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guest OS—including CPU registers, memory, disk, and network. 
Because of such strong isolation, VMI has been widely adopted in 
many security applications such as intrusion detection (e.g., [16] [24] 
[25]), malware analysis (e.g., [22] [5] [6] [9]), process monitoring 
(e.g., [30] [31]), and memory forensics (e.g., [20] [7] [9]). 

However, past research in VMI has primarily focused on read-only 
inspection capability for the guest OS. This is reasonable, because 
intuitively any writable operation to the guest OS might disrupt the 
kernel state and even crash the kernel. In other words, in order to 
perform writable operations, the VMM must know precisely which 
guest virtual address it can safely write to, and when it can perform 
the write (i.e., what the execution context is). Unfortunately, this is 
challenging because of the well-known semantic gap problem [2]. 
That is, unlike the scenario with the in-guest view—where we have 
rich semantics such as the type, name, and data structure of kernel 
objects—at the VMM layer, we can view only the low-level bits and 
bytes. Therefore, we must bridge the semantic gap. 

Earlier approaches to bridging the semantic gap have leveraged 
kernel-debugging information, as shown in the pioneer work Livewire 
[16]. Other approaches include analyzing and customizing kernel 
source code (e.g., [26] [21]), or simply manually writing down the 
routines to traverse kernel objects based on the kernel data structure 
knowledge (e.g., [22] [24]). Recently, highly automated binary-
code-reuse-based approaches have been proposed that either 
retain the executed binary code in a re-executable manner or 
operate through an online kernel data redirection approach 
utilizing dual-VM support.

Given the substantial progress in the all possible approaches to 
bridging the semantic gap at the VMM layer, today we are almost 
certain of the semantics of the guest OS virtual addresses that we 
may or may not write to. Then can we go beyond read-only VMI? 
Since the VMM controls the entire guest computing stack, VMM 
certainly can do far more than that, such as perform guest OS 
memory-write operations. Then what are the benefits of writable 
VMI? What is the state of the art? What are the remaining challenges 
that must be addressed to make writable VMI deterministic? How 
can we address them and realize this vision? 

This paper tries to answer these questions. Based on our prior 
experiences with EXTERIOR [10], we argue that writable VMI is 
worthwhile and can be realized. In particular, we show that there 

Abstract
Over the past decade, a great deal of research on virtual machine 
introspection (VMI) has been carried out. This approach pulls the 
guest OS state into the low-level hypervisor and performs external 
monitoring of the guest OS, thereby enabling many new security 
applications at the hypervisor layer. However, past research mostly 
focused on the read-only capability of VMI; because of inherent 
difficulties, little effort went into attempting to interfere with the 
guest OS. However, since hypervisor controls the entire guest OS 
state, VMI can go far beyond read-only operations. In this paper, 
we discuss writable VMI, a new capability offered at the level of  
the hypervisor. Specifically, we examine reasons of why to embrace 
writable VMI, and what the challenges are. As a case study, we 
describe how the challenges could be solved by using our prior 
EXTERIOR system as an example. After sharing our experience,  
we conclude the paper with discussions on the open problems  
and future directions. 

1. Introduction
By virtualizing hardware resources and allocating them based on 
need, virtualization [18] [19] [28] has significantly increased the 
utilization of many computing capacities, such as available computing 
power, storage space, and network bandwidth. It has pushed our 
modern computing paradigm from multi-tasking computing to 
multi-operating-system computing. Located one layer below the 
operating system (OS), virtualization enables system developers to 
achieve unprecedented levels of automation and manageability—
especially for large scale computing systems—through resource 
multiplexing, server consolidation [32], machine migration [4], and 
better security [16] [15] [14] [3] [34], reliability, and portability [2]. 
Virtualization has become ubiquitous in the realm of enterprise 
computing today, underpinning cloud computing and data centers.  
It is expected to become ubiquitous on the desktop and mobile 
devices in the near future. 

In terms of security, one of the best applications enabled by 
virtualization is virtual machine introspection (VMI) [16]. VMI  
pulls the guest OS state into the outside virtual machine monitor 
(VMM), or hypervisor (the terms VMM and hypervisor are used 
interchangeably in this paper), and performs external monitoring 
of the runtime state of a guest OS. The introspection can be placed  
in a VMM, in another virtual machine (VM), or within any other part  
of the hypervisor, as long as it can inspect the runtime state of the 
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because they run at the same privilege level. However, with 
writable VMI, we can quickly take actions to stop and prevent  
the attack without the assistance from any in-VM programs and 
their root privileges. Considering that there are a great deal of 
read-only VMI-based intrusion-detection systems (e.g., [6] [8] 
[9] [16] [22] [23] [24]), writable VMI can be seamlessly integrated 
with them and provide a timely response to attacks—such as 
kill-ing a rootkit-created hidden process and running rmmod 
against a hidden malicious kernel module. 

3. Challenges
However, it is non-trivial to realize writable VMI at the hypervisor layer. 
As in all the read-only VMI solutions, we must bridge the semantic 
gap and reconstruct the guest OS abstractions. In addition, we  
will also face a concurrency problem while performing guest 
 OS writable operations. 

3.1 Reconstructing the Guest OS Abstractions 
Essentially, a hypervisor can be considered to be programmable 
hardware. Therefore, the view at the hypervisor layer is at a very 
low level. Specifically, we can observe all the CPU registers and all  
of the physical memory cells of the guest OS. Also, we can observe  
all the instruction executions if the hypervisor is an instruction- 
translation-based VMM; otherwise we can only observe some 
special VMM-level instructions (e.g., Intel VT-x instructions) and 
special kernel events such as page faults if the hypervisor is a 
hardware-virtualization-based VMM. 

However, what we want is the semantic information of the guest 
OS abstractions. For instance, for a memory cell, we want to know 
the meaning of that cell—for example, what is the virtual address 
of this memory cell? Is it a kernel global variable? If so, what does 
this global variable stand for? For a running instruction inside the 
guest OS, we also would like to know if it is a user-level instruction 
or a kernel-level instruction? Which process does the instruction 
belong to? If the instruction belongs to kernel space, is it a system-
call-related instruction, a kernel-module instruction, kernel-interrupt 
handler, or something else? For a running system call, we also want 
to know the semantics of this system call, such as the system call 
number and the arguments. 

Therefore, we must bridge the semantic gap for this low-level  
data and these events. In general, we must be armed with detailed 
knowledge of the algorithms and data structures of each OS 
component in order to rebuild high-level information. However, due 
to the high complexity of modern OSs, acquiring such knowledge 
is a tedious and time-consuming operation, even for open source 
OSs. When the source code is not available, sustained effort is 
needed to reverse engineer the undocumented kernel algorithms  
and data structures. 

Because of the importance of this problem, significant research  
in the past has focused on how to bridge the semantic gap more 
efficiently and with less constraint. Currently, the state of the art 
includes the kernel-data-structure-based approach (e.g., [16] [26] 
[21] [22] [24] [1]), and the binary-code-reuse-based approach 
(e.g., [6] [9] [10] [11] [29]). Each has its own pros and cons. The 

will be many exciting applications once we can enable writable VMI, 
such as guest OS reconfiguration and repair, and even applications 
for guest OS kernel updates. However, there are still many challenges 
to solve before we can reach that point. 

The rest of the paper is organized as follows: Section 2 addresses 
further the need of writable VMI. Section 3 discusses the challenges 
we will be facing. In Section 4, we present the example of a writable-
VMI prototype that we built to support guest OS reconfiguration and 
repair. Section 5 discusses future directions, and finally Section 6 
concludes the paper. 

2. Further Motivation
Past research on VMI primarily focused on retrieving the guest  
OS state, such as the list of running processes, active networking 
connections, and opening files. None of these operations requires 
modification of the guest OS state, which has consequently limited 
the capabilities of the VMI. By enabling VMI to write to the guest 
OS, we can support many other operations on the guest OS, such 
as configuring kernel parameters, manipulating the IP routing 
table, or even killing a malicious process. 

For security, writable VMI would certainly share all of the benefits  
of readable VMI, such as strong isolation, higher privilege, and 
stealthiness. In addition, it can have another unique advantage—
high automation. In the following, we discuss these benefits in greater 
detail. More general discussion of the benefits of hypervisor-based 
solutions can be found in other papers (c.f., [2] [17]). 

•	Strong isolation – The primary advantage of using the VMM  
is the ability to shift the guest OS state out of the VM, thereby 
isolating in-VM from out-of-VM programs. It is generally believed 
to be much harder for adversaries to tamper with programs running 
at the hypervisor layer, because there is a world switch from in-VM 
to out-of-VM (unless the VMM has vulnerabilities). Consequently, 
we can gain higher trustworthiness of out-of-VM programs. For 
instance, if we have a VMM-layer guest OS process kill utility, we 
can guarantee that this utility is not tampered before using it to 
kill the malicious processes inside the guest OS. 

•	Higher privileges and stealthiness – Traditional security software 
(e.g., antivirus) runs inside the guest OS, and in-VM malware can 
often disable the execution of this software. By moving the execution 
of security software to the VMM layer, we can achieve a higher 
privilege (same as the hypervisor’s) for it and make it invisible to 
attackers (higher stealthiness). For instance, malicious code (e.g., 
a kernel rootkit) often disables the rmmod command needed to 
remove a kernel module. By enabling the execution of these 
commands at the VMM layer, we can achieve a higher privilege. 
Also, the VMM-layer rmmod command would certainly be invisible 
(stealthy) to the in-VM malware because of the strong isolation. 

•	High Automation – A unique advantage of writable VMI is the 
enabling of automated responses to guest OS events. For instance, 
when a guest OS intrusion is detected, it often requires an automated 
response. Current practice is to execute an automated response 
inside the guest OS and/or notify the administrators. Again, 
unfortunately, any in-VM responses can be disabled by attackers 

Toward Guest OS Writable Virtual Machine Introspection



 1 1

There are also some other related issues, such as the performance 
trade-off. One intuitive approach for avoiding concurrency would be 
to stop guest OS execution and then perform the writable operation 
solely from VMI. This is doable if the performance impact on the 
guest OS is not so critical and if inside the guest OS there is no 
similar behavior to the outside writable operation. 

4. Examples
In this section, we share our experiences in realizing a writable  
VMI system named EXTERIOR [10]. We first give an overview  
of our system in Section 4.1, and in Section 4.2 explain how we 
addressed the semantic-gap and concurrency challenges. Finally,  
we discuss the limitations of EXTERIOR in Section 4.3. 

4.1 EXTERIOR Overview 
Recently, we presented EXTERIOR, a dual-VM, binary-code-reuse-
based framework for guest OS introspection, configuration, and repair. 
As illustrated in Figure 2, EXTERIOR enables native OS utilities 
such as ps, rmmod, and kill to execute in a secure VM (SVM)  
but transparently inspect and update the OS state in the guest VM 
(GVM). There are two requirements for EXTERIOR to work: (1) The 
OSs running in the two VMs must be the exact same version and 
(2) the SVM’s hypervisor is an instruction-translation-based VMM. 

The SVM is used to create the necessary running environment for the 
utility processes. The binary-translation-based VM is used to monitor 
all the instruction execution in the SVM, resolve the instruction 
execution context, and dynamically and transparently redirect and 
update the memory state at the hypervisor layer from SVM to GVM 
when the execution context of interest is executed, thus achieving 
the same effect—in terms of kernel state updates—as running the 
same utility inside the GVM. 

We demonstrated that EXTERIOR can be used for automated 
management of a guest OS, including introspection (e.g., ps, lsmod, 
netstat) and reconfiguration (e.g., sysctl, hostname, renice) 
of the guest OS state without any user account in the guest OS. It 
also supports end users developing customized programs to repair 
the kernel damage inflicted by kernel malware, such as contaminated 
system-call tables. 

4.2 Solutions to the Challenges 
To bridge the semantic gap, EXTERIOR uses a binary-code-reuse-
based approach. The key insight is that for compiled software, 
including an OS kernel, variables are usually updated by the compiled 

data-structure-assisted approach is flexible, fast, and precise, but it 
requires access to kernel-debugging information or kernel source 
code; a binary-code-reuse-based approach is highly automated, but it 
is slow and can only support limited functionality (e.g., with fewer than 
20 native utilities supported so far in VMST [9] and EXTERIOR [10]). 

3.2 Addressing the Concurrency Issue 
Unlike with read-only VMI, if we aim to perform writable operations 
on the guest OS, we must ensure that the memory write is safe. By 
safe, we mean that the newly written value should reflect the original 
OS semantics. In particular, for a memory write, even though we can 
bridge its semantic gap, we still need to know when it is the safe 
moment to launch the write operation. For instance, as shown in the 
Figure 1(b), when writable VMI executes the rep movsl instruction 
at the hypervisor layer to set the host name of the guest OS, we 
need to ensure there is no concurrent execution of this instruction 
inside the guest OS. 

In addition, the OS is designed to manage hardware resources such 
as CPU and memory, which are often shared by multiple processes 
or threads (for multiplexing). Therefore, the OS kernel is full of 
synchronization or lock primitives against the concurrent access  
of the shared resources. These synchronization mechanisms (e.g., 
spinlock and semaphores) would set yet another obstacle 
when implementing writable VMI. 

Note that the concurrency issue happens at very fine granularity—
that is, the memory-cell level for a particular variable. Based on the 
semantics, if we are sure that there is no such concurrency, we can 
safely perform the memory write. In other words, the outside writable 
operation should be like a transaction (e.g., [27]), and self-contained. 
For instance, the execution of the ps command would not affect 
the kernel state, and this “transaction” is self-contained and can 
happen multiple times even inside the guest OS. 

Toward Guest OS Writable Virtual Machine Introspection

Figure 1. (a) System call trace of the hostname command (b) Disassembled 
instructions for sys_sethostname system call

Figure 2. Overview of EXTERIOR.
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to derive the signatures for all those observed kernel locks. Such  
a manual approach is tedious and error-prone, and it must be 
repeated for different kernels.

5. Future Research
There are many directions to go in order to realize writable VMI. 
The two most urgent steps are to (1) push the technology further 
based on different constraints and (2) demonstrate the technology 
with more compelling applications. This section discusses both 
steps in more detail. 

5.1 Improving the Techniques 
Whether the hypervisor can access the guest OS kernel source 
code determines which of the two following strategies are possible: 
we can either retrofit the kernel source code to make it more suitable 
for writable VMI, or we can improve the binary code analysis of the 
OS kernel to automatically recognize a more fine-grained execution 
context such as spin_locks. 

5.1.1 Retrofitting Kernel Source Code 
As with writable VMI, we want to perform transaction-like operations. 
Also, at the binary-code level it is challenging to recognize the kernel-
synchronization primitives. Then why not to retrofit the kernel source 
code to add hooks or wrappers such that, at the hypervisor layer, 
we can easily detect these events? This is certainly doable. For 
instance, much as in paravirtualization [32], we can modify kernel 
source code (with a compiler pass) to automatically recognize 
certain functions based on certain rules, and add hooks (e.g., [13]),  
or even rewrite some part of kernel code if the transaction-like 
behavior is missing (c.f., TxOS [27]). 

On the other hand, to perform writable VMI at the hypervisor layer, 
essentially we are executing a program at the hypervisor layer to 
update kernel variables. Another route would be to change the 
binary code output (by compilers) of the given kernel in order to 
assist our VMI. For instance, if we can relocate the kernel variables 
to certain pages (instead of mixing them with all other unrelated 
kernel variables, which is the current practice), it would be much 
easier for the hypervisor to recognize and update the kernel 
introspection related information. For instance, through program 
analysis such as program slicing, if we can precisely identify the 
variables involved in the memory write and relocate them into 
special pages, we could map the pages between the SVM and  
the GVM such that the operation happening in the SVM is directly 
reflected in the GVM’s state. It might be trivial to relocate the 
global variables, but for heap we might have to dynamically  
track them through pointer references. Part of our current  
research is working in this direction. 

5.1.2 Recognizing Fine-Grained Execution Context 
When we cannot retrofit the kernel source code, the only way  
we can move forward is to improve the binary code analysis to 
recognize the more fine-grained execution context. Currently,  
we can recognize the beginning and ending point of a system  
call, interrupt, and exception, through instrumenting kernel binary 
code and hardware events generation [9] [10] [11] [29]. We cannot 
recognize many other kernel functions such as context switch,  

instructions within a certain execution context. More specifically, 
by tracing how the traditional native program executes and updates 
the kernel state, we observe that OS kernel state is often updated 
within a certain kernel system call execution context. For instance, 
as shown in Figure 1, the sethostname utility, when executed 
with the test parameter, invokes the sys_sethostname system 
call to update the kernel host name with the new name. The 
instructions from line 6 to line 11 are responsible for this. 

Therefore, if at the VMM layer we can precisely identify the instruction 
execution from line 6 to line 11 when system call sys_sethostname 
is executed, and if we can maintain a secure duplicate of the running 
GVM as a SVM, through redirecting both their memory read and write 
operations from the SVM to the running GVM, we can transparently 
update the in-VM kernel state of the GVM from the outside SVM. In 
other words, the semantic gap (e.g., the memory location of in-VM 
kernel state) is automatically bridged by the intrinsic instruction 
constraints encoded in the binary code in the duplicated VM. That  
is why it eventually leads to a dual-VM based architecture. 

Regarding the concurrency issues, it is rare to execute these native 
utilities simultaneously in both SVM and GVM. For instance, the 
probability would be extremely low of executing a utility such as 
sethostname in the SVM at the same time that it is executed in 
the GVM. Meanwhile, the utilities that EXTERIOR supports are self-
contained, and they can be executed multiple times in one VM. For 
instance, we can execute kill multiple times to kill a process, and 
we can also execute ps multiple times to show the running-processes 
list. Also, we can execute kill at an arbitrary time to kill a running 
process, because this operation is self-contained. That is why these 
operations can be considered transactions. A rule of thumb is that 
if we can execute a command multiple times in a VM and can get 
the same result in terms of kernel-state inspection or update, then 
that command can be executed in a SVM. 

4.3 Limitations of EXTERIOR 
The way in which EXTERIOR bridges the semantic gap and how  
it addresses the concurrency issue naturally lead to a number of 
limitations. First, it requires the two kernels to have identical kernel 
versions because of the nature of binary code reuse. Any new patch 
to the GVM kernel must be applied to the SVM. Second, it also requires 
the address space of kernel global variables not be randomized; 
otherwise it must derandomize it. Third, the execution of the 
monitored system call (e.g., sys_sethostname) will not be 
blocked, and the monitored system call should only operate  
on memory data. 

Because of the above constraints, EXTERIOR cannot support the 
running of arbitrary administration utilities with arbitrary kernels. 
Also, EXTERIOR must precisely identify the instruction execution 
context. Currently, it can precisely identify the system-call 
execution context. However, a given system call can contain 
certain nonredirectable data, such as the variables accessed by 
spin_lock and spin_unlock, or semaphores accessed by  
__up or __down. If we cannot precisely identify the execution 
context of these functions, EXTERIOR is highly likely to make  
these relevant kernel lock primitives inconsistent when redirecting 
kernel data access. Currently, EXTERIOR uses a manual approach  

Toward Guest OS Writable Virtual Machine Introspection



 1 3

writable VMI is useful. It will open many new opportunities for 
system administration and security. There are still many open 
problems to work on in order to realize full-fledged writable-VMI. 
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