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Figure 1: The password reset activity of ShopClues.

APIs. If so, we extract the corresponding path constraints that con-

trol the execution of these APIs. We then solve these constraints

and execute the app with a new dynamic runtime instrumentation

technique we developed, to control the app executed in a real smart-

phone, provide proper input, and explore the possible network mes-

sage sending activities. Eventually, the execution of each network

message sending API will generate a server request message which

usually contains the server URLs.

With the revealed URLs and generated server request messages

(which show how many parameters are involved and what kind of

server interface would process the user request), we can feed them

as seeds to the existing automatic server vulnerability hunting tools

(e.g., sqlmap [1] for SQL injection, or watcher [3] for cross-

site-scripting) to fuzz the server, if we have the permission to do

so. We can also use them to detect whether there is any hidden ser-

vices or malicious URLs. In this paper, we focus on harmful URL

detection, and we have tested SMARTGEN with 5, 000 top ranked

Android apps (each with more than one million installs) crawled

from the Google Play. Our evaluation shows that with SMART-

GEN we were able to reveal 297, 780 URLs in total for these apps,

whereas using non symbolic execution tool such as Monkey can

only reveal 128, 956 URLs. By submitting all of these exposed

URLs to a harmful URL detection service at VirusTotal for secu-

rity analysis, we have obtained 8, 634 harmful URLs. Among the

297, 780 reported URLs, 83% of them are the first time submitted

to VirusTotal.

In summary, we make the following contributions:

• We propose selective symbolic execution, a technique to solve

input-related constraints for targeted mobile app execution.

We also develop an efficient runtime instrumentation tech-

nique to dynamically insert analysis code into an executed

app in real mobile devices using API hooking and Java re-

flection.

• We have implemented all of the involved techniques and built

a novel system, SMARTGEN, to automatically generate server

request messages and expose server URLs.

• We have tested SMARTGEN with 5, 000 top-ranked Android

apps and exposed 297, 780 URLs in total. We found these

top ranked apps will actually talk to 8, 634 malicious and

unwanted web services, according to the harmful detection

result from VirusTotal.

PUT /api/v9/forgotpassword?key=d12121c70dda5edfgd1df6633fdb36c0
HTTP/1.1
Content-Type: application/json
Connection: close
User-Agent: Dalvik/1.6.0 (Linux; Android 4.2)
Host: sm.shopclues.com
Accept-Encoding: gzip
Content-Length: 73

{"user_email":”testmobileserver@gmail.com","key":"d12121c70dda5e
dfgd1df6633fdb36c0"}

Figure 2: The password reset message sent by ShopClues.

2. BACKGROUND AND RELATED WORK

2.1 Objectives
The goal of this work is to expose the server interface (namely

the URLs) of mobile apps by generating server request messages

from the app. While there are many ways to do so, we wish to have

an approach that is:

• Automated. The system should not involve any manual in-

tervention, such as manual installation and manual launch-

ing, and instead everything should be automated.

• Scalable. Since we aim to expose the URLs for apps in pop-

ular app stores such as Google Play, we need an approach

that can perform a large scale study. For instance, it should

not take too much time to generate a server request message.

• Systematic. The path exploration should be systematic. We

should not blindly click a button or randomly generate an

input to explore the app activities. Instead, all the targeted

paths containing the network message sending APIs should

be explored.

2.2 A Running Example
To illustrate the problem clearly, we use a popular app Shop-

Clues as a running example. This app has between 10 million and

50 million installs according to the statistics in Google Play. There

are many activities inside this app, and for simplicity we just use its

password reset activity, as shown in Figure 1, to describe how we

would have performed our analysis.

In particular, if we aim to reveal whether the password reset in-

terface at the server side of ShopClues contains any security vul-

nerabilities (e.g., SQL injection), we need to enter a valid email

address in the corresponding EditText box, and then click the

SUBMIT button, which will automatically generate a sample pass-

word reset request message as shown in Figure 2. With this mes-

sage, the server interface (e.g., the host name, the query parameter)

of password reset is clearly exposed. Next, if we have the per-

missions from the service provider to perform penetration testing,

we may apply the standard server vulnerability fuzzing tools such

as sqlmap [1] to automatically mutate this request message (e.g.,

adding some SQL commands such as “and 1=1” to the request

fields and analyze the response message to check whether the SQL

commands get executed) to determine whether the server contains

any testable security vulnerabilities.

However, it is non-trivial to generate a sample request message

to expose the URLs as shown in Figure 2. Specifically, it requires

a valid input in the EditText box, and meanwhile a click of the

SUBMIT button. In fact, there are also a number of checks of the

EditText input, as shown in the sample decompiled code in Fig-

ure 3 for the SUBMIT onClick event. More specifically, to really

trigger the password reset request, the user input of EditText

has to pass the check of none empty (line 8) and match with an

email address format (line 33), while the app needs to maintain a
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1 package com.shopclues;

2
3 class y implements View$OnClickListener {

4 EditText b;
5 ...

6 public void onClick(View arg5) {

7 String v0 = this.b.getText().toString().trim();
8 if(v0.equalsIgnoreCase("")) {

9 Toast.makeText(this.a, "Email Id should not be 
empty", 1).show();

10 }

11 else if(!al.a(v0)) {
12 Toast.makeText(this.a, "The email entered is not 

a valid email", 1).show();
13 }

14 else if(al.b(this.a)) {

15 this.a.c = new ac(this.a, v0);
16 this.a.c.execute(new Void[0]);

17 }
18 else {

19 Toast.makeText(this.a, "Please check your 

internet connection", 1).show();
20 }

21 }
22 }

23 package com.shopclues.utils;

24
25 public class al {

26 ...
27 public static boolean a(String arg1) {

28 boolean v0;

29 if(arg1 == null) {
30 return false;

31 }
32 else {

33 v0 = Patterns.EMAIL_ADDRESS.

matcher(((CharSequence)arg1)).matches();
34 }

35 return v0;
36 }

37 }

Figure 3: The decompiled code of the onClick event handler

for the password reset request in ShopClues.

network connection (line 16). Without a correct email address and

network connection, it is impossible to expose the password reset

server URL.

While the path constraint appears to be a bit simple in our run-

ning example, there are other sophisticated ones, such as when the

contents of two EditTexts need to be equivalent (e.g., when reg-

istering an account, the confirmed email address needs to be equiv-

alent to the one entered first), when the age needs to be greater

than 18, when a zip code needs to be a five digit sequence (a phone

number may also have similar checks), when a file name extension

needs to match some particular pattern (e.g., jpg), etc. We thus

need a systematic approach to solve these constraints and expose

the server request messages including the URLs.

2.3 Related Work

Static Analysis. Static analysis is often scalable since it does not

have to execute the app. However, we have to exclude those purely

static analysis systems. This is because what we need is a concrete

request message (which are often the seeds for a fuzzing tool such

as sqlmap). One sample of such a message is illustrated in Fig-

ure 2, and we find that it is very challenging to statically generate

such a request message, because we have to solve the following

challenges:

• String Concatenation. We need to concatenate some strings.

For instance, a URL often contains a domain name (e.g.,

sm.shopclues.com) and a path (e.g., /api/v9/for

gotpassword) and some user input as parameters to the

service. Different request messages often need to pass to

different server paths with different parameters. Only when

certain behavior gets triggered, can we concatenate the cor-

responding path with the corresponding parameters; but it is

quite challenging to achieve this via static analysis.

• Field Recognition and Value Generation. When sending

a request message to a server, there are often several fields

such as user_email and key as shown in our running ex-

ample. Their values are also context specific. e.g., key needs

to be d12121c70dda5edfgd1df6633fdb36c0. How

to identify these values statically is also a challenge.

• Data Format Recognition. The app also needs to package

the user input in a request message using certain format, such

as using json as in our running example or other formats

such as xml. We must also determine them when statically

generating the request messages.

Dynamic Analysis. We can avoid solving all the static analysis

challenges if we can execute the app directly and use dynamic anal-

ysis. Recently, there are a set of dynamic app testing tools such

as Monkey [7] that can automatically execute and navigate an app

when given only a mobile app binary, or Robotium [4], a testing

framework for Android apps that is able to interact with UI ele-

ments of an app such as menus and text boxes.

There are also more advanced systems beyond just simply in-

teracting with the UI elements. AppsPlayground [25] and SMV-

Hunter [28] recognize the UI elements and generate text inputs in a

more intelligent way. A3E [13] performs a targeted exploration of

mobile apps guided by a taint-like static data flow analysis. Dyn-

oDroid [21] instruments the Android framework and uses the de-

bugging interface (i.e., the adb) to monitor the UI interaction, and

guide the generation of UI events for app testing. PUMA [18] pro-

vides a programmable interface for large scale dynamic app anal-

ysis. DECAF [20] and VanarSena [27] navigate various activities

of Windows phone apps and seek to detect ads, flaws, or debug

crashes. Brahmastra [14] efficiently executes third party compo-

nents of an app to expose its potential harmful behavior such as

private data collection via binary rewriting.

However, we still cannot directly use them for our purpose. Specif-

ically, each system is designed for a particular application sce-

nario with different goals: A3E for bug detection, SMV-Hunter for

SSL/TLS man-in-the-middle vulnerability identification, DECAF

for ads flaw issue (recent work also applied AppsPlayground for

this detection [26]), VanarSena for crash debugging, and Brahmas-

tra for targeted vulnerability (e.g., privacy leakage or access token

hijacking) identification in 3rd party components of the local app.

None of them focused on the remote server request message gener-

ation.

More importantly, aside from A3E, which runs in real devices,

all of these systems run in an emulator, which often has several

limitations. For instance, emulator lacks physical sensors, and it

cannot provide a high fidelity environment for testing the app. Sec-

ond, emulation is slow and it often takes a long time to boot and

restart, and sometimes is also unstable. Therefore, we would like

to directly execute the testing apps in real phones. While A3E uses

the real phone, the exploration of the app activity can fail since it

does not attempt to solve any constraints for more targeted execu-

tion.

Symbolic Execution. Being a systematic path exploration tech-

nique, symbolic execution has been widely used in many security

applications (e.g., vulnerability identification [15], malware anal-

ysis [24], and exploit generation [12]). Recently, there have also

been efforts to apply symbolic execution to the analysis of mobile

apps for various applications, such as app testing in general [23],
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path exploration [10], and malware analysis [29]. However, some

of them require access to app source code, which is impractical in

our application, and only IntelliDroid [29] directly works on app

binary (Java byte code, essentially) during the symbolic execution.

While we may directly use IntelliDroid [29] to solve our prob-

lem, it is not suitable after examining its detailed design as well

as the corresponding source code. Specifically, IntelliDroid does

not attempt to perform any UI analysis since malware tends to have

significantly fewer UI elements in its interface compared to normal

apps. Consequently, IntelliDroid does not have to capture the con-

straints from UI elements. Second, IntelliDroid does not precisely

inject an event (e.g., a particular button click). Instead, the events

injected by IntelliDroid are at the system boundary, and an injected

event may not be accurately delivered to the target app. Third, In-

telliDroid requires the instrumentation of the Android framework,

but such instrumentation needs to run in an emulator, meaning cer-

tain app behavior may not get exposed. Therefore, we have to de-

sign our own symbolic execution and leverage the existing efforts,

including those dynamic analyses, to automatically generate server

request messages.

3. OVERVIEW

Scope and Assumptions. We focus on Android platform, and

analyze the apps that use HTTP/HTTPS protocols. Note that ac-

cording to our evaluation, all of the tested mobile apps use at least

HTTP/HTTPS protocol once (there may be more than one proto-

cols in a given app). We assume the app is not obfuscated and can

be analyzed by Soot [2], a general Android APK analysis frame-

work. Also, we primarily focus on string constraints since they are

often user input related. Other non-linear, non-solvable constraints

by standard solvers are out of our scope.

Challenges. While the use of dynamic analysis and symbolic exe-

cution has avoided solving many practical challenges such as rec-

ognizing the protocol fields and automatically generating the re-

quest messages, we still encounter a number of other challenges:

• How to instrument the analysis code. When given a mo-

bile app, we need to analyze its UI for each activity, provide a

proper input (such as a valid email address in our running ex-

ample), and inject a corresponding event (such as the SUB-

MIT button click) to the app, to trigger the server request

messages. These analysis behaviors are often context sensi-

tive, and only after the activities are created can we trigger

them. Therefore, we have to instrument the original app with

context-sensitive analysis code.

• How to extract the path constraints. Not all the app execu-

tion paths are related to our server request message genera-

tion, and instead we are only interested in the path constraints

that are related to the final message sending events. There-

fore, we have to identify the invocation of network message

sending APIs, their path constraints that are controlled by the

input, and then solve them to generate the proper input. Also,

the input to SMARTGEN is just the APK, we have to analyze

the APK file to extract the constraints.

• How to explore the app activities. An app can have many

activities (i.e., many single screens atop which containing

various UI elements). The execution of one activity often

determines the execution of others. At a given activity, we

need a strategy to explore others (e.g., a depth-first search

or breadth-first search). This also implies we need to know

the follow-up activities at a given activity. However, this is

also non-trivial since it requires sophisticated code analysis

to resolve the target activities.

Solutions. To address the above challenges, we have developed the

following corresponding solutions:

• Dynamically instrumenting the apps in real phones. While

rewriting the Android system code including both the Java

and native code is a viable approach to inserting the anal-

ysis code into a target app, this approach will introduce a

system-wide change to all the apps, which may cause unsta-

ble behavior. Therefore, we propose a new approach to dy-

namically instrument the analysis code into the targeted app.

At a high level, our approach uses API hooking to intercept

the app execution flow dynamically, and then perform an in-

context analysis and use Java reflection to manipulate the UI

elements.

• Extracting the path constraints of interest. The execution

of mobile apps are event driven, and we have to focus on

the code that is of our interest. To this end, we first build

an extended call graph (ECG) for the app that connects not

only the explicit edges but also those implicit ones such as the

call-backs. Starting from the network message sending APIs,

we backward traverse the ECG, collect the path constraints,

and meanwhile correlate the constraints with the user input

if there is any. Then, we invoke a standard solver to solve the

constraints. When the activity involving network message

sending event is created, we initialize the UI elements with

the proper input provided by the solver.

• Exploring the app activities using DFS. We need to ex-

plore the app activities as many as possible and in a system-

atic way. A given activity can trigger several other activities

(e.g., based on different buttons a user has clicked). While

we can use a breadth-first search (BFS) to explore all possi-

ble activities, we prefer a depth-first search (DFS) since our

analysis has already reached a given activity and we can keep

exploring a next layer activity further and then come back to

explore the rest same layer activities recursively. Meanwhile,

by hooking the onCreate event of a given activity, we can

analyze all of its UI elements to determine whether there

is any other next-layer activities associated with the current

one and use this knowledge to guide our DFS activity explo-

ration.

Overview. An overview of SMARTGEN is presented in Figure 4.

There are three phases of analysis and five key components inside

SMARTGEN.

• Static Analysis. The first phase of the analysis is to build the

ECG, which contains all the possible function call transfer

edges inferred statically. This is achieved by our Building

ECG component, which takes the APK as input and produces

the ECG as output.

• Selective Symbolic Execution. In our selective symbolic ex-

ecution phase, the second and third components of SMART-

GEN will extract the path constraints of interest based on the

ECG and then solve the constraints if there is any by a con-

straint solver. The output in this phase will be the proper

input value for each involved UI elements in each possible

activity.
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Figure 4: An overview of SMARTGEN.

• Dynamic Analysis. Finally, in the dynamic analysis phase,

the last two components of SMARTGEN will instrument the

app execution at runtime via API hooking, then initialize the

UI elements with the value solved by the constraint solver,

and finally generate the request messages. The output of this

phase is the possible desired server request messages with

exposed URLs.

4. DETAILED DESIGN

4.1 Building ECG
The goal of SMARTGEN is to generate the server request mes-

sages to expose the server URLs for a given app. Therefore, we

should focus on the code path that finally invokes the targeted net-

work message sending APIs. As such, we need to first build an ex-

tended call graph (ECG) of the Android app, which covers not only

the explicit function call edges but also the implicit edges intro-

duced by the call-back functions in Android framework, and then

identify the code of our interest based on the ECG.

Since the input to SMARTGEN is just the APK, we should con-

vert the APK into some intermediate representation (IR) suitable

for our analysis. To this end, we use Soot [2], an Android app anal-

ysis framework that takes the APK as input and is able to perform

various static analyses including call-graph construction, points-to

analysis, def-use chains, and even taint analysis [17] in combina-

tion with FlowDroid [11]. It is thus a perfect framework for our

ECG construction.

However, the call graph constructed directly from Soot IR will

miss the edges that implicitly call the Android framework APIs.

For instance, a thread start and threat run does not have an

explicit call relation, but the Android framework uses a callback

mechanism to ensure that the execution first starts from the thread.

start and then thread.run. Therefore, we need to add these

implicit calls. How to systematically identify all of them in the An-

droid framework is another challenge. Fortunately, EdgeMiner [16]

has been designed to exactly solve this problem. Specifically, EdgeM-

iner is able to analyze the entire Android framework to automat-

ically generate API summaries that describe the implicit control

flow transitions such as the callback relation of thread.start

and thread.run pair in the Android framework, and we hence

directly use the summary result to connect the implicit edges.

To build the ECG, we scan the primary IR (namely the Jimple IR)

produced by Soot, and take each event handler (e.g., onCreate,

onResume, onClick, onTextChanged, etc.) as a starting

point, recursively add the callee edges if there is any, including

those implicit ones guided by the summary produced by EdgeM-

iner. The output will be a set of ECGs, each starting from the event

handler functions, since there are multiple such functions.

4.2 Extracting the Path Constraints
After we have built the ECG, then we traverse each ECG to de-

termine whether there is an invocation of a network message send-

ing API. If so, such an ECG is of our interest, and we then build

a control flow path (according to the Soot IR) from the entry point

of the ECG to the invocation point, from which to extract the path

constraints.

The Targeted APIs. We focus on two sets of network message

sending APIs. One is those provided by Android framework (e.g.,

HttpClient.execute), and the other is those low level Socket

APIs (e.g., Socket.getOutputStream). With these functions

as target, we traverse each ECG and identify the call path that in-

vokes them. When these APIs get called, they will directly perform

Internet connections to remote servers, which will then generate the

desired request messages with the exposed URLs.

Taint Analysis. However, the path constraints of our focus are of-

ten user input related, and we have to correlate them with the input

entered via the UI elements. To this end, we have to taint the in-

puts from the UI elements and track their propagations to resolve

their proper values. There are already public available tools such

as FlowDroid [11] for the taint analysis and also the Soot frame-

work supports the integration with FlowDroid, and we thus design

our taint analysis atop FlowDroid using Soot. Since taint analysis

is a well-established area, below we just briefly describe how we

customize FlowDroid’s taint analysis for our purpose.

• Taint Sources. The taint sources in our analysis are those

user input related UI elements such as EditText (an ed-

itable text field as showning in our running example), Check

Box, RadioButton, ToggleButton, Spinner (a drop-

down list), etc. We thus assign a unique index tag for each of

these UI elements as the taint tag and propagate the tag when

necessary.

• Taint Propagation. Since we use the FlowDroid taint anal-

ysis framework, we do not have to customize the taint prop-

agation rules. At a high level, a taint tag will be propagated

based on the direct data flow propagations according to the

Soot IR (therefore those implicit taint propagation will also

be out of our focus).

• Taint Sinks. The taint sinks are the data use point of the

tainted variables at the if-stmt in Soot IR (note that a
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Based on the current execution context, it injects the analysis code

(via insert_analysis_code) into the analysis thread, and

then starts the execution of the analysis thread. At this moment,

there will be at least two execution threads: the main thread, and

the analysis thread. The control flow of the main thread will still

go back to the original app execution, and the analysis thread will

start the execution after the instrumentation finishes.

Analysis Code. The analysis code performs an in-context analy-

sis. As illustrated in Figure 5, our analysis code will first perform

UIAnalysis, which is built atop Robotium [4], a library that al-

lows us to retrieve the UI elements at runtime without any prior

knowledge of the app. Based on the result from our UIAnalysis,

then we get the UI elements of our interest such as the SUBMIT

button. Next, it uses Java reflection to retrieve and manipu-

late the field and method associated with the corresponding UI el-

ements. To choose which UI elements to manipulate is decided

by our earlier selective symbolic execution. Specifically, our ear-

lier analysis has determined which event handler we have to exe-

cute, such as the SUBMIT button onClick. Therefore, our anal-

ysis code will use the Java reflection to query the involved UI ele-

ments in onClick handler, and then setup their proper input val-

ues based on the constraints we have already solved, and invoke the

trigger method to execute the onClick method in the analysis

code.

4.5 Request Message Generation
With all the building blocks enabled, we next describe how we

navigate various app activities and finally generate the desired re-

quest messages to expose the URLs. An Android app can have

many activities, and they will only be executed when the corre-

sponding events are generated. The first activity will be executed

automatically when the app is started. When a given activity is

executed, we hook its onCreate event, and then we are able to

inspect all the UI element of the current activity. Based on the UI

element, we are able to determine all other activities that can be

invoked from the current activity. As described earlier, we use a

DFS strategy to execute the activity. A request message will be

generated after the corresponding network message sending API is

executed. We then log this message and extract its URLs if there is

any as our final output.

5. EVALUATION
We have implemented SMARTGEN atop Android 4.2 platform.

In particular, we implement our ECG construction using the Soot [2]

framework and taint analysis using FlowDroid [11]. We use Z3-

Str [30] to solve the path constraints and implement our dynamic

runtime instrumentation with the v2.7 Xposed [8] framework. In

total, we wrote about 7, 000 lines of Java code and 1, 000 lines of

Python code atop these open source frameworks.

In this section, we present the evaluation result of SMARTGEN.

During the evaluation, we aim to answer the following questions as

we have set up in our design objectives in §2.1:

• How Automated? Can SMARTGEN be executed without

any human intervention?

• How Scalable? Can SMARTGEN handle a large-volume dataset?

How fast is SMARTGEN in processing each app?

• How Systematic? Does the selective symbolic execution in

SMARTGEN really encounter many constraints? How sig-

nificant is this component in terms of the contribution to the

number of messages generated and URLs exposed?

Table 1: Summary of the Performance of SMARTGEN.
Item Value

# Apps 5, 000

Size of the Dataset (G-bytes) 126.2

Time of the first two phases analyses (s) 90, 143

# Targeted API Calls 147, 327

# Constraints 47, 602

# UI Configuration files generated 25, 030

Time of Dynamic Analysis (s) 486, 446

# Request Messages 257, 755

# Exposed URLs 297, 780

# Unique Domains 18, 193

Logged Message Size (G-bytes) 24.0

We first describe how we set up the experiment in §5.1, and then

present the detailed result in §5.2. Finally, we present how to use

the exposed URLs in a harmful URL detection study in §5.3.

5.1 Experiment Setup

Dataset Collection. The inputs to SMARTGEN are Android apps.

Since there are millions of Android apps, we cannot test all of them.

We thus decided to crawl the top 5, 000 (in terms of number of in-

stalls) ranked apps from the Google Play. To this end, we first

used the Scrapy framework [5] to crawl all meta-data of an app

(including the number of installs and the category) from Google

Play, which contained the meta-data for over 1.5 million apps as

of March 2016. Then we ranked the apps based on the number of

installs, and crawled the APK of each app starting from the top-

ranked one. After downloading an app, we checked whether it has

the Internet permission by looking at its AndroidManifest.xml

file. If it did not have any Internet permission, we excluded this

app from our data set. We kept crawling until our data set reached

5, 000 apps. During the crawling, we discarded 219 apps that did

not have the Internet permission in their manifest files, such as

Shake Calc (a calculator) and aCalendar (an Android calendar),

as well as 473 apps that either do not run in the ARM architecture

(apps utilizing x86) or that could not be downloaded because of

the region restrictions imposed by Google Play. The last app we

downloaded had over one million installs.

Environment Configuration. SMARTGEN contains three phases

of analyses: static analysis, selective symbolic execution, and dy-

namic analysis. The first two phases were executed in an Ubuntu

14.04 server machine running an Intel Xeon CPUs with 16 cores

and 2.393GHz and 24GB memory. The last phase was executed

in a Samsung Galaxy S III phone running Android 4.2. To make

the static analysis and symbolic execution run faster, we started 10

threads to perform these analyses in our server. After the anal-

ysis finished, each target app was then automatically pushed to

the Galaxy phone, along with the solved constraints, which are

stored in the format as configuration files. The finally generated re-

quest messages for each app were collected in a man-in-the-middle

proxy. To gather the HTTPS messages, we installed a root certifi-

cate in the phone.

5.2 Detailed Result

Overall Performance. The overall statistics on how each phase of

our analysis was performed is presented in Table 1. We can see

that these 5, 000 apps consumed 126.2 GB disk space. The first

two phases of our analysis (i.e., static analysis and symbolic execu-

tion) took 90,143 seconds (i.e., 25.04 hours) in total, and each app

took 18.03 seconds on average. During this analysis, it identified

147, 327 calls to the targeted APIs, extracted 47, 602 constraints,
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Table 2: Statistics of the Extracted String Constraints
Constraints Name # Constraints

Not null 25, 855

String_length 13, 858

String_isEmpty 377

String_contains 196

String_contentEquals 43

String_equals 3, 087

String_equalsIgnoreCase 991

String_matches 448

String_endsWith 11

String_startsWith 64

TextUtils_isEmpty 2, 355

Matcher_matches 317

and generated 25, 030 UI configuration files based on the solved

constraints.

Meanwhile, the details of the extracted string constraints are pre-

sented in Table 2. (Note that we also encountered other integer con-

straints, such as when a value needs to be greater than 18; the details

of these constraints are not presented here). We notice that, interest-

ingly, there are many “Not null” constraints. This is actually be-

cause during an app execution, NullPointer may cause crashes

and developers (or the system code) thus check it very often. Mean-

while, to validate whether a UI item contains a user input, we no-

ticed developers also often use a String_length constraint (to

make sure it is not 0). Some apps also use String_length to

validate phone number input. Also, we found some apps just use

String_contains with “@” to validate an email address in-

put, and some other apps use sophisticated regular expression (e.g.,

Matcher_matches) for the matching.

With the solved constraints, we then performed dynamic analysis

on each app in our Galaxy phone. In total, it took 486, 446 seconds

(i.e., 135 hours) to execute these 5, 000 apps (each app needed 97
seconds on average). Note that among the 97 seconds, the instal-

lation and uninstallation time is on average 17 seconds. However,

if we execute an app inside an emulator, the installation time for

an app with 25M will take about 60 seconds. That is one of the

reasons why we designed SMARTGEN to use a real phone. Dur-

ing the dynamic analysis, we observed 257, 755 request messages

(55.7% uses HTTP protocol, and 44.3% uses HTTPS) generated by

the tested apps, and in total 297, 780 URLs in both request and re-

sponse messages. Among them, there are 18, 193 unique domains

in these URLs. The final size for all the traced request and response

messages collected at our proxy is 24.0 GB.

Comparison with Monkey. To understand the contribution of

our selective symbolic execution, we compare SMARTGEN with

a widely used dynamic analysis tool Monkey [7]. At a high level,

Monkey is a program, executed in an emulator or a real phone,

which can generate pseudo-random streams of user events, such as

clicks, touches, or gestures, as well as a number of system-level

events, all for app testing. For a fair comparison, we also run Mon-

key in our real Galaxy phone to test each of our app, and configure

Monkey to generate 2, 000 events under the time interval of 100
milliseconds. That is, for each app, Monkey will take up to 200
seconds to just test it.

In total it took 1, 083, 530 seconds (i.e., 301 hours) to process

these apps. Each app took on average 216.7 seconds (among them

around 200 seconds for the testing, and 17 seconds for the instal-

lation and uninstallation). We have to also note that it is not 100%

automated while using Monkey for the testing. This is because

Monkey randomly sends events to the system without specifying

the recipients. These random inputs may click system buttons,

which may lock the screen, turn off the network connection, and
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Figure 6: Comparison between SMARTGEN and Monkey.

even shutdown the phone. Therefore, we disabled the screen lock-

ing functionality, and also developed a daemon program to con-

stantly check the Internet connectivity and turn on the networking

if necessary, but we cannot disable the phone power off event and

must manually power on the phone. This is the only event Monkey

cannot handle automatically and we encountered 17 phone power

off events. We excluded the power-off and restart time in our eval-

uation in this case. For all these tested apps, with Monkey they

generated 79, 778 request messages, with 6, 384 domain names.

The total size of the logged message is 12.8 GB.

A detailed comparison between SMARTGEN and Monkey for

these tested apps is presented in Fig. 6. We compare them based on

their execution time, the total number of request messages gener-

ated, the total number of domains in the requested message, and fi-

nally the total size of the request message. We can see that SMART-

GEN only took 53%, i.e., (90, 143 + 486, 446)/1, 083, 530, of the

execution time of Monkey, but it generates 3.2X request messages,

2.3X unique URLs, 1.9X unique domains, and 1.9X logged mes-

sage size, compared to the result from Monkey.

5.3 Harmful URL Detection
Having so many URLs from the top 5, 000 mobile apps, we are

then interested in whether there is any harmful URLs. To this end,

we submitted all of the exposed 297, 780 URLs to harmful URL

detection service at VirusTotal, which then further identified 8, 634
unique harmful URLs. Note that VirusTotal has integrated 68 mali-

cious URL scanners (as time of this experiment), and each submit-

ted brand new URL is analyzed by all of the scanners. The scanners

that have identified at least one harmful URLs are reported in the

first column of Table 3, followed by the number of Phising sites, the

number of malware (i.e., the URL is identified as malware), and the

number of malicious sites from the 2nd to the 4th columns, respec-

tively. The last column reports the total number of harmful URLs

identified by the corresponding scanners, and the last row reports

the number of unique URLs in each category. The total number of

unique malicious URL is 8, 634 because there are 387 sites being

detected both malware and malicious. Also, note that one harmful

URL can be identified by several engines. That is, there are some

overlapped URLs in the last column of Table 3. To clearly show

those overlaps, we present the number of harmful URLs and the

number of engines that recognize those harmful URLs in Table 4.

Interestingly, we can see that most harmful URLs are detected by

just one of the engines, and only one URL is detected simultane-

ously by 8 engines. Based on the timestamp of the queried result

from VirusTotal, we notice that 83% of the URLs are the first time
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Table 3: Statistics of Harmful URLs Detected by Each Engine
Detection #Phishing #Malware #Malicious Σ#

Engine Sites Sites URLs

ADMINUSLabs 0 0 4 4

AegisLab WebGuard 0 0 1 1

AutoShun 0 0 863 863

Avira 2062 941 0 3003

BitDefender 0 191 0 191

Blueliv 0 0 5 5

CLEAN MX 0 0 14 14

CRDF 0 0 150 150

CloudStat 0 0 1 1

Dr.Web 0 0 2330 2330

ESET 0 75 0 75

Emsisoft 1 43 0 44

Fortinet 8 469 0 477

Google Safebrowsing 0 13 2 15

Kaspersky 0 2 0 2

Malwarebytes hpHosts 0 1103 0 1103

ParetoLogic 0 800 0 800

Quick Heal 0 0 2 2

Quttera 0 0 6 6

SCUMWARE.org 0 8 0 8

Sophos 0 0 56 56

Sucuri SiteCheck 0 0 248 248

ThreatHive 0 0 8 8

Trustwave 0 0 80 80

Websense ThreatSeeker 0 0 56 56

Yandex Safebrowsing 0 173 0 173

Σ#Harmful URLs 2071 3818 3826 9715

Σ#Unique Harmful URLs 2071 3722 3228 8634

Table 4: # Engines of Harmful URLs
Detected by # Engines # Unique Harmful URLs

8 1

7 1

6 2

5 13

4 63

3 33

2 751

1 7770

Σ Unique Harmful URLs 8634

analyzed by VirusTotal. Among the detected 8, 634 URLs, we also

notice that 84% of them are new harmful URLs (because of our

research).

While we could just trust the detection result from VirusTotal, to

confirm indeed these URLs are malicious we manually examined

the one that has been identified by 8 engines. Interestingly, this

URL actually points to an APK file. We then visited this URL and

downloaded the APK. We also submitted this suspicious APK file

to VirusTotal, and this time, 14 out of 55 file scanners reported that

this APK is malicious. We reverse engineered this file and found it

tried to acquire the root privilege of the phone by exploiting the ker-

nel vulnerabilities, which undoubtedly proved it is a harmful URL.

6. LIMITATIONS AND FUTURE WORK
SMARTGEN clearly has limitations. First, there might be some

missing path in ECG (if an edge is missed by EdgeMiner [16]), or

infeasible paths that cannot be solved (currently our solver termi-

nates if it cannot provide any result after 300 seconds). Second, not

all of the app activities have been explored, especially if there is an

access control in the app. More specifically, certain app activities

are only displayed if the user has successfully logged in. However,

SMARTGEN did not perform any automatic registration with these

5, 000 apps, and it is certainly not able to trigger these activities.

Therefore, how to trigger these activities for a given mobile app is

one of our immediate future works.

Currently, we only demonstrated how to use the exposed URLs

to detect whether an app communicates with any malicious sites.

There are certainly many other applications such as server vulner-

ability identification [31]. For instance, we can use the generated

server request messages as seeds to perform the penetration test-

ing to see whether the server contains any exploitable vulnerabil-

ities such as SQL injection, cross-site-scripting (XSS), cross-site

request forgery (CSRF), etc. We leave the study of the vulnerabil-

ity fuzzing to our another future work.

We can also apply the selective symbolic execution of SMART-

GEN to solve other problems. For instance, by changing the tar-

geted APIs to those security-sensitive ones (e.g., getDeviceId),

we can collect and solve the constraints along the execution path

to trigger these APIs. Through this, we are likely able to further

observe how sensitive data is collected and perhaps find privacy

leakage vulnerabilities in real apps. Part of our future work will

also explore these applications.

7. CONCLUSION
We have presented SMARTGEN, a tool to automatically generate

server request messages and expose the server URLs from a mo-

bile app by using selective symbolic execution, and demonstrated

how to use SMARTGEN to detect malicious sites based on the ex-

posed URLs for the top 5, 000 Android apps in Google Play. Un-

like prior efforts, SMARTGEN focuses on the constraints from the

UI elements and solves them to trigger the networking APIs. Built

atop API hooking and Java reflection, it also features a new run-

time app instrumentation technique that is able to more efficiently

instrument an app and perform an in-context analysis. Our evalua-

tion with the top 5, 000 ranked mobile apps have demonstrated that

with SMARTGEN we are able to find 297, 780 URLs, and among

them actually 8, 634 are malicious sites according to the URL clas-

sification result from VirusTotal.
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