
Strict Control Dependence and Its Effect on Dynamic
Information Flow Analyses

Tao Bao, Yunhui Zheng, Zhiqiang Lin, Xiangyu Zhang, Dongyan Xu
Department of Computer Science, Purdue University

{tbao,zheng16,zlin,xyzhang,dxu}@cs.purdue.edu

ABSTRACT

Program control dependence has substantial impact on ap-
plications such as dynamic information flow tracking and
data lineage tracing (a technique tracking the set of inputs
that affects individual outputs). Without considering con-
trol dependence, information can leak via implicit channels
without being tracked; important inputs may be absent from
output lineage. However, considering control dependence
may lead to a large volume of false alarms in information
flow tracking or undesirably large lineage sets. We identify
a special type of control dependence called strict control de-
pendence (SCD). The nature of SCDs highly resembles that
of data dependences, reflecting strong correlations between
statements and hence should be considered the same way
as data dependences in various applications. We formally
define the semantics. We also describe a cost-effective de-
sign that allows tracing only strict control dependence. Our
empirical evaluation shows that the proposed technique has
very low overhead and it greatly improves the effectiveness
of lineage tracing and taint analysis.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Monitors, Tracing ; D.3.4 [Programming
Languages]: Processors—Debuggers

General Terms

Algorithms, Measurement, Reliability, Security

Keywords

strict control dependence, control dependence, data depen-
dence, dynamic information flow, taint analysis

1. INTRODUCTION
Program dependences are essential for a wide range of ap-

plications. Dynamic information flow tracking [20, 17, 11]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’10, July 12–16, 2010, Trento, Italy.
Copyright 2010 ACM 978-1-60558-823-0/10/07 ...$10.00.

1. output=0;

2. if (secret==1000) {

3. ...

4. output=1;

5. }

6. send(output);

1. output=0;

2. if (secret>1000) {

3. ...

4. output=1;

5. }

6. send(output);

(a) Strict Control Dep. (b) Loose Control Dep.

Figure 1: Examples in information flow tracking.

prevents confidential information from being leaked to un-
trusted entities, e.g. it prevents user passwords from being
sent out through a network connection, by monitoring prop-
agation of information through program dependences. Taint
analysis [2, 19] taints data received from outside. Taints are
propagated through program dependences to mark the data
that are affected by untrusted inputs. Once tainted data are
used in critical places, such as pointer de-references or con-
trol flow transfers, warnings are produced to indicate that
system integrity may be compromised. Slicing [21, 9] identi-
fies the set of statements that influences the value of a given
variable through program dependences, for the purposes of
debugging, regression testing and so on. Lineage tracing [26,
3] computes the set of inputs that have contributed to the
value of a given variable. It also relies on capturing program
dependences.

Traditionally, program dependences are classified as data
and control dependences [6]. Informally, a statement j is
data dependent on i if and only if a variable is defined at
i and then used at j. A statement j is control dependent
on a predicate p if and only if the execution of j is directly
decided by the branch outcome of p. Many of the aforemen-
tioned applications rely solely on data dependences. For
instance, many taint analyses propagate taints through only
data dependences. In other words, assume statements i and
j are i: x=...; ...; j: y=f(x); and j is data depen-
dent on i. Variable y gets tainted if x gets tainted. Similarly,
most information flow tracking systems monitor only data
dependences. For example, if x at i is confidential, y at j is
confidential as well because of the data dependence. How-
ever, it is known that control dependence causes implicit
information flow [11], which may lead to information leaks
or integrity violations not being detected.

Consider the example in Fig. 1 (a). Variable secret con-
tains confidential information. If the true branch is taken
at line 2, there is information flow from secret to output

because output==1 dictates secret==1000. Hence, there is

13

information leak at 6. However, such leak can not be cap-
tured by considering only data dependences as the definition
to output at 4 does not use any variables. In a recent study
on the practicality of taint analysis [19], implicit informa-
tion flow is noted as one of the dominant reasons for false
negatives.

Simply considering control dependences is nonetheless prob-
lematic. The sample consequence in information flow and
taint analyses is that substantial amount of data that is
not closely relevant to the confidential (tainted) data is un-
necessarily flagged as confidential (tainted). Consider the
example in Fig. 1 (b). Assume the true branch of the predi-
cate is taken. If the control dependence between statements
4 and 2 is considered, output is flagged as confidential and
the packet send at 6 is considered as an information leak.
However, there is hardly any information leak. In particu-
lar, from the observable packet sent at line 6, the attacker
can only infer secret>1000. That is to say, the control de-
pendence reveals very few information. We will show later
in this paper: since such not-so-informative control depen-
dences are so pervasive in programs, considering them leads
to a large number of false positives. Similarly in lineage
tracing, if such control dependences are considered, the lin-
eage sets of many outputs contain almost the universal set
of inputs even though most of the inputs may not be rele-
vant to the outputs. Other researchers [2] also have similar
observations.

Our observation is that while many control dependences
should not be considered, otherwise false positives are intro-
duced, there are some control dependences whose character-
istics closely resemble those of data dependences and hence
they should be considered the same way as data depen-
dences. We call them the strict control dependences (SCD).
The reason why most applications consider only data depen-
dences is that data dependences often denote strong corre-
lations. Consider the simple data dependence between i and
j: i: x=...; ...; j: y=x+1;. We can observe that the
value of y is closely related to the value of x. In particular,
any change to x at i leads to change to y at j. From the value
of y, we can precisely reverse engineer the value of x. We
observe that such strong correlations are often manifested
by some control dependences. Consider the variable output

at line 4 and secret at line 2 in Fig. 1 (a) (assuming the true
branch is taken). Although their correlation is introduced
through control dependence, from the value of output, we
can precisely decide the value of secret. Changing the value
of secret to anything else leads to the other branch being
taken and hence output containing a different value. Thus,
it is a SCD. In comparison, the control dependence in Fig. 1
(b) is not a SCD as changing the value of secret does not
necessarily change the branch outcome. We call them loose
control dependences.

In this paper, we develop a technique to detect SCDs. In
summary, we make the following contributions.

• We define the concept of strict control dependence
and introduce its semantics. Based on the seman-
tics, a static analysis is designed to identify predicate
branches that give rise to SCDs. We find that SCD
can be possibly induced by all comparative operators
besides the “==” operator.

• We introduce instrumentation rules that detect dy-
namic SCDs during execution. We also demonstrate

[a] [b] [c] [d] [e] [f] [g] [h]
[8] rook knight king
[7] pawn bishop rook pawn pawn
[6]
... ...

Figure 2: A chess board layout described by an input string
“3rn2k/2pb1rpp/”. In particular, letters r, n, k, p, and b

denote rook, knight, king, pawn, and bishop, resp. Num-
bers indicate how many empty cells in between. Each ’/’-
delimited substring specifies the layout of a row.

how these rules can be integrated into output lineage
computation.

• We evaluate the effectiveness of SCDs by showing the
sizes of the lineage sets computed. We compare the
results with those considering only data dependences
and those considering both data and classic control de-
pendences. We develop a metric that can approximate
the ideal lineage sets based on input fuzzing. We use
the ideal lineage sets to show the false positives (FP)
and false negatives (FN) of the different configurations.
Our results show that considering only data depen-
dences leads to high FN and considering both data
and classic control dependences has high FP, whereas
considering data and strict control dependences has
low FN and low FP.

• We evaluate the cost of computing SCD, and compare
it with other options. The results show that computing
SCD slows down program execution by 76% while com-
puting all control dependences slows down by 294%.

2. MOTIVATING EXAMPLE
We use a real example in lineage tracing to demonstrate

the effect of SCD. Lineage tracing identifies the set of in-
puts that contributes to individual output values. It has
been used in data validation and debugging [26, 3]. One
can consider it as a generalized form of taint analysis with
the taint being a set of inputs. Consider 186.crafty in
SPECINT 2000. It is a high-performance artificial intelli-
gence chess program. It takes chess board layout as the input
and searches for best moves within bounded steps. A chess
board layout is described by a string. For instance, a string
such as “3rn2k/2pb1rpp/” describes a layout for the 8 × 8
chess board as shown in Fig. 2. Fig. 3 presents a fragment
from the program that parses the input string and generates
the chess board layout. In particular, the layout is stored
in an array tboard of 64 elements. A dictionary bdinfo is
used for interpreting each char in the input string. Array
firstsq represents the starting index of each rank (row) in
the tboard array. For example, as described by the values
in line 8, the top row starts at index 56 in tboard and the
second row starts at 48. Variables whichsq and num describe
the rank position and column position of the current square,
resp. The loop in lines 13-28 is responsible for parsing the
input string. It traverses each char in the input string. For
each char, in lines 14 and 15, it identifies the entry in the
dictionary bdinfo that matches the input char, and stores it
in variable match. If match equals to 24, meaning the input
char is the end symbol of a rank, in lines 17-20, the column
position is reset, the rank position is incremented, and the
beginning index of the new rank is loaded. If match indicates

14

 int tboard[64]; //the board

 char bdinfo[] = //the dictionary

 { ‘q’, ‘r’, ‘b’, …, //0-15, kinds of pieces

 ‘1’, ‘2’, ‘3’, …, //16-23, the free squares

 ‘/’ }; //24, end of a rank (row)

//the beginning index of each rank in 'tboard'

 int firstsq[8]={56,48,…,0};

 int whichsq=0; //rank(row) position

 int num=0; //column position

 square=firstsq[whichsq]; // current index in 'tboard'

 for (pos=0; pos<(int) strlen(args[0]); pos++) {

 for (match=0; ... args[0][pos]!=bdinfo[match];

 match++);

 if (match == 24) { //end of a rank, reset

num=0;

whichsq++;

if (whichsq > 7) break ;

square=firstsq[whichsq];

 } else if (match >= 16) { //numbers, adjusting indices

num+=match-15;

square+=match-15;

 } else { //pieces, stored to tboard

 … ++num;

 tboard[square++]=match-7;

 }

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Figure 3: The 186.crafty code snippet that parses the in-
put string to chess board layout.

that the input char is a number, in lines 22 and 23, the cur-
rent square is updated according to the specified number of
free squares. If neither case is true, the input char must be
a piece such that the corresponding array element is set at
line 26.

Assume we want to compute the lineage of the elements
in array tboard after the parsing phase, namely, the set
of input values that affects the value of an array element.
Consider the prior lineage computation [26] that relies on
only data dependence. Note that all definitions to array
tboard occur in line 26, using variables square and match.
Variable square is defined at lines 11, 20, 23 and 26. The
definition at line 11 relies on only the constant array firstsq

and hence is not input relevant. The definition at line 20
is similar. The definition at line 23 uses variable match.
Variable match is defined at line 15. However, the definition
does not use any input relevant variables. The definition
at 26 is similar. In other words, if only data dependence is
considered, it has empty input lineage. Transitively, we can
easily conclude that all the elements in tboard have empty
lineage at the end of the parsing phase, which is clearly
undesirable.

Next lets consider traditional control dependence in lin-
eage computation. The execution of array definition at line
26 is control dependent on the predicate at 21, which in
turn is control dependent on line 16 and the loop predi-
cate at line 13. Note that the predicate at line 13 involves
strlen(args[0]) that uses the entire input string. Dictated
by such a chain of control dependence, the lineage of each
element in tboard contains the whole input string. However,
such information is hardly useful.

We observe that some of the control dependences reflect

stronger relevance compared to others. Consider the true
branch of the predicate at line 16. Executing the statements
inside the true branch, such as setting num to 0 at line 17,
dictates match be 24, not any other value. And slightly
changing the value of match must lead to the statement not
being executed and num having a different value. The na-
ture of such a strong relevance is very similar to a data
dependence, in which change of the source variable leads to
a different value of the destination variable. In comparison,
if the false branch is taken, the correlation of the statements
executed inside the branch and the predicate is weak because
there are many values that satisfy match!=24 and changing
the value of match may not prevent their execution.

Leveraging such an observation, we propose to quantify
the strength of control dependence and consider only strict
control dependence. Next, we illustrate the idea by comput-
ing the lineage of tboard[50] for the previous input string,
which corresponds to the pawn at square c7 in Fig. 2 and the
8th char in the input string. From the code snippet in Fig. 3,
we can tell that the value at tboard[50] is defined when the
8th input char is processed (during the 8th iteration of the
main loop). Inside the iteration, the input char ‘p’ is com-
pared with the dictionary entries in lines 14 and 15 until the
entry bdinfo[6]==‘p’ is found, reflected by the predicate
args[0][pos]!=bdinfo[match] taking the false branch. It
is a strict control dependence because making any changes
to the variables involved (i.e. pos and match), the opposite
branch is taken. Hence, the lineage of match when the inner
loop exits contains the 8th char if we consider SCD. The
lineage is later propagated to tboard[50] via the definition
at 26.

Furthermore, the definition at 26 also uses variable square
and hence the lineage of tboard[50] also involves those in-
puts propagated through square. The 7th input char ‘2’
processed in the previous iteration lead to the increment of
square in line 23. Hence, it is in the lineage set of square
and then it flows to the lineage set of tboard[50]. Note that
square is initialized for each new rank at line 20, which is
strictly control dependent on line 16. Line 16 uses match,
which is strictly control dependent on the last loop pred-
icate instance at 14 that involves the 6th input char ‘/’.
Hence, the lineage of tboard[50] contains the 6th, 7th and
8th chars (“/2p”). Indeed, the 6th and 7th chars decide the
position of the square on the board and the 8th char decides
the piece of the square. They are clearly strongly correlated
to the piece at c7 on the board. Changing any of these
input chars will end up changing that piece. In contrast,
changing other input chars does not change the piece. Com-
pared to the empty lineage set generated by considering only
data dependences, and the lineage set that is the universal
set of inputs generated by also considering all control de-
pendences, the lineage set generated by considering SCDs is
more informative and more relevant.

3. EPSILON SEMANTICS
The goal of strict control dependence is to discover strong

correlations between statements and the predicates that guard
the statements. The formal definition of SCD is given as fol-
lows.

Definition 1. A statement s is strictly control dependent
on a predicate p : e1 ⋄ e2 with ⋄ a comparative operator, de-

noted as s
scd
−−→ p, if and only if:

15

(1) p directly or transitively guards the execution of s;
(2) the execution of s infers that e1 ≡ e2+c with c a compile
time constant;
(3) p is the closest predicate to s that satisfies the above two
conditions along control flow.

The branch of p leading to s’s execution is called the SCD
branch.

Condition (1) dictates that s be directly or transitively
control dependent on p. Condition (2) specifies that the
branch outcome leading to s’s execution determines that
the left-hand side and the right-hand side expressions of the
predicate have only a compile time constant difference. Such
a condition reflects the strong correlations between the vari-
able defined by s (let it be x) and e1 and e2. Intuitively, if
an arbitrarily small ǫ1 is applied to e1, the expression equiv-
alence must not hold, s must not get executed according to
the condition, and hence x must have a different value. The
same correlation is present between e2 and x. Such strong
correlations are very similar to those enabled by data de-
pendences, e.g. in x = e1 + e2, because ǫ applied to either
e1 or e2 will be reflected on x. The SCD defined above is
also called the ǫ-SCD. We will show later that in many cases
the constant c in the expression equation is 0, but SCD may
occur even when c is some non-zero compile time constant.

Consider the example in Fig. 3. According to the defini-

tion, we have 17
scd
−−→ 16. It is trivial to see condition (1) is

satisfied. From the fact that 17 is executed, we can infer that
match ≡ 24 and hence condition (2) is satisfied. Condition
(3) is also true and hence there is a SCD. Observe that ap-
plying an ǫ to match will lead to 17 not being executed. If we
change the predicate at line 16 to if (match>24), the true
branch is no longer a SCD branch and there is no SCD be-
tween 17 and 16 because condition (2) is not satisifed. From
the fact that 17 is executed, we can only infer match>24,
there are many valuations of match that satisfy the con-
straint. The compile time constant that ensures equivalence
does not exist.

An important source of SCD is equivalence comparison
such as line 16 in Fig. 3. More particularly, the true branch
of an equivalence predicate (==) or the false branch of a
non-equivalence predicate (!=) are SCD branches. Such
predicates can be easily identified at compile time through
static analysis. Later, we will show SCDs can originate from
other comparative predicates.

Rule Event Instrumentation

(1) Pred. p : e1 == e2 stack.push(pT)
takes branch T

(2) Pred. p : e1! = e2 stack.push(pF)
takes branch F

(3) Statement s while (s is the immediate post-
dominator of stack.top()) stack.pop()

Figure 4: Computation Rules for SCD Caused by Equiva-
lence Testing.

4. RUNTIME DETECTION OF SCD
In this paper, we consider applications such as lineage

tracing and dynamic information flow tracking. Hence, we
1Expressions e1 and e2 could be any types allowing compar-
ison; ǫ must always be 1 if they are integers.

are interested in detecting dynamic occurrences of SCDs
through instrumentation. Particularly, if s is SCD on p,
an execution instance of s causes a dynamic SCD between
the s instance and the p instance that guards the execution
of the s instance. In the remainder of the paper, the term
strict control dependence also means dynamic strict control
dependence, depending on the context.

Because a SCD branch may be nested in another SCD
branch, we use a stack at runtime to handle such nesting as
presented in [23, 11]. If a branch is decided to be a SCD
branch at compile time, at runtime, the instrumentation
pushes the predicate onto the stack (Rules (1) and (2) in
Fig. 4). The stack entry is only popped when the immedi-
ate post-dominator of the entry is encountered (Rule (3)),
because a branch is delimited by the predicate and its imme-
diate post-dominator. In the instrumentation of Rule (3), a
loop is used to pop multiple consecutive predicates on the
stack that have the same immediate post-dominator. That
is, the same immediate post-dominator serves as the end
of multiple branches. This could occur in the presence of
nested conditional statements or loops. Any statement exe-
cution is strictly control dependent on the top entry on the
stack. Nesting is captured by the inner branch being placed
on top of the outer branch in the stack. Note that other
non-SCD predicate executions, such as the false branch of
an equivalence predicate, do not lead to any stack opera-
tions.

if (a==10) {

 …

 if (b>5) {

 …

 F();

 /*inside F()*/

 if (c==20)

 x=0;

 return;

 y=0;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

Code

push(c==20T)

push(a==10
T
)

pop()

pop()

Instrumentation Stack

a==10
T

c==20T

a==10
T

a==10T

Figure 5: Example for Rules in Fig. 4.

Consider an example in Fig. 5. The code snippet is pre-
sented on the left. During execution, the instrumentation
according to the rules in Fig. 4 is presented in the middle.
The stack status is shown on the right. Observe that pred-
icates 1 and 7 are pushed onto stack according to Rule (1).
They are popped before the executions of 12 and 9, resp.
No instrumentation is added for the predicate at 3 as the
true branch is not a SCD branch. The execution of line
8 is strictly dependent on predicate at 7, which is in turn
strictly dependent on the predicate at 1. Line 10 is strictly
dependent on predicate at 1 even though it is syntactically
enclosed by the true branch of 3.

Rule Event Instrumentation
(L1) d=f(s1, s2, ..., sn) LN(d)=LN(stack.top()) ∪

LN(s1) ∪ ... ∪ LN(sn)

Figure 6: Rules for Lineage Tracing. LN(x) represents the
lineage of variable x.

16

Fig. 6 presents the rule for lineage computation in the
presence of SCD. In particular, a statement execution is
canonicalized to the form shown in Rule (L1), which is an
assignment to a righthand side variable d after computation
on a set of lefthand side variables s1, ..., sn. Note that a
predicate can be considered as an assignment to a phantom
boolean variable if needed. The meaning of the rule is that
all the inputs involved in the computation of any lefthand
side variable become part of d’s lineage, together with the
lineage of the closest SCD branch that guards the assign-
ment. In Fig. 5, assume a, b, and c are inputs. Upon exe-
cuting line 7, LN(c==20T)=LN(a==10T) ∪ {c}={a, c}. The
rule for dynamic information flow tracking can be similarly
defined and is omitted for brevity.

5. IMPLICIT SCD
It is known that information can be propagated through

channels caused by execution omission [28]. Such depen-
dences are neither data dependences nor control dependences.
They are implicit, and hence called implicit dependences.
In particular, such dependences arise if the definition of a
variable is present in one branch (let it be the true branch
without losing generality) but absent from the other (let it
be the false branch). If at runtime, the false branch is taken,
there is a correlation between the variable and the predicate
even though the definition of the variable is omitted in the
false branch. It is the omission that causes the correlation.

Consider the example in Fig. 7 (a). Variables x and y are
initialized to 0. If the predicate at 2 takes the true branch,
x is incremented. Otherwise, y is incremented. Assume the
false branch is taken, we observe that there is dependence
between the value of x and the predicate outcome. In other
words, from x = 0, we can infer the false branch must have
been taken. Observe that such dependence is not caused
by data dependence or control dependence, but rather the
omission of the definition to x in the false branch.

Handling implicit dependences in general is hard as pred-
icates may guard large program regions. For instance, the
two branches of a predicate may contain different complex
control flows and call different sequences of functions. The
set of variables that have their definitions omitted from one
of the branches is hard to identify. Or even if they can
be identified, there may be so many of them, giving rise to
a large volume of implicit dependences. In [28], an offline
algorithm was proposed to reveal the implicit dependence
in a demand-driven fashion for the purpose of debugging.
To test the presence of an implicit dependence between a
variable and a predicate, the technique switches the branch
outcome of the predicate during execution and observes if
the variable is defined in the other branch. If so, the implicit
dependence is true. One re-execution is needed to decide an
implicit dependence. While such a solution is good for de-
bugging, in which a large number of re-executions can be
tolerated, it is not suitable for applications such as input
lineage tracing or dynamic information flow that requires
on-the-fly computation.

Properly handling implicit dependences is highly desirable
for SCD computation, which is particularly true for loop
related SCDs. Consider the example in Fig. 3. As mentioned
earlier, ideally, we want to capture the strict dependence
at line 14 between variable match and the input variable
args[0][pos] when the loop exits. However, this cannot be
achieved without handling implicit dependences. Without

1 x=y=0;

2 if (a!=10) {

3 x++;

4 } else {

5 y++;

6 }

7 z=f(x);

1 x=y=0;

2 if (a!=10) {

3 x++;

4 } else {

5 y++;

x=x;

6 }

7 z=f(x);
(a) Original (b) Transformed

Figure 7: Example for Implicit SCD. Assume a is input.

losing generality, we assume args[0][pos]=‘b’. Hence, the
loop iterates two times and exits upon the third instance of
the loop predicate, because bdinfo[2]==‘b’. The execution
is equivalent to executing the following code snippet.

if (args[0][pos]!=bdinfo[match]) { // ’b’!=’q’
match++;

if (args[0][pos]!=bdinfo[match]) { // ’b’!=’r’
match++;

L: if (args[0][pos]!=bdinfo[match]) { // ’b’==’b’
match++;

}

}
}

The predicate instance at L takes the false branch and
gives rise to SCD. However, the SCD branch has an empty
body. In other words, the fact that match does not get up-
dated induces the strict dependence between match and the
predicate at L: from match ≡ 2, we can infer args[0][pos] ≡
‘b’.

Fortunately, implicit dependences become easier to be han-
dled in the context of SCD. The reason is that most pred-
icate branches are not SCD branches and implicit depen-
dences caused by those branches do not reveal strong corre-
lations and hence don’t need to be captured. For example,
if the true branch of the predicate at line 2 in Fig. 7 (a) is
taken, there is an implicit dependence between the value of
y and the predicate. However, since it is not a SCD branch,
the correlation between y and the predicate is not strong.
In particular, applying an ǫ to a (the left-hand side of the
predicate) or to 10 (the right-hand side) may not change the
branch outcome and hence the value of y remains the same.

We transform the program such that implicit dependences
inside SCD branches can be turned into regular explicit
SCDs. The idea is similar to those presented in [2, 11]:
for a variable that is defined in the branch opposite to the
SCD branch but not in the SCD branch, a dummy identity
assignment to the variable is inserted to the SCD branch.
Since the identity assignment does not change the value of
the variable, it allows the SCD being explicitly captured
without changing program semantics. The transformation
rules are presented in Fig. 8. Statement S1 represents the
statement(s) in the true branch and S2 the statement(s) in
the false branch. The highlighted statements are inserted
by the transformation. Function mustD(S) gives the set of
variables that must be defined in the (composite) statement
S. If the SCD branch is the true branch (Rule T1), for each
variable vx that must be defined in the false branch but not
in the true branch, an identity assignment is inserted at the
end of the true branch. In applications such as taint analysis
or lineage tracing, the explicit SCDs between the dummy as-
signments and the predicate allow the taint bit (lineage set)
of the predicate being propagated to variables v1, v2, ..., and

17

if (e1==e2)

 S1

else

 S2

if (e1==e2)

 S1

 v1=v1;

 …

 vn=vn;

else

 S2

 mustD (S2) – mustD(S1)

 ≡ {v1, v2, …, vn}

(T1)

if (e1!=e2)

 S1

else

 S2

if (e1!=e2)

 S1

else

 S2

 v1=v1;

 …

 vn=vn;

 mustD (S1) – mustD (S2)

 ≡ {v1, v2, …, vn}

(T2)

Figure 8: Handling Implicit SCD.

vn, and then the following program statements that make
use of these variables. The missing links are hence remedied.
The rule for the false branch (T2) is similarly defined.

In Fig. 7 (a), mustD(3)-mustD(5)={x}-{y}={x}. The iden-
tity assignment “x=x” is inserted after 5 in Fig. 7 (b). As-
sume we are computing lineage, according to Rule (L1) in
Fig. 6, LN(x) = LN(a!=10F) ∪ LN(x) = {a} upon execut-
ing the inserted statement. Later, when x is used at line
7, LN(z)=LN(x)={a}. The effect of both SCD and implicit
dependence is faithfully captured.

For the loop at line 14 in Fig. 3, according to the trans-
formation rule, an identity assignment to match is added to
the false branch of the loop predicate, which is essentially
the loop exit.

It is worth noting that the function mustD is computed
through static analysis. It is defined in a way similar to
busy expression analysis. In particular, a variable is present
in mustD(S) if and only if it is defined along all paths in the
sub control flow graph of S. Details are elided. Furthermore,
observe that the inserted dummy assignments are not con-
tributing to the state of the original program but rather to
the analysis piggyback on the execution. They can be elimi-
nated after the phase of application specific instrumentation,
e.g. instrumentation for lineage tracing.

6. SCD BEYOND EQUIVALENCE TESTING
So far we have been discussing SCD caused by equiva-

lence testing (including ‘==’ and ‘!=’ operators). We ob-
serve other comparison operators such as ‘<’, ‘>’, ‘<=’, and
’>=’ can nonetheless induce SCD. According to Definition 1,
one of the conditions is that the equivalence of the left-hand
side and the right-hand side expressions of the predicate can
be inferred. While this cannot be directly induced when only
these operators are assumed, it can be induced when con-
sidered jointly with other predicates along the path to the
predicate. In other words, the equivalence can be inferred
from the path conditions. Consider the example in Fig. 9
(a). When line 4 is executed, the path 1, 2 and 3 must have
been taken. The conditions are a0<10, a1=a0-1 and a1>7,
in which a0 and a1 represent the values of variable a at lines
1 and 3, resp. From these conditions, a1≡ 7+1. Hence, line
4 is strictly control dependent on line 3 according to Defini-
tion 1.

if (a<10) {

 a--;

 if (a>7) {

 b=0;

 }

1

2

3

4

5

for (i=0; i<end; i++) {

 sum=sum+A[i];

}

11

12

13

(a) (b)

Figure 9: SCD Not Caused by Equivalence Testing.

A more common pattern of such SCDs occurs in loops. In
Fig. 9 (b), we can observe that upon the exit of the loop,
there is a strong connection between the value of sum and
the value of end, although the predicate does not have an
equivalence testing. Note that the execution corresponding
to the last two instances of the loop predicate is equivalent
to the following.

/* loop starts*/

......
11a if (i<end) {
12 sum=sum+A[i];

i++;
11b if (i<end)

else { /* i>=end */
sum=sum;

i=i;
goto L;

}

}
L: /* loop exit*/

Identity assignments are inserted into the else branch of
11b according to the previously described transformation.
Let the values of i in lines 11a and 11b be i0 and i1, resp.
From the path conditions, we have the conjunction i0<end

∧ i1=i0+1 ∧ i1>=end. We can easily infer that i1==end

when the loop exits. According to the definition, there are
SCDs from the identity assignments to the predicate at 11b.
Hence, the relation between sum and end is faithfully cap-
tured. Note the loop pattern in Fig. 9 (b) is very common.

Since the operators are no longer equivalence comparison,
it is not trivial to statically identify the SCD branches such
that proper instrumentation can be added. We propose a
static analysis to identify such SCD branches. In particular,
given a branch outcome (true or false) of a predicate e1 ⋄e2,
we identify the predicate branches that it is directly or tran-
sitively control dependent on. Note that it means that such
branches have to be taken in order to reach the given pred-
icate. The conjunction of the path conditions denote the
must condition of executing the given predicate branch. If
variables involved in the path conditions are updated, such
as “a--” in Fig. 9 (a) or “i++” in (b), the corresponding con-
straints also need to be conjoined with the path conditions.
If the e1 ≡ e2 + c can be inferred from the conjunction, the
given branch is a SCD branch.

For a loop predicate p, the algorithm conducts similar
reasoning by unrolling the last n instances of the loop predi-
cate with the last instance taking the false branch and others
the true branch. The algorithm gradually strengthens the
conjunction by increasing n from 2. If equivalence can be
inferred, the last instance denotes a SCD branch. It is worth
mentioning that if the equivalence is inferred when n equals
to a constant t, at runtime, the loop predicate has to ex-
ecute t times to ensure the last instance is a SCD branch.
For example, we prove the equivalence for the case in Fig. 9

18

(b) with n = 2. Hence, the loop has to iterate once (and
hence the predicate has to execute twice) for the SCD to be
true. If the first instance of loop predicate takes the false
branch and the loop is not entered, it implies end<=0, the
strong connection between end and sum is not present be-
cause sum has the same value for many possible values of
end satisfying end<=0. Theoretically, the instrumentation
needs to test the loop count to make sure it is larger than
t. In practice, our instrumentation only needs to test if the
difference between the two expressions in the loop predicate
is equivalent to the derived constant c. For the case in Fig. 9
(b), we add a guard “i==end” in the false branch of the loop
predicate to ensure it is a SCD branch. Note that in many
cases equivalence cannot be inferred. For example, assume
the loop “for (i=a;i<100;i+=3)”. Upon loop exit, it may
be true that i==100, i==100+1 or i==100+2. Hence, there
is not a compile time constant c such that i==100+c holds.
We find that most loops fall into a small number of pat-
terns. We leverage these patterns to speed up the analysis.
For instance, if the loop induction variable is updated con-
tinuously, e.g. i++, the false branch of the loop predicate,
regardless the type of the comparison, can always give rise
to SCD.

7. EVALUATION
Our technique is implemented on GCC-4.4.0. The imple-

mentation consists of the SCD analysis and a lineage tracing
system that is used to evaluate the effectiveness of SCD. The
static analysis and transformations are done on the GIM-
PLE IR. Compared to other gcc IRs, GIMPLE is relatively
simple and is language independent and machine indepen-
dent. Our analysis is implemented as a compiler pass that
is right after the generation of the GIMPLE IR and before
any optimization passes. The reason is that we can lever-
age the later optimizations to optimize the instrumentation
together with the original code. We use SPECINT 2000 as
our benchmark for both effectiveness and efficiency. All ex-
periments are run on an Intel Dual Core 2.5GHz machine
with 2GB memory. The OS is Linux-2.6.30.

Table 1: Static program characteristics.

LOC # SCD # branches %
164.gzip 8616 263 1780 14.78%
175.vpr 17729 630 3848 16.37%
176.gcc 222182 10942 54318 20.14%
181.mcf 2423 31 338 9.17%
186.crafty 21150 814 5528 14.73%
197.parser 11391 455 3296 13.80%
253.perlbmk 85076 2665 22338 11.93%
254.gap 71430 1782 20220 8.81%
255.vortex 67220 2355 18680 12.61%
256.bzip2 4649 123 1134 10.85%
300.twolf 19748 1040 7462 13.94%

Table 1 presents the results of static analysis, including
the number of branches in the program (column # branches)
and the number of SCD branches (# SCD). We can see 8.8-
20.1% of the branches are SCD branches. 176.gcc has 20.1%
SCD branches. It seems to be caused by the large number
of switch-case statements.

7.1 Effectiveness
The next set of experiments is designed to evaluate the

impact of SCD on runtime applications, including lineage
tracing and taint analysis.

7.1.1 Lineage Tracing

We compare the lineage sets of individual output values
in three settings: considering only data dependences (DD
columns in Table 2); considering both data dependences and
SCDs (DD+SCD columns); considering both data dependences
and all control dependences (DD+FCD columns). We present
the average lineage set sizes (Avg columns) and the maxi-
mum sizes (Max columns). Three benchmarks 175.vpr, 255
vortex, and 300.twolf run out of memory and hence omit-
ted from the result table. We can observe that DD lineage
sets are usually very small and FCD lineage sets are large
and the SCD lineage sets are in the middle.

Measuring False Positives (FP) and False Negatives
(FN). Lineage size does not sufficiently reflect the quality of
the resulting sets. Hence, we design a metric based on input
fuzzing. In particular, we decide the correlation between
each pair of input i and output o as follows. We identify
the value range of i based on its type and input description.
We mutate i to each possible different value while retain-
ing the values of all the other inputs. If for each mutation,
o either changes or is absent from the output, we say i is
in the ideal lineage set of o, denoted as i ∈ LI(o), because
it indicates that the correlation between i and o is strong.
In other words, if multiple values of i lead to the same o

value, i is not in LI(o). Note that o may be absent if the
mutation alters the control flow of the execution. In order
to determine the absence of a particular output and carry
out proper output value comparison, we have to align the
outputs of the mutated execution and the original execu-
tion. Output values are dumped to a text file, together with
the program points that emit them. The longest common
substring (LCS) algorithm is used to align two text files.
Program locations are used to provide better identification
because it may occur that even though some outputs are
absent due to the mutation, similar outputs are emitted by
a different program location. A purely value-based LCS al-
gorithm may be confused and draw a wrong conclusion that
the outputs are still present.

Let LN(o) be the computed lineage. FP and FN are com-
puted as follows.

FP =
LN − LI

LN
FN =

LI − LN

LI

The FP and FN results for different configurations are
presented in Table 2. Overall, we observe that DD lineage
has very high FNs, meaning it misses many important cor-
relations. But it almost always has 0 FPs. In contrast,
FCD lineage has very high FPs, but almost 0 FNs, meaning
it captures all important correlations but also many weak
correlations. SCD lineage provides more accurate results in
general: it has both low FPs (maximum 19% and average
7.81%) and low FNs (maximum 25% and average 7.38%).
The following explains some of the prominent data entries.

• The lineage sizes of different methods for 164.gzip

and 256.bzip2 are not much different and they are all
large. The reason is that the two compression pro-
grams rely on an accumulative process of finding pat-
terns and hence are very sensitive to any individual
input values. In fact, making any change to any single
input value changes almost all individual outputs.

• It is counter-intuitive that some FPs are observed for
the DD lineage in 181.mcf. Further inspection shows

19

Table 2: Output Lineage Size and FP/FN Ratio.

DD DD + SCD DD + FCD
Max Avg FP FN Max Avg FP FN Max Avg FP FN

164.gzip 496 438.14 0.00% 10.98% 496 491.20 0.00% 0.23% 497 493.11 0.19% 0.00%
176.gcc 14 0.43 0.00% 99.36% 92 57.32 8.17% 13.26% 108 67.74 23.91% 0.03%
181.mcf 3 2.48 9.26% 7.41% 3 2.67 14.81% 0.00% 43 39.70 87.41% 0.00%
186.crafty 3 0.07 0.00% 95.99% 32 24.72 10.99% 25.29% 60 56.38 39.87% 0.00%
197.parser 0 0 0.00% 100.00% 5 3.06 0.00% 0.00% 138 123.19 97.71% 0.00%
253.perlbmk 2 0.8 0.00% 96.45% 57 33.80 19.14% 7.46% 95 66.80 66.29% 0.00%
254.gap 1 0.59 0.00% 100.00% 54 18.41 9.32% 12.82% 90 36.55 42.66% 0.00%
256.bzip2 211 10.62 0.00% 90.58% 211 197.79 0.00% 0.00% 211 197.79 0.00% 0.00%
Aveage 91.25 56.64 1.16% 75.10% 118.75 103.62 7.81% 7.38% 155.25 135.16 44.75% 0.00%

that they are mainly caused by the following line of
code in readmin.c.

59 net->arcs = (arc_t *)calloc(net->max_m, sizeof(arc_t));

There is data dependence from net → max_m to net →
arcs through which the lineage information is propa-
gated. However, the link is weak as although mutating
inputs may change the size of allocation, the allocated
memory with the new size does not affect the output
as long as the new size is sufficiently large.

• FPs are observed in SCD lineage. We inspect the case
for 186.crafty. We find the FPs are mainly caused
by the following code snippet.

In lookup.c:

63 if (!Xor(And(htable->word2,mask_80)
temp_hash_key))

65 transposition_hits++;
.....

100 if (!Xor(And(htable->word2,mask_80),

temp_hash_key))
102 transposition_hits++;

In iterate.c:

436 printf("hashing->trans/ref:%d%%...\n",
437 transposition_hits/(transposition_probes+1));

Variable transposition_hits is not transitively data
dependent on any input. The true branches of the
predicates at lines 63 and 100 are SCD branches. Lin-
eage is hence correctly propagated to the variable at
lines 65 and 102. Line 437 emits execution statistics.
However, input changes can be masked by the division
at line 437 such that the corresponding inputs are not
strongly correlated with the output in lines 436-437.
Such FPs are not observed in DD lineage because the
propagation of lineage is broken at lines 65 and 102.

• FNs are observed in both SCD and FCD lineage. We
inspect the case for 176.gcc and find that they are
mainly caused by early program termination. Consider
the following code snippet. Variable finput at line
2005 has name in its lineage set. If the true branch is
taken, the program immediately terminates. Hence, all
the following execution is determined by the predicate.
In particular, any mutation on name leads to the failure
to open the file and then early termination. Input name
shall be in the ideal lineage of all outputs. However,
GCC is not able to perform analysis across source files.
Hence, the control dependences between 2005 and all
execution beyond it are not correctly captured. We
expect a whole program analysis would mitigate the
problem.

In toplev.c:

2004 finput = fopen (name, "r");
2005 if (finput == 0)

2006 pfatal_with_name (name);

We want to mention that the results in Table 2 are sen-
sitive to the definition of ideal lineage. Another possible
definition is that given a pair of input i and ouput o, if
there exists a mutation of i that ever changes the value of
o, i should be in LI(o). This definition will admit inputs
that are very loosely correlated to the given output. We will
leave it to our future work to study other ways of measuring
FPs/FNs.

Case Study. We have presented a case study in Section 2.
Here we use another case study to further demonstrate the
effectiveness of SCD. In this study, we want to show that af-
ter a compiler optimization, the output lineage can precisely
include the statements in the source file that are relevant to
the optimized code. We use the common sub-expression
elimination (CSE) pass in 176.gcc, in which the compiler
goes through the code and identifies sub-expressions that
must have the same value (i.e., none of the variables get
killed in between two occurrences of the same sub-expression)
and then replaces the sub-expression with a variable. We use
the following input file.

void foo () {

1 int a, b, c, d;
2 int p, q, r;

3 r = p ^ q;

4 c = a * b;
5 d = b * a;

}

Function cse_insn(insn) is responsible for analyzing the
expressions appearing in instruction insn. Part of the lin-
eage before cse_insn() starts to process line 5 is the follow-
ing. Symbol ’b’@5 means the char ’b’ at line 5.

LN(’b’@5) = {’int’@1, ’b’@1, ’b’@5, ’*’@5}

LN(’a’@5) = {’int’@1, ’a’@1, ’a’@5, ’*’@5}

LN(’*’@5) = {’int’@1, ’a’@1, ’a’@5,

’b’@1, ’b’@5, ’*’@5}

The highly simplified code snippet relevant to CSE is
shown in Fig. 10. When function cse_insn(insn) starts
to process line 5, variables src at line 6291 holds the ex-
pression “b * a”, which is hashed into variable hash at line
6427. The hash value is used in calling lookup() at line 6448
to look for the equivalent expressions. In function lookup(),
the hash table is traversed to find the candidate expression
by calling function exp_equiv_p() at line 1182. In func-
tion exp_equiv_p(), the incoming expressions x and y are

20

6095 void cse_insn (rtx insn) {
6290 rtx dest = SET_DEST (...);
6291 rtx src = SET_SRC (...);

/* Locate all possible equivalent forms for SRC. */

6427 hash = HASH (src, ...);
6448 elt = lookup (src, hash, ...);

/* Replace the expression with the cheaper equivalent. */
6838 validate_change (insn, &SET_SRC (...),

elt->first_same_value, ...)
}

1174 struct table_elt * lookup (rtx x, unsigned hash, ...) {
1181 for (p = table[hash]; p; p = p->next_same_hash)

1182 if (... || exp_equiv_p (x, p->exp, ...) == 1)
1183 return p;

return 0; /* not found */

}

2051 static int exp_equiv_p (rtx x, rtx y, ...) {

2062 if (x == y && ...)
return 1;

2067 code = GET_CODE (x);
2095 switch (code) {

...
/* For commutative operations, check both orders. */

2136 case PLUS: case MULT: case AND:

2143 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), ...)
&& exp_equiv_p (XEXP (x, 1), XEXP (y, 1), ...))

|| (exp_equiv_p (XEXP (x, 0), XEXP (y, 1), ...)
&& exp_equiv_p (XEXP (x, 1), XEXP (y, 0), ...));

}

}

Figure 10: Code snippet for CSE in 176.gcc.

checked for their equivalence recursively. In this case, x and
y are “b * a” and “a * b” respectively. These two expres-
sions are further broken down to check the equivalence for
each of their operands.

Since the return value of exp_equiv_p() is an integer,
guarded by the result of comparisons at lines 2062 and 2095,
whose true branches are SCD branches. When SCDs are
captured, the lineage set of the resulting integer is the union
of those of x and y, reflecting their relevance. In other words,
the lineage sets from the original expression and the one
in the hash table are unioned. The unioned lineage set is
further propagated to variable elt at line 6448 through the
SCD at line 1182. Hence, after the CSE optimization, the
compiled file and its corresponding lineage set look like the
following.

4 c = a * b;
5’ d = c;

LN(’c’@5’) = {’int’@1, ’a’@1, ’a’@4, ’a’@5,

’b’@1, ’b’@4, ’b’@5, ’*’@4, ’*’@5}

Observe that the lineage of line 5’ includes symbols of ‘a’
and ‘b’ in both lines 4 and 5 in the original code, indicating
the optimization is indeed the result of finding the common
sub-expression in lines 4 and 5. If SCDs are not considered,
the lineage contains only line 5 but not line 4. Moreover, if
all control dependences are considered, the resulting lineage
of LN(’c’@5’) contains all expressions, including the one at
line 3. The reason is that the lineage of an expression in the
hash table contains all the expressions that are encountered
before it due to the (loose) control dependences occurred
in hash table operations during parsing. The relevant code
snippet is omitted due to space limitation.

7.1.2 Taint analysis

We use taint analysis as another application to demon-
strate the effectiveness of SCD. Note that taint analysis can
be easily achieved with minor tweaking of the lineage system.
In Fig. 11, four programs from SPECINT2000 are randomly
selected. The x axis represents the amount of inputs that
we taint. The y axis represents the corresponding amount
of outputs that get tainted at the end of program execu-
tion. We present four sets of results: considering only data
dependences (DD curve in Fig. 11); considering both data
dependences and SCDs (DD+SCD curve); considering both
data dependences and all control dependences (DD+FCD
curve). We also plot an ideal curve. The curve is acquired
through fuzzing. Given a tainted input, if any mutation on
the input must cause mutation on an output or make the
output disappear, the output should be tainted ideally. Ob-
serve that the DD+FCD curve ascends much faster than the
DD curve, meaning considering all control dependences of-
ten leads to over-tainting. The ideal and DD+SCD curves
are in the middle and the DD+SCD curve closely follows
the ideal curve except the middle part of 186.crafty, rep-
resenting SCD can result in high quality tainting.

7.2 Efficiency
We evaluate the impact of tracking control dependences.

The overheads of tracking strict control dependences (SCD)
and all control dependences (FCD) are collected. For FCD
detection, we implement the algorithm in [11, 23]. We nor-
malize the results according to the uninstrumented execu-
tion time. As shown in Fig. 12, the average overheads of
SCD and FCD are 76% and 294% respectively. It causes
more than two times slowdown to record FCD than record-
ing SCD. These results are before any aggressive algorithmic
optimizations. The compiler option was -O3.

8. RELATED WORK
Control dependence computation. Ferrante et al. [6]
studied the use of dependence graphs in compiler optimiza-
tions. They proposed the concept of Program Dependence
Graph that combines both data and control dependences in
one graph. They also demonstrated how certain compiler
optimizations can be done more efficiently on the graph.
Horwitz et al. [8] presented dependence graphs in the con-
text of precise static program slicing. They introduced what
is called System Dependence Graph that combines both data
and control dependence as well as interprocedural data de-
pendence that is captured by the concept of transitive flow
dependence edges, which in turn are computed by a tech-
nique borrowed from Attribute Grammar. Later, a more
thorough algorithm to compute interprocedural control de-
pendence was proposed in [18]. Podgurski and Clarke have
proposed the term weak control dependence in [16] to de-
scribe dependences between loop termination and the state-
ments following the loop. To distinguish with the classic
control dependence, they called the classic control depen-
dence strong control dependence. In [1], a general framework
was proposed by Bilardi and Pingali to perform faster com-
putation of both the classic and weak control dependences.

Compared to these static techniques, our definition of
strict control dependences (SCD) is different, and it rep-
resents a subset of control dependences that manifests the
characteristics of data dependence and hence we argue it

21

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

181.mcf
DD

DD+SCD

DD+FCD

Ideal

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

176.gcc
DD

DD+SCD

DD+FCD

Ideal

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

254.gap
DD

DD+SCD

DD+FCD

Ideal

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

186.crafty

DD

DD+SCD

DD+FCD

Ideal

Figure 11: Taint Analysis Result.

5.0

3 4

6.6

3 2

5.0

3.5

4.5

5.4

3.9

3 3
4.00

5.00

6.00

7.00

Native SCD FCD

5.0

3.4

6.6

3.2

5.0

3.5

1.3

4.5

5.4

2.8
2.5

3.9

2.2
1.8

3.3

1.1

1.7

1.2 1.2
1.6

2.6

1.1

1.7 1.8

1 1 1 1 1 1 1 1 1 1 1 1
1.00

2.00

3.00

4.00

5.00

6.00

7.00

Native SCD FCD

5.0

3.4

6.6

3.2

5.0

3.5

1.3

4.5

5.4

2.8
2.5

3.9

2.2
1.8

3.3

1.1

1.7

1.2 1.2
1.6

2.6

1.1

1.7 1.8

1 1 1 1 1 1 1 1 1 1 1 1

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Native SCD FCD

5.0

3.4

6.6

3.2

5.0

3.5

1.3

4.5

5.4

2.8
2.5

3.9

2.2
1.8

3.3

1.1

1.7

1.2 1.2
1.6

2.6

1.1

1.7 1.8

1 1 1 1 1 1 1 1 1 1 1 1

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Native SCD FCD

Figure 12: Overhead of Tracking Control Dependences.

should be equally considered in applications that consider
data dependences.

SCD is relevant to confidence analysis in dynamic slic-
ing [27]. Confidence analysis is an offline analysis that allows
pruning unimportant dependence edges to produce smaller
slices. It requires constructing dependence graph and then
traverses the graph in a selective backward fashion with con-
fidence information. SCD and confidence analysis share sim-
ilar spirit in deciding the importance of dependences. The
difference lies in that SCD branches are statically decided
without profiling. SCDs are computed online and in a for-
ward fashion, and hence they are desirable in applications
such as taint analysis and lineage tracing. Furthermore,
we handle implicit dependences caused by code omission
through code transformation.

Taint analysis. Taint analysis[24, 14, 2, 10] assigns a taint
to inputs (usually those received from untrusted sources)
and then monitors the propagation of the taints during pro-
gram execution. Lineage tracing [26] can be considered as
a generalized form of taint analysis that captures the set of

relevant inputs contributing to an output. These techniques
and most other tainting systems mainly focus on data de-
pendence and do not consider control dependence. As shown
by our results, our technique would be a good complement.
Clause and Orso [2, 3] provide a more generalized infrastruc-
ture supporting dependences along both control-flow and
data-flow. But they do not consider the strength of control
dependence. Most recently, Slowinska and Bos [19] evaluate
the practicality of taint analysis. They conclude that taint
analysis might induce both high false positive(FP) and high
false negative(FN), and even taint explosion depending on
the architecture, operation system and the nature of the
subject program. According to their study, not considering
control dependence is one important source of FNs. Our
experiments also largely support their observation.

Information flow tracking. Information flow tracking
systems [5, 4, 7, 12, 13, 15, 17, 25] prevent confidential infor-
mation from leaking. Most of these systems rely on program
dependence analysis. Podgurski and Clarke[16] showed that
if one statement is being data or control dependent on by

22

other statements, it could affect their execution. Many sys-
tems are not accurate enough to catch implicit information
flow due to the limited support for control dependence. To
achieve better result, in [11], Masri et al. considered con-
trol dependence in dynamic information flow analysis. SCD
would help addressing the induced FPs and FNs.

9. CONCLUSION
We propose a new concept called strict control dependence

(SCD). SCD belongs to traditional control dependence but
its characteristics are more like data dependences, which in-
dicate strong correlation between statements. We formally
define the semantics of SCD. We find that any predicates
that involve comparative operators may give rise to SCDs.
We devise a static analysis to locate these predicates. We
also introduce the instrumentation rules detecting runtime
instances of SCD. Implicit dependences are handled by pro-
gram transformation. We evaluate the effectiveness of SCD
on lineage tracing and taint analysis. We find that SCD sub-
stantially improves the quality of computed lineage sets and
provides better tainting. We also find that online detection
of SCDs incurs 76% overhead.

10. ACKNOWLEDGEMENT
We would like to thank the reviewers for their substan-

tial efforts. This research is supported, in part, by the Na-
tional Science Foundation (NSF) under grants 0916873 and
0847900. Any opinions, findings, and conclusions or recom-
mendations in this paper are those of the authors and do
not necessarily reflect the views of NSF.

11. REFERENCES
[1] G. Bilardi and K. Pingali. A framework for

generalized control dependence. In PLDI’96.

[2] J. Clause, W. Li, and A. Orso. Dytan: A generic
dynamic taint analysis framework. In ISSTA’07.

[3] J. Clause and A. Orso. Penumbra: Automatically
identiying failure-relevant inputs using dynamic
tainting. In ISSTA’09.

[4] D. Denning and P. Denning. Certification of programs
for secure information flow. In Communications of
ACM, 1977.

[5] D. E. Denning. A lattice model of secure information
flow. In Communications of the ACM, 1976.

[6] Jeanne Ferrante, Karl J. Ottenstein, and Joe D.
Warren. The program dependence graph and its use in
optimization. In TOPLAS, 1987.

[7] N. Heintze and J. G. Riecke. The slam calculus:
programming with secrecy and integrity. In POPL’98.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. In PLDI’88.

[9] B. Korel and J. Laski. Dynamic program slicing. In
Information Processing Letters, 1988.

[10] L.C. Lam and T.Chiueh. A general dynamic
information flow tracking framework for security
applications. In ACSAC’06.

[11] W. Masri, A. Podgurski, and Leon D. Detecting and
debugging insecure information flows. In ISSRE’04.

[12] A. C. Myers. Jflow: Practical mostly-static
information flow control. In POPL’99.

[13] A. C. Myers and B. Liskov. Protecting privacy using
the decentralized label model. In TOSEM, 2000.

[14] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In
NDSS’05.

[15] N.Vachharajani, M.J.Bridges, J.Chang, R.Rangan,
G.Ottoni, J.A.Blome, G.A.Reis, M.Vachharajani, and
D.I.August. Rifle: An architectural framework for
user-centric information-flow security. In MICRO’04.

[16] A. Podgurski and L. A Clarke. A Formal Model of
Program Dependences and its Implications for
Software Testing, Debugging, and Maintenance. In
TSE, 1990.

[17] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu.
Lift: A low-overhead practical information flow
tracking system for detecting security attacks. In
MICRO’06.

[18] S. Sinha, M.J. Harrold, and G. Rothermel.
Interprocedural control dependence. In TOSEM, 2001.

[19] A. Slowinska and H. Bos. Pointless tainting?
evaluating the practicality of pointer tainting. In
EuroSys’09.

[20] G.E. Suh, J.W. Lee, D. Zhang, and S.Devadas. Secure
program execution via dynamic information flow
tracking. In ASPLOS’04.

[21] M. Weiser. Program Slicing: Formal , Psychological
and Practical Investigations of an Automatic Program
Abstraction Method. PhD thesis, The University of
Michigan, Ann Arbor , Michigan, 1979.

[22] M. Weiser. Program slicing. In ICSE’81.

[23] B. Xin and X. Zhang. Efficient online detection of
dynamic control dependence. In ISSTA’07.

[24] W. Xu, S. Bhatkar, and R.Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a
wide range of attacks. In 15th USENIX Security
Symposium, 2006.

[25] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Capturing system-wide information flow for malware
detection and analysis. In CCS’07.

[26] M. Zhang, X. Zhang, X. Zhang, and S. Prabhakar.
Tracing lineage beyond relational operators. In
VLDB’07.

[27] X. Zhang, R. Gupta. Pruning dynamic slices with
confidence. In PLDI’06.

[28] X. Zhang, S. Tallam, N. Gupta, and R. Gupta.
Towards locating execution omission errors. In
PLDI’07.

23

	Introduction
	Motivating Example
	Epsilon Semantics
	Runtime Detection of SCD
	Implicit SCD
	SCD beyond Equivalence Testing
	Evaluation
	Effectiveness
	Lineage Tracing
	Taint analysis

	Efficiency

	Related Work
	Conclusion
	Acknowledgement
	References

