
Overview Our Approach Evaluations Conclusion

EXTERIOR: Using A Dual-VM Based External Shell for
Guest-OS Introspection, Configuration, and Recovery

Yangchun Fu, Zhiqiang Lin

Department of Computer Science
The University of Texas at Dallas

March 17th, 2013

Overview Our Approach Evaluations Conclusion

Outline

1 Overview

2 Our Approach

3 Evaluations

4 Conclusion

Outline

1 Overview

2 Our Approach

3 Evaluations

4 Conclusion

Overview Our Approach Evaluations Conclusion

Virtualization

Hardware Layer

Virtualization Layer

Product‐VM Product‐VM Product‐VM

Linux Win‐7

..
Windows XP

Virtualization (i.e.,
hypervisor) [Popek and

Goldberg, 1974] has pushed
our computing paradigm
from multi-tasking to
multi-OS.

Consolidation, Migration,
Isolation ...

Overview Our Approach Evaluations Conclusion

Virtualization

Hardware Layer

Virtualization Layer

Product‐VM Product‐VM Product‐VM

Linux Win‐7

..
Windows XP Virtualization (i.e.,

hypervisor) [Popek and

Goldberg, 1974] has pushed
our computing paradigm
from multi-tasking to
multi-OS.

Consolidation, Migration,
Isolation ...

Overview Our Approach Evaluations Conclusion

Virtualization

Hardware Layer

Virtualization Layer

Product‐VM Product‐VM Product‐VM

Linux Win‐7

..
Windows XP Virtualization (i.e.,

hypervisor) [Popek and

Goldberg, 1974] has pushed
our computing paradigm
from multi-tasking to
multi-OS.

Consolidation, Migration,
Isolation ...

Overview Our Approach Evaluations Conclusion

Execution Mode

Overview Our Approach Evaluations Conclusion

Execution Mode

Overview Our Approach Evaluations Conclusion

Execution Mode

Overview Our Approach Evaluations Conclusion

Virtual Machine Introspection (VMI) [Garfinkel et al, NDSS’03]

Using a trusted,
dedicated virtualization
layer program to monitor
the running VMs

Intrusion Detection
Malware Analysis
Memory Forensics

Overview Our Approach Evaluations Conclusion

Virtual Machine Introspection (VMI) [Garfinkel et al, NDSS’03]

Using a trusted,
dedicated virtualization
layer program to monitor
the running VMs

Intrusion Detection
Malware Analysis
Memory Forensics

Overview Our Approach Evaluations Conclusion

Virtual Machine Introspection (VMI) [Garfinkel et al, NDSS’03]

Using a trusted,
dedicated virtualization
layer program to monitor
the running VMs

Intrusion Detection
Malware Analysis
Memory Forensics

Overview Our Approach Evaluations Conclusion

Virtual Machine Introspection (VMI)

Using a trusted,
dedicated virtualization
layer program to monitor
the running VMs

Intrusion Detection
Malware Analysis
Memory Forensics

EXTERIOR
Execute trusted utilities in SVM for timely Guest-OS
introspection, (re)configuration and recovery.

Overview Our Approach Evaluations Conclusion

Virtual Machine Introspection (VMI)

Using a trusted,
dedicated virtualization
layer program to monitor
the running VMs

Intrusion Detection
Malware Analysis
Memory Forensics

EXTERIOR
Execute trusted utilities in SVM for timely Guest-OS
introspection, (re)configuration and recovery.

Overview Our Approach Evaluations Conclusion

The Semantic Gap in VMI ([Chen and Noble HotOS’01])

View exposed by Virtual Machine Monitor is at low-level
There is no abstraction and no APIs
Need to reconstruct the guest-OS abstraction

Outline

1 Overview

2 Our Approach

3 Evaluations

4 Conclusion

Overview Our Approach Evaluations Conclusion

Using a Dual-VM Architecture

User Space
Kernel Space

apache mysql firefox

P

Guest VM (GVM)

User Space
Kernel Space

User Space
Kernel Space

ps netstat kill apache mysql firefox

P

Secure VM (SVM) Guest VM (GVM)

p

Virtual Machine Introspection
Virtual Machine Configuration
Intrusion Detection, Prevention (Recovery)

Overview Our Approach Evaluations Conclusion

Using a Dual-VM Architecture

User Space
Kernel Space

User Space
Kernel Space

ps netstat kill apache mysql firefox

P

Secure VM (SVM) Guest VM (GVM)

p

Virtual Machine Introspection
Virtual Machine Configuration
Intrusion Detection, Prevention (Recovery)

Overview Our Approach Evaluations Conclusion

Using a Dual-VM Architecture

User Space
Kernel Space

User Space
Kernel Space

ps netstat kill apache mysql firefox

P

Secure VM (SVM) Guest VM (GVM)

p

Virtual Machine Introspection
Virtual Machine Configuration
Intrusion Detection, Prevention (Recovery)

Overview Our Approach Evaluations Conclusion

Advantages

User Space
Kernel Space

User Space
Kernel Space

ps netstat kill apache mysql firefox

P

Secure VM (SVM) Guest VM (GVM)

p

Isolation (SVM and GVM are isolated)
Trustworthiness (trust code is running in secure VM)
Automation (no need to develop introspection utilities)
Security (enabling malware analysis, forensics...)
Transparency (programmers write native program in SVM)

Overview Our Approach Evaluations Conclusion

Observation

 1 execve("/sbin/sysctl",["sysctl", "-w","kernel..=1"],...) = 0

 2 brk(0) = 0x604000

 3 access("/etc/ld.so.nohwcap",F_OK) = -1 ENOENT

 4 mmap(NULL, 8192, PROT_READ|.., -1,0) = 0x7f07b1749000

 5 access("/etc/ld.so.preload",R_OK) = -1 ENOENT

 6 open("/etc/ld.so.cache", O_RDONLY) = 3

 ...

 47 open("/proc/sys/kernel/randomize_va_space",O_WRONLY|...) = 3

 48 fstat(3, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0

 49 mmap(NULL, 4096, PROT_READ|.., -1, 0) = 0x7f07b1748000

 50 write(3, "1\n", 2) = 2

 51 close(3) = 0

 ...

 57 exit_group(0) = ?

Syscall trace of running sysctl -w to turn on the address space randomization in

Linux kernel 2.6.32

Overview Our Approach Evaluations Conclusion

Architecture Overview of EXTERIOR

User Space

Kernel Space

M
em

o
ry

Dglobal

Dheap

Dstack1

S
y

sc
a

ll
1

S
y

sc
a

ll
2

Dstack2 Dstackn

S
y

sc
a

ll
n

Process/IO/Memory/

Security Management

Other System

Components and Drivers

Interrupt/Exception

Handler

User Space

Kernel Space

M
em

o
ry

Dstack1

S
y

sc
a

ll
1

S
y

sc
a

ll
2

Dstack2 Dstackn

S
y

sc
a

ll
n

Process/IO/Memory/

Security Management

Other System

Components and Drivers

Interrupt/Exception

Handler

ps netstat kill apache mysql firefox

Secure VM (SVM) Guest VM (GVM)

Kernel Syscall

Context Identification

Kernel Data Identification

and Redirection

Dglobal

Dheap

Binary Translation Based

Virtualization Layer

Xen/KVM/Vmware/VirtualBox/VirtualPC/HyperV

/OpenVZ/QEMU

C
user

Dstack

Dglobal

DheapP

GVM Memory Mapping

and Address Resolution

Outer-Shell

Synchronization Primitive

mutex, spin_lock,…

Synchronization Primitive

mutex, spin_lock,…

Overview Our Approach Evaluations Conclusion

The algorithms

User Space
Kernel Space

M
em

or
y

Dglobal

Dheap

Dstack1

Sy
sc

al
l 1

Sy
sc

al
l 2

Dstack2 Dstackn

Sy
sc

al
l n

Process/IO/Memory/
Security Management

Other System
Components and Drivers

Interrupt/Exception
Handler

ps netstat kill

Secure VM (SVM)

Kernel Syscall
Context Identification

Kernel Data Identification
and Redirection

Binary Translation Based
Virtualization Layer

GVM Memory Mapping
and Address Resolution

Outer-Shell

Synchronization Primitive

mutex, spin_lock,…

The Algorithm

1: DynamicBinaryInstrumentation(i):
2: if SysCallExecContext(s):
3: if SysCallRedirectable(s):
4: RedirectableDataTracking(i);
5: for α in MemoryAddress(i):
6: if DataRead(α):
7: PA(α)← V2P(α)
8: Load(PA(α))
9: else:
10: if Configuration:
11: Store(PA(α))
12: else: //Introspection
13: COW-Store(PA(α))

Overview Our Approach Evaluations Conclusion

The algorithms

User Space
Kernel Space

M
em

or
y

Dglobal

Dheap

Dstack1

Sy
sc

al
l 1

Sy
sc

al
l 2

Dstack2 Dstackn

Sy
sc

al
l n

Process/IO/Memory/
Security Management

Other System
Components and Drivers

Interrupt/Exception
Handler

ps netstat kill

Secure VM (SVM)

Kernel Syscall
Context Identification

Kernel Data Identification
and Redirection

Binary Translation Based
Virtualization Layer

GVM Memory Mapping
and Address Resolution

Outer-Shell

Synchronization Primitive

mutex, spin_lock,…

The Algorithm

1: DynamicBinaryInstrumentation(i):
2: if SysCallExecContext(s):
3: if SysCallRedirectable(s):
4: RedirectableDataTracking(i);
5: for α in MemoryAddress(i):
6: if DataRead(α):
7: PA(α)← V2P(α)
8: Load(PA(α))
9: else:
10: if Configuration:
11: Store(PA(α))
12: else: //Introspection
13: COW-Store(PA(α))

Overview Our Approach Evaluations Conclusion

Mapping the GVM Memory Address

Outline

Overview Our Approach Evaluations Conclusion

Effectiveness

Effective?
Category Utility Syntactics Semantics

ps (1) 7 X
pstree (1) 7 X
lsmod (8) X X
dmesg (1) X X

Introspection vmstat (8) 7 X
netstat (8) X X
lsof (8) 7 X
uptime (1) 7 X
df (1) 7 X
sysctl (8) X X

Configuration route (8) X X
hostname (1) X X
chrt (1) X X
renice (1) X X
kill (1) X X

Recovery rmmod (8) X X

Overview Our Approach Evaluations Conclusion

Performence Overhead

Overview Our Approach Evaluations Conclusion

Recovery

Rootkit Targeted Function Pointer Succeed?
adore-2.6 kernel global, heap object 7

hookswrite IDT table X
int3backdoor IDT table X

kbdv3 syscall table X
kbeast-v1 syscall table, tcp4_seq_show X

mood-nt-2.3 syscall table X
override syscall table X

phalanx-b6 syscall table, tcp4_seq_show X
rkit-1.01 syscall table X

rial syscall table X
suckit-2 IDT table X

synapsys-0.4 syscall table X

Overview Our Approach Evaluations Conclusion

OS-Agnostic Testing

Linux Kernel
Distribution Version Release Date Transparent?

Debian 4.0 2.6.26 2007-04-06 X
Debian 5.0 2.6.28 2009-02-12 X
Debian 6.0 2.6.32 2010-01-22 X

Fedora-8 2.6.23 2007-11-08 X
Fedora-10 2.6.27 2008-11-25 X
Fedora-12 2.6.31 2009-11-17 X
Fedora-14 2.6.35 2010-11-02 X
Fedora-16 3.1.0 2011-11-08 X

OpenSUSE-10.3 2.6.22 2007-10-04 X
OpenSUSE-11.0 2.6.25 2008-06-19 X
OpenSUSE-11.1 2.6.27 2008-12-18 X
OpenSUSE-11.2 2.6.31 2009-11-12 X
OpenSUSE-11.3 2.6.34 2010-07-15 X
OpenSUSE-12.1 3.1.0 2011-11-16 X

Ubuntu-8.04 2.6.24 2008-04-24 X
Ubuntu-8.10 2.6.27 2008-10-30 X
Ubuntu-9.04 2.6.28 2009-04-23 X
Ubuntu-9.10 2.6.31 2009-10-29 X
Ubuntu-10.04 2.6.32 2010-04-29 X
Ubuntu-10.10 2.6.35 2010-10-10 X
Ubuntu-11.04 2.6.38 2011-04-28 X
Ubuntu-11.10 3.0.4 2011-10-13 X

Overview Our Approach Evaluations Conclusion

Limitations and Future Work

Limitations
Can handle kernel ASLR
Need an identical trusted kernel
Need to stop the guest VM

Future Work
Derandomize the kernel address space
Port to Windows OS

Overview Our Approach Evaluations Conclusion

Limitations and Future Work

Limitations
Can handle kernel ASLR
Need an identical trusted kernel
Need to stop the guest VM

Future Work
Derandomize the kernel address space
Port to Windows OS

Outline

Overview Our Approach Evaluations Conclusion

Conclusion

EXTERIOR is a novel dual-VM based external shell for
trusted, native, out-of-VM program execution.

It can be used for (automatic) introspection,
(re)configuration of the guest-OS state (in the cloud), and
can perform a timely response such as recovery from a
kernel malware intrusion.

EXTERIOR has demonstrated a new program execution
model on top of virtualization.

(We believe) It will open new opportunities for system
administration and security.

Overview Our Approach Evaluations Conclusion

Conclusion

EXTERIOR is a novel dual-VM based external shell for
trusted, native, out-of-VM program execution.

It can be used for (automatic) introspection,
(re)configuration of the guest-OS state (in the cloud), and
can perform a timely response such as recovery from a
kernel malware intrusion.

EXTERIOR has demonstrated a new program execution
model on top of virtualization.

(We believe) It will open new opportunities for system
administration and security.

Overview Our Approach Evaluations Conclusion

Conclusion

EXTERIOR is a novel dual-VM based external shell for
trusted, native, out-of-VM program execution.

It can be used for (automatic) introspection,
(re)configuration of the guest-OS state (in the cloud), and
can perform a timely response such as recovery from a
kernel malware intrusion.

EXTERIOR has demonstrated a new program execution
model on top of virtualization.

(We believe) It will open new opportunities for system
administration and security.

Overview Our Approach Evaluations Conclusion

Conclusion

EXTERIOR is a novel dual-VM based external shell for
trusted, native, out-of-VM program execution.

It can be used for (automatic) introspection,
(re)configuration of the guest-OS state (in the cloud), and
can perform a timely response such as recovery from a
kernel malware intrusion.

EXTERIOR has demonstrated a new program execution
model on top of virtualization.

(We believe) It will open new opportunities for system
administration and security.

Overview Our Approach Evaluations Conclusion

Thank you !

User Space
Kernel Space

User Space
Kernel Space

ps netstat kill apache mysql firefox

P

Secure VM (SVM) Guest VM (GVM)

p

Contact us via. {yangchun.fu,zhiqiang.lin}@utdallas.edu for any
questions

Overview Our Approach Evaluations Conclusion

Thank you !

User Space
Kernel Space

User Space
Kernel Space

ps netstat kill apache mysql firefox

P

Secure VM (SVM) Guest VM (GVM)

p

Contact us via. {yangchun.fu,zhiqiang.lin}@utdallas.edu for any
questions

	Overview
	Our Approach
	Evaluations
	Conclusion

