
Why Does Your Data Leak? Uncovering the Data
Leakage in Cloud from Mobile Apps

Chaoshun Zuo
The Ohio State University

Zhiqiang Lin
The Ohio State University

Yinqian Zhang
The Ohio State University

Abstract—Increasingly, more and more mobile applications
(apps for short) are using the cloud as the back-end, in particular
the cloud APIs, for data storage, data analytics, message notifica-
tion, and monitoring. Unfortunately, we have recently witnessed
massive data leaks from the cloud, ranging from personally iden-
tifiable information to corporate secrets. In this paper, we seek to
understand why such significant leaks occur and design tools to
automatically identify them. To our surprise, our study reveals
that lack of authentication, misuse of various keys (e.g., normal
user keys and superuser keys) in authentication, or misconfigu-
ration of user permissions in authorization are the root causes.
Then, we design a set of automated program analysis techniques
including obfuscation-resilient cloud API identification and string
value analysis, and implement them in a tool called LeakScope
to identify the potential data leakage vulnerabilities from mobile
apps based on how the cloud APIs are used. Our evaluation
with over 1.6 million mobile apps from the Google Play Store
has uncovered 15, 098 app servers managed by mainstream cloud
providers such as Amazon, Google, and Microsoft that are subject
to data leakage attacks. We have made responsible disclosure to
each of the cloud service providers, and they have all confirmed
the vulnerabilities we have identified and are actively working
with the mobile app developers to patch their vulnerable services.

I. INTRODUCTION
The cloud has significantly changed the landscape of mod-

ern computing. It has been proven to be the go-to platform for
data storage, data processing, data analytics, and data backup
and recovery, due to its immense benefits such as being highly
available, massively scalable, hugely cost-saving, and quickly
deployable. The cloud is everywhere, and “the cloud presence
is becoming a norm in almost 70% enterprises across the
globe, and they have at least one application running on the
cloud” [34].

With the rapid growth of cloud computing, there has also
been a tremendous growth of mobile apps. From an end-user
perspective, mobile apps can be considered the front-end of an
Internet service with the cloud as the back-end. By using the
cloud, service providers (e.g., news, weather, and shopping) do
not have to worry about the scalability and availability of their
back-end servers, and instead they can just focus on their core
business logic and develop their mobile apps. Almost all of our
daily used Internet services have their own dedicated mobile
apps. As of today, there are more than five million mobile
apps in only the Google Play Store and Apple App Store [20].

Unfortunately, with the use of the cloud as a mobile app
back-end, we have also witnessed massive data leaks from
the cloud recently, ranging from personal medical records to
corporate secrets. For example, it was reported that insecure
back-end databases of mobile apps were exposing an esti-
mated 280 million sensitive user records including personally
identifiable information (PII) such as user-names, passwords,

emails, phone numbers, and locations [36]. Such leakage also
applies to high profile companies such as Verizon, which may
have leaked 100MB of its corporate secrets from a publicly
accessible Amazon S3 bucket [33].

A conventional wisdom is to get better security by using the
cloud, but this has actually led to massive data leaks. Conse-
quently, it has resulted in many questions to be answered. For
instance, what are the root causes of data leaks in the cloud?
Are they caused by cloud providers, app developers, or both?
Can we systematically identify data leakage vulnerabilities in
cloud services? How can they (i.e., both cloud providers and
app developers) prevent them from happening again?

In this paper, we seek to perform a systematic study and
answer these questions. Since we do not have lower-level
access to how each cloud provider manages the customers’
services, we can only analyze the front-end of the cloud
services. One such front-end is mobile apps. Increasingly, we
notice that more and more mobile apps are using cloud APIs
for various services such as authentication, authorization, and
storage, without directly setting up and managing those back-
end infrastructures. Therefore, by inspecting how the cloud
APIs are used, we can understand how each mobile app
manages its customer data and thus identify the data leakage
vulnerabilities.

In particular, we first look into the typical APIs offered by
cloud providers for mobile app development, and examine how
app developers would develop their mobile apps and manage
their security with these APIs. From this study, we uncover
that a mobile app must perform an extra service authentication
when communicating with the cloud back-end, such that the
cloud provider knows which app issues the request and which
resource this app aims to access. Improper management of
user authentication and misconfiguration of user permissions
in authorization are the root causes that lead to the various
data leaks from the cloud. In our study, we find many cloud
services suffer from such vulnerabilities.

Having discovered the root causes of the data leaks in the
cloud, we also notice that it is possible to develop a principled
approach to automatically identify these data leakage vulner-
abilities by inspecting how mobile apps use the authentication
keys and how servers handle users’ requests. One challenge
lies in how to make sure there is no leakage of customer data
when performing our analysis, since we are a third party and
we certainly must not access any of the customer data. Also,
there are millions of mobile apps today, so we must design a
scalable, automated, and efficient approach. We have addressed
these challenges and built a tool called LeakScope with a set
of program analysis techniques including obfuscation-resilient
cloud API identification, string value analysis, and zero-data-

Cloud Service Provider Database Management User Management Storage Notification Delivery
AWS Amazon DynamoDB Cognito Amazon S3 Amazon SNS
Azure Microsoft Easy Tables Azure Active Directory Azure Storage Notification Hubs
Firebase Google NoSql Database Firebase Authentication Google Storage Notifications

Table I: Key Components Offered by Popular Cloud Providers for Mobile App Development.

leakage vulnerability identification to automatically locate
cloud data leakage vulnerabilities in mobile apps.

We have evaluated LeakScope with 1, 609, 983 mobile
apps. Surprisingly, our tool has uncovered 15, 098 unique
mobile apps (10 of them have between 100 million and 500
million users), whose back-end servers—hosted in clouds
such as Amazon AWS, Google Firebase, and Microsoft
Azure—are subject to data leakage attacks. We have made
responsible disclosure to all of the cloud providers, and they
all have confirmed the vulnerabilities we identified. We also
rely on them to further notify the app developers by sending
them the list of the vulnerable apps and some other detailed
information. Cloud providers have seriously considered our
discovery and notified the vulnerable app developers. The
cloud providers are also actively working on patching their
services, some of which can be noticed publicly (e.g., updating
the official documentation to correct a misguided example in
the SDK [8]). In addition, a number of popular mobile apps
have also been patched after cloud providers notified them.

In short, we make the following contributions.
• Systematic study. We make a first step towards system-

atic understanding of data leaks in the cloud, and our
study has identified the root causes of recent massive data
leaks.

• Automated techniques. We develop a set of program
analysis techniques including new obfuscation-resilient
cloud API identification, string value analysis, and zero-
data-leakage vulnerability identification to automatically
locate cloud data leakage vulnerabilities from mobile
apps.

• Empirical evaluations. We have evaluated our techniques
with 1, 609, 983 mobile apps, and have identified 15, 098
unique mobile apps, whose services running in the
cloud are subject to data leakage attacks. We have made
responsible disclosures, and some of the services have
been patched.

II. BACKGROUND
In this section, we present the background related to why

there are cloud APIs for mobile app development (§II-A) and
how to use them (§II-B).

A. Why Using Cloud APIs for Mobile App Development
Before cloud APIs became popular, when developing a mo-

bile app (running atop Android or iOS), developers had to build
the entire infrastructure from scratch, including both the front-
end app and the back-end servers (although they could rent
some infrastructure, e.g., virtual machines or database servers,
from a cloud provider). Moreover, even after releasing the app,
the entire system would require non-trivial efforts to ensure its
stability and security. Furthermore, when an app become popu-
lar, they would have to maintain high availability and scale the
system to accommodate a potentially massive increase in users.

Having recognized the needs of mobile app developers,
mainstream cloud providers have provided mobile back-end

Credential B
(App Key)

Developer/Administrator

Authentication

Credential A
(App Key)

Root Key

C
lo

ud

R
es

ou
rc

es

User A

User B Authorization

Figure 1: A Typical Architecture of Mobile App Development
with Cloud APIs.

as a service (mBaaS), including the corresponding platforms
and APIs for rapid mobile app development. For instance,
with a few configuration steps, developers can quickly build a
fully functional mobile app back-end. The advantage of using
mBaaS clouds is that a developer does not have to worry about
how to set up and manage back-end servers and handle massive
scale requests. Instead, they can just focus on developing their
front-end mobile apps and rely on cloud providers to provide
the infrastructure and manage server security, reliability, and
scalability.

As of today, there are many mBaaS cloud providers
including Amazon, Backendless, Google, Kinvey, Microsoft,
Oracle, etc. [11]. Due to our limited man power, in this
paper, we only focus on the mBaaS clouds provided by
Amazon, Google, and Microsoft, though our approach should
be applicable to other clouds as well. As shown in Table I,
each cloud provider offers four typical components,
including Database Management, User Management,
Storage, and Notification Delivery with corresponding
APIs such as setValue and removeValue [13],
createUserWithEmailAndPassword [1],
sendPasswordResetEmail [10], putFile [17],
listFilesAndDirectories [2],
CreatePlatformEndpoint [4], and publish [18].

B. How to Use the Cloud APIs
One important difference compared to developing mobile

apps without cloud APIs is that the cloud needs to know who
issues the API calls (for various purposes such as isolation,
accountability, and security). Therefore, cloud APIs often take
an app key as one of the parameters. There is also another key
issued by cloud providers, which is the root key. These two
keys are completely different:

• App Key. An app key has very limited permissions.
With this key, the cloud knows which app the API call
comes from, and only the publicly available resources
that belong to that app can be accessed. Since multiple

Service Key Type Example
Account DefaultEndpointsProtocol=https;

Azure Key AccountName=*;AccountKey=*
Storage https://*.blob.core.windows.net/*

SAS ?sv=*&st=*&se=*&sr=b&
sp=rw&sip=*&spr=https&sig=*

Endpoint=sb://*.servicebus.windows.net/;
Listening SharedAccessKeyName=

Key DefaultListenSharedAccessSignature;
Notification SharedAccessKey=*

Hub Endpoint=sb://*.servicebus.windows.net/;
Full SharedAccessKeyName=

Access Key DefaultFullSharedAccessSignature;
SharedAccessKey=*

Table II: Examples of the Keys Used in Mobile App Devel-
opment with Microsoft Azure Cloud. We use symbol * to
anonymize those sensitive data in the keys.

apps may use the same cloud database and storage in
the back-end, the cloud providers virtualize and isolate
these resources by using app keys.

• Root Key. The root key has very powerful permissions.
With this key, all back-end resources belonging to it can
be accessed. Typically developers should keep this key
secret, as only system administrators should use it.

A typical usage of the app key and root key issued by cloud
providers and the architecture of a cloud based mobile app is
illustrated in Figure 1. At a high level, developers need to first
register with the cloud back-end to acquire the app key and
root key, set up the back-end database (e.g., tables) and storage,
and implement proper authentication and authorization in the
back-end. Then, the mobile app can invoke the corresponding
cloud APIs by passing the corresponding app key and other
parameters to access the resources it needs from the cloud.

III. OUR DISCOVERY
Having explained the details of how to use mBaaS clouds

for mobile app development, we next uncover the common
mistakes made by both app developers and cloud providers
and consequently the vulnerabilities introduced. Since cloud
providers have made mobile app development much easier by
using their APIs, the playground for app developers becomes
much smaller. A developer’s security responsibilities reduce
to properly performing authentication and authorization for
mobile app users. Any mistakes with these operations will
lead to account compromises such as data leaks and data
tampering. In particular, we have identified two major types
of data leakage vulnerabilities: misuse of various keys in au-
thentication (§III-A) and misconfiguration of user permissions
in authorization (§III-B).

A. Misuse of Various Keys in Authentication
When using cloud APIs, it is necessary to pass the

corresponding keys so the cloud providers can connect the
apps with the corresponding virtualized back-end servers. The
fundamental reason for key misuse is that developers forget
the differences between an app key and a root key, and that
the cloud providers do not enforce the proper use of the keys.
More specifically, when using cloud APIs, if a cloud interface
accepts both the app key and the root key, this will cause
confusion to developers, thereby resulting in vulnerabilities.
We found that both Amazon’s and Microsoft’s clouds suffer
from this problem, and we have identified the key misuses in

1 package com.appname
2 public class ImagesHelper {
3 private final String storageAccountKey;
4 private final String storageAccountName;
5
6 private ImagesHelper(Context arg3) {
7 int v0 = 2131099713;
8 int v1 = 2131099712;
9 this.storageAccountName =

10 Utils.getStringFromResources(this.imgContext, v0);
11 this.storageAccountKey =
12 Utils.getStringFromResources(this.imgContext, v1);
13 }
14
15 public void downloadImages(com.appname.Listeners.Callback arg5,
16 com.appname.Listeners.OnDownloadImagesUpdateListener arg6) {
17 StringBuilder v0 = new StringBuilder();
18 v0.append("DefaultEndpointsProtocol=http;AccountName=");
19 v0.append(this.storageAccountName);
20 v0.append(";AccountKey=");
21 v0.append(this.storageAccountKey);
22 String v1 = v0.toString();
23 if(Utils.isNetworkAvailable(this.imgContext)) {
24 new AsyncTask(v1) {
25 String val$conStr;
26 public AsyncTask(String arg1){
27 this.val$conStr = arg1;
28 }
29 protected void doInBackground(Void[] arg17) {
30 String v0 = this.val$conStr;
31 CloudStorageAccount v7 = CloudStorageAccount.parse(v0);
32 ...
33 package com.appname.Utils
34 public class Utils {
35 public static String getStringFromResources(Context arg1,
36 int arg2) {
37 Resources v0 = arg1.getResources();
38 String v1 = v0.getString(arg2);
39 return v1;
40 }
41 ...

Figure 2: A Sample Piece of Decompiled Code for Azure
Storage Access from a Real Android App.

(i) Microsoft Azure Storage, (ii) Azure Notification Hubs, and
(iii) Amazon AWS S3.

(I) Key Misuses in Azure Storage. Microsoft Azure cloud
provides two kinds of keys for developers to access its storage.
• Account Key. An Azure storage account provides a

unique namespace to store and access various data in
Azure Storage such as Tables, Queues, Files, Blobs, and
virtual machine disks billed to a particular user. This
account key works like a root key, which has full access to
the cloud storage. An example of such a key is presented
in the first row of Table II.

• Shared Access Signature (SAS). A SAS provides
delegated access to resources that belong to a specific
Azure storage account. Unlike the account key, developers
can configure the permissions (e.g., read, write) of SAS
so that the key can only access certain resources with
limited permissions. An example of SAS is presented in
the 2nd row of Table II.

Even though the account key and SAS have entirely dif-
ferent formats and use cases, we find developers actually have
misused them. Obviously, developers should have exclusively
used SAS in the app and kept the account key confidential.
For instance, when a user is trying to access a private file
from the mobile app, developers should assign a SAS, which
has the minimum permission to access the particular files
for this user. However according to our experiments, many
developers directly use their account key in the mobile apps.
Unfortunately, the account key can be easily extracted by
attackers through reverse engineering. As shown in Figure 2,
we extracted code from a real Android app, whose name is

①Registration
(Listening Key)

③Notifications

②Notifications
(Full Access Key)

Developers /
App PublisherNotification HubApp Users

Figure 3: How to Use Azure Notification Hub.

anonymized on purpose. The code is used for downloading
some images from the cloud storage. We can see that the key
(at line 31) used in this app is an account key (by looking at
its format at line 18), which means anyone with this key can
access the entire storage allocated to this particular account.

(II) Key Misuse in Azure Notification Hubs. With cloud
APIs, developers can easily send messages to specific users or
broadcast to all users. Microsoft Azure provides a notification
hub with two APIs for message notification. As illustrated
in Figure 3, to use Azure Notification Hub, developers first
need to register a channel, and then the mobile app just
invokes the API to listen to the developer registered channel
using a listening key; after that, the app server can push
notifications to the channel registered in the Hub (using a
full access key), which will further relay this message to all
channel listeners. There are two keys involved:

• Full Access Key. The full access key works like a “root”
key, and has full access to send or listen for notifications
on the channel. An example of such a key is shown in
the 3rd row of Table II.

• Listening Key. The listening key has limited privileges
and can only listen to the notifications registered in a
particular channel. The last row in Table II shows an
example of a listening key.

Clearly, a listening key should only be used by the mobile
app, whereas the full access key should only be used by app
servers. However, we find that some developers are using full
access keys directly in the mobile apps. While the key misuse
in Azure Notification Hubs may not directly lead to data
leakage attacks, we have to stress that once attackers extract the
full access key they still have access to powerful capabilities.
For example, they can easily push phishing messages to steal
data from other app users.

(III) Key Misuse in AWS. Amazon AWS also provides a
number of keys for mobile apps to access the AWS resources
(e.g., the S3 storage) billed to the developers. One of the keys
is the root access key (or root account key), which has full
access to all of the resources under a particular AWS account.
Since this root key has all privileges, it should be kept secret.
Unfortunately, we also noticed this root key being used in
mobile apps. Once an attacker extracts this root key, she has
full access to the entire storage.

B. Misconfiguration of User Permissions in Authorization
In addition to the misuse of keys in authentication,

misconfiguration of user permissions in authorization can also
result in data leaks. Typically, authentication only tells the
system who the user is, and it is authorization that decides
which specific resources an authenticated user can access.
Lack of authorization or incorrect configuration can make the
authorization layer useless, thereby leading to data leaks.

{
"rules": {
"users": {
"$uid": {
".read": "$uid === auth.uid",
".write": "$uid === auth.uid"

}
}

}
}

Figure 4: A Correct Firebase Authorization Rule

{
"rules": {
".read": "auth != null",
".write": "auth != null"

}
}

{
"rules": {
".read": true,
".write": true

}
}

(a) (b)

Figure 5: Two Misconfigured Firebase Authorization Rules

While misconfiguration of authorization is not a new
problem and has been studied for many years, this problem
becomes more critical when using cloud APIs. In particular,
when developing mobile apps without cloud APIs, different
developers can implement authorization systems in completely
different ways. Even though vulnerabilities may be present,
it is quite challenging for attackers to systematically exploit
many diverse implementations. However, when developers
are using cloud APIs, adversaries can easily launch attacks;
since many developers are using the interfaces of only a few
cloud services, attackers can just focus on these interfaces to
systematically identify vulnerabilities.

Meanwhile, unlike in authentication, in which developers
have a limited playground when using cloud APIs (e.g., the
mistakes only come from key misuses), there are a variety
of ways for developers to configure authorization, making the
authorization configuration much harder and more error-prone.
For instance, Google even provides a language for developers
to specify the user permissions in authorization. It is not
surprising that developers will make mistakes: we found (i)
apps with Firebase that have misconfigured user permissions
in the back-end. In addition, we found (ii) apps with AWS that
suffer from this misconfiguration problem as well.

(I) Misconfiguration of User Permissions in Firebase. When
using Firebase, developers have to define user-specific access
control polices, i.e., the “rules”. An example of such a rule is
shown in Figure 4. Note that Firebase is a real time database
that organizes data in a hierarchy structure with JSON.
According to this example rule, there is a node named “users”
in the database: when a user attempts to access (read/write)
one of its child nodes that has an associated $uid, the
system will only grant access if the user’s uid equals the
$uid of the child node for this specific read and write
operation. Unfortunately, we notice that not all developers
follow the correct way to write the rules. For instance, as
shown in Figure 5, a developer can write rules to just ignore
the checks, or just check whether a user is authenticated.
These are obviously insecure rules, as they imply that any
(authenticated) user has full access to the entire database.

(II) Misconfiguration of User Permissions in AWS. With
AWS, Amazon provides Identity and Access Management
(IAM) for user management and permission configurations. To
securely access the resources billed to a particular mobile app

developer, an IAM user needs to be created. The developer
can configure the permissions for IAM users, and each
IAM user can generate two secret access keys to access the
specified resources. While using IAM users appears to be
secure, developers may in fact over provision the permissions
for an IAM user, such as granting full access to a particular
storage, which will lead to data leaks.

IV. PROBLEM STATEMENT AND OVERVIEW
After the discovery of the root causes of the data leaks

in the cloud, we would like to develop techniques to system-
atically identify the leaks. Since we do not have any access
to the mBaaS cloud implementations (only to their SDKs and
APIs), we can only start from the front-end of the services
(i.e., the mobile apps) to inspect how mobile apps use the
various keys and also infer the permission configurations based
on server responses. Therefore, we must design a mobile app
exclusive approach. In this section, we provide an overview
of the problem we aim to solve and the solutions and insights
we have. The detailed design and implementation of our tool
is presented in the next section.

A. Problem Statement
As illustrated in Figure 1, we notice that developers must

embed the app key in the app, and then use it to invoke cloud
mBaaS cloud APIs. The data leakage vulnerabilities we aim to
identify are mainly caused by key misuse and permission mis-
configuration. Therefore, the first problem we must solve is how
to systematically identify various keys used by mobile apps.

At first it might appear trivial to identify the API keys
used by mobile apps by inspecting each cloud API (e.g,. the
CloudStorageAccount.parse API used at line 31 in
Figure 2). However, the keys might not be directly visible and
could have gone through multiple string acquisitions (e.g., at
line 9-12) and concatenations (e.g., at line 18-21). In addition,
there are millions of mobile apps, so we have to design a
scalable approach. Therefore, the second problem we must
solve is how to identify the relevant key strings that are used
by mobile apps.

Also, increasingly mobile apps are using obfuscation
to thwart app reverse engineering and repackaging [45],
[43], [42]. It might be possible that app developers have
obfuscated the APIs we aim to inspect. As such, we
cannot simply scan the app code for API signatures (e.g.,
CloudStorageAccount.parse); instead, we must
design an obfuscation-resilient approach. It would also be
interesting to know whether obfuscated apps are vulnerable
to data leaks, given the fact that app developers using
obfuscation are potentially more aware of security issues.
Therefore, the third problem we need to solve is how to design
an obfuscation-resilient approach to identify cloud APIs and
key strings of our interest.

Finally, after we have extracted the keys, we have to
identify the type of each key (e.g., a root key or an app
key). Once we have determined the types of the keys,
we must also verify whether the apps have misused them
without accidentally accessing any private data stored in
the cloud. Similarly, we also must identify user permission
misconfigurations during authorization without leaking any
data. Therefore, the final problem we (as third-parties) must
solve is to design a verification approach with zero data-
leakage to confirm the existence of data leaks in the cloud.

B. Our Solutions

Recognizing the Keys by Cloud API Identification. To
identify keys that are used by an app, we can actually infer
them from the parameters of the well-known APIs that are used
by the app. Note that each cloud provider has offered a set of
APIs in their SDKs for mobile app development. As illustrated
in Table III, the APIs that take parameters with various keys
are actually quite limited, and we acquire this list based on
our best understanding of the corresponding SDKs. Therefore,
if we are able to recognize these APIs, then we can identify
the keys used by the app in the corresponding parameters.

However, the APIs listed in Table III can be obfuscated.
Interestingly, we find that there are often two strategies used
in API obfuscation:
• Renaming names involved in the API, such as the sub-

package name, class name, function name, and variable
name, from the standard name to some meaningless
characters. This is often achieved by some automated
obfuscation tools (e.g., Dexprotector [7], Dexguard [5]).

• Removing the functions/APIs that are never used. Since
the non-used functions/APIs can often reveal the packages
and classes used by the app, removing these functions
from the apps by automated tools (e.g., Proguard [12],
[15]) can further help hide the APIs of interest.

Therefore, we propose to build an obfuscation-resilient func-
tion signature for each function in the APK (including its
library) in order to identify the cloud APIs in Table III. Our
signature ignores the names of packages, classes, functions,
and variables. Instead, a function’s signature is the hash of
the strings that are composed of the types of the parameters,
local variables, and return values, as well as the signatures of
callees.

Using String Analysis to Identify the Value of Keys. Having
identified the APIs of our interest, we cannot directly extract
the values of the corresponding parameters from the app code.
For instance, we cannot directly extract the value of v0 from
CloudStorageAccount.parse in Figure 2, as this value
is computed from multiple string operations. While we can
use dynamic analysis to execute the app and extract the value
at runtime, such an approach does not scale well, especially
considering that we have millions of mobile apps. Therefore,
eventually we decided to take a static analysis approach
and propose a targeted string value analysis to identify the
used keys. At a high level, our string value analysis can
be considered a particular case of value set analysis [24]. It
involves backward slicing and string related operation analysis.

Zero-data-leakage Vulnerability Verification. After we
have retrieved the values of the keys used by the cloud APIs,
next we have to infer the types of the keys. For some cloud
services (e.g., Azure Storage), app keys and root keys are in
different formats (as shown in Table II), and we can easily
tell whether a key of our interest is a root key. However, for
some other cloud services (e.g., AWS), app keys and root
keys have the same format. To deal with this problem, a
straightforward approach is to send a request to the server
by using the key to access some root user exclusive data. If
we are able to retrieve these data, then it implies there is a
data leakage vulnerability. However, such an approach would
violate the ethics of accessing private-sensitive data.

Cloud Indexes of The String
Service APIs Definition Parameters of Our Interest

1* TransferUtility: TransferObserver downloadUpload(String, String, File) 0
2* AmazonS3Client: void S3objectAccess(String, String, ...) 0

AWS 3 CognitoCredentialsProvider: void <init>(String,String,String,String,...) 1
4 BasicAWSCredentials: void <init>(String,String) 0,1

5 MobileServiceClient: void <init>(String,Context) 0
6 MobileServiceClient: void <init>(String,String,Context) 0,1

Azure 7 NotificationHub: void <init>(String,String,Context) 1
8 CloudStorageAccount: CloudStorageAccount parse(String) 0

9 FirebaseOptions: void <init>(String,String,String,String,String,String,String) 0,1,2,5
Firebase 10 FirebaseOptions: void <init>(String,String,String,String,String,String) 0,1,2,5

Table III: Targeted mBaaS Cloud APIs of Our Interest. In total, there are 32 APIs. Due to limited space, we use API 1* and 2*
to actually represent two sets of APIs. The complete list of the APIs of these two sets is presented in Appendix in Table IX.

APKs

Cloud API
Identification

SDK APIs

String Value
Analysis

Vulnerability
Identification

Vulnerabilities

Figure 6: An Overview of Our LeakScope.

com (package)

Listeners (package)

appname (package)

ImagesHelper (class)

OnDownloadImagesUpdateListener (class)

Callback (class)

Utils (package)

Utils (class)

Figure 7: The Hierarchical Structure of the Package Tree of
The Sample Code in Figure 2.

Fortunately, we have another observation: we notice that
the server typically will return different response messages
when accessing nonexistent data in the cloud with a root key
versus a regular user key. As such, to verify whether a key is
a root key, we will send a request to the cloud with the key
to retrieve some nonexistent data. If the key is an app key,
the return message is usually in the form of “permission
denied”, and if the key is a root key, the return message is
usually something like “data not found”. In either case,
no real data is leaked, but we have inferred the types of
the keys. We can also use the same approach to verify the
authorization misconfigurations.

V. DESIGN AND IMPLEMENTATION
We have built a tool called LeakScope to automatically

detect data leakage vulnerabilities when given a mobile app.
An overview of LeakScope is presented in Figure 6. It consists
of three key components: Cloud API Identification (§V-A),
String Value Analysis (§V-B), and Vulnerability Identification
(§V-C). In this section, we describe how we design and
implement (§V-D) these components.

A. Cloud API Identification
It is important to identify the APIs used by an app,

especially those listed in Table III. As discussed in §IV-B, we
need to design an obfuscation-resilient approach to identify the
cloud APIs. Fortunately, we notice that there are at least two
invariants that are preserved regardless of the obfuscations for
a given function (or method).
• The first invariant is the hierarchical structure (or the

shape, the layer) of the types and package trees.
Note that each class, method, parameter, and vari-
able all have types (e.g., the type of arg5 is
com.appname.Listeners.Callback at line 15
in Figure 2). While the names of the types can be obfus-
cated (except the name of system types), the hierarchical
structure of the types will not change. For instance, as
shown in Figure 7, type Callback is stored at the fourth
layer starting from the package com.

• The second invariant is the caller-callee relation in
a method. For instance, method downloadImage
will call functions such as StringBuilder.append
and Util.isNetworkAvailable. We can build
each callee’s signature recursively, and then merge
them to build the signature for the caller, namely
downloadImage in this example.

Therefore, if we can encode these two invariants and add
them together to build a signature for a function (including
APIs in linked non-system libraries), then we can just search
for these signatures in the bytecode of mobile apps to find the
cloud APIs we need. Inspired by LibScout [23], in which a
Merkle hash tree is used to build a library signature (for 3rd
party library detection in Android apps), we use the hash of
the encoded invariants (i.e., the hierarchical structure of the
types and package trees, and the caller-callee relation) as the
function/API signature for the API detection. Note that we
cannot directly use LibScout as it focuses on the detection
of third-party libraries. In addition, LibScout only generates
coarse-grained signatures for each class, whereas we have to
generate fine-grained signatures for each function.

Generating Signatures for Each Function. More specifically,
as shown in Algorithm 1, for a given function, we will generate
a signature (GENFUNSIG) by using the MD5 hash of the
encoded type string of (i) the function’s belonging class (i.e.,
home class) (line 5-6), (ii) its arguments (line 7-8), (iii) its
local variables (line 9-10), (iv) its return value (line 11-12),
and (v) recursively all of its callees (line 13-18). If a callee is
an Android system function (not obfuscated), then we directly

Algorithm 1 Function Signature Generation
1: Input: f0: target function; Cs: system classes; Fs: system functions
2: procedure GENFUNSIG(f0, Cs, Fs)
3: L← ∅
4: fBuf← ∅
5: t0 ← GETHOMECLASSTYPE(f0)
6: fBuf ← fBuf ∪ TYPEENCODING(t0, t0, Cs)
7: for tp ∈ GETPARAMETERTYPE(f0) do
8: fBuf ← fBuf ∪ TYPEENCODING(t0, tp, Cs)
9: for tv ∈ GETLOCALVARTYPE(f0) do

10: fBuf ← fBuf ∪ TYPEENCODING(t0, tv, Cs)
11: tr ← GETRETURNTYPE(f0)
12: fBuf ← fBuf ∪ TYPEENCODING(t0, tr, Cs)
13: for fi ∈ GETCALLEE(f0) do
14: if fi ∈ Fs then
15: L← L∪ name(fi, argType(fi), retType(fi))
16: else
17: L← L∪ GENFUNSIG(fi, Cs, Fs)
18: fBuf ← fBuf ∪ SORT(L)
19: return MD5 (fBuf)
20: Input: ch: home class; ct: target class; Cs: system classes;
21: procedure TYPEENCODING(ch, ct, Cs)
22: L← ∅
23: tBuf ← ∅
24: if ct ∈ Cs then
25: tBuf ← tBuf ∪ name(ct)
26: else
27: rp ← NORMALIZEDRELATIVEPATH(ch, ct)
28: tBuf ← tBuf ∪ rp
29: cp ← GETSUPERCLASS(ct)
30: tBuf ← tBuf ∪ TYPEENCODING(ch, cp, Cs)
31: for ci ∈ GETINTERFACES(ct) do
32: L← L∪ TYPEENCODING(ch, ci, Cs)
33: tBuf ← tBuf ∪ SORT(L)
34: return tBuf

add the name of this function including the type name of its
arguments and return value to our type string (line 14-15).

To perform the string encoding (TYPEENCODING) of the
hierarchical structure of the types and package trees (line 20-
34), basically we take the home class (ch) to which the type
belongs, the target class (ct), and system classes (Cs) as input
to encode the target type ct. Note that in Java bytecode, all of
the types are defined as classes. We directly return the string
name of the type if ct is a system class (line 24-25) as its name
cannot be obfuscated. Otherwise, we take the encoded string
that combines the normalized relative path between ct and ch
(line 27-28), recursively the encoded string of the superclass
of ct (line 29-30), and the interfaces of ct (line 31-33), as the
final type string.

Note that to uniquely encode the type of a given class, we
would like to use as much reliable information as possible.
Again, we cannot use any of the class names (except the system
classes) and we must normalize them. Since a class typically
has a super class, we would like to include the type encoding
of its superclass, recursively. Meanwhile, a class could have
defined a number of interface functions [19]. Note that an
interface is a collection of empty functions (no implementation
body). Any class implementing an interface will inherit these
functions. That is why eventually our type encoding algorithm
considers the name and path normalization, superclass, and
class interfaces. We do not include other information in a
class, such as its fields and methods, in the signatures since
they can be removed by tools such as Proguard [15].

When performing the normalization, we replace any
non-system defined names with the symbol ‘X’, similar
to LibScout [23]. In addition, our algorithm takes a
normalized relative path into our type string. For instance,
when processing the type encoding of the first argument

of function downloadImage, whose home class is
ImagesHelper, we take a normalized relative path to
encode the type com.appname.Listeners.Callback.
More specifically, according to Figure 7, starting
from the home class ImagesHelper, we reach
com.appname.Listeners.Callback by
../Listeners/Callback. After normalizing all
non-system names into ‘X’, we get a normalized path
with string “../X/X”. Meanwhile, the superclass of
com.appname.Listeners.Callback is actually
java.lang.Object, which is a system class (cannot be
obfuscated). Therefore, eventually, for the type encoding of
arg5, we get the string “../X/X#java.lang.Object”
where # denotes string concatenation. Similarly, we get a type
string for its second argument, local variables, and callees,
respectively. Together, we have created a unique hash for
function downloadImage.

Identifying the Cloud API with the Signatures. With
our GENFUNSIG algorithm, we generate signatures for all
functions, including the cloud APIs (initially acquired from
the SDK libraries) for a given app. We then search for the
signatures of the cloud APIs in the mobile apps; if a signature
matches, we identify the corresponding cloud API of our
interest.

B. String Value Analysis
Having identified the cloud APIs of our interest, we are

then able to identify where each API is called and further
pinpoint the parameters that contain the authentication keys
in the mobile app. However, we are not be able to directly
observe their values since we use static analysis. Therefore,
we have to develop a targeted string value set analysis
(VSA) [24] to reveal the possible values of the keys. Note
that VSA is a technique that analyzes the possible values for
registers and memory addresses at the x86 binary code level.
We cannot directly use it to solve our problem, and instead
we have to customize it to reveal the string values in the
context of mobile app bytecode. At a high level, our string
value analysis needs to perform the following inter-procedural
backward slicing and string value computation statically.

Inter-procedural Backward Slicing. Program slicing [37] is
a widely used program analysis technique and has been used
to solve many important security problems such as software
vulnerability diagnosis (e.g., [38]) and automatic patch gener-
ation (e.g., [35], [44]). In our string value analysis, we have to
first identify the variables and instructions that are related to
the computation of the final strings of our interest by applying
backward slicing of the Java bytecode.

More specifically, the first step of our analysis is to
build an intro-procedural control flow graph (CFG) for
each method/function, where nodes represent the contigu-
ously executed bytecode instructions and edges represent
the control flow transfers within the function. Then start-
ing from a variable of our interest, e.g., v0 of API
CloudStorageAccount.parse, we iterate the instruc-
tions in the CFG backwards: if there are any variables that
contribute to the computation of v0, we add them to our data
dependence graph (DDG) and meanwhile push the involved
instructions and variables into a string computation stack,
which is an internal last-in-first-out data structure maintained
by LeakScope that is used to track the order of the execution of

the string operations that contribute to the final string values; if
there is any function call, we perform a context-sensitive inter-
procedural analysis and recursively analyze the callees. We
keep iterating the CFG until we reach a fixed point, namely
when our DDG cannot be expanded further. In our running
example in Figure 2, all of the statements that are highlighted
in red are involved in the computation for the string value v0
used at line 31.

String Value Computation. With the tracked DDG and string
computation stack, next we need to compute the values of
the final strings of our interest. Starting from the top of the
string computation stack, we pop the involved variables and
instructions based on the CFG and our DDG, and we forward
execute the involved string operations based on the instruction
semantics until the stack is empty or the string value is fully
determined.

Forward execution is not real execution and is instead based
on the API summaries of the string operations. For instance, if
the involved instruction is a string append API, we perform
the string append operation; if it is a getString, we know it
is used to read a string from an xml file, and we then perform
the read operation of the specified string from the xml file and
return its result. Note that strings are system defined classes,
and the corresponding APIs are not obfuscated.

Back to our running example in Figure 2, the last
pushed variables on the stack are StorageAccountKey
and StorageAccountName. Then, starting from there with
our tracked DDG, we perform a forward string analysis to
compute the value of this.StorageAccountName and
this.StorageAccountKey at lines 9 and 12 by executing
the API summary of getResources and getString (lines
37-38). Next, we compute the value of v0 (line 17-21), v1,
this.val$conStr, and finally the value of v0 at line 31.

C. Vulnerability Identification
After obtaining the keys identified by LeakScope, next

we would like to detect data leakage vulnerabilities in the
cloud services. The detection is cloud specific, and we have
designed the following algorithms to detect key misuses and
permission misconfigurations for services that use Azure,
AWS, and Firebase.

(I) Detecting Key Misuses in Azure (Storage and Notifica-
tion Hub). As discussed in §III-A, if there are root keys or
full access keys in mobile apps, then an attacker can easily use
these keys to leak data. Therefore, we do not need to probe the
back-end to confirm the vulnerabilities. As long as we identify
root keys or full access keys in a mobile app, we know the
cloud service is vulnerable.

(II) Detecting Key Misuses in AWS. An AWS root key
has full access to the corresponding AWS account, which
means all resources under that account can be accessed
by an adversary if we identify a root key in an app. We
found that a root key has the permission to get some
AWS instance information with the following rest API:
https://ec2.amazonaws.com/?Action=Describe
Instances&InstanceId.1=X, where X is the ID of
the target instance. In contrast, an app key does not have
this permission. Therefore, to detect key misuses in AWS,
we set X to be a nonexistent ID. When we send a request
alone with the key identified, we will receive the error

message “InvalidInstanceID” if the key is a root key
or “UnauthorizedOperation” if the key is an app key.

(III) Detecting Permission Misconfiguration in Firebase.
There are two typical permission misconfiguration rules as
shown in Figure 5: (a) no authentication check (the database
is entirely open to anyone), and (b) no permission check
(only checks whether the user is authenticated). We use the
following algorithms to detect them:

• Detecting “Open” Database. When a developer mistak-
enly specifies a read policy as “.read”: “true”, then
anyone can read the database. Firebase provides a REST
API to access data from the database in a given “path”.
By setting the “path”, a user can read specific data. If we
set “path” to “root”, then we can read the entire database.
However, we do not have to read the entire database, as
Firebase supports queries with the indexon field. If we
set this field to a nonexistent value when attempting to
read the “root” path, no data will leak, but we can still
confirm the data leaks as the returned error message is
different when the user has root read permissions.

• Detecting No Permission Check. When a data record
read policy is “.read”: “auth != null”, we must
use an authenticated user in order to perform the
indexon-based leakage testing. It would be a huge
engineering challenge to register a legitimate user in each
corresponding cloud service. Fortunately, we noticed that
Firebase also provides a number of cloud APIs for user
registration, e.g., by using email/password, phone number,
Google/Facebook SSO, etc., in addition to developer cus-
tomized registration methods. We therefore can directly
invoke these Firebase APIs to register legitimate users
in the corresponding service if the tested app has used
them. After that, we authenticate the registered user and
then perform the indexon-based test.

(IV) Detecting Permission Misconfiguration in AWS. AWS
keys are used to access the specified resources under particular
access control policies. In AWS, there are several types of
resources. Among these resources, we only focus on the
detection of permission misconfiguration of S3 Storage. Note
that several recent high profile data leaks (e.g., [33]) were from
S3. To perform our test, we have to collect not only AWS keys,
but also the S3 Storage names. Therefore, we have to apply
our string value analysis for both of them. With the identified
AWS keys and storage names, we directly invoke an AWS API
HEAD Bucket [9] to verify whether a key has permission
to access the storage or not. If so, a data leak is detected.

D. Implementation
We have implemented LeakScope1 atop dexlib2 [6]

and soot [16]. In particular, to implement our Cloud API
Identification, we leverage dexlib2, a lightweight APK static
analysis framework that allows easily parsing of dex files to
build function signatures. We build our String Value Analysis
atop Soot, a powerful framework for analyzing Java bytecode
with particularly useful features such as data flow analysis.
The Vulnerability Identification is quite straightforward; we just
wrote a python script to send the requests and parse the

1The source code of LeakScope is made available at https://github.com/
OSUSecLab/LeakScope.

https://github.com/OSUSecLab/LeakScope
https://github.com/OSUSecLab/LeakScope

Total Non-Obfuscated Obfuscated
#Apps % #Apps % #Apps %

w/ Cloud API 107,081 - 85,357 79.71 21,724 20.29

w/ AWS only 4,799 4.48 4,548 5.33 251 1.16
w/ Azure only 899 0.84 720 0.84 179 0.82
w/ Firebase only 99,186 92.63 78,475 91.94 20,711 95.34
w/ AWS & Azure 3 0.00 2 0.00 1 0.00
w/ AWS & Firebase 1,973 1.84 1,427 1.67 546 2.51
w/ Azure & Firebase 210 0.20 174 0.20 36 0.17
w/ Three Services 11 0.01 11 0.01 0 0.00

Table IV: Result of Our Cloud API Detection.

response. In total, LeakScope consists of around 6, 000 lines
of our own Python and Java code.

VI. EVALUATION
In this section, we present our evaluation result. We first

describe our experiment setup including how we collect the
mobile apps in §VI-A, describe our detailed result in §VI-B,
and finally provide an analysis of the identified vulnerabilities
and the false positives of our approach in §VI-C.

A. Experiment Setup
Collecting the Mobile Apps. We focus on the Android apps
published in Google Play. To obtain an app from Google
Play, we have to provide the app package name. As such,
we first developed a python script atop the scrapy [14]
framework to crawl for each app package name. After two
weeks of crawling, we retrieved about 1.9 million app names
in May 2017. Then we crawled the entire package contents of
1, 609, 983 free Android apps within two months. Note that
we could not download all 1.9 million apps due to restrictions
such as paid apps or certain apps only being available in certain
countries. In total, these 1.6 million mobile apps consumed
15.42 TB of space on our hard drive.

Environment Setup. Our experiments were conducted on
seven workstations, each equipped with Intel Xeon E5-2640
CPU with 24 cores and 96 GB memory and running Ubuntu
16.04. We do not need any real mobile devices since
LeakScope is mostly a static analysis tool, and only the
Vulnerability Identification component needs to communicate
with the cloud servers using dynamic analysis. All of our
experimental data including the target apps and intermediate
results are stored in a Network Attached Storage with
34.90TB hard drive space.

B. Experiment Result
In total LeakScope spent 6, 894.89 single CPU

computation hours analyzing these 1, 609, 983 apps, which
consumes 2.56 TB of storage for storing the intermediate
results. Among the tested apps, eventually LeakScope detected
15, 098 unique mobile apps (with 17, 299 vulnerabilities in
total), whose cloud servers are subject to data leakage attacks.
In the following, we present detailed results based on how
each component of LeakScope performs.

1) Cloud API Identification: We first evaluated our
Cloud API Identification with the tested 1, 609, 983 apps.
Since our approach is obfuscation-resilient, it clearly works
for non-obfuscated apps as well. In total, our Cloud API
Identification generated 39, 617, 809, 277 function signatures
and identified 107, 081 mobile apps that used some of the
32 cloud APIs of our interest. Among these apps, 21, 724

of them (20.29%) are obfuscated. Therefore, as reported
in Table IV, we separated our experimental results into two
sets: apps without obfuscation (85, 357 apps), and apps with
obfuscation, in order to understand whether obfuscated apps
provide better protection against data leakage attacks.

We also reported the detailed distributions of the cloud
services used by the mobile apps. In particular, among these
107, 081 apps, 4, 799 (4.48%) exclusively use Amazon AWS,
899 (0.84%) exclusively use Microsoft Azure, and 99, 186
(92.63%) exclusively use Google Firebase. There are also 3
apps that use both AWS and Azure, 1, 973 with AWS and
Firebase, and 210 with Azure and Firebase. Interestingly,
there are also 11 apps that use all three cloud services. The
detailed breakdown for non-obfuscated and obfuscated apps
are reported from the 4th to 7th column, respectively.

It is quite surprising that the vast majority (over 90%) of the
mobile apps actually used Google Firebase for their back-end
services, at least according to the results reported in Table IV.
We consulted with the Google Firebase team when we made
our responsible disclosure. They informed us that part of the
reason for this is that there may be a significant portion of
mobile apps that have used Amazon’s or Microsoft’s clouds,
but not their mBaaS clouds (e.g., they may use their IaaS
clouds instead). Our mBaaS cloud API Identification cannot
identify these clouds.

2) String Value Analysis: Among the 107, 081 apps, our
String Value Analysis statically computed 631, 551 strings of
the parameters of our interest, and our detailed performance
results are reported in Table V. In particular, we report the
string parameters of our interest in the 2nd column, followed
by the corresponding APIs to which each string parameter
belongs in the 3rd column (the original definition of these
APIs is presented in Table III and Table IX in the Appendix).
Then for both non-obfuscated and obfuscated apps, we report
how many of the corresponding APIs were called in the 4th
and 8th columns, how many apps have called these APIs in
the 5th and 9th columns, how many of the parameter strings
had their values eventually resolved in the 6th and 10th, and
the corresponding percentages in the 7th and 11th columns.

We can observe from Table V that we are interested in a
parameter called bucketName from 2 different sets of APIs
in AWS. This is because we need bucketName to locate
the corresponding S3 storage for authorization vulnerability
verification. We are also interested in identityPoolId,
which is used to detect the permission misconfiguration
vulnerability in AWS, and accessKey and secretKey are
also clearly of direct interest. For Azure, we are interested in
parameters appURL, connectionString, and appKey.
For Firebase, we are interested in google_app_id,
google_api_key, firebase_database_url, and
google_storage_bucket. The app may call each of
these APIs one or more times at different places.

Based on how the strings are used by the app code, String
Value Analysis has resolved the vast majority of the string
values, as shown in the 7th and 11th column in Table V for
both non-obfuscated and obfuscated apps. It would also be
interesting to understand why not all the parameter strings
could be resolved by our String Value Analysis. Our further
investigation revealed that there are two reasons for this.
The first one is that many of the unresolved values of these
parameters were actually retrieved from the Internet. This
case is particularly common for Firebase, as Google actually

Non-Obfuscated Obfuscated
String Parameter Name APIs #API-Call #APP #Resolved Str. % #API-Call #APP #Resolved Str. %
bucketName 1* 2,460 1,229 2,190 89.02 398 1,229 321 80.65
bucketName 2* 2,069 1,703 2,045 98.84 444 439 442 99.55

AWS identityPoolId 3 3,458 3,458 3,315 95.86 291 291 266 91.41
accessKey 4 3,280 1,769 2,650 80.79 277 203 199 71.84
secretKey 4 3,280 1,769 2,646 80.67 277 203 197 71.12

appURL 5 185 39 185 100.00 11 4 11 100.00
appURL 6 824 316 817 99.15 32 21 32 100.00

Azure appKey 6 824 316 809 98.18 32 21 31 96.88
connectionString 7 700 513 643 91.86 207 189 200 96.62
connectionString 8 345 97 303 87.83 29 21 22 75.86

google_app_id 9 2,378 1,228 2,222 93.44 935 908 934 99.89
google_api_key 9 2,378 1,228 2,230 93.78 935 908 927 99.14
firebase_database_url 9 2,378 1,228 2,039 85.74 935 908 882 94.33
google_storage_bucket 9 2,378 1,228 2,050 86.21 935 908 882 94.33

Firebase google_app_id 10 154,664 78,859 143,735 92.93 20,723 20,385 20,657 99.68
google_api_key 10 154,664 78,859 137,589 88.96 20,723 20,385 20,199 97.47
firebase_database_url 10 154,664 78,859 118,786 76.80 20,723 20,385 18,077 87.23
google_storage_bucket 10 154,664 78,859 119,606 77.33 20,723 20,385 18,041 87.06

Table V: Result of Our String Value Analysis for the Parameters of Our Interest.

Non-Obfuscated Obfuscated
The Root Cause #Apps % #Apps %

Account Key Misuse 85 9.37 18 8.33
Azure Full Access Key Misuse 101 11.14 12 5.56

Root key Misuse 477 7.97 92 11.53
AWS “Open” S3 Storage 916 15.30 195 24.44

“Open” Database 5,166 6.45 1,214 5.70
Firebase No Permission Check 6,855 8.56 2,168 10.18

Table VI: App Statistics with the Detected Vulnerabilities

recommends that developers retrieve keys from the remote
servers [3]. Without dynamic analysis of the apps, we could
not infer their values. The second reason is that some apps are
using cryptographic functions to protect the string, which we
cannot resolve with static analysis.

3) Vulnerability Identification: With the identified keys
and strings of our interest, our 3rd component, Vulnerability
Identification, then detects the vulnerabilities based on
our zero-data-leakage policies described in §V-C and has
identified 17, 299 vulnerabilities in total. Note that one app
may have multiple data leakage vulnerabilities, and we count
the vulnerabilities based on the vulnerable services.

• Key Misuse Vulnerabilities. As discussed in §III-A,
these vulnerabilities mainly exist in the Azure and AWS
clouds. Based on the app key value, and the format of
the keys, we directly detect vulnerabilities in Azure if
we notice that the app key is either an account key or
full access key. The statistics of the vulnerable apps in
Azure is presented in Table VI (the first two rows). We
can see that among the 907 non-obfuscated Azure apps,
186 of them (20.51%) have misused the keys; for the
216 obfuscated apps, 30 of them (13.89%) contain a
data leakage vulnerability. For the AWS root key misuse,
we detect 477 vulnerable apps out of 5, 988 (7.97%)
non-obfuscated AWS apps, and 92 out of 798 (11.53%)
obfuscated apps, as presented in the 3rd row of Table VI.

• Permission Misconfiguration Vulnerabilities. This
type of vulnerability mainly exists in the AWS and
Firebase cloud servers. As reported in the 4th row
of Table VI, we detect 916 vulnerable apps out of
5, 988 (15.30%) non-obfuscated apps, and 195 out of

798 (24.44%) obfuscated apps. For the “Open” database
in Firebase, we detect 5, 166 vulnerable apps out of
80, 087 (6.45%) non-obfuscated apps, and 1, 214 out of
21, 293 (5.70%) obfuscated apps. For the No Permission
Check vulnerabilities in Firebase, we detect 6, 855 out
of 80, 087 (8.56%) non-obfuscated apps, and 2, 168 out
of 21, 293 (10.18%) obfuscated apps.

We can notice from Table VI that the most vulnerable
category (in terms of percentage) is from permission mis-
configuration of the “Open” S3 Storage of AWS: 15.30%
for non-obfuscated apps and 24.44% for obfuscated apps. It
can be observed for Azure that obfuscated apps tend to be
less vulnerable (13.89% vs. 20.51%). However, in AWS and
Firebase, obfuscated apps are even more vulnerable (except
the “Open” Database for Firebase). This is likely because
the misconfiguration errors are product-specific and have less
connection with the user’s security expertise.

C. Vulnerability Analysis

Severity Analysis. Next, we would like to study the severity
of the vulnerabilities among the mobile apps we discovered.
We use the number of the downloads of the vulnerable apps to
characterize the severity: the higher number of downloads, the
more severe the vulnerability. To this end, we count the number
of downloads of the vulnerable apps in each download category
(e.g., between one billion to five billion). This result is reported
in the last four columns of Table VII. For the very popular apps
(we define an app is very popular if its total number of down-
loads exceeds one million) that have used cloud APIs, 569
of them are subject to the data leakage attack. Among these
apps, 10 of them have downloads between 100 million and 500
million, 14 with 50 million to 100 million, and 80 with 10 mil-
lion to 50 million. Clearly, the data leakage vulnerabilities we
studied are quite concerning. If an attacker has exploited them,
then billions of sensitive data records could have been leaked.

Obfuscation vs. Non-Obfuscation. Since we are able to
differentiate non-obfuscated and obfuscated apps, we also
would like to understand the effect of obfuscation with respect
to app security. It is interesting to observe that obfuscation
is typically applied to top downloaded apps. As shown in Ta-
ble VII: the higher number of downloads an app has, the more

Non-Vulnerable Apps # Vulnerable Apps
#Downloads Azure AWS Firebase Obfuscated% Azure AWS Firebase Obfuscated%
1, 000, 000, 000− 5, 000, 000, 000 0 0 1 100.00 0 0 0 0.00
500, 000, 000− 1, 000, 000, 000 0 0 3 66.67 0 0 0 0.00
100, 000, 000− 500, 000, 000 0 1 35 58.33 0 1 9 50.00
50, 000, 000− 100, 000, 000 0 4 67 45.07 0 2 12 71.43
10, 000, 000− 50, 000, 000 2 35 480 47.78 1 4 75 50.00
5, 000, 000− 10, 000, 000 3 32 467 37.85 1 6 66 38.36
1, 000, 000− 5, 000, 000 16 136 2,405 32.15 2 21 369 30.10
500, 000− 1, 000, 000 10 105 1,823 29.36 1 29 260 28.28
100, 000− 500, 000 65 356 6,987 26.01 14 66 1,026 26.13
50, 000− 100, 000 42 249 4,608 25.52 11 50 695 25.13
10, 000− 50, 000 167 679 12,868 24.85 21 174 1,862 21.88
5, 000− 10, 000 82 369 6,090 24.05 11 100 770 23.61
1, 000− 5, 000 272 976 15,920 21.42 40 248 1,977 20.66
0− 1, 000 464 3,844 49,626 15.92 111 754 6,402 20.30

Table VII: The Number of Apps that Have Used the Cloud APIs in Each of The Accumulated Download Category.

App Name App Description and Functionality Obfuscated? Data in Database/Storage Privacy Sensitive?

AW
S

A1 Sending messages with multiple fancy features X User Photos X
A2 Editing user photos with magical enhancements X User Photos X
A3 Editing user photos with featured specialties X User Photos; Posted Pictures X
A4 Allowing users to organize and upload photos 7 User Uploaded Pictures X
A5 Helping users in planning and booking trips X User Photos X
A6 A game app to build and design attractive hotels 7 User Backups X
A7 A game app to express revenges on game NPCs 7 Premium Plug-ins 7
A8 Pushing news and allowing users to report news 7 User Uploaded Pictures & Videos X
Drupe Helping user to manage and reach their contacts X User Voice Messages X
A9 Pushing news and allowing users to report news 7 User Uploaded Pictures & Videos X

A
zu

re

A10 Helping users to start a diet and control weight X User Photos; Posted Pictures X
A11 Calculating and tracking calories for human health 7 User Photos X
A12 Showing fertility status from correspondent kits 7 User Uploaded Pictures X
A13 Helping users to easily play a popular game 7 Configurations about the Game 7
A14 A real time translation tool, for calls, chats, etc. 7 User Photos; Chat History X
A15 Showing images of nations’ commemorative coins X Coins Images 7
A16 A convenient tool to take notes with rich content X User Uploaded Pictures X
A17 A convenient tool for users to schedule a taxi 7 Driver Photos X
A18 Allowing users to buy/renew general insurances 7 Inspection Videos X
A19 Providing accurate local weather forecast X Device Info (IMEI, etc.) X

Fi
re

ba
se

A20 Editing and enhancing users photos and selfies 7 User Info (ÀÃ); User Private Messages X
A21 Allowing users to guess information about music X Music Details 7
A22 Allowing users to sell and buy multiple products 7 User Info (ÁÃ); Transactions X
Photo Collage Creating photo collage with personal photos X User Info (ÁÂ) X
A23 Helping users to translate and learn languages X User Info (À); Quiz Data X
A24 Editing user photos with effects for cartoon avatar 7 User Info (À); User Pictures X
A25 Help users to learn how to draw human bodies X User Info (ÀÁÂ); User Pictures X
A26 An offline bible learning app with texts and audios 7 User Info (ÀÂÃ) X
A27 Music platform for hiphop mixtapes and musics 7 User Info (ÀÁÂ); Play List X
A28 Helping users to learn drawing different things X User Info (ÀÁÂ); User Pictures X

Table VIII: The Detailed Study of the Top-10 Vulnerable Apps from Each Cloud Category. Note that symbol À denotes the user
name, Á the user ID, Â the user email, and Ã the user token.

likely it is obfuscated. We believe this is because developers
of these apps are more likely to have a better security mindset.

However, even though the apps might have been obfus-
cated, we can still detect their data leakage vulnerabilities.
(In fact, many of the top apps detected as vulnerable are
obfuscated, as shown in Table VII). This is because our key
techniques are obfuscation-resilient and regardless whether an
app is obfuscated or not, we are still able to resolve the vast
majority of the strings of our interest, as shown in the 7th and
11th column of Table V. Therefore, obfuscation does not help
developers defeat data leakage attacks; they must implement
proper authentication and authorization in order to prevent
these attacks.

False Positive Analysis. LeakScope first uses static analysis to
identify strings of interest (e.g., various keys used by the app),
and then uses dynamic analysis to confirm the data leaks by
inspecting the responses to our leakage-probing requests. There

are no false positives in determining whether the data stored
in the cloud can be leaked. That is, for all the vulnerable apps
we detected, their servers are subject to data leakage attacks.
However, there might be cases in which developers may
deliberately leave their data open. To really decide whether
LeakScope has any false positives in this regard, we must look
at the data itself. If the corresponding leaked data is not privacy
sensitive, then it is a false positive.

To this end, we manually registered a user account from
the app with the corresponding cloud server, and we reverse
engineered both the app code and the network traffic to
understand whether the data stored in the cloud is privacy
sensitive or not. We could not confirm this with all of the apps
data due to our limited man power and also the grand challenge
of reverse engineering the obfuscated apps, so instead we only
focused on the top 10 most popular vulnerable apps in which
we have the best understanding from each of the tested clouds.

The detailed report for each of these apps and the data that
can be leaked is reported in Table VIII. Note that we would
like to keep the app name anonymized since not all of them
have been patched yet, and therefore we only report the name
of the app (the 2nd column) shown in the Google Play if its
vulnerabilities has been patched (as of May 2018, there are
two apps whose servers have been patched.), followed by the
app description and functionality (the 3rd column), whether
this app has been obfuscated (the 4th column), the specific data
that can be leaked from the cloud server for this particular app
(the 5th column), and finally whether these data are privacy
sensitive (the last column).

For the top 10 vulnerable apps that have used AWS, we
notice that many of them store user photos: either user avatars
or the photos taken by the users. There are also some other
files such as videos and configurations. Interestingly, there are
two news apps that use AWS for storage (but the news content
is not stored in AWS). In particular, they allow users to report
news such as a witnessed accident and in the meantime allow
users to attach pictures or videos about the reported news.
Clearly, an attacker could easily grab these files. We also
have to stress that an attacker can tamper with the integrity of
the files stored in AWS as well. We have similar observations
for the vulnerable apps that use Azure. Most of the data
are privacy sensitive, such as user photos, chat history, and
videos. For instance, the 9th app, a car insurance related app,
allows the users to take and upload a video for car inspection.
We believe these files clearly should be protected.

Unlike AWS and Azure, which are mainly used by apps
for storage, Firebase is a database that contains a variety of
data records. As reported in the 5th column of Table VIII,
we summarize those data records according to their category
such as user name, user ID, and user email. While most of the
data are privacy sensitive, we notice there is one app that only
stores music related data in the database. In particular, the 2nd
app, a music related app, allows users to guess the information
of songs. All the data in its database are related to the music,
such as music ID, music download URL, and the singer. While
it does not contain any privacy sensitive data, anyone could
obtain the entire database with a single HTTPS request. We
believe this is not what the developers have intended (e.g., a
competitor could easily build a similar system with these data).

In summary, what LeakScope can automatically discover
is the cases in which the data stored in the cloud back-end can
be leaked. To really determine whether LeakScope has any
false positives, both end-users and service providers would
need to classify whether the data is of importance to them
and is privacy sensitive or not. Currently, we do not have an
automatic technique, though our manual classification with
30 vulnerable apps has shown that 86.7% of these apps’ data
is indeed privacy sensitive.

VII. DISCUSSION
Our study has uncovered tens of thousands of mobile apps

that contain cloud data leakage vulnerabilities. Altogether,
these apps have accumulated downloads of between 4 billion
and 14 billion. As such, it is a very serious security problem. In
this section, we discuss further why such vulnerabilities exist
and the countermeasures (§VII-A), the limitations and future
work (§VII-B), and finally how we handled ethics during our
study (§VII-C).

A. Root Causes and Countermeasures
There are many reasons for the data leaks in the cloud.

The first one is “security through obscurity”. Developers may
believe that no one could find their (root) keys. But unfor-
tunately, with simple reverse engineering of the (obfuscated)
mobile apps, an adversary can easily extract various keys and
directly use them to communicate with the server. The second
reason is the lack of security training when using the SDK. For
instance, it is an absolute security disaster to use a root key to
communicate with the server. It is also a huge mistake to not
validate the user’s identity when accessing particular resources.

In response, providing security training to developers is
an immediate step to alleviate this problem. Cloud providers
should clearly document various mistakes that developers
could make and their consequences in their manuals, and most
importantly provide the correct way (not the wrong way) to
use the keys. In fact, very surprisingly, we discovered that
an official example from Azure documentation had actually
misused the root keys (instead of using the SAS keys) to com-
municate with the cloud back-end from the mobile apps. This
also explains why there are so many key misuses in Azure.

More importantly, cloud providers should also offer better
security tools and SDKs to help developers. For instance, the
SDK should perform type checks, and the cloud back-end
should also reject the incorrect use of the keys. The SDK
should also make the security policy specification easier, espe-
cially for Google Firebase, where more templates or GUI inter-
faces could have been provided to make it easier for developers
to follow. Finally, cloud providers could also develop security
tools to detect data leaks (e.g., by checking for insecure access
control policies in the cloud back-end periodically).

B. Limitations and Future Work
While LeakScope has detected many data leakage vulner-

abilities in the cloud back-end from mobile apps, clearly it
is not perfect and has many limitations. First, it has false
negatives. This is because the detection of the vulnerability
is based on the APIs listed in Table III. If there are any other
APIs that also involve app or developer credentials in their
parameters, LeakScope will have missed the identification of
these strings. For one of our future efforts, we would like to
focus on on more systematically examining all of the APIs
from cloud provider SDKs.

Second, our String Value Analysis does not recognize dy-
namically generated values, e.g., those received from remote
servers, since we use static analysis without actually execut-
ing the apps. For instance, there are 404 apps from which
LeakScope has failed to extract strings of our interest. Note
that this also contributes to the false negatives. To handle these
apps, we plan to use dynamic analysis to run the apps, hook the
APIs of our interest, and extract the corresponding parameters.
This is another future work of ours.

Third, due to ethics considerations (§VII-C), we only
validated the data leakage vulnerabilities with our best efforts.
For instance, we only identified 9, 023 no permission check
vulnerabilities in Firebase. In fact, this is because we could
only automatically register users with only 13, 506 out of the
101, 380 apps that used Firebase in our dataset. We should
be able to identify more vulnerabilities if there are any other
approaches to bypass the authentication for the remaining
87, 874 apps, or if there is collaboration from the cloud

providers. Increasing the coverage of our analysis is the 3rd
avenue for our future work.

Finally, LeakScope only focuses on the apps that use cloud
APIs to develop the mobile apps. Clearly, there is a significant
portion of the apps that have directly used other types of
cloud services (e.g., the IaaS cloud) in their back-end. How
to identify these apps and their vulnerable cloud services in a
principled manner, as LeakScope has achieved for mBaaS, is
another avenue for our future work.

C. Ethics
Since our work aims to identify data leakage vulnerabilities

in the cloud, we had to ensure that our research would not
directly leak any of the customer data. As described in §V-C,
we took the ethics into consideration and designed a zero-data-
leakage vulnerability identification approach by considering
how the server would respond to a client request based on
different user roles. Though this approach has limited the
number of vulnerabilities we could identify, it is secure with
respect to the customer data.

Moreover, we have made responsible disclosure to each of
the cloud providers, and through them can reach the mobile
app developers. All of the cloud providers are actively working
on addressing the issues we reported. For instance, we have
learned from Google that they have immediately warned the
vulnerable Firebase users and are monitoring the vulnerability
patching process, especially for the super popular apps (w/
between 100 and 500 million users).

Furthermore, over the past a few months, we have also
been engaging with the cloud providers on how to detect,
mitigate, and prevent these data leakage vulnerabilities. More
importantly, as part of the consequences of our research,
Google has planned to provide more developer-friendly SDKs
when configuring the user permissions for authorization. Azure
has corrected its documentation on how to use the right keys
to communicate with the cloud in its recent git commits [8].

VIII. RELATED WORK

Vulnerability Identification with Mobile Systems.
Developing mobile apps is similar to developing traditional
software in which developers could have made mistakes,
thereby leading to various security vulnerabilities. Over the
past many years, significant efforts have focused on identifying
various vulnerabilities from mobile apps. Early efforts focused
on identifying privacy leakage, since a user’s GPS coordinates,
address book, etc., can be accidentally leaked. TaintDroid [28],
PiOS [27], and AndroidLeaks [29] are examples of these
efforts. They leveraged either dynamic analysis to track
whether sensitive information (e.g., the address book) can be
leaked, or static analysis to identify leakage.

In addition to privacy leaks from mobile apps, there are
also other security vulnerabilities. For instance, component
hijacking vulnerabilities [32] allow an attacker to hijack the
flow and perform unauthorized read and write operations, code
injection vulnerabilities [30] enable an attacker to inject mali-
cious Javascript code into mobile apps, and hanging attribute
references vulnerabilities [21] allow a malicious app to acquire
critical system capabilities. Correspondingly, a number of tools
such as CHEX [32] and Harehunter [21] have been developed
to identify them.

Most recently, there were also a number of efforts to iden-
tify server side vulnerabilities of mobile apps. For instance,

there are password brute-forcing attacks [47] if a server fails
to track the number of user login attempts, shopping for free
if a merchant server does not validate the payment informa-
tion [40], SQL injection and server API misuse vulnerabilities
if the servers do not check the requests from the apps [46],
[49], and the use of insecure user tokens (e.g., no randomness)
in server authorization [48]. There are also corresponding tools
such as AutoForge [47] and AuthScope [48] to identify them.

Misconfiguration Vulnerability Detection. Complex software
systems such as the mBaaS cloud are difficult to configure and
manage, and consequently various configuration errors can be
introduced. Incorrect access control configuration, such as the
permission misconfiguration that LeakScope aims to discover
will clearly lead to security vulnerabilities. Unlike the key
misuse vulnerabilities, which are caused by mistakes from the
app developers, permission misconfigurations are caused by
system administrators.

To detect permission misconfiguration in access control
systems (e.g., firewalls), FIREMAN [41] uses symbolic model
checking of the firewall configurations to infer policy viola-
tions and inconsistencies. In typical application systems (e.g.,
healthcare), Bauer et al. [25] have applied association rule
mining to the access control logs to infer the intended policies
and the misconfigurations. In an enterprise network, Baaz [26]
infers the permission misconfiguration by monitoring updates
to the access control metadata and looking at inconsistency
among peers.

There are also numerous efforts to detect misconfigurations
in software systems with configuration testing. ConfErr [31] is
a blackbox configuration testing tool, which exposes configu-
ration errors by injecting spelling errors, structural errors, and
semantic errors. ConfAid [22] is a white box configuration di-
agnosis tool, which explores the control and data flows related
to the erroneous behavior to specific tokens in configuration
files. SPEX [39] is also a white-box configuration testing
tool, which generates configuration errors based on how the
configuration parameter is read and used.

Being a blackbox testing tool, LeakScope only explores the
differences in the server response messages to infer whether
a cloud server has configured the user permissions correctly.
We believe cloud providers can certainly go beyond blackbox
testing, and instead they can develop whitebox approaches to
proactively detect permission misconfigurations.

IX. CONCLUSION
We have studied the problem of why there have been

so many recent private data leaks from the cloud, and we
discovered that the misuse of various keys in mobile app
authentication and misconfiguration of user permissions in au-
thorization are the two root causes that can lead to the massive
data leaks in the cloud. We have designed and implemented
LeakScope to automatically identify the cloud services that
can contain data leakage vulnerabilities from mobile apps. Our
evaluation with over 1.6 million mobile apps from the Google
Play Store has uncovered tens of thousands of vulnerable
cloud services including those from Google, Amazon, and
Microsoft. We have made responsible disclosure to each of
the vulnerable service providers, and they have all confirmed
the vulnerabilities we identified and are actively working with
the mobile app developers to patch their vulnerable services.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their in-

valuable feedbacks. We also would like to thank Erick Bauman
and Atanas Rountev for their helpful comments on an early
draft of the paper. This work was supported in part by AFOSR
under grant FA9550-14-1-0119, and NSF awards 1718084,
1834213, and 1834215. Any opinions, findings, conclusions,
or recommendations expressed are those of the authors and not
necessarily of the AFOSR and NSF.

REFERENCES
[1] “Authenticate with firebase using password-based accounts on android,”

https://firebase.google.com/docs/auth/android/password-auth.
[2] “azure-storage-android,” http://azure.github.io/azure-storage-android/.
[3] “Best practices for securely using api keys,” https://support.google.com/

cloud/answer/6310037.
[4] “Create a platform endpoint and manage device tokens,” http://docs.

aws.amazon.com/sns/latest/dg/mobile-platform-endpoint.html.
[5] “Dexguard android obfuscator,” https://www.guardsquare.com/

dexguard.
[6] “dexlib2,” https://github.com/JesusFreke/smali/tree/master/dexlib2.
[7] “Dexprotector android obfuscator,” https://dexprotector.com.
[8] “Disclaimer on the use of account key,” https:

//github.com/Azure/azure-storage-android/commit/
d90c3a49312e77c2cc911c8f55a37be9947454e4.

[9] “Head bucket,” http://docs.aws.amazon.com/AmazonS3/latest/API/
RESTBucketHEAD.html.

[10] “Manage users in firebase,” https://firebase.google.com/docs/auth/
android/manage-users.

[11] “Mobile backend as a service,” https://en.wikipedia.org/wiki/Mobile_
backend_as_a_service.

[12] “Proguard java obfuscator,” https://http://proguard.sourceforge.net.
[13] “Read and write data on android,” https://firebase.google.com/docs/

database/android/read-and-write#updating_or_deleting_data.
[14] “Scrapy | a fast and powerful scraping and web crawling framework,”

https://scrapy.org/.
[15] “Shrink your code and resources,” https://developer.android.com/studio/

build/shrink-code.html.
[16] “Soot - a framework for analyzing and transforming java and android

applications,” http://sable.github.io/soot/.
[17] “Upload files on android,” https://firebase.google.com/docs/storage/

android/upload-files?authuser=0.
[18] “Using the aws sdk for java with amazon sns,” http://docs.aws.amazon.

com/sns/latest/dg/using-awssdkjava.html.
[19] “What is an interface?” https://docs.oracle.com/javase/tutorial/java/

concepts/interface.html.
[20] “The statistics portal: Mobile app usage,” https://www.statista.com/

topics/1002/mobile-app-usage/, December 2017.
[21] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang, X. Zhou,

W. Du, and M. Grace, “Hare hunting in the wild android: A study on
the threat of hanging attribute references,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 1248–1259.

[22] M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10, Vancouver, BC, Canada, 2010, pp. 237–250.

[23] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detec-
tion in android and its security applications,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 356–367.

[24] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86
executables,” in Compiler Construction. Springer, 2004, pp. 2732–
2733.

[25] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and resolving policy
misconfigurations in access-control systems,” ACM Trans. Inf. Syst.
Secur., vol. 14, no. 1, pp. 2:1–2:28, Jun. 2011.

[26] T. Das, R. Bhagwan, and P. Naldurg, “Baaz: A system for detecting
access control misconfigurations,” in Proceedings of the 19th USENIX
Conference on Security, ser. USENIX Security’10, Washington, DC,
2010.

[27] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications,” in NDSS, 2011.

[28] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and
A. Sheth, “TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones,” in OSDI, 2010.

[29] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: auto-
matically detecting potential privacy leaks in android applications on a
large scale,” in Trust, 2012.

[30] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: ACM, 2014, pp. 66–77.

[31] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for assessing
resilience to human configuration errors,” in Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on. IEEE, 2008, pp. 157–166.

[32] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 229–240.

[33] P. Muncaster, “Verizon Hit by Another Amazon S3 Leak,” https://www.
infosecurity-magazine.com/news/verizon-hit-by-another-amazon-s3/,
September 2017.

[34] M. OLSON, “Cloud computing trends to watch in 2017,” https://
apiumhub.com/tech-blog-barcelona/cloud-computing/, April 2017.

[35] M. C. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee, “Enhancing server availability and security through failure-
oblivious computing.” in OSDI, vol. 4, 2004, pp. 21–21.

[36] T. Spring, “Insecure backend databases blamed for
leaking 43tb of app data,” https://threatpost.com/
insecure-backend-databases-blamed-for-leaking-43tb-of-app-data/
126021/, June 2017.

[37] M. Weiser, “Program slicing,” in Proceedings of the 5th international
conference on Software engineering. IEEE Press, 1981, pp. 439–449.

[38] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt, “Automatic diagnosis
and response to memory corruption vulnerabilities,” in Proceedings of
the 12th ACM conference on Computer and communications security.
ACM, 2005, pp. 223–234.

[39] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou,
and S. Pasupathy, “Do not blame users for misconfigurations,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, ser. SOSP ’13, Farminton, Pennsylvania, 2013, pp. 244–259.

[40] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu,
“Show me the money! finding flawed implementations of third-party
in-app payment in android apps,” in Proceedings of the Annual Network
& Distributed System Security Symposium (NDSS), 2017.

[41] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra,
“Fireman: A toolkit for firewall modeling and analysis,” in Proceedings
of the 2006 IEEE Symposium on Security and Privacy, ser. SP’06, 2006,
pp. 199–213.

[42] S. Yue, W. Feng, J. Ma, Y. Jiang, X. Tao, C. Xu, and J. Lu, “Repdroid:
An automated tool for android application repackaging detection,” in
Proceedings of the 25th International Conference on Program Compre-
hension, ser. ICPC ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp.
132–142.

[43] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid: To-
wards obfuscation-resilient mobile application repackaging detection,”
in Proceedings of the 2014 ACM conference on Security and privacy
in wireless & mobile networks. ACM, 2014, pp. 25–36.

[44] M. Zhang and H. Yin, “Appsealer: Automatic generation of
vulnerability-specific patches for preventing component hijacking at-
tacks in android applications.” in NDSS, 2014.

[45] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in ACM

https://firebase.google.com/docs/auth/android/password-auth
http://azure.github.io/azure-storage-android/
https://support.google.com/cloud/answer/6310037
https://support.google.com/cloud/answer/6310037
http://docs.aws.amazon.com/sns/latest/dg/mobile-platform-endpoint.html
http://docs.aws.amazon.com/sns/latest/dg/mobile-platform-endpoint.html
https://www.guardsquare.com/dexguard
https://www.guardsquare.com/dexguard
https://github.com/JesusFreke/smali/tree/master/dexlib2
https://dexprotector.com
https://github.com/Azure/azure-storage-android/commit/d90c3a49312e77c2cc911c8f55a37be9947454e4
https://github.com/Azure/azure-storage-android/commit/d90c3a49312e77c2cc911c8f55a37be9947454e4
https://github.com/Azure/azure-storage-android/commit/d90c3a49312e77c2cc911c8f55a37be9947454e4
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketHEAD.html
https://firebase.google.com/docs/auth/android/manage-users
https://firebase.google.com/docs/auth/android/manage-users
https://en.wikipedia.org/wiki/Mobile_backend_as_a_service
https://en.wikipedia.org/wiki/Mobile_backend_as_a_service
https://http://proguard.sourceforge.net
https://firebase.google.com/docs/database/android/read-and-write#updating_or_deleting_data
https://firebase.google.com/docs/database/android/read-and-write#updating_or_deleting_data
https://scrapy.org/
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
http://sable.github.io/soot/
https://firebase.google.com/docs/storage/android/upload-files?authuser=0
https://firebase.google.com/docs/storage/android/upload-files?authuser=0
http://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
http://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
https://www.statista.com/topics/1002/mobile-app-usage/
https://www.statista.com/topics/1002/mobile-app-usage/
https://www.infosecurity-magazine.com/news/verizon-hit-by-another-amazon-s3/
https://www.infosecurity-magazine.com/news/verizon-hit-by-another-amazon-s3/
https://apiumhub.com/tech-blog-barcelona/cloud-computing/
https://apiumhub.com/tech-blog-barcelona/cloud-computing/
https://threatpost.com/insecure-backend-databases-blamed-for-leaking-43tb-of-app-data/126021/
https://threatpost.com/insecure-backend-databases-blamed-for-leaking-43tb-of-app-data/126021/
https://threatpost.com/insecure-backend-databases-blamed-for-leaking-43tb-of-app-data/126021/

Cloud Indexes of The String
Service API Definition Parameters of Our Interest

1* TransferUtility: TransferObserver downloadUpload(String, String, File) 0
1.1 TransferUtility: TransferObserver download(String, String, File) 0
1.2 TransferUtility: TransferObserver download(String, String, File, TransferListener) 0
1.3 TransferUtility: TransferObserver upload(String, String, File) 0
1.4 TransferUtility: TransferObserver upload(String, String, File, ObjectMetadata) 0
1.5 TransferUtility: TransferObserver upload(String, String, File, CannedAccessControlList) 0
1.6 TransferUtility: TransferObserver upload(String, String, ObjectMetadata, CannedAccessControlList) 0
1.7 TransferUtility: TransferObserver upload(String, String, ObjectMetadata, CannedAccessControlList, TransferListener) 0
2* AmazonS3Client: void S3objectAccess(String, String, ...) 0
2.1 AmazonS3Client: void deleteObject(String, String) 0
2.2 AmazonS3Client: void deleteVersion(String, String, String) 0
2.3 AmazonS3Client: boolean doesObjectExist(String, String) 0
2.4 AmazonS3Client: String getBucketLocation(String) 0
2.5 AmazonS3Client: S3Object getObject(String, String) 0
2.6 AmazonS3Client: String getObjectAsString(String, String) 0

AWS 2.7 AmazonS3Client: ObjectMetadata getObjectMetadata(String, String) 0
2.8 AmazonS3Client: String getResourceUrl(String, String) 0
2.9 AmazonS3Client: URL getUrl(String, String) 0
2.10 AmazonS3Client: ObjectListing listObjects(String) 0
2.11 AmazonS3Client: ObjectListing listObjects(String, String) 0
2.12 AmazonS3Client: ListObjectsV2Result listObjectsV2(String) 0
2.13 AmazonS3Client: ListObjectsV2Result listObjectsV2(String, String) 0
2.14 AmazonS3Client: PutObjectResult putObject(String, String, File) 0
2.15 AmazonS3Client: PutObjectResult putObject(String, String, InputStream, ObjectMetadata) 0
2.16 AmazonS3Client: PutObjectResult putObject(String, String, String) 0
2.17 AmazonS3Client: void restoreObject(String, String, int) 0

Table IX: Specific Targeted mBaaS Cloud APIs of Amazon AWS

conference on Data and Application Security and Privacy. ACM,
2012, pp. 317–326.

[46] C. Zuo and Z. Lin, “Exposing server urls of mobile apps with selective
symbolic execution,” in Proceedings of the 26th World Wide Web
Conference, Perth, Australia, April 2017.

[47] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic forgery of cryp-
tographically consistent messages to identify security vulnerabilities
in mobile services,” in Proceedings of the 21st Annual Network and
Distributed System Security Symposium (NDSS’16), San Diego, CA,
February 2016.

[48] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic discovery
of vulnerable authorizations in online services,” in Proceedings of the
24th ACM Conference on Computer and Communications Security
(CCS’17), Dallas, TX, November 2017.

[49] J. Chen, X. Cui, Z. Zhao, J. Liang, and S. Guo, “Toward discovering
and exploiting private server-side web apis,” in Web Services (ICWS),
2016 IEEE International Conference, 2016.

APPENDIX
In Table III, we could not report the concrete API defini-

tions of two sets of APIs, and instead we just used 1* and 2*
to denote them due to the space limit. The concrete definition
of these two sets of APIs are described in Table IX. We can see
that there are 7 APIs in 1* and 17 APIs in 2*. We are interested
in all of the first parameters, namely the bucketName as
reported in Table V.

	Introduction
	Background
	Why Using Cloud APIs for Mobile App Development
	How to Use the Cloud APIs

	Our Discovery
	Misuse of Various Keys in Authentication
	Misconfiguration of User Permissions in Authorization

	Problem Statement and Overview
	Problem Statement
	Our Solutions

	Design and Implementation
	Cloud API Identification
	String Value Analysis
	Vulnerability Identification
	Implementation

	Evaluation
	Experiment Setup
	Experiment Result
	Cloud API Identification
	String Value Analysis
	Vulnerability Identification

	Vulnerability Analysis

	Discussion
	Root Causes and Countermeasures
	Limitations and Future Work
	Ethics

	Related Work
	Conclusion
	References
	Appendix

