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ABSTRACT
The integrity and confidentiality of computer games has long been a
concern of game developers, both in preventing players from cheat-
ing and from obtaining unlicensed copies of the software. Recently,
Intel released SGX, which can provide new security guarantees for
software developers to achieve an unprecedented level of software
integrity and confidentiality. To explore how SGX can protect a
computer game in practice, in this paper we make a first step of
exploring new ways to protect the integrity and confidentiality of
game code and data, and in doing so we have developed a frame-
work and design principles for integrating games with SGX. We
have applied our framework to demonstrate how it can be used to
protect a real world computer game.

CCS Concepts
•Security and privacy→ Software security engineering;

Keywords
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1. INTRODUCTION
One prominent example of popular entertainment software is

computer games, which provide enjoyment for players and a com-
petitive environment in multiplayer games. The computer game in-
dustry continues to grow, and it is one of the largest entertainment
industries today with a market value in the tens of billions of dol-
lars. Many computer games are designed to allow multiple players
to pit their skills against each other. Popular games have millions
of players, and competition may be fierce for the top positions. The
best players in popular games can even compete for million-dollar
prizes. However, even for more average players, there is an in-
centive to compete and win against opponents. Because of this,
some players are motivated to cheat, and with so many players it
is difficult for the game developers to police their game effectively.
As games have developed, so have the techniques used to cheat in
them [8]. The game code can be reverse-engineered to learn an op-
timal strategy, values can be altered in memory, or automated tools
can be used to give the player abilities that would normally be im-
possible. All of these give the cheater an unfair advantage, ruining
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the experience and driving away legitimate players. This can lead to
a game vendor suffering large financial losses. Therefore, in order
to maintain fairness and provide a high quality experience, it is cru-
cial to protect game software against various cheating techniques.

An important aspect of cheat prevention is anti-reverse engineer-
ing. A significant application of anti-reverse engineering is in pro-
prietary software protection, which has been a concern ever since
software began to be sold. Historically, software developers have
designed a wide variety of DRM (Digital Rights Management) [15]
techniques to prevent unauthorized redistribution and protect the
secrets in software. Without relying on any other support, the best
strategy so far is using various obfuscation techniques [7] including
control flow flattening, signal-based control flow hiding, and code
encryption and packing. Unfortunately, such protection is often
quickly circumvented by individuals who subsequently upload the
DRM-free executables onto the Internet for illicit download. The
result is a constant arms race between developers and crackers as
each side attempts to outwit the other.

Recently, Intel released Software Guard Extensions (SGX)—a
security extension to the x86 instruction set [4] that has been mar-
ket available starting with the Skylake CPUs. SGX provides en-
claves, regions of encrypted code and data that run in isolation and
cannot be viewed by an attacker. This hardware based guarantee
provides substantial new opportunities for protecting the confiden-
tiality and integrity of software. The fact that this technology is be-
ing produced for commodity hardware means that it may be widely
deployed on user machines, and therefore common use of this tech-
nology will be possible within a few years of its release.

Considering the great protection potential enabled by SGX, it is
not clear how game developers can use it. To bridge this gap, in
this paper we make a first step of exploring how we can leverage
SGX to protect the secrets inside computer games. Specifically,
based on knowledge of game software development and the nature
of such software, we formulate a number of design principles for
protecting both game integrity and confidentiality, and in doing so
design a framework with a set of APIs for game developers to use.

In short, we make the following contributions in this paper. We
propose and demonstrate specific applications of SGX on games,
some of which apply to software in general. More specifically, we
provide a protection model for categorizing game protections and a
set of design principles for developing new games with SGX pro-
tections in mind (§3). We have designed a prototype framework
for integrating SGX with games (§4), and implemented proof-of-
concept protections in an existing game (§5). In doing so, we
demonstrate the new opportunities SGX offers and outline the path
that future work in this area should take.

2. BACKGROUND
Cheat Prevention. Cheating in multiplayer games is a serious con-
cern for game developers because a small minority of cheaters can
ruin the game experience for all the players [8]. For games that
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rely on a large community for their appeal, such as Massive Multi-
player Online (MMO) or competitive multiplayer games, cheaters
can threaten the longevity of a game and cost developers money.

Computer games often use a client/server model, in which multi-
ple player clients connect to a game server, which coordinates, vali-
dates, and disseminates game information for the connected clients.
Since the server connects multiple clients but does not have to be
run on a user’s machine, this allows it to be run by a trusted en-
tity and the server itself can attempt to detect cheating attempts by
clients. Unfortunately, there is overhead associated with verifying
each client’s messages, and in games with large numbers of players
or messages, the server may become a bottleneck.

DRM. The ability to exactly replicate digital information allows
for the easy copying and sharing of applications at little to no cost.
This often results in illegal sharing of proprietary games and ap-
plications against the wishes of the content providers that own the
rights to the content. DRM, or Digital Rights Management, refers
to the management and enforcement of rights to digital intellectual
property [12]. This involves restricting the ability to access pro-
tected content only to those with a valid license for the content [17].

A general model of DRM involves the owner of the content, the
license distributor (who may be the same as the content owner),
and the end user. The content owner distributes its content in some
form of secure container, usually involving some form of encryp-
tion. This secure container is delivered to the end user, who obtains
a license in order to be able to access the content. With a valid li-
cense, they can decrypt and access secure container’s content [12].

However, the existing DRM model has a significant weak point
in that it requires a trusted component on the user’s device that
actually verifies their license and allows (or denies) access to the
content. While the trusted component is supposed to be tamper-
resistant and closed-source in order to frustrate reverse engineer-
ing [12], such protection is through obfuscation that merely slows
an attacker down. Such an approach does not provide real security
guarantees, and even complex DRM may be fairly quickly circum-
vented by determined attackers [2]. The current approaches lack a
way to sufficiently protect the trusted client-side component.

Intel SGX. Intel SGX is, at its core, a set of x86 Instruction Set Ar-
chitecture (ISA) extensions. There are two new instructions, each
of which is divided into multiple leaf functions [3] (18 leaf func-
tions in SGX revision 1 [9] and 6 more in SGX revision 2 [10]).
Since using these instructions directly would be difficult, error-
prone, and would require a large time investment, most developers
will likely end up using a higher level API that abstracts away the
low-level details. SGX provides the ability to place code and data
in a secure enclave, which is an isolated execution environment.
SGX hardware, as a part of the CPU, protects the enclave against
malicious software, including the operating system, hypervisor, or
even low-level firmware code (e.g., SMM).

In particular, when the processor accesses enclave data, it auto-
matically transfers to a new CPU mode, called enclave mode. The
enclave mode enforces additional hardware checks on each mem-
ory access, such that only code inside the enclave can access its
own enclave region. The enclave data is stored in a reserved mem-
ory region called the Enclave Page Cache (EPC). To defend against
known memory attacks such as memory snooping, memory con-
tent in the EPC is encrypted by the Memory Encryption Engine
(MEE). The memory content in the EPC is decrypted only when
entering the CPU, where the code and data are protected by the en-
clave mode, and then re-encrypted when leaving the CPU back to
the EPC memory region.

3. OVERVIEW
Scope, Assumptions, and Threat Model. We focus on the protec-
tion of network connected, multi user games (or applications) since

there is no particular need to prevent cheating in a purely single
player game because there is no way for an attacker to negatively
affect other players; the only possible negative benefit an attacker
could receive is undeserved bragging rights. DRM, however, also
applies to single player games. We assume that an attacker may
have complete control over all software on a platform except for its
attested enclaves, including the application hosting the enclaves.
We also assume that an attacker is capable of directly accessing the
platform’s memory, but not the processor itself. We therefore treat
all code and data outside the enclave as potentially modified by an
attacker, including network traffic and enclave inputs. However, we
do not consider potential attacks on the security of SGX itself.

3.1 Protection Model
We have developed a general protection model for defending

games, and have divided protection into two specific categories:
integrity (for Cheat Prevention), and confidentiality (for DRM).
Cheat prevention ensures the integrity of cheat prevention mech-
anisms, and DRM is concerned with hiding crucial components.

Integrity. In order to prevent players from cheating, we must pre-
vent them from performing actions or making changes that are not
allowed. To this end, we must protect the integrity of certain sec-
tions of an application. Since SGX provides guarantees that the
code and data in an enclave will not be modified, we can carefully
choose certain components to place in enclaves to provide assur-
ances that players cannot make unauthorized changes. We divide
protecting integrity into two categories: data integrity and code in-
tegrity. These two categories do have some overlap, but this split
provides a useful logical separation of the intent behind each kind
of protection.
• Data Integrity. Certain data, such as player position or score,

must be carefully monitored by either a game client or server
so that players cannot modify it in invalid ways. Placing this
data in an enclave immediately yields the benefit of prevent-
ing the simple attack of modifying values with a hex edi-
tor, but protections can extend further than that. Since prop-
erly protecting data also requires protecting the code that can
modify it, this naturally involves code integrity protection as
well. If a limited interface to the data can be designed such
that only allowed operations can be performed, then we can
trust the client machine to make allowed changes to that data.
• Code Integrity. While protecting data integrity may natu-

rally lead to protecting the integrity of the code that interacts
with it, there may also be cases where the main intention is to
protect certain code instead of the data it operates on. Com-
pared to other cases, this is more straightforward, as all that
is necessary is to move the code into an enclave and attest
that the enclave is unmodified.

Confidentiality. While cheat prevention with SGX does not neces-
sarily require hiding information from the user, DRM requires that
the workings of an application are sufficiently hidden and tied to the
license authentication mechanism such that it would be very diffi-
cult for an attacker to remove or fool the authentication component
and derive a version without copy protection. To this end, we aim
to enforce DRM by encrypting components that are critical for a
program’s operation. Since SGX by itself easily provides a trusted
component (e.g., for checking a license key), the challenge is to
make it difficult for attackers to circumvent that SGX mechanism
by encrypting components of the application and having them rely
on the enclave to decrypt them. Since these components must be
encrypted in order to hide how they work, we consider this protect-
ing the confidentiality of an application. As with integrity, we split
this protection into data confidentiality and code confidentiality.
• Data Confidentiality. Since an enclave becomes opaque af-

ter it is started, any data decrypted inside it remains hidden.
If code written to handle the data is also contained within the



enclave, then it is feasible to keep the data self-contained. If
the data eventually must be exposed to the user in some form,
then an attacker may be able to extract the information from
memory unless there is an encrypted path all the way to the
output device. However, even if data is eventually exposed
in memory, since the key is never exposed, an attacker must
first extract the data from memory and then write or extract
code that loads that decrypted data into the correct locations.
This raises the bar over simply extracting decryption keys.
• Code Confidentiality. Code confidentiality poses an inter-

esting challenge, as it requires an enclave be able to dy-
namically decrypt and execute code that was not originally
present in the enclave, and therefore any enclave intending
to run encrypted code on an untrusted machine must be self-
modifying. The benefits of decrypting code in the enclave
are significant. An attacker never has access to even com-
piled code, and therefore any algorithms hidden in this man-
ner provide true black-box behavior.

3.2 Desired Properties for Protected Content
There are several properties in games we wish to protect. Since

some of them may not hold in existing applications, the application
needs to be modified in order to allow the content to be moved
into an enclave. Specifically, we believe new applications that will
support SGX need to take such considerations into account.
• Isolated. SGX enclaves have many restrictions on both the

data that can be sent to and from them and the actions that can
be taken inside them. System calls cannot be made directly
inside them, and C++ objects cannot easily be passed across
the enclave boundary. In addition, a complicated interface
to an enclave opens more potential attacks due to increased
complexity. For example, the more function calls that can
be made into the enclave, the more opportunities there are
for an attacker to call functions in an order unanticipated by
a developer. As such, it is best to have a restricted inter-
face between enclave code and the rest of the application.
In order to do this, potential enclave code should not rely
on external libraries or passed object references. If the code
must send or receive objects, the objects must support seri-
alization/deserialization or their contents must be sent across
the boundary, which may open new attack vectors. However,
this requirement is very challenging to obtain, as many com-
ponents that we may wish to move to the enclave may be
tightly coupled with the rest of the application, and therefore
the source may require substantial refactoring.
• Crucial. Enclaves have a restricted amount of memory (a

limit of 128MB globally provided by current SGX hardware),
and therefore it may not be feasible to move all or most of
an application into an enclave. While it is possible to move
enclave pages to unprotected memory [13], enclaves do not
appear to be intended for large amounts of code and data,
and too-large enclaves may suffer performance penalties. It
is important to find the critical components that the applica-
tion uses and to limit the size and number of enclaves at once.
For the purposes of cheat prevention, it is important to find
a minimal set of data and functions that prevent undesired
behaviors. For DRM, we must find functionality that is both
absolutely necessary for program execution and difficult to
reverse-engineer from black-box input and output behavior.
If an attacker is able to deduce an algorithm from its behav-
ior, they may be able to reconstruct the hidden component
and not have to rely on the enclave.

3.3 Types of Content
We have divided the types of game content we seek to protect

into four rough categories. These can be further divided, with some

Integrity Confidentiality
Data Player Position Media Content

Score Configuration Data
Code Velocity Checks Algorithms

Collision Detection Scripts

Table 1: Our protection model with examples of the kind of content
to protect for each category.

overlaps, into content best used for protecting integrity and content
best used for protecting confidentiality. The first two, game state
and integrity checks, are useful for protecting integrity, while the
last two, initialization data and game logic, are useful for protecting
confidentiality. Examples of desired content are shown in Table 1.
• Game State. Game state can be thought of as any data that

comprises the current status of a game in progress. Examples
of this include player position, score, lives, orientation or ve-
locity, as well as the status of elements of the game world,
such as map data or inventory items. It is often desirable to
prevent changes to this data.
• Integrity Checks. Integrity checks comprise the code that

performs checks on the constraints on game state data. While
game state focused on the integrity of the data, this focuses
on the integrity of the code that verifies this data.
• Initialization Data. In order to prevent an unauthorized ap-

plication from starting, it is useful to protect the confiden-
tiality of assets required before a game can begin. This may
include media such as sounds, textures, or 3D models, or it
may include configuration files.
• Game Logic. Another way to prevent an unauthorized ap-

plication from running is to hide critical logic that cannot be
decrypted and run without authorization. Game logic might
include game scripts (e.g., it might be possible to place a
scripting language interpreter such as Lua’s completely in-
side an enclave) or small but necessary semantically (but not
necessarily computationally) complex calculations.

4. DETAILED DESIGN
Cheat prevention and DRM systems are relatively complex in

efforts to obfuscate their purpose and prevent analysis. However,
we aim to make a clear solution using SGX and therefore not de-
pend on a convoluted design. Establishing security guarantees with
a clearly explained straightforward design avoids “security through
obscurity” and follows cryptographic best practices.

In order to provide the correct security guarantees, our design
must carefully establish a chain of trust that is never broken. Re-
gardless of whether we wish to ensure integrity or confidentiality,
the client’s machine will need to contact a server controlled by a
trusted entity at least once in order to attest to its correctness. Af-
ter that point, the server can be the authoritative voice to confirm
whether the client machine contains trusted enclaves.

We have also created a set of APIs that follow our design. The
API is designed to be general enough to work with any implemen-
tation on top of the low-level SGX assembly instructions. While
our final implementation used the official SGX SDK, other inter-
faces are possible. In fact, many of the API calls in our abstract
framework are in fact aliases of existing SDK functions, and we
directly use these functions in our implementation. However, by
abstracting away the specific details of an underlying framework,
our general design and API should be applicable and adaptable for
any interface built upon SGX. In the following, we describe the
detailed design of our framework.

4.1 Integrity
Different games have different kinds of information that must be

protected in order to prevent cheating. For this reason, the actual
code or data that must be protected for the integrity depends on
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Figure 1: Our design for protecting code and data integrity.

the specific game that we are protecting and therefore is an imple-
mentation issue. Once found, this code or data must be moved to
a secure enclave. When the user starts the application, the enclave
contacts the trusted server and performs remote attestation. After
this point, we can trust that the code and data inside it has not been
modified. This allows a server to avoid verifying anything more
than the integrity and freshness of client messages; any checks on
message semantics can be done in the client code since it is trusted
and therefore can simplify the server. The specific steps of this pro-
cess are shown in Figure 1. Next, we go over each step in detail.
• Step 1 : Start Remote Attestation. First, we establish trust

by performing remote attestation on one or more enclaves
on the client machine. The enclave contacts an authentica-
tion server with the cooperation of the untrusted application.
The untrusted component cannot make any changes to any
of the messages or attestation will fail, and therefore an at-
tacker can only provide denial of service when the enclave
tries to exchange messages with the server. This step corre-
sponds with our sgx_ra_start and sgx_ra_ respond
API calls. RA in this case stands for remote attestation.
sgx_ra_start initializes the attestation state in the en-
clave and returns the first message to be sent to the server,
while sgx_ra_respond handles the first message from
the server and returns the enclave’s response.
• Step 2 : Verify Enclave. After the exchange of attesta-

tion messages is complete, the server will have the platform’s
quote for the enclave, allowing it to verify that its contents
have not been modified. If the final result meets the server’s
requirements, the server can send its final verification re-
sult back to the enclave. This step corresponds with our
sgx_ra_verify call. It allows the enclave to know whether
the server has verified it.
• Step 3 : Share Credentials. If the verification server is not

the same as a game server, it may transfer information for
the secure channel to one or more other servers that actually
handle game data. By using keys derived from the secure ses-
sion (or fresh keys delivered from the authentication server
for each server), each game server can also be assured of the
enclave’s integrity.
• Step 4 : Enclave Communicates with Game Server. When

the game communicates with a server, both for initializing a
game session and during a game, messages are routed through
the enclave for encryption and decryption, and any outgoing
messages involving the client’s game state either can origi-
nate in the enclave or the enclave can perform integrity checks
on data coming from untrusted components. The messages
sent to the server must either be signed or encrypted, de-
pending on use case, but data verification can all be per-
formed on the client side, substantially lightening the load
on game servers by avoiding the need to verify data from all
clients connected to the server. This step corresponds with
our sgx_encrypt_message, sgx_decrypt_message,
sgx_sign_message, and sgx_verify_message calls.
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Figure 2: Our design for protecting code and data confidentiality.

4.2 Confidentiality
For hiding secrets in an application, the decision must first be

made as to which secrets to hide and therefore, similar to integrity,
it is application-specific. However, once the secrets have been iden-
tified, they can be encrypted and stored somewhere with the appli-
cation or removed to be downloaded later. Note that encrypted code
or data can be stored in multiple ways. The two that we focus on are
either storing the encrypted data in the compiled binary or enclave
shared object, or storing the encrypted data in separate files that are
loaded in later. Encrypting assets in files allows the data to be allo-
cated dynamically at runtime. Certain kinds of data, such as images
or audio, more naturally fit into the external file model, while other
kinds, such as code, may make more sense to be decrypted in place.
Such decisions therefore depend on the data. In the following, we
describe the steps (outlined in Figure 2) for achieving confidential-
ity. Since the first two steps of establishing the remote attestation
are similar to our integrity model, we omit those details here.
• Step ¸ : Retrieve License Key. Once a trusted connection

has been established, we can verify that the user is authorized
to use the software. For games, this likely will involve the
user entering a license key when the user opens the game for
the first time. License keys can be distributed with physical
or digital copies of a game. For example, an installer may
display a window asking for the key, or the game may prompt
the user for the license key when it first starts.
• Step ¹ : Send License Key. The client enclave can send the

license key along the encrypted channel to the server. This
prevents attackers from extracting license keys from network
traffic, although it does not defend from dishonest users dis-
tributing license keys. Meanwhile, since license key check-
ing is performed on a trusted server, illicitly redistributed
keys can be detected by watching for specific key activa-
tions (e.g., to protect against license key reuse, a publisher
can simply restrict the number of times a specific key can
be reused). This step corresponds to our sgx_encrypt_
license API, which accepts the plain text of the license
key and returns the encrypted message to send to the server.
Once the license key is encrypted for the secure channel, the
application can send it to the server for validation.
• Step º : Receive Decryption Key. Since a vendor can con-

trol the number of activations per key, it therefore can de-
termine whether to grant access to the application. Once the
server has verified that a user has a valid license, it then sends
a decryption key for the encrypted assets across the trusted
channel to an authentication server. This step corresponds
to our sgx_receive_decrypt_keyAPI, which accepts
the decryption key encrypted by the secure channel’s key.
• Step » : Retrieve Encrypted Assets. Once an enclave re-

ceives a decryption key for the content, it is then able to de-



crypt all encrypted assets. The enclave may accept encrypted
data passed in from external files or use encrypted data con-
tained within it. When receiving external files, the enclave
relies on untrusted components of the application, but since
all data being read in is encrypted, any attempted corruption
of the encrypted contents can be easily detected. The assets
are encrypted before the application is distributed in an of-
fline process. This corresponds to our sgx_cryptstore_
encrypt_to_file and sgx_cryptstore_encrypt
_to_bytes APIs, which are called by code that may not
be present and can be disallowed in the released version of
a game if it has no need to re-encrypt the assets. Before the
data is encrypted, it is inserted into a cryptstore instance
with the sgx_cryptstore_add call.
• Step ¼ : Decrypt Assets. There are two options for how

to handle game assets. The first option is to keep the de-
crypted code or data in the enclave and therefore keep it
completely hidden. This is useful for small amounts of crit-
ical code or data. However, if the data are, for example, en-
crypted images, it may not be feasible to keep the entirety
of them inside the enclave at once. Therefore, the second
option is to immediately pass the decrypted data back out
to the main application in main memory. In this case, the
assets such as the images themselves would not be the pri-
mary secret that would be hidden, but instead the decryption
key and loading mechanism. This step corresponds to our
sgx_cryptstore_decrypt_from_ file and sgx_
cryptstore_decrypt_from_bytes APIs. Using the
newly retrieved decryption keys, the assets are decrypted.
Whether the data can be retrieved from the enclave is up to
the developer. If it can be retrieved, the data can be accessed
with our sgx_cryptstore_get API.
• Step ½ : Seal Decryption Key. After a game has been

authenticated and decryption keys have been delivered, it
would be inefficient and inconvenient if the authentication
process had to be repeated every time the game was restarted.
This implies that the enclave must somehow save its data in
a secure manner, and fortunately SGX’s sealing mechanism
allows for this. For large assets that are normally stored on
disk, the enclave can simply seal the decryption key. This
can allow for a single-player game that normally does not
require any external connection to only require a single con-
nection to authenticate with a server and retrieve the decryp-
tion key. Afterwards it can operate autonomously without
ever checking in with the server again. Sealing and unseal-
ing the key corresponds to our sgx_seal_decrypt_key
and sgx_unseal_decrypt_key calls. The seal call saves
the key to an encrypted file. The call to unseal the key will
only succeed if the key has already been sealed in a previous
session. However, if it does succeed, all authentication steps
(from Step ¶ to Step º) can be skipped because the key has
already been obtained.

5. CASE STUDY
We have applied our framework to protect the real world game

Biniax2. In this section, we describe what we have modified and
our experience of protecting this game. We chose this game for
our case study because it is a mid-sized (3, 540 LOC) open source
game written in C, which simplifies the efforts of modifying it to
work with SGX.

Objective. While the game supports multiple users playing on a
single machine, it does not contain any networking features. Our
focus is therefore on facilitating copy-protection mechanisms—
preventing the game from being reverse engineered. For this spe-
cific example, we decided to encrypt the assets that were used in
the game, including images, sounds, and text. Not having access

to these assets would make the game completely unplayable, as it
comprises most of the player’s experience. Each asset has been
saved to a cryptstore, each of which is encrypted and written to
disk. When the game launches, the contents are read, decrypted
inside the enclave, and loaded into their correct data structures.

In a straightforward copy protection scheme, a user would enter
their license key when the game is installing, and the server would
send back a key to decrypt the assets. In this case, we do not actu-
ally provide a real authentication server, and instead have the game
behave as if the user entered the correct license key. Therefore, we
give the enclave access to the decryption key. During initializa-
tion, the enclave uses this key to decrypt each asset as it is loaded.
We protect the confidentiality of these assets until they are loaded
into memory. Since the graphics and sound cannot fully reside in
SGX and there is no secure I/O, we are forced to leak such data in
memory so that it can be output to the player. However, this sim-
ple change raises the bar for an attacker attempting to bypass the
enclave, as the bytes would have to be extracted from memory and
the asset loading code would have to be modified to directly use the
extracted data. This requires less effort from a developer than an
attacker.

Modifications. The first challenge in using SGX with an existing
application is the fact that it must be ported to SGX by partition-
ing the application into trusted and untrusted sections, if there is no
library OS support. We therefore had to decide what components
to place in the enclave. In order to avoid significant alterations
and provide an example of an approach requiring minimal devel-
oper effort, we used our cryptstore library to encrypt the assets of
the application. This lead to a total of 29 encrypted assets, includ-
ing 923KB of images (e.g., background0.png or font.png),
160KB of sound effects (e.g., sfx1.wav), and 14KB of text (e.g.,
help.txt), comprising a total of over 1MB of protected data.

A comparison between the original game and our SGX port is
shown in Table 2, and some additional statistics about SGX-Biniax2
are given in Table 3. Our ported version has 22% more lines of code
than the original; this is likely mostly due to the additional code for
the enclave functions, as the code added to protect the assets could
mostly reuse our framework functions. The binary size increase is
likely for the same reason. In addition, due to the fact that we store
the assets with our cryptstore API, there is an insignificant size in-
crease of around 1% when they are encrypted. This is caused by
the small amount of metadata stored along with the asset.

Performance. In order to evaluate the effects of our modifications
on performance, we tested the time it took to initialize the game,
measuring the time before and after all assets were loaded. Mean-
while, we measured how much time it took to initialize only the
enclave. We started the game 10 times and took the average and
standard deviation. Our evaluation machine runs Ubuntu 14.04.4
LTS with 64GB of memory and an Intel i7-6700 Skylake CPU run-
ning at 3.40Ghz. The results are shown in Table 2 and Table 3.

Our results may at first appear rather startling, as a 72% overhead
is rather significant. However, the start up time in either case is
still far faster than a human can detect, and there is no human-
perceptible difference between the two. While this overhead may
increase for larger games, a slightly longer loading time may be
tolerable for the benefit the encryption provides. In addition, note
that all the assets are loaded only during initialization, and all code
after that point is identical to that from the original game, meaning
there is no overhead after the game starts.

One interesting discovery is how much of the initialization comes
solely from the enclave initialization itself; it comprises roughly
half of the additional overhead over the baseline, with asset decryp-
tion likely making up the other half. However, enclave initialization
should be a fixed overhead and will likely not be performed often,
so this is also not a concern.



Metric Biniax2 SGX-Biniax2 Percent Increase
Lines of Code 3540 4326 22.20%
Initialization Time (ms) 141.58±4.23 243.59±4.11 72.05%
Binary Size (bytes) 35038 38353 9.46%
Asset Size (bytes) 1084486 1097259 1.18%

Table 2: Comparison of several metrics between the original
Biniax2 game and our modified version that we ported to SGX.

Metric Value
Lines of Code in Enclave 580
Enclave Size (bytes) 100425
Enclave Initialization (ms) 53.22±4.21
Assets Encrypted 29

Table 3: Statistics for our modified SGX-Biniax2.

Future Work. This case study is a simple yet interesting look at
copy protection for an application, but it does not provide all the
guarantees that are possible when using SGX. We only encrypted
assets that are eventually output to the player and therefore must
leave the enclave memory; there is no secure I/O channel, meaning
that all images and sounds must be leaked to attackers, and in the
case of cheat prevention attackers can fake user inputs. It would
benefit SGX greatly to be somehow combined with secure I/O.

However, certain assets may never need to leave the enclave
(e.g., internal data structures). Such assets would have to be com-
pletely reconstructed (solely using black-box inputs/outputs from
the enclave) by an attacker intending to circumvent copy protec-
tion. For future studies, we aim to provide these stronger guaran-
tees by encrypting data that never needs to leave the enclave. In
addition, code for a built-in scripting language could also be en-
crypted, potentially making all in-game scripts completely hidden
from an attacker.

We also did not demonstrate all steps in our framework. In order
to more thoroughly demonstrate our framework, we could set up a
mock authentication server and require a license key to be entered
when the game first starts. Then, we could also demonstrate sealing
and unsealing by having the game unseal the decryption key for
all subsequent launches. In addition, we did not provide a case
study for cheat prevention, as many games with network play are
complicated, and partitioning the application into secure and non-
secure sections is nontrivial. However, we also intend to look more
into cheat prevention in the future.

It will also be important to examine the security of an enclave
implementation itself. E.g., if there are many enclave functions,
they could be sensitive to being called out of order and may put the
enclave at risk of compromising integrity or confidentiality. This
adversary model gives great strength to an attacker, and we must
consider the ways protections might be compromised.

6. RELATED WORK
Game Protection. Hoglund and McGraw [8] described common
game cheating techniques such as memory editing [18], code injec-
tion, and network traffic forgery. CheatEngine [1] is an open source
engine for cheating single player games that uses value scanning to
identify the data of interest while the game runs. However, as ac-
knowledged by the author, such an approach does not work with
highly dynamic online games. Kartograph [6] is a state-of-the-art
tool for hacking games and protecting games against maps hacks.
More broadly, there are also various obfuscation strategies [7] to
protect software assets, but they cannot provide security guaran-
tees. In contrast, the use of SGX gives us strong guarantees, as
shown in this paper.

SGX and Its Applications. Since SGX holds great potential to
solve many challenging security problems [4], a number of ef-
forts have started to explore SGX in various applications and also

build platforms for SGX research (e.g.,the OpenSGX [11] project).
In particular, with a shielded execution on Intel SGX, Haven [5]
protects the code and data in the cloud. VC3 [16] demonstrated
privacy-aware data analytics in the cloud. OpenSGX [11] provides
an open source platform with fully functional and instruction com-
patible emulator to hasten the development of TEE based applica-
tions. Most recently, Ohrimenko et al. [14] presented a number
of privacy preserving multi-party machine learning algorithms run-
ning in SGX machines for cloud users.

7. CONCLUSION
The challenges of preventing cheating in games or illegal copy-

ing of games are well-known. However, it has proved challeng-
ing to provided a trusted component to enable protections against
cheating and illegal copying due to the fact that content creators do
not have control over an end-user’s platform. With the introduc-
tion of SGX, this becomes feasible. In this paper, we presented a
general framework for protecting game integrity and confidential-
ity. We showed the security guarantees that SGX provides and how
they can be applied to protecting games, and we demonstrated that
our prototype framework can be integrated into existing games.
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