
 9

guest OS—including CPU registers, memory, disk, and network.
Because of such strong isolation, VMI has been widely adopted in
many security applications such as intrusion detection (e.g., [16] [24]
[25]), malware analysis (e.g., [22] [5] [6] [9]), process monitoring
(e.g., [30] [31]), and memory forensics (e.g., [20] [7] [9]).

However, past research in VMI has primarily focused on read-only
inspection capability for the guest OS. This is reasonable, because
intuitively any writable operation to the guest OS might disrupt the
kernel state and even crash the kernel. In other words, in order to
perform writable operations, the VMM must know precisely which
guest virtual address it can safely write to, and when it can perform
the write (i.e., what the execution context is). Unfortunately, this is
challenging because of the well-known semantic gap problem [2].
That is, unlike the scenario with the in-guest view—where we have
rich semantics such as the type, name, and data structure of kernel
objects—at the VMM layer, we can view only the low-level bits and
bytes. Therefore, we must bridge the semantic gap.

Earlier approaches to bridging the semantic gap have leveraged
kernel-debugging information, as shown in the pioneer work Livewire
[16]. Other approaches include analyzing and customizing kernel
source code (e.g., [26] [21]), or simply manually writing down the
routines to traverse kernel objects based on the kernel data structure
knowledge (e.g., [22] [24]). Recently, highly automated binary-
code-reuse-based approaches have been proposed that either
retain the executed binary code in a re-executable manner or
operate through an online kernel data redirection approach
utilizing dual-VM support.

Given the substantial progress in the all possible approaches to
bridging the semantic gap at the VMM layer, today we are almost
certain of the semantics of the guest OS virtual addresses that we
may or may not write to. Then can we go beyond read-only VMI?
Since the VMM controls the entire guest computing stack, VMM
certainly can do far more than that, such as perform guest OS
memory-write operations. Then what are the benefits of writable
VMI? What is the state of the art? What are the remaining challenges
that must be addressed to make writable VMI deterministic? How
can we address them and realize this vision?

This paper tries to answer these questions. Based on our prior
experiences with EXTERIOR [10], we argue that writable VMI is
worthwhile and can be realized. In particular, we show that there

Abstract
Over the past decade, a great deal of research on virtual machine
introspection (VMI) has been carried out. This approach pulls the
guest OS state into the low-level hypervisor and performs external
monitoring of the guest OS, thereby enabling many new security
applications at the hypervisor layer. However, past research mostly
focused on the read-only capability of VMI; because of inherent
difficulties, little effort went into attempting to interfere with the
guest OS. However, since hypervisor controls the entire guest OS
state, VMI can go far beyond read-only operations. In this paper,
we discuss writable VMI, a new capability offered at the level of
the hypervisor. Specifically, we examine reasons of why to embrace
writable VMI, and what the challenges are. As a case study, we
describe how the challenges could be solved by using our prior
EXTERIOR system as an example. After sharing our experience,
we conclude the paper with discussions on the open problems
and future directions.

1. Introduction
By virtualizing hardware resources and allocating them based on
need, virtualization [18] [19] [28] has significantly increased the
utilization of many computing capacities, such as available computing
power, storage space, and network bandwidth. It has pushed our
modern computing paradigm from multi-tasking computing to
multi-operating-system computing. Located one layer below the
operating system (OS), virtualization enables system developers to
achieve unprecedented levels of automation and manageability—
especially for large scale computing systems—through resource
multiplexing, server consolidation [32], machine migration [4], and
better security [16] [15] [14] [3] [34], reliability, and portability [2].
Virtualization has become ubiquitous in the realm of enterprise
computing today, underpinning cloud computing and data centers.
It is expected to become ubiquitous on the desktop and mobile
devices in the near future.

In terms of security, one of the best applications enabled by
virtualization is virtual machine introspection (VMI) [16]. VMI
pulls the guest OS state into the outside virtual machine monitor
(VMM), or hypervisor (the terms VMM and hypervisor are used
interchangeably in this paper), and performs external monitoring
of the runtime state of a guest OS. The introspection can be placed
in a VMM, in another virtual machine (VM), or within any other part
of the hypervisor, as long as it can inspect the runtime state of the

Toward Guest OS Writable Virtual Machine Introspection

Toward Guest OS Writable
Virtual Machine Introspection
Zhiqiang Lin	
The University of Texas at Dallas
zhiqiang.lin@utdallas.edu	

1 0

because they run at the same privilege level. However, with
writable VMI, we can quickly take actions to stop and prevent
the attack without the assistance from any in-VM programs and
their root privileges. Considering that there are a great deal of
read-only VMI-based intrusion-detection systems (e.g., [6] [8]
[9] [16] [22] [23] [24]), writable VMI can be seamlessly integrated
with them and provide a timely response to attacks—such as
kill-ing a rootkit-created hidden process and running rmmod
against a hidden malicious kernel module.

3. Challenges
However, it is non-trivial to realize writable VMI at the hypervisor layer.
As in all the read-only VMI solutions, we must bridge the semantic
gap and reconstruct the guest OS abstractions. In addition, we
will also face a concurrency problem while performing guest
 OS writable operations.

3.1 Reconstructing the Guest OS Abstractions
Essentially, a hypervisor can be considered to be programmable
hardware. Therefore, the view at the hypervisor layer is at a very
low level. Specifically, we can observe all the CPU registers and all
of the physical memory cells of the guest OS. Also, we can observe
all the instruction executions if the hypervisor is an instruction-
translation-based VMM; otherwise we can only observe some
special VMM-level instructions (e.g., Intel VT-x instructions) and
special kernel events such as page faults if the hypervisor is a
hardware-virtualization-based VMM.

However, what we want is the semantic information of the guest
OS abstractions. For instance, for a memory cell, we want to know
the meaning of that cell—for example, what is the virtual address
of this memory cell? Is it a kernel global variable? If so, what does
this global variable stand for? For a running instruction inside the
guest OS, we also would like to know if it is a user-level instruction
or a kernel-level instruction? Which process does the instruction
belong to? If the instruction belongs to kernel space, is it a system-
call-related instruction, a kernel-module instruction, kernel-interrupt
handler, or something else? For a running system call, we also want
to know the semantics of this system call, such as the system call
number and the arguments.

Therefore, we must bridge the semantic gap for this low-level
data and these events. In general, we must be armed with detailed
knowledge of the algorithms and data structures of each OS
component in order to rebuild high-level information. However, due
to the high complexity of modern OSs, acquiring such knowledge
is a tedious and time-consuming operation, even for open source
OSs. When the source code is not available, sustained effort is
needed to reverse engineer the undocumented kernel algorithms
and data structures.

Because of the importance of this problem, significant research
in the past has focused on how to bridge the semantic gap more
efficiently and with less constraint. Currently, the state of the art
includes the kernel-data-structure-based approach (e.g., [16] [26]
[21] [22] [24] [1]), and the binary-code-reuse-based approach
(e.g., [6] [9] [10] [11] [29]). Each has its own pros and cons. The

will be many exciting applications once we can enable writable VMI,
such as guest OS reconfiguration and repair, and even applications
for guest OS kernel updates. However, there are still many challenges
to solve before we can reach that point.

The rest of the paper is organized as follows: Section 2 addresses
further the need of writable VMI. Section 3 discusses the challenges
we will be facing. In Section 4, we present the example of a writable-
VMI prototype that we built to support guest OS reconfiguration and
repair. Section 5 discusses future directions, and finally Section 6
concludes the paper.

2. Further Motivation
Past research on VMI primarily focused on retrieving the guest
OS state, such as the list of running processes, active networking
connections, and opening files. None of these operations requires
modification of the guest OS state, which has consequently limited
the capabilities of the VMI. By enabling VMI to write to the guest
OS, we can support many other operations on the guest OS, such
as configuring kernel parameters, manipulating the IP routing
table, or even killing a malicious process.

For security, writable VMI would certainly share all of the benefits
of readable VMI, such as strong isolation, higher privilege, and
stealthiness. In addition, it can have another unique advantage—
high automation. In the following, we discuss these benefits in greater
detail. More general discussion of the benefits of hypervisor-based
solutions can be found in other papers (c.f., [2] [17]).

•	Strong isolation – The primary advantage of using the VMM
is the ability to shift the guest OS state out of the VM, thereby
isolating in-VM from out-of-VM programs. It is generally believed
to be much harder for adversaries to tamper with programs running
at the hypervisor layer, because there is a world switch from in-VM
to out-of-VM (unless the VMM has vulnerabilities). Consequently,
we can gain higher trustworthiness of out-of-VM programs. For
instance, if we have a VMM-layer guest OS process kill utility, we
can guarantee that this utility is not tampered before using it to
kill the malicious processes inside the guest OS.

•	Higher privileges and stealthiness – Traditional security software
(e.g., antivirus) runs inside the guest OS, and in-VM malware can
often disable the execution of this software. By moving the execution
of security software to the VMM layer, we can achieve a higher
privilege (same as the hypervisor’s) for it and make it invisible to
attackers (higher stealthiness). For instance, malicious code (e.g.,
a kernel rootkit) often disables the rmmod command needed to
remove a kernel module. By enabling the execution of these
commands at the VMM layer, we can achieve a higher privilege.
Also, the VMM-layer rmmod command would certainly be invisible
(stealthy) to the in-VM malware because of the strong isolation.

•	High Automation – A unique advantage of writable VMI is the
enabling of automated responses to guest OS events. For instance,
when a guest OS intrusion is detected, it often requires an automated
response. Current practice is to execute an automated response
inside the guest OS and/or notify the administrators. Again,
unfortunately, any in-VM responses can be disabled by attackers

Toward Guest OS Writable Virtual Machine Introspection

 1 1

There are also some other related issues, such as the performance
trade-off. One intuitive approach for avoiding concurrency would be
to stop guest OS execution and then perform the writable operation
solely from VMI. This is doable if the performance impact on the
guest OS is not so critical and if inside the guest OS there is no
similar behavior to the outside writable operation.

4. Examples
In this section, we share our experiences in realizing a writable
VMI system named EXTERIOR [10]. We first give an overview
of our system in Section 4.1, and in Section 4.2 explain how we
addressed the semantic-gap and concurrency challenges. Finally,
we discuss the limitations of EXTERIOR in Section 4.3.

4.1 EXTERIOR Overview
Recently, we presented EXTERIOR, a dual-VM, binary-code-reuse-
based framework for guest OS introspection, configuration, and repair.
As illustrated in Figure 2, EXTERIOR enables native OS utilities
such as ps, rmmod, and kill to execute in a secure VM (SVM)
but transparently inspect and update the OS state in the guest VM
(GVM). There are two requirements for EXTERIOR to work: (1) The
OSs running in the two VMs must be the exact same version and
(2) the SVM’s hypervisor is an instruction-translation-based VMM.

The SVM is used to create the necessary running environment for the
utility processes. The binary-translation-based VM is used to monitor
all the instruction execution in the SVM, resolve the instruction
execution context, and dynamically and transparently redirect and
update the memory state at the hypervisor layer from SVM to GVM
when the execution context of interest is executed, thus achieving
the same effect—in terms of kernel state updates—as running the
same utility inside the GVM.

We demonstrated that EXTERIOR can be used for automated
management of a guest OS, including introspection (e.g., ps, lsmod,
netstat) and reconfiguration (e.g., sysctl, hostname, renice)
of the guest OS state without any user account in the guest OS. It
also supports end users developing customized programs to repair
the kernel damage inflicted by kernel malware, such as contaminated
system-call tables.

4.2 Solutions to the Challenges
To bridge the semantic gap, EXTERIOR uses a binary-code-reuse-
based approach. The key insight is that for compiled software,
including an OS kernel, variables are usually updated by the compiled

data-structure-assisted approach is flexible, fast, and precise, but it
requires access to kernel-debugging information or kernel source
code; a binary-code-reuse-based approach is highly automated, but it
is slow and can only support limited functionality (e.g., with fewer than
20 native utilities supported so far in VMST [9] and EXTERIOR [10]).

3.2 Addressing the Concurrency Issue
Unlike with read-only VMI, if we aim to perform writable operations
on the guest OS, we must ensure that the memory write is safe. By
safe, we mean that the newly written value should reflect the original
OS semantics. In particular, for a memory write, even though we can
bridge its semantic gap, we still need to know when it is the safe
moment to launch the write operation. For instance, as shown in the
Figure 1(b), when writable VMI executes the rep movsl instruction
at the hypervisor layer to set the host name of the guest OS, we
need to ensure there is no concurrent execution of this instruction
inside the guest OS.

In addition, the OS is designed to manage hardware resources such
as CPU and memory, which are often shared by multiple processes
or threads (for multiplexing). Therefore, the OS kernel is full of
synchronization or lock primitives against the concurrent access
of the shared resources. These synchronization mechanisms (e.g.,
spinlock and semaphores) would set yet another obstacle
when implementing writable VMI.

Note that the concurrency issue happens at very fine granularity—
that is, the memory-cell level for a particular variable. Based on the
semantics, if we are sure that there is no such concurrency, we can
safely perform the memory write. In other words, the outside writable
operation should be like a transaction (e.g., [27]), and self-contained.
For instance, the execution of the ps command would not affect
the kernel state, and this “transaction” is self-contained and can
happen multiple times even inside the guest OS.

Toward Guest OS Writable Virtual Machine Introspection

Figure 1. (a) System call trace of the hostname command (b) Disassembled
instructions for sys_sethostname system call

Figure 2. Overview of EXTERIOR.

1 2

to derive the signatures for all those observed kernel locks. Such
a manual approach is tedious and error-prone, and it must be
repeated for different kernels.

5. Future Research
There are many directions to go in order to realize writable VMI.
The two most urgent steps are to (1) push the technology further
based on different constraints and (2) demonstrate the technology
with more compelling applications. This section discusses both
steps in more detail.

5.1 Improving the Techniques
Whether the hypervisor can access the guest OS kernel source
code determines which of the two following strategies are possible:
we can either retrofit the kernel source code to make it more suitable
for writable VMI, or we can improve the binary code analysis of the
OS kernel to automatically recognize a more fine-grained execution
context such as spin_locks.

5.1.1 Retrofitting Kernel Source Code
As with writable VMI, we want to perform transaction-like operations.
Also, at the binary-code level it is challenging to recognize the kernel-
synchronization primitives. Then why not to retrofit the kernel source
code to add hooks or wrappers such that, at the hypervisor layer,
we can easily detect these events? This is certainly doable. For
instance, much as in paravirtualization [32], we can modify kernel
source code (with a compiler pass) to automatically recognize
certain functions based on certain rules, and add hooks (e.g., [13]),
or even rewrite some part of kernel code if the transaction-like
behavior is missing (c.f., TxOS [27]).

On the other hand, to perform writable VMI at the hypervisor layer,
essentially we are executing a program at the hypervisor layer to
update kernel variables. Another route would be to change the
binary code output (by compilers) of the given kernel in order to
assist our VMI. For instance, if we can relocate the kernel variables
to certain pages (instead of mixing them with all other unrelated
kernel variables, which is the current practice), it would be much
easier for the hypervisor to recognize and update the kernel
introspection related information. For instance, through program
analysis such as program slicing, if we can precisely identify the
variables involved in the memory write and relocate them into
special pages, we could map the pages between the SVM and
the GVM such that the operation happening in the SVM is directly
reflected in the GVM’s state. It might be trivial to relocate the
global variables, but for heap we might have to dynamically
track them through pointer references. Part of our current
research is working in this direction.

5.1.2 Recognizing Fine-Grained Execution Context
When we cannot retrofit the kernel source code, the only way
we can move forward is to improve the binary code analysis to
recognize the more fine-grained execution context. Currently,
we can recognize the beginning and ending point of a system
call, interrupt, and exception, through instrumenting kernel binary
code and hardware events generation [9] [10] [11] [29]. We cannot
recognize many other kernel functions such as context switch,

instructions within a certain execution context. More specifically,
by tracing how the traditional native program executes and updates
the kernel state, we observe that OS kernel state is often updated
within a certain kernel system call execution context. For instance,
as shown in Figure 1, the sethostname utility, when executed
with the test parameter, invokes the sys_sethostname system
call to update the kernel host name with the new name. The
instructions from line 6 to line 11 are responsible for this.

Therefore, if at the VMM layer we can precisely identify the instruction
execution from line 6 to line 11 when system call sys_sethostname
is executed, and if we can maintain a secure duplicate of the running
GVM as a SVM, through redirecting both their memory read and write
operations from the SVM to the running GVM, we can transparently
update the in-VM kernel state of the GVM from the outside SVM. In
other words, the semantic gap (e.g., the memory location of in-VM
kernel state) is automatically bridged by the intrinsic instruction
constraints encoded in the binary code in the duplicated VM. That
is why it eventually leads to a dual-VM based architecture.

Regarding the concurrency issues, it is rare to execute these native
utilities simultaneously in both SVM and GVM. For instance, the
probability would be extremely low of executing a utility such as
sethostname in the SVM at the same time that it is executed in
the GVM. Meanwhile, the utilities that EXTERIOR supports are self-
contained, and they can be executed multiple times in one VM. For
instance, we can execute kill multiple times to kill a process, and
we can also execute ps multiple times to show the running-processes
list. Also, we can execute kill at an arbitrary time to kill a running
process, because this operation is self-contained. That is why these
operations can be considered transactions. A rule of thumb is that
if we can execute a command multiple times in a VM and can get
the same result in terms of kernel-state inspection or update, then
that command can be executed in a SVM.

4.3 Limitations of EXTERIOR
The way in which EXTERIOR bridges the semantic gap and how
it addresses the concurrency issue naturally lead to a number of
limitations. First, it requires the two kernels to have identical kernel
versions because of the nature of binary code reuse. Any new patch
to the GVM kernel must be applied to the SVM. Second, it also requires
the address space of kernel global variables not be randomized;
otherwise it must derandomize it. Third, the execution of the
monitored system call (e.g., sys_sethostname) will not be
blocked, and the monitored system call should only operate
on memory data.

Because of the above constraints, EXTERIOR cannot support the
running of arbitrary administration utilities with arbitrary kernels.
Also, EXTERIOR must precisely identify the instruction execution
context. Currently, it can precisely identify the system-call
execution context. However, a given system call can contain
certain nonredirectable data, such as the variables accessed by
spin_lock and spin_unlock, or semaphores accessed by
__up or __down. If we cannot precisely identify the execution
context of these functions, EXTERIOR is highly likely to make
these relevant kernel lock primitives inconsistent when redirecting
kernel data access. Currently, EXTERIOR uses a manual approach

Toward Guest OS Writable Virtual Machine Introspection

 1 3

writable VMI is useful. It will open many new opportunities for
system administration and security. There are still many open
problems to work on in order to realize full-fledged writable-VMI.

References
1	 Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., and Jiang,

X. Mapping kernel objects to enable systematic integrity
checking. In The 16th ACM Conference on Computer and
Communications Security (CCS’09) (Chicago, IL, USA, 2009),
pp. 555–565.

2	 Chen, P. M., and Noble, B. D. “When virtual is better than
real”. In Proceedings of the Eighth Workshop on Hot Topics i
n Operating Systems (HOTOS’01) (Washington, DC, USA,
2001), IEEE Computer Society, p. 133.

3	 Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P.,
Waldspurger, C. A., Boneh, D., Dwoskin, J., and Ports, D. R.
Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems. In Proceedings of
the 13th International Confer-ence on Architectural support for
programming languages and oper-ating systems (Seattle, WA,
USA, 2008), ASPLOS XIII, ACM, pp. 2–13.

4	 Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach,
C., Pratt, I., and Warfield, A. Live migration of virtual machines.
In Proceedings of the 2nd Conference on Symposium on
Networked Systems Design & Implementation -Volume 2
(2005), NSDI’05, USENIX Association, pp. 273–286

5	 Dinaburg, A., Royal, P., Sharif, M., and Lee, W. Ether: malware
analysis via hardware virtualization extensions. In Proceedings
of the 15th ACM Conference on Computer and Communications
Security (CCS’08) (Alexandria, Virginia, USA, 2008), pp. 51–62.

6	 Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., and Lee, W.
Virtuoso: Narrowing the semantic gap in virtual machine
introspection. In Proceedings of the 32nd IEEE Symposium on
Security and Privacy (Oakland, CA, USA, 2011), pp. 297–312.

7	 Dolan-Gavitt, B., Payne, B., and Lee, W. Leveraging forensic
tools for virtual machine introspection. Technical Report;
GT-CS-11-05 (2011).

8	 Dunlap, G. W., King, S. T., Cinar, S., Basrai, M. A., and Chen, P.
M. Revirt: enabling intrusion analysis through virtual-machine
logging and replay. In Proceedings of the 5th Symposium on
Operating Sys-tems Design and Implementation (OSDI) (2002).

9	 Fu, Y., and Lin, Z. Space traveling across vm: Automatically
bridging the semantic gap in virtual machine introspection
via online kernel data redirection. In Proceedings of 33rd
IEEE Symposium on Security and Privacy (May 2012).

10	 Fu, Y., and Lin, Z. Exterior: Using a dual-vm based external
shell for guest OS introspection, configuration, and recovery.
In Proceedings of the Ninth Annual International Conference
on Virtual Execution Environments (Houston, TX, March 2013).

the bottom half of the interrupt handler, and many of the kernel
synchronization primitives. Although we have mitigated the
identification of these functions by instrumenting the timer to
further disable the context switch, this is certainly not general
enough and has limited functionality.

Therefore, determining how to identify fine-grained kernel function
execution contexts and their semantics is a challenging problem.
Manually inspecting each kernel function will not scale, and automatic
techniques are needed. Having source code access is much easier,
because we can instrument the code and inform the hypervisor of the
execution context. When given only binary, we must automatically
infer them from the information we gather.

5.2 Exploring More Applications
There will be many new exciting applications once we are able to
perform fine-grained (i.e., memory-address-level) writable VMI.
We have demonstrated that we can do guest OS reconfiguration
such as resetting certain kernel parameters. We can also perform
guest OS repair to clean the attack footprints.

Other possible applications include kernel updates. If we can
quantify that a new kernel patch changes the kernel state in a
transactional way, then we can certainly perform writable VMI
to update the kernel defined in the patch. Other applications
could be forensic applications that bypass authentication [12].
Again, the biggest advantage for writable VMI is that no explicit
root privilege is required to perform a task (because it has the
highest, hypervisor-level privilege).

In a broader scope, we can view writable VMI as a new program
execution model that has certain components executed in-VM
and certain components executed out-of-VM. These two types
of components work together but have different trustworthiness
and privileges. Some typical problems, such as the consumer and
producer model, might be good examples of using writable VMI.
For instance, we can use writable VMI to produce the kernel data
for consumers inside the guest OS to consume. It might also be
useful for high-performance computing (HPC), because this
model splits program execution into two parts. With the support
of special APIs, we might be able to improve the performance
of specific HPC applications.

6. Conclusion
VMI has been an appealing application for security, but it only
focuses on the guest OS read-only capability provided by the
hypervisor. This paper discusses the possibility of exploring
approaches for writable-capability that is necessary for changing
certain kernel state. In particular, we discussed the demand for
highly automated writable-VMI approaches that can be used as
transactions. We also walked through the challenges that we will
be facing, including the well-known semantic-gap problem, and
the unique concurrency issues that occur when both in-VM and
out-of-VM programs write the same kernel variables at the same
time. We discussed how we can solve these challenges by using
our prior EXTERIOR system as an example. Finally, we believe

Toward Guest OS Writable Virtual Machine Introspection

1 4

23	 Jones, S. T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H.
Ant-farm: tracking processes in a virtual machine environment.
In Proceedings USENIX ’06 Annual Technical Conference
(Boston, MA, 2006), USENIX Association.

24	 Payne, B. D., Carbone, M., and Lee, W. Secure and flexible
monitor-ing of virtual machines. In Proceedings of the 23rd
Annual Computer Security Applications Conference (ACSAC
2007) (December 2007).

25	 Payne, B. D., Carbone, M., Sharif, M. I., and Lee, W. Lares: An
architecture for secure active monitoring using virtualization.
In Proceedings of 2008 IEEE Symposium on Security and Privacy
(Oakland, CA, May 2008), pp. 233–247.

26	 Petroni, JR., N. L., and Hicks, M. Automated detection of
persistent kernel control-flow attacks. In Proceedings of the
14th ACM Confer-ence on Computer and Communications
Security (Alexandria, Virginia, USA, 2007), CCS ’07, ACM,
pp. 103–115.

27	 Porter, D. E., Hofmann, O. S., Rossbach, C. J., Benn, A., and
Witchel, E. Operating system transactions. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles
(Big Sky, Montana, USA, 2009), SOSP ’09, ACM, pp. 161–176.

28	 Rosenblum, M., and Garfinkel, T. Virtual machine monitors:
Current technology and future trends. IEEE Computer
(May 2005).

29	 Saberi, A., Fu, Y., and Lin, Z. Hybrid-Bridge: Efficiently
Bridging the Semantic-Gap in Virtual Machine Introspection
via Decoupled Execution and Training Memoization. In
Proceedings Network and Distributed Systems Security
Symposium (NDSS’14) (February 2014).

30	 Sharif, M. I., Lee, W., Cui, W., and Lanzi, A. Secure in-vm
monitoring using hardware virtualization. In Proceedings of the
16th ACM Conference on Computer and Communications Security
(Chicago, Illinois, USA, 2009), CCS ’09, ACM, pp. 477–487.

31	 Srinivasan, D., Wang, Z., Jiang, X., and Xu, D. Process out-
grafting: an efficient “out-of-vm” approach for fine-grained
process execution monitoring. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS’11)
(Chicago, Illinois, USA, 2011), pp. 363–374.

32	 Whitaker, A., Shaw, M., and Gribble, S. D. Denali: Lightweight
virtual machines for distributed and networked applications. In
Proceedings of the USENIX Annual Technical Conference (2002).

33	 Whitaker, A., Shaw, M., and Gribble, S. D. Scale and
performance in the denali isolation kernel. In Proceedings
of the 5th Symposium on Operating Systems Design And
Implementation (Boston, Massachu-setts, 2002), OSDI ’02,
ACM, pp. 195–209.

34	 Zhang, F., Chen, J., Chen, H., and Zang, B. Cloudvisor:
retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles
(Cascais, Portugal, 2011), SOSP ’11, ACM, pp. 203–216.

11	 Fu, Y., and Lin, Z. Bridging the Semantic Gap in Virtual
Machine Introspection via Online Kernel Data Redirection.
ACM Transaction on Information System Security 16(2)
(September 2013), 7:1–7:29.

12	 Fu, Y., Lin, Z., and Hamlen, K. Subverting systems
authentication with context-aware, reactive virtual machine
introspection. In Proceedings of the 29th Annual Computer
Security Applications Conference (ACSAC’13) (New Orleans,
Louisiana, December 2013).

13	 Ganapathy, V., Jaeger, T., and Jha, S. Automatic placement of
authorization hooks in the Linux security modules framework.
In Proceedings of the 12th ACM Conference on Computer and
communications security (Alexandria, VA, USA, 2005), CCS
’05, ACM, pp. 330–339.

14	 Garfinkel, T., Adams, K., Warfield, A., and Franklin, J.
Compatibility is Not Transparency: VMM Detection Myths
and Realities. In Proceedings of the 11th Workshop on Hot
Topics in Operating Systems (HotOS-XI) (May 2007).

15	 Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and BONEH,
D. Terra: a virtual machine-based platform for trusted computing.
In Proceedings of the Nineteenth ACM symposium on Operating
Systems Principles (Bolton Landing, NY, USA, 2003), SOSP’03,
ACM, pp. 193–206.

16	 Garfinkel, T., and Rosenblum, M. A virtual machine introspection
based architecture for intrusion detection. In Proceedings
Network and Distributed Systems Security Symposium
(NDSS’03) (February 2003).

17	 Garfinkel, T., and Rosenblum, M. When virtual is harder than
real: Security challenges in virtual machine based computing
environ-ments. In Proceedings of the 10th Workshop on Hot
Topics in Operating Systems (HotOS-X) (May 2005).

18	 Goldberg, R. P. Architectural principles of virtual machines.
PhD thesis, Harvard University. 1972.

19	 Goldberg, R. P. Survey of Virtual Machine Research.
IEEE Computer Magazine (June 1974), 34–45.

20	 Hay, B., and Nance, K. Forensics examination of volatile
system data using virtual introspection. SIGOPS Operating
System Review 42 (April 2008), 74–82.

21	 Hofmann, O. S., Dunn, A. M., Kim, S., Roy, I., and Witchel, E.
Ensuring operating system kernel integrity with osck. In
Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems (Newport Beach, California, USA, 2011),
ASPLOS ’11, pp. 279–290.

22	 Jiang, X., Wang, X., and Xu, D. Stealthy malware detection
through vmm-based out-of-the-box semantic view
reconstruction. In Proceedings of the 14th ACM Conference
on Computer and Communica-tions Security (CCS’07)
(Alexandria, Virginia, USA, 2007), ACM, pp. 128–138.

Toward Guest OS Writable Virtual Machine Introspection

