, we maintain a file descriptor map-

ping whenever the introspected process opens a file, and by

checking the parameters we differentiate whether the opened

file is a proc file.

It is worthy to note that nearly all of our key techniques

in VMST are OS-agnostic (our design goal). However, the

system call redirection policy, as described, appears to be OS-

gnostic. That is, it requires the specific knowledge of each

syscall conversion and the semantics for a particular OS. As

such, to support other systems such as Microsoft Windows,

we need to scrutinize each Windows system call to determine

whether they are redirectable. Once we have this knowledge,

it is trivial to introspect them. For instance, as a proof-of-

concept, we successfully introspected a Windows-XP (SP2)

process ID by enabling our VMST redirecting the system call

NtQueryInformationProcess (syscall number 0x9a)

and disabling the stack redirection; meanwhile using the alter-

native approach to track the new CR3 value for the introspec-

tion process.

B. Virtual to Physical Address Translation

When dynamically instrumenting each kernel instruction,

we are only able to observe the virtual address. If a given

address is redirectable, we have to identify its in-guest physical

address. That is, we have to perform the MMU level virtual to

physical (V2P) address translation.

To this end, we design a shadow TLB (STLB) and shadow

CR3 (SCR3) in our secure-VM, which will be used in our

introspection process during address translation if we need

to redirect a given address α. SCR3 is initialized with the

guest CR3 value at the moment of introspection, and is used

for kernel memory address iff α needs to be redirected, and

similarly for STLB.

Meanwhile, as discussed earlier in §II, we have to perform

COW at page level to avoid any side effect of the in-guest OS

if there is a data write on the redirected data. This time, our

design is to extend one of the reserved bits in page table entries

to indicate whether a page is dirty (has been copied) and add

one bit each to our software STLB entry. Note that this is one
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Algorithm 1: Kernel data redirection

1: Require: SysExecContext(s) returns true if syscall s is executed in
a system call execution context; SysRedirect(s) returns true if data
access in s needs to redirected; RedirectableDataTracking(i) per-
forms our redirectable data identification and flow tracking for instruction i;
MemoryAddress(i) returns a set of memory addresses that need to be ac-
cessed by instruction i. NotDirty(α) queries STLB, or SCR3 and the page
table to check if the physical page located by α is dirty. V2P(α) will trans-
late the virtual address of α and get its physical address by querying STLB, or
SCR3 and the page tables and update STLB if necessary.

2: DynamicInstInstrument(i):
3: if SysExecContext(s):
4: if SysRedirect(s):
5: RedirectableDataTracking(i);
6: for α in MemoryAddress(i):
7: if DataRead(α):
8: PA(α)← V2P(α)
9: Load(PA(α))

10: else:
11: if NotDirty(α):
12: CopyOnWritePage(α)
13: UpdatePageEntryInSTLB(α)
14: PA(α)← V2P(α)
15: Store(PA(α))

of the advantages of instrumenting the VMM because we can

add whatever we want in the emulated software such as our

STLB. In addition, for the page table entry we just extend one

of the reserved bits to achieve our goal. Certainly, we can also

make a shadow page table and extend it with a dirty bit for

page entry if there does not exist any reserved bit.

More specifically, before the start of an introspection pro-

cess, STLB is initialized with zero. When a kernel address α
needs to be redirected and it is a read (i.e., memory load)

operation, we first check whether STLB misses, if not, we

directly get the physical address PA(α) derived from STLB.

Otherwise, we get its PA(α) of the in-guest physical mem-

ory by querying SCR3 and performing the three-layer address

translation. At the same time, we fill our STLB for address α
with the physical address of PA(α) such that future reference

for the address sharing the same page of α can be quickly

located (the essential idea of TLB). Also, the STLB entry only

gets flushed iff its entries are full and we have to replace,

because we only have one SCR3 value.

If there is a memory write on α, similar to read operation

to check whether STLB hits, we also check whether the target

page is dirty by querying the dirty bit in our STLB entry. If it is

not dirty or STLB misses, we perform the three-layer address

translation by querying SCR3 and the page tables, from which

we further check whether the target page is dirty. If not (the

first time data write on this page), we set the dirty bit of the

target page table entry as well as our STLB entry, and perform

a target page copy and redirect the future access of the original

page to our new page. Otherwise, we just set the dirty bit in

the STLB entry.

C. Directing the Access

After we have described all of the necessary enabling tech-

niques, we now turn to the details of our final data redirection

procedure. Specifically, as shown in Algorithm 1, for each

kernel instruction i, we will check whether its execution is in a

syscall execution context (line 3). If so, we check whether the

data access in the current syscall context needs to be redirected

(line 4). If not, there will be no instrumentation for i.
Next, we perform the redirectable data tracking for i (line

5) by updating our shadow state according to the instruction

semantics. After that, for each memory address used in i (line

6), if it is a data read (line 7), we will invoke the V2P address

translation function to get the corresponding address (line 8),

and load the data (line 9). Otherwise (line 10), we will check

whether the target page is dirty or not (line 11). If not, we will

perform the COW operation (line 12) and update the page

entry dirty bit, copying the page if necessary (line 13). After

that, we get its physical address (line 14) and do the write

operation (line 15).

From Algorithm 1, we could also notice that our data redi-
rection engine (line 5 - 15) can work in any other kernel exe-

cution context as long as it can be informed. For instance, we

could inspect and redirect the kernel data access in a particular

kernel function, e.g., in a regular kernel module routine, or

a user developed device driver routine. This is actually an-

other benefit of our VMST. That is, it allows end-users to

customarily inspect a specific chunk of kernel code. We will

demonstrate this feature in our evaluation.

VI. IMPLEMENTATION

We have implemented our VMST based on a recent version

of QEMU (0.15.50) [25], with over 7,400 lines of C/C++ code

(LOC). In this section, we share the implementation details

of interest, especially how we dynamically instrument each

instruction in a recent QEMU, how we intercept the interrupt

execution context, and how we manage the MMU with respect

to our new STLB.

Dynamic Binary Instrumentation There are quite a few pub-

licly available dynamic binary instrumentation frameworks

built on top of QEMU (e.g., TEMU [26]). However, their

implementations are scattered across the entire QEMU instruc-

tion translation, and our redirectable data identification can be

implemented more simply. In particular, we take a more gen-

eral and portable approach, and leverage the XED library [27]

(which has been widely used in PIN tool [28]) for our dynamic

instrumentation. Upon the execution of each instruction, we

invoke XED decoder to disassemble it and dynamically jump

to its specific instrumentation logic for performing our redi-

rectable data tracking. The benefit is such an approach allows

us to largely reuse our previous code base of PIN-based dy-

namic data flow analysis [29].

Interrupt Context Interception The beginning execution of

an interrupt for the x86 architecture in QEMU is mainly pro-

cessed in the function do_interrupt_all. We instrument

this function to acquire the interrupt number, and determine

whether it is a hardware or software interrupt. After the QEMU

executes this function, it will pass the control flow to OS ker-
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nel. The kernel then subsequently invokes the interrupt handler

to process the specific interrupt. As discussed in §III, the in-

terrupt handler returns using an iret instruction. Thus, by

capturing the beginning and ending of an interrupt (the pair),

we identify the interrupt execution context.

MMU Management with STLB In QEMU, MMU is em-

ulated in i386-softmmu module for our x86 architecture.

To implement our STLB, we largely mirrored and extended

the original TLB handling code and data structures (e.g.,

tlb_fill, tlb_set_page, tlb_table). For load
and store, QEMU actually differentiates code and data when

translating the code (e.g., generating ldub_code for the in-

struction load). Therefore, we only instrument the data load

and store helper functions in QEMU.

VII. EMPIRICAL EVALUATION

We have performed an empirical evaluation of our VMST.

In this section, we report our experimental results. We first

tested its effectiveness in §VII-A with a number of commonly

used utilities and natively developed programs on top of our

testing kernel-2.6.32-rc8, followed by the performance over-

head of these programs in §VII-B. Next, we show the gener-

ality of our system by testing with a diversity of other Linux

kernels in §VII-C. Finally, we demonstrate its security applica-

tions in §VII-D. All of our experiments were carried out on an

Intel Core i7 CPU with 8G memory machine using a ubuntu

11.04, Linux kernel 2.6.38-8.

A. Effectiveness

Automatic VMI Tool Generation Most VMI functionality

can be achieved by running administrative utility programs.

In our VMST, these utilities are automatically generated. In

this experiment, we took 15 commonly used administrative

utilities and tested them with options shown in the 1st column

of Table II.

To measure whether we get the correct result, we take a

cross-view comparison approach on our testing kernel-2.6.32-

rc8. Right before we take the snapshot, we run these com-

mands and save their result to a file. Then we attach the snap-

shot and run these utilities in our trusted VM, and syntactically

compare (diff) the two output files. Note that we did not

install any rootkit in this experiment, and the security appli-

cation is tested in §VII-D. Interestingly, as shown in the 3rd

column of Table II, 8 out of 15, including ps, and date, have

slight syntax discrepancy, and all other commands returned

syntax-equivalent (SyE) result.

Then we examined the reasons and found the root cause

to be due to the timing when we took the snapshot. For ps
command, our introspected version found one fewer process

and this process is actually the ps itself when running in the

guest. It did not exist in the snapshot. For all other commands

such as uptime and date, the slight difference is also due

to the timing field in the output (reflecting the time difference

between running the command and taking the snapshot), but

Utilities
w/ options Description SyE SeE

ps -A Reports a snapshot of all processes � �
lsmod Shows the status of modules � �

lsof -c p Lists opened files by a process p � �
ipcs Displays IPC facility status � �

netstat -s Displays network statistics � �
uptime Reports how long the system running � �
ifconfig Reports network interface parameters � �
uname -a Displays system information � �

arp Displays ARP tables � �
free Displays amount of free memory � �
date Print the system date and time � �

pidstat Reports statistics for Linux tasks � �
mpstat Reports CPU related statistics � �
iostat Displays I/O statistics � �
vmstat Displays VM statistics � �

Table II
EVALUATION RESULT WITH THE COMMONLY USED UTILITIES WITHOUT

ANY MODIFICATION.

Customized
Program LOC Description SyE SeE

ugetpid 5 Reports the current process pid � �
kps 52 Reports all the processes � �

klsmod 65 Displays all the modules � �
Table III

EVALUATION RESULT WITH THE NATIVE CUSTOMIZED PROGRAMS.

every time our introspected version will always output the

same result, which precisely shows that we introspected the

correct state of the in-guest OS and the state never changed.

That is, our automatically generated introspection program

returns the semantic-equivalent (SeE) result and we summarize

this in the last column of Table II.

Native Customized VMI Tool Development Sometimes,

end-users may develop their own customized VMI tool by

either invoking system calls or programming with the kernel

directly. For example, a utility command may not be able to

see some rootkits, and end-users could either write a native

kernel module to retrieve the state, or write a user-level pro-

gram but invoke special system calls (e.g., by developing a

new system call). Recall that our system allows customized

kernel code inspection as long as the end-user informs the

execution context (§V-C).

To show such a scenario, we developed three programs.

One is a very simple user-level getpid program (with only

5 LOC) to demonstrate that end-users can invoke system

calls to inspect a kernel state, and the other two are ker-

nel level programs (i.e., device drivers) that list all the run-

ning processes and installed kernel modules by traversing

the task_struct.tasks and module list data structures.

Note that it took us less than one hour in developing kps (with

52 LOC) and klsmod (with 65 LOC).

As presented in Table III, interestingly ugetpid will al-

ways return a constant pid value. This is because the getpid
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Figure 6. Normalized performance overhead when running VMST.

system call by default is redirected to guest memory, and every

time it will return the pid of the guest “current” process when

taking the snapshot. Therefore, it becomes a constant value

for a particular snapshot.

For kps, it traverses kernel task_struct.tasks list

and outputs all the pids. Similar to our automatically generated

ps, kps also has almost syntax-equivalent pids with the user-

level ps except there is one fewer pid of the ps itself. However,

for klsmod, we extracted all kernel modules. The module list

result is both syntax and semantic equivalent to the state when

lsmod reads them from the proc file system. Also, note

that when we run the two kernel modules, we will inform our

secure-VM of the start and end addresses of kps and klist.

To this end, we inserted two consecutive cpuid instructions,

each at the beginning and the end of our kernel modules. Our

secure-VM automatically detects this during the execution

and senses the start and end address of the monitor context.

In addition, this time the execution context monitoring is not

based on any CR3 or system call, and we also controlled our

secure-VM ensuring that there is no context switch during our

module execution.

Summary The above two sets of experiments have demon-

strated we can automatically generate the VMI tools, and also

enable end-users to develop their own VMI tools natively.

Also, the slightly different result of the two views does not

mean we get the wrong result. Instead, all of our above experi-

ments have faithfully introspected the guest OS and reported

the precise state.

B. Performance Overhead

We also measured the performance overhead of the pro-

grams in Table II and Table III by running each of them 100

times and computing the average. The result is summarized

in Fig. 6. We found our VMST introduces 9.3X overhead on

average compared with the non-introspected process for the

user-level introspection programs running in the VM. For the

Linux Kernel Release
Distribution Version Date OS-agnostic LOC

Redhat-9 2.4.20-31 11/28/2002 � 53
Fedora-6 2.6.18-1.2798.fc6 10/14/2006 � 53
Fedora-15 2.6.38.6-26.rc1.fc15 05/09/2011 � 0

OpenSUSE-11.3 2.6.34-12-default 09/13/2010 � 0
2.6.35 08/10/2010 � 0

OpenSUSE-11.4 2.6.37.1-1.2-default 02/17/2011 � 0
2.6.39.4 08/03/2011 � 0

Debian 3.0 2.4.27-3 08/07/2004 � 53
Debian 4.0 2.6.18-6 12/17/2006 � 53
Debian 6.0 2.6.32-5 01/22/2010 � 0

2.6.32-rc8 02/09/2010 � 0

Ubuntu-4.10 2.6.8.1-3 08/14/2004 � 53
Ubuntu-5.10 2.6.12-9 08/29/2005 � 53

Ubuntu-10.04 2.6.32.27 12/09/2010 � 0
2.6.33 03/15/2010 � 0
2.6.34 07/05/2010 � 0
2.6.36 11/22/2010 � 0

2.6.37.6 03/27/2010 � 0
Ubuntu-11.04 2.6.38-8-generic 06/03/2011 � 0
Ubuntu-11.10 3.0.0-12-generic 08/05/2011 � 0

Table IV
OS-AGNOSTIC TESTING OF VMST.

two kernel level modules, it introduces very large performance

overhead up to 500X, but we have to emphasize that the ab-

solute time cost is very short. For example, for kps, it only

takes 0.06s to dump all the pids in the kernel.

There are a number of reasons why we have small perfor-

mance overhead at the user level. First, all user level code runs

normally without any instruction interception, data flow track-

ing, or redirection. Second, not all kernel level system calls

get redirected, only the introspection related ones. Therefore,

if a program frequently opens and reads proc files, it tends

to have larger overhead. For instance, there is 20X overhead

in ps and pidstat, and 30X for lsof. However, for ker-

nel level modules, we have huge performance overhead. The

primary reason is because there is no user-level code, and we

intercepted each instruction of our kernel modules. Also, these

kernel modules run too fast (almost negligible) and the 500X

is an over approximation.

When compared with Virtuoso for the performance, as these

two systems have entirely different software environment, it

is unfair to compare the absolute time cost (for instance its

pslist took around 6s to inspect all the running process in

their experiment [13], and our kps only took 0.06s). Our 9.3X

overhead on average is the one compared with the tool running

in a VM, and we did not include the performance overhead

incurred by the VM.

C. Generality

Next, we tested how general (OS-agnostic) our design is,

regarding different OS kernels. We selected a wide range of

Linux distributions, including Fedora, OpenSUSE, Debian,

and Ubuntu (presented in the 1st column of Table IV), with

a variety of 20 different kernel versions (the 2nd column).

We tested these kernels whether running correctly or not, by

using our benchmark programs in Table II and our ugetpid.
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Detected by
Rootkit Name Attack Vector Target Data Structure ps kps kps’ lsmod klsmod

adore-ng-0.53 Patching system call table and kernel function pointers task_struct � � �
adore-ng-0.56 Patching kernel function pointers task_struct � � �

hide process-2.6 Patching task list pointer (DKOM) task_struct � � �
linuxfu-2.6 Patching task list pointer (DKOM) task_struct � � �
sucKIT1.3b Patching system call table and kernel function pointers task_struct � � �

override Patching system call table and kernel function pointers task_struct � � �
synapsys Patching system call table and kernel function pointers task_struct,module � � � � �

enyelkm-1.3 Patching system call table and kernel function pointers, and DKOM task_struct,module � � � � �
modhide Patching module list (DKOM) module � �

Table V
ROOTKITS EXPERIMENT UNDER KERNEL-2.6.32-RC8

Note that the two kernel modules are not transparent to all

kernels, and we did not test them. One of the basic metrics

is to test whether our design presented from §III to §V is

fully transparent to the guest OS (the 3rd column) without any

modification, and if it is not fully transparent (OS-gnostic), we

measure the code size of our hard-coded part (the 4th column)

in order to make that kernel work.

Surprisingly, our design is truly transparent to Linux kernel

starting from 2.6.20, and for the previous kernels we have to

make just 53 LOC to support it. The reason why we have to

introduce these 53 LOC to the old kernel is because of the way

the kernel extracts the current process. More specifically, in the

Linux kernel, each process has a task_structwhich stores

all the process execution and management information [16].

During a system call execution, the kernel itself usually first

fetches the currenttask and then performs the specific system

call for this task. Thus, when we perform our kernel data

redirection, it is also crucial for us to find the current task of

the in-guest OS, from which we could know about such things

as where the file system (the fs field in task_struct)

is and execute our introspection. For example, most of the

inspection utilities open proc files, and we have to know

where the file system gets stored in the in-guest OS.

Starting from kernel 2.6.20, Linux uses a global variable to

store the current task, and in our secure-VM it automatically

gets redirected. That explains why our system is fully trans-

parent to the Linux kernel starting from 2.6.20. However, for

the old versions, Linux acquires the current task from its ker-

nel stack. In particular, each task_struct has a pointer

pointing to thread_info, which is usually allocated in

the bottom of a kernel stack. From thread_info, it has

a pointer to task_struct. Therefore, each time for the ker-

nel to fetch the current task, it first gets the thread_info
by bit-masking esp with 8192 (note in our testing kernel, only

2.6.18-1.2798.fc6 has a 4k kernel stack by default), and then

dereferencing the task_struct field in thread_info.

Since our kernel data redirection will not redirect the data

derived from stack, we have to hard code these instructions to

get the current task_struct with only 53 LOC. Note only

kernel 2.6.18-1.2798.fc6 needs to change the stack size to 4K.

All other kernels have an identical 53 LOC patch. Also, even

though we introduce the hard coded patch, which thwarts our

transparency to some extent, we emphasize that for end-users
and native VMI tool developers, our system is fully transparent

to them. Such a nature is similar to system software vendors.

As long as we (like an OS vendor) hide all low-level details

to end-users and native developers, our tool is a viable option

and has met our transparency expectation.

D. Security Applications
VMST has many security applications. It can be naturally

used in intrusion detection, malware analysis, and memory

forensics. In the following, we demonstrate one of the particu-

lar applications – kernel malware (i.e., rootkit) detection, and

show its distinctions. Meanwhile, we also briefly describe how

to use it for memory forensics.

Kernel Rootkit Detection A kernel rootkit is a special ker-

nel level malware that hides the presence of important kernel

objects by either hijacking system calls or other kernel func-

tions, or direct kernel object manipulation (DKOM). In this

experiment, we selected 9 publicly available rootkits (shown

in the 1st column of Table V) from packetstorm.com, and test

how our VMST detects them on our working kernel 2.6.32-rc8.

Note that we have to slightly modify the source code of the

outdated rootkits to make them work in the 2.6.32 kernel.
Most rootkits aim to hide task_struct or kernel

modules. To detect them, we also take a cross view compar-

ison approach. As shown in Table V, for rootkits that hijack

kernel control flow by patching the system call table or other

kernel hooks, VMST trivially detected them by running either

the native ps or kps, because the OS kernel in our secure-VM

is not contaminated.
Regarding rootkits that directly modify the kernel objects

(i.e., the DKOM attack), normal VMI tools (or administrative

inspection command) will not be able to detect them. How-

ever, our system enables end-users to develop kernel modules

natively to inspect the kernel objects, and we are able to de-

tect some of them but not all. Specifically, ps and lsmod
command visit proc files to inspect the running processes

and device drivers. The data in the proc files comes from

the task_struct and module list. If rootkits removed

the node from the two lists through DKOM, neither original

ps and lsmod, nor our kps and klsmod is able to identify

them.
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As such, we have to develop new kernel modules to detect

them. In particular, we developed a kps’ (with 130 LOC)

which will periodically traverse the runqueue inside the

kernel, and compare with the tasks list (note that in this case

we have to periodically take the memory snapshot or attach

to the guest-memory lively). It is an opportunistic approach,

namely, it detects the hidden DKOM process at the moment

when it is in runqueue but not in tasks list. We attempted

to identify all the waitqueue in the kernel, but they are

scattered across many places and it is very hard to traverse

them in a centralized way. Our kps’ is able to detect “hide

process-2.6” and “linuxfu-2.6” DKOM rootkits as shown in

Table V. But for the last two module hidden rootkits, we cannot

detect them through traversal-based approaches. One may have

to use signature-based approaches (e.g., [30], [31]) to detect

them. For instance, it has been shown that SigGraph can detect

the last two rootkits [31].

Memory Forensics Our automatically generated VMI tools

can also be used in memory forensics. The only requirement

is that end-users need to provide a guest CR3 value and as-

sign it to our SCR3 for the V2P translation when “mounting”

the memory. If it is a hibernation file, they have to recover

a CR3 or more generally recover a page directory (pgd). In

fact, this is not a problem as (1) pgd has a strong two-layer

SigGraph [31] signature, namely, each entry in pgd is either

NULL or a pointer pointing to a page table entry (pte), and

each entry in pte is either NULL or a pointer pointing to a

page frame; (2) meanwhile, all the processes largely share the

identical kernel address mapping except little process-specific

private data. In addition, there are several other approaches to

recovery a pgd in physical memory snapshot such as using

kernel symbols [32]. Due to space limitation, we omitted the

details on our memory forensics experiment.

VIII. LIMITATIONS AND FUTURE WORK

While VMST has automatically bridged the semantic-gap in

VMI, its current implementation has a number of limitations.

In this section, we examine each limitation below and outline

our future work.
The first limitation is that VMST is not entirely transparent

to arbitrary OS kernels. It still binds with some particular OS

kernel knowledge such as system call interface, interrupt han-

dling and context switching, though such knowledge (particu-

larly from the design of UNIX [17]) is general. For example, as

demonstrated in our experiment, VMST directly supports a va-

riety of Linux Kernels without any modifications. However, an

entirely different OS may have different system-call interfaces

and semantics. Obviously we cannot directly run VMST on

an arbitrary OS. In other words, as illustrated step-by-step in

our design, for a different OS other than the UNIX, we have to

inspect how its kernel handles system calls, interrupts, context

switches, and its specific semantics of system calls, etc.
But we do believe our design is general (OS-agnostic), and

we suspect it should work for other kernels. For instance, as

demonstrated in §V-A, with a slight modification of the “sys-

tem call redirection policy" in our VMST, we can directly en-

able a getpid process in Windows to directly introspect the

in-guest Windows OS, which experimentally proves that our

interrupt handling, context switching controlling, redirectable

data identification, and kernel data redirection are indeed OS-

agnostics. Thus, one of our immediate future efforts is to make

our system completely support other kernels such as Microsoft

Windows.

Secondly, while most system calls on UNIX platform are

synchronized, that is, during the execution of a system call

it will block other executions except context switches until

the system call finishes, there could be some system calls that

are asynchronized (“non-blocking”). VMST does not support

asynchronous system calls unless we can detect the precise

execution context in which the kernel notifies the caller that

a system call has completed. Fortunately, we have not en-

countered such asynchronous system calls in our VMI tool

generation.

Thirdly, we only support the introspected tool examining

the memory data. If a VMI tool needs to open an in-guest disk

file, it will not be redirected in our current implementation,

though end-users could directly copy these files outside and

directly inspect them. However, we suspect it is possible to

redirect disk data access. As file opening in Linux/UNIX is

through the VFS (virtual file system) [16], we have already

intercepted the open system call when we open the proc
files. We are able to determine the disk file opening. The only

issue is we have to locate the corresponding real disk loading

data in an OS kernel. This is a non-trivial task. Supporting

disk data redirection is another future work.

Fourthly, VMST cannot read the in-guest data that has been

swapped out to disk. To our surprise, we have not encountered

this situation in our experiments. Our explanation is that the

kernel tends to swap user space memory instead of kernel, as

kernel space is shared, and swapping in and out a kernel page

may have to update all processes’ page tables. Meanwhile, for

the Linux/UNIX kernel, we actually confirmed that the kernel

page never gets swapped out [16].

Finally, for other architectural issues such as using multi-

core or multi-CPUs running the guest OS, our secure-VM (a

single CPU) may encounter some issues when reading their

memory, though usually the product-VM runs on a single CPU.

Also, attacks targeting our secure-VM or DKSM-based [33]

are out-of-scope of our current work. Another venue of future

work will investigate how to address these problems.

IX. RELATED WORK

Binary Code Reuse Recently, there is great attention towards

binary code reuse for security analysis [13]–[15] or creation

of malicious code [34]. In particular, BCR [14] made a system-

atic study of automated binary code reuse, and demonstrated

its effectiveness in extracting encryption and decryption com-

ponents from malware. Similarly, through dynamic slicing,
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Inspector gadget [15] also focuses on extracting and reusing

features inside malware programs. In a different application,

our prior work [34] shows that we can also reuse the legal bi-

nary code to create stealthy trojans by directly patching benign

software.

Most recently, Dolan-Gavitt et al. proposed Virtuoso [13], a

technique for better VMI. The idea is to acquire traces of an

inspection command (e.g., ps) on a clean guest OS through

dynamic slicing. Such clean slices can be executed at the

VMM layer to introspect the identical version of the guest OS

that may be compromised. Our VMST is directly inspired and

motivated by this technique.

Compared to all of the existing techniques, VMST distin-

guishes itself by its exploration of other settings of binary code

reuse. Specifically, instead of extracting the code outside from

binary (kernel or user-level code) for the reuse, we can still

retain these pieces of code. Through automatically identifying

the specific execution context, we can dynamically instrument

the code and achieve our reuse.

Virtual Machine Introspection Due to the nature of strong

isolation, VMI has largely been used in many security ap-

plications, including intrusion detection (e.g., [1], [3], [4]),

malware analysis (e.g., [5], [6]), process monitoring (e.g., [7]),

and memory forensics (e.g., [8]). Again, similar to Virtuoso,

our VMST complements these works by enabling automated

VMI tool generation.

Meanwhile, there is another work [35] aiming to automati-

cally bridge the semantic gap in VMI. Their technique involves

using a C interpreter facilitated by the OS kernel data struc-

ture information and XenAccess library [3] to interpret the

introspection code. Such a technique is entirely different from

VMST. For example, users have to write the introspection

code running in their interpreter. In contrast, VMST directly

uses the common utilities without any code development from

users.

Also, for the most recent process out-grafting (POG) [7],

although VMST shares a general idea of using a trusted VM

to do the monitoring and redirection of “some” data during

execution, VMST is still substantially different from this ap-

proach in a number of aspects. In particular, we have entirely

different goals. POG aims to monitor an untrusted process, but

we aim to inspect the whole OS. Meanwhile, POG only inter-

cepts kernel execution at the system call granularity (which

explains why they can implement it using KVM), whereas we

have to monitor all the instructions. Consequently, their data

redirection is only system call arguments and return values,

whereas we have to automatically identify the redirectable data

on-the-fly, and redirect only the introspection related data.

Dynamic Data Dependency Tracking VMST employs a

generic technique of dynamic data dependency tracking (i.e.,

taint analysis) in determining the redirectable data. Such tech-

niques have been widely investigated and there exists a large

body of recent work in this area, such as data life time tracking

(e.g., [18]), exploit detection (e.g., [19]), vulnerability fuzzing

(e.g., [36], [37]), protocol reverse engineering (e.g., [38]–[41]),

and malware analysis (e.g., [20], [21]).

Memory Forensics Technically, memory forensic analysis

shares large similarity with VMI in that both techniques have

to interpret and inspect memory. For example, forensic tools

can actually facilitate VMI [42].

The basic memory forensic technique is object traversal and

signature scanning. Thus, many existing techniques focus on

how to build the object map (e.g., [43]) or generate robust

signatures (e.g., [30], [31]). Again, VMST complements these

techniques by offering a new set of automatically generated

VMI-based tools [8] to analyze memory.

X. CONCLUSION

We have presented the design, implementation, and evalu-

ation of VMST, a novel system to automatically bridge the

semantic gap and generate VMI tools. The key idea is that

through system wide instruction monitoring at VMM layer, we

can automatically identify the introspection related kernel data

and redirect their access to the in-guest OS memory (which

could be directly attached, or from a snapshot). We showed

that such an idea is practical and truly feasible by devising a

number of OS-agnostic enabling techniques, including syscall
execution context identification, redirectable data identifica-
tion, and kernel data redirection, and implemented them. Our

experimental results have demonstrated that VMST offers a

number of new features and capabilities. Particularly, it auto-

matically enables the in-guest inspection program to become

an introspection program and largely relieve the procedure of

developing customized VMI tools. Finally, we believe VMST

has significantly removed the hurdles in virtualization-based

security, including but not limited to VMI, malware analysis,

and memory forensics, and will largely change their future

daily practice.
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