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The Semantic Gap in VMI ([Chen and Noble HotOS’01])

View exposed by Virtual Machine Monitor is at low-level
There is no abstraction and no APIs
Need to reconstruct the guest-OS abstraction
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Advantages
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Isolation (SVM and GVM are isolated)
Trustworthiness (trust code is running in secure VM)
Automation (no need to develop introspection utilities)
Security (enabling malware analysis, forensics...)
Transparency (programmers write native program in SVM)
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Observation

  1 execve("/sbin/sysctl",["sysctl", "-w","kernel..=1"],...) = 0

  2 brk(0)                                  = 0x604000

  3 access("/etc/ld.so.nohwcap",F_OK)      = -1 ENOENT

  4 mmap(NULL, 8192, PROT_READ|.., -1,0) = 0x7f07b1749000

  5 access("/etc/ld.so.preload",R_OK)      = -1 ENOENT

  6 open("/etc/ld.so.cache", O_RDONLY)      = 3

  ...

 47 open("/proc/sys/kernel/randomize_va_space",O_WRONLY|...) = 3

 48 fstat(3, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0

 49 mmap(NULL, 4096, PROT_READ|.., -1, 0) = 0x7f07b1748000

 50 write(3, "1\n", 2)                      = 2

 51 close(3)                                = 0

 ...

 57 exit_group(0)                           = ?

Syscall trace of running sysctl -w to turn on the address space randomization in

Linux kernel 2.6.32
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Effectiveness

Effective?
Category Utility Syntactics Semantics

ps (1) 7 X
pstree (1) 7 X
lsmod (8) X X
dmesg (1) X X

Introspection vmstat (8) 7 X
netstat (8) X X
lsof (8) 7 X
uptime (1) 7 X
df (1) 7 X
sysctl (8) X X

Configuration route (8) X X
hostname (1) X X
chrt (1) X X
renice (1) X X
kill (1) X X

Recovery rmmod (8) X X
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Performence Overhead
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Recovery

Rootkit Targeted Function Pointer Succeed?
adore-2.6 kernel global, heap object 7

hookswrite IDT table X
int3backdoor IDT table X

kbdv3 syscall table X
kbeast-v1 syscall table, tcp4_seq_show X

mood-nt-2.3 syscall table X
override syscall table X

phalanx-b6 syscall table, tcp4_seq_show X
rkit-1.01 syscall table X

rial syscall table X
suckit-2 IDT table X

synapsys-0.4 syscall table X
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OS-Agnostic Testing

Linux Kernel
Distribution Version Release Date Transparent?

Debian 4.0 2.6.26 2007-04-06 X
Debian 5.0 2.6.28 2009-02-12 X
Debian 6.0 2.6.32 2010-01-22 X

Fedora-8 2.6.23 2007-11-08 X
Fedora-10 2.6.27 2008-11-25 X
Fedora-12 2.6.31 2009-11-17 X
Fedora-14 2.6.35 2010-11-02 X
Fedora-16 3.1.0 2011-11-08 X

OpenSUSE-10.3 2.6.22 2007-10-04 X
OpenSUSE-11.0 2.6.25 2008-06-19 X
OpenSUSE-11.1 2.6.27 2008-12-18 X
OpenSUSE-11.2 2.6.31 2009-11-12 X
OpenSUSE-11.3 2.6.34 2010-07-15 X
OpenSUSE-12.1 3.1.0 2011-11-16 X

Ubuntu-8.04 2.6.24 2008-04-24 X
Ubuntu-8.10 2.6.27 2008-10-30 X
Ubuntu-9.04 2.6.28 2009-04-23 X
Ubuntu-9.10 2.6.31 2009-10-29 X
Ubuntu-10.04 2.6.32 2010-04-29 X
Ubuntu-10.10 2.6.35 2010-10-10 X
Ubuntu-11.04 2.6.38 2011-04-28 X
Ubuntu-11.10 3.0.4 2011-10-13 X
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Conclusion

EXTERIOR is a novel dual-VM based external shell for
trusted, native, out-of-VM program execution.

It can be used for (automatic) introspection,
(re)configuration of the guest-OS state (in the cloud), and
can perform a timely response such as recovery from a
kernel malware intrusion.

EXTERIOR has demonstrated a new program execution
model on top of virtualization.

(We believe) It will open new opportunities for system
administration and security.
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