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AI is Rapidly Integrated into Critical Systems

Autonomous Vehicle

https://www.roadtoautonomy.com/waymo-big-week/

Medical AI

https://www.pmwcintl.com/session/ai-in-medical-imaging_2022sv/
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The Double-Edged Sword: With Great Power Comes Great Risk

The Promises
1 Medical breakthroughs

2 Economic efficiency

3 Enhanced safety

4 Scientific discovery

The Risks
1 Algorithmic failures

2 Malicious exploitation

3 Systemic vulnerabilities

4 Cascading impacts
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Real-World AI Failures/Risks: When AI Goes Wrong or Misused

1 2016: Microsoft’s Tay chatbot turned offensive in 16 hours (BBC News) [Lee16]

2 2018: Uber self-driving car killed a pedestrian (New York Times) [Wak18]

3 2023: LLM-assisted synthesis planning raises chemical weapon concerns [B+23]

4 2024: Foundation models dual-use capabilities across military and civilian [B+24]

5 2024: Autonomous AI agents exploited real software in cyberattacks [F+24]

6 2025: Claude Opus 4 attempted blackmail in test (BBC News) [McM25]

7 2025: Impersonating Rubio to call high-level officials (Washington Post) [JH25]

Critical Question

How do we prevent these failures/risks? First, we must understand their nature.
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Two Types of AI Failures: Understanding the Risk Landscape

Unintended Failures

System malfunctions
Design limitations

Unexpected behaviors

Malicious Exploitation

Adversarial attacks
Data poisoning

System manipulation

“The AI didn’t mean to fail”
e.g., Bias in hiring algorithms

“Someone made the AI fail”
e.g., Jailbreaking ChatGPT

AI Safety AI Security
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Understanding the “Toolbox” Difference

Safety Concern (Unintentional Corruption)

• Message m corrupted by channel noise.

• Alice uses Checksum: S = CRC(m).

• Bob verifies: CRC(m′)
?
= S.

• Addresses accidental modifications.

• Toolbox: Error-detection/correction codes.

Alice Bobm+CRC(m)
m′ +

CRC(m)

Noise

Security Concern (Intentional Manipulation)

• Adversary Eve tries to intercept/alter m.

• Alice uses Cryptography: S = MAC(m, k).

• Bob uses shared key k to verify authenticity.

• Protects against malicious adversaries.

• Toolbox: Cryptographic protocols.

Alice BobEk(m) +
MAC

Ek(m) +
MAC

Eve

Blocked
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Safety Covers Security?

As AI advanced, “safety” expanded to cover security-related harms?

▶ The “International AI Safety Report” by Bengio et al. [B+25] includes “Risks
from malicious use” under its broad safety definition.

“Safety (of an AI system): The property of avoiding harmful outputs, such as
providing dangerous information to users, being used for nefarious purposes, or
having costly malfunctions in high-stakes settings.” [B+25]

“Security (of an AI system): The property of being resilient to technical
interference, such as cyberattacks or leaks of the underlying model’s source
code” [B+25]
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Why Distinction Matters: The Cost of Confusion
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Why Distinction Matters: The Cost of Confusion

Liu et al. “Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary,
Collaborative, and Safe Systems”. https://arxiv.org/abs/2504.01990
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Why Distinction Matters: The Cost of Confusion

“Proposals about Secure Learning-Enabled Systems were all declined”.
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Why Distinction Matters: The Cost of Confusion

Conflating
Safety & Security

Misdirected
Research

Ineffective
Communication

& Policies

Clear Distinction
→ Targeted
Solutions
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This Talk: Demystifying AI Safety vs. AI Security

Our Objectives:

1 Define clear boundaries

2 Illustrate key differences

3 Show interdependencies

4 Provide practical guidance

SafetySecurity

Distinct but Connected

Bottom Line

Understanding the distinction is not an academic exercise: it’s essential for building AI
systems that are both safe by design and secure by default.

Z. Lin, H. Sun, and N. Shroff. “AI Safety vs. AI Security: Demystifying the Distinction
and Boundaries”. https://www.arxiv.org/abs/2506.18932, June 2025.
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Foundational Concepts: Safety vs. Security

Safety

Unintentional harm

Accidents, failures,

malfunctions, errors

Security

Intentional harm

Attacks, exploits,

breaches, sabotage

This fundamental distinction carries over to AI systems

9 / 25
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The Philosophical Foundation

Safety’s Core Principle

Safety is fundamentally about preventing harm to:

1 Direct: Living beings (humans, animals)

2 Indirect: Life-supporting systems

The Sentience Test

If no sentient being can be harmed (directly or
indirectly), safety becomes meaningless

Sentient

Beings

Direct Safety

Critical Systems

Extended Impact

Healthcare
Transport

Environment
Infrastructure
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The Philosophical Foundation

Security’s Core Principle

Security requires three elements:
1 Asset: Something of value

2 Adversary: Intentional threat actor

3 Vulnerability: Exploitable weakness

Without Adversaries?
In a world without malicious intent, security would
become unnecessary.

Adversary

Asset Vulnerability

Targets
Exploits

Exposes

Security
Domain

10 / 25
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AI Safety: Preventing Unintended Harm

Definition (AI Safety)

AI Safety is the property of an AI system to avoid causing unintended harmful
outcomes to individuals, environments, or institutions, despite uncertainties in inputs,
goals, training data, or deployment conditions.

11 / 25
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AI Safety: Preventing Unintended Harm

AI Safety
“Ensuring AI systems do

not cause unintended harm”

Value Alignment Robustness Interpretability

Bias Mitigation Correctness Ethical Behavior
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AI Security: Defending Against Malicious Actors

Definition (AI Security)

AI Security is the property of an AI system to remain resilient against intentional
attacks on its data, algorithms, or operations, preserving its confidentiality, integrity,
and availability in the presence of adversarial actors.
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AI Security: Defending Against Malicious Actors

AI Security
“Protecting AI systems
from adversarial threats”

Adversarial
Attacks

Data
Poisoning

Model
Theft

Prompt
Injection

Toolbox: Authentication, Encryption, Monitoring, Validation
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The Intent Spectrum: From Accidents to Attacks

Pure Accident Pure Attack

Natural
Failures

Design
Flaws

Negligence
Adversarial

Use
Targeted
Attack

Hardware
failure

Training
bias

Poor
maintenance

Exploiting
known bugs

Adversarial
examples

Safety Domain Security Domain
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The Critical Difference: Intent Determines the Domain

Same Outcome, Different Causes

AI Generates
Harmful Content
(e.g., dangerous
medical advice)

Safety Issue
Training data bias

Hallucination
Misalignment

Security Issue
Prompt injection
Jailbreak attack

Malicious manipulation

Unintentional Intentional

Fix: Better training, alignment Fix: Input validation, filtering
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Intuitive Analogy: Constructing a “Smart” Building

AI Safety:
Inherent Soundness

Strong Foundation &
Structural Integrity

Fire Escapes &
Emergency Exits

Non-Toxic Build-
ing Materials

Accessibility Design
(Ramps, Elevators)

Adherence to
Building Codes

Focus: Preventing accidental harm via robust design,

safe materials, ethical construction practices.

AI Security: Protecting from External Threats

Locks & Rein-
forced Doors

Alarm Systems

Surveillance
(CCTV)

Perimeter Defenses

Forced Entry

Stealthy
Intrusion

Vandalism

Defends

Defends

Defends

Focus: Protecting against intentional malice via

access controls, surveillance, active defenses.
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AI Safety Research: Four Pillars

Value
Alignment
[Rus15]

Robustness &
Reliability
[AOS+16]

Fairness &
Ethics
[BHN19]

Long-term
AGI Safety
[Bos14]

RLHF
Constitutional AI
Value learning

Preference modeling

OOD detection
Uncertainty quantification

Safe exploration
Fail-safe design

Bias detection
Fair ML

Ethical frameworks
Impact assessment

Alignment stability
Corrigibility
Containment

Scalable oversight

Foundation: Preventing Unintended Harm
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AI Alignment: The Core Challenge of Ensuring AI Does What We Want

The Alignment Problem
The challenge of creating AI systems that reliably pursue the
goals we intend, in the ways we intend, without harmful side
effects

Why It’s Hard
▶ Specification: We can’t perfectly specify human values

▶ Generalization: AI must handle novel situations

▶ Verification: Hard to test all possible behaviors

▶ Evolution: Values and goals change over time

Human Intent

AI Behavior

Gap

Misalignment

Real Examples
▶ Social media: Engagement ̸= Well-being

▶ Trading AI: Profit ̸= Market stability

▶ Content AI: Virality ̸= Truth
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Technical Approaches to Alignment

Reinforcement Learning
from Human Feedback
(RLHF) [OWJ+22]

Constitutional AI
[BKK+22]

AI Safety via
Debate [ICA18]

Interpretability &
Transparency [GSC+19]

Human Values &
Preferences

ChatGPT, Claude
Learns from ratings

Explicit rules
Self-correction

AI systems argue
Human judges

LIME [RSG16],
SHAP [LL17]

Mechanistic interp
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AI Security Research: Five Domains

Adversarial
Robustness

Data & Model
Integrity

Privacy &
Confidentiality

System
Availability

Supply Chain
Security

Secure AI

Attacks: Evasion, poisoning

Defense: Certified training

Backdoors

Validation

Model inversion

Differential privacy, TEEs, Private Cloud Compute (PCC)
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Our Ongoing Effort of Securing AI Inferences with TEEs

Storage

Encrypted Model 
Parameters

Host-OS

Attestation 
Service

Inference 
Logic

Guest OS

Guest Drivers & Libraries

Trusted Execution Environment

Hypervisor

Untrusted 
Apps

Apps

SEV/TDX CPU TEEs

H100 GPU TEEs

AI Service Provider

Encrypted 
User Input

Attestation Report 
+ Encryption Key

AI Users
(Client)

Decrypted 
ML Output

Input Query
Privacy Gateway (Owned 
by 3rd-Party or Service 

Provider)

Mask device source IP

Output Result
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Case Study 1: Life-Critical Healthcare AI

Data
Collection

Model
Training

Clinical
Deployment

Patient
Diagnosis

Dataset Bias
Single-institution
training data

(IBM Watson) [RS18]

Inadequate Validation
Limited testing on
diverse populations

[CJJS18]

False Diagnosis
82% false positive
mammography
[MKGea18]

Data Poisoning
Malicious training
samples [BR18]

Adversarial Attacks
Imperceptible image

perturbations [FBIea19]

Privacy Breach
Model inversion reveals
patient data [SSSS17]

S
a
fe
ty

Is
su
es

S
ec
u
ri
ty

T
h
re
a
ts

Healthcare AI Lifecycle
21 / 25



Introduction Core Definitions AI Safety & AI Security: Research Focuses Case Studies Conclusion References

Case Study 2: Autonomous Vehicles

Safety Failures

• Sensor failures
• Edge cases
• Extreme weather

Security Attacks

• GPS spoofing
• Sensor jamming
• Remote hijacking

Uber Fatality (2018) - Safety [Dom18]

▶ Pedestrian detection failure

▶ Emergency braking disabled

▶ Human safety driver distracted

▶ Solution: Enhanced sensor fusion,
fail-safe mechanisms

Jeep Hack (2015) - Security [Gre15]

▶ Remote control via internet

▶ Steering and brakes compromised

▶ 1.4 million vehicles recalled

▶ Solution: Network isolation, secure
update mechanisms
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Case Study 3: The Complexity of Generative AI—Large Language Models

LLMs
Hallucination:

“Paris is the capital of Italy” [ST23]

Bias:
Gender stereotypes in

job descriptions [NM24]

Harmful content:
Medical misinformation [HNK+24]

Prompt injection:
“Ignore previous

instructions...” [LDL+23]

Jailbreaking:
DAN prompts [ACF24]

Data extraction:
Training data leakage [Fou23]

Safety Security

23 / 25
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AI Safety & AI Security: Different Problems, Different Solutions

AI Safety Research

1 Value alignment [Gab20]

2 Interpretability (XAI) [GSC+19]

3 Distributional robustness [HZB+19]

4 Bias detection/mitigation [MMS+21]

5 Fail-safe mechanisms [OA16]

Tools: RLHF [OWJ+22], Constitutional
AI [BKK+22], LIME [RSG16], SHAP
[LL17]

AI Security Research

1 Adversarial robustness [MMS+18]

2 Privacy preservation [SSSS17]

3 Model watermarking [UNSS17]

4 Attack detection [AAF+23]

5 Access control [Nat20, BAW+20]

Tools: Adversarial training, Differential
privacy, Secure enclaves [SSD22]
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The Path Forward: Towards Unified AI Risk Management

Unified AI Risk Management
for Trustworthy AI

AI Safety Principles &
Practices

AI Security Principles &
Practices

Holistic Frameworks &
Standards

Co-Design Principles
(Safety- & Security-

by-Design)

Integrated Technical &
Organizational Safeguards

Cross-functional &
Multidisciplinary Teams
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The Path Forward: Towards Unified AI Risk Management

AI
Safety

AI
Security

Trustworthy
AI

Interdependent

Safe by Design & Secure by Default
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Thank You

Questions & Discussion
zlin@cse.ohio-state.edu

Z. Lin, H. Sun, and N. Shroff. “AI Safety vs. AI
Security: Demystifying the Distinction and Boundaries”.
https://www.arxiv.org/abs/2506.18932, June
2025.

25 / 25

https://www.arxiv.org/abs/2506.18932


Introduction Core Definitions AI Safety & AI Security: Research Focuses Case Studies Conclusion References

References I

Giovanni Apruzzese, Mauro Andreolini, Luca Ferretti, Mirco Marchetti, and Michele Colajanni, The role of deep learning in cybersecurity

intrusion detection: A comprehensive survey and future challenges, Journal of Network and Computer Applications 209 (2023), 103540.

Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion, Jailbreaking leading safety-aligned llms with simple adaptive attacks,

arXiv preprint arXiv:2404.02151 (2024).

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané, Concrete problems in ai safety, arXiv preprint
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